erofs: fix up compacted indexes for block size < 4096
[platform/kernel/linux-starfive.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      (jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
44
45 #include "ext4_jbd2.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "truncate.h"
49
50 #include <trace/events/ext4.h>
51
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53                               struct ext4_inode_info *ei)
54 {
55         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56         __u32 csum;
57         __u16 dummy_csum = 0;
58         int offset = offsetof(struct ext4_inode, i_checksum_lo);
59         unsigned int csum_size = sizeof(dummy_csum);
60
61         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63         offset += csum_size;
64         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65                            EXT4_GOOD_OLD_INODE_SIZE - offset);
66
67         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68                 offset = offsetof(struct ext4_inode, i_checksum_hi);
69                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70                                    EXT4_GOOD_OLD_INODE_SIZE,
71                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
72                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74                                            csum_size);
75                         offset += csum_size;
76                 }
77                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
79         }
80
81         return csum;
82 }
83
84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85                                   struct ext4_inode_info *ei)
86 {
87         __u32 provided, calculated;
88
89         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90             cpu_to_le32(EXT4_OS_LINUX) ||
91             !ext4_has_metadata_csum(inode->i_sb))
92                 return 1;
93
94         provided = le16_to_cpu(raw->i_checksum_lo);
95         calculated = ext4_inode_csum(inode, raw, ei);
96         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99         else
100                 calculated &= 0xFFFF;
101
102         return provided == calculated;
103 }
104
105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106                          struct ext4_inode_info *ei)
107 {
108         __u32 csum;
109
110         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111             cpu_to_le32(EXT4_OS_LINUX) ||
112             !ext4_has_metadata_csum(inode->i_sb))
113                 return;
114
115         csum = ext4_inode_csum(inode, raw, ei);
116         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120 }
121
122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
123                                               loff_t new_size)
124 {
125         trace_ext4_begin_ordered_truncate(inode, new_size);
126         /*
127          * If jinode is zero, then we never opened the file for
128          * writing, so there's no need to call
129          * jbd2_journal_begin_ordered_truncate() since there's no
130          * outstanding writes we need to flush.
131          */
132         if (!EXT4_I(inode)->jinode)
133                 return 0;
134         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135                                                    EXT4_I(inode)->jinode,
136                                                    new_size);
137 }
138
139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140                                   int pextents);
141
142 /*
143  * Test whether an inode is a fast symlink.
144  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
145  */
146 int ext4_inode_is_fast_symlink(struct inode *inode)
147 {
148         if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
149                 int ea_blocks = EXT4_I(inode)->i_file_acl ?
150                                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
151
152                 if (ext4_has_inline_data(inode))
153                         return 0;
154
155                 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
156         }
157         return S_ISLNK(inode->i_mode) && inode->i_size &&
158                (inode->i_size < EXT4_N_BLOCKS * 4);
159 }
160
161 /*
162  * Called at the last iput() if i_nlink is zero.
163  */
164 void ext4_evict_inode(struct inode *inode)
165 {
166         handle_t *handle;
167         int err;
168         /*
169          * Credits for final inode cleanup and freeing:
170          * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
171          * (xattr block freeing), bitmap, group descriptor (inode freeing)
172          */
173         int extra_credits = 6;
174         struct ext4_xattr_inode_array *ea_inode_array = NULL;
175         bool freeze_protected = false;
176
177         trace_ext4_evict_inode(inode);
178
179         if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
180                 ext4_evict_ea_inode(inode);
181         if (inode->i_nlink) {
182                 truncate_inode_pages_final(&inode->i_data);
183
184                 goto no_delete;
185         }
186
187         if (is_bad_inode(inode))
188                 goto no_delete;
189         dquot_initialize(inode);
190
191         if (ext4_should_order_data(inode))
192                 ext4_begin_ordered_truncate(inode, 0);
193         truncate_inode_pages_final(&inode->i_data);
194
195         /*
196          * For inodes with journalled data, transaction commit could have
197          * dirtied the inode. And for inodes with dioread_nolock, unwritten
198          * extents converting worker could merge extents and also have dirtied
199          * the inode. Flush worker is ignoring it because of I_FREEING flag but
200          * we still need to remove the inode from the writeback lists.
201          */
202         if (!list_empty_careful(&inode->i_io_list))
203                 inode_io_list_del(inode);
204
205         /*
206          * Protect us against freezing - iput() caller didn't have to have any
207          * protection against it. When we are in a running transaction though,
208          * we are already protected against freezing and we cannot grab further
209          * protection due to lock ordering constraints.
210          */
211         if (!ext4_journal_current_handle()) {
212                 sb_start_intwrite(inode->i_sb);
213                 freeze_protected = true;
214         }
215
216         if (!IS_NOQUOTA(inode))
217                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
218
219         /*
220          * Block bitmap, group descriptor, and inode are accounted in both
221          * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
222          */
223         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
224                          ext4_blocks_for_truncate(inode) + extra_credits - 3);
225         if (IS_ERR(handle)) {
226                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
227                 /*
228                  * If we're going to skip the normal cleanup, we still need to
229                  * make sure that the in-core orphan linked list is properly
230                  * cleaned up.
231                  */
232                 ext4_orphan_del(NULL, inode);
233                 if (freeze_protected)
234                         sb_end_intwrite(inode->i_sb);
235                 goto no_delete;
236         }
237
238         if (IS_SYNC(inode))
239                 ext4_handle_sync(handle);
240
241         /*
242          * Set inode->i_size to 0 before calling ext4_truncate(). We need
243          * special handling of symlinks here because i_size is used to
244          * determine whether ext4_inode_info->i_data contains symlink data or
245          * block mappings. Setting i_size to 0 will remove its fast symlink
246          * status. Erase i_data so that it becomes a valid empty block map.
247          */
248         if (ext4_inode_is_fast_symlink(inode))
249                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
250         inode->i_size = 0;
251         err = ext4_mark_inode_dirty(handle, inode);
252         if (err) {
253                 ext4_warning(inode->i_sb,
254                              "couldn't mark inode dirty (err %d)", err);
255                 goto stop_handle;
256         }
257         if (inode->i_blocks) {
258                 err = ext4_truncate(inode);
259                 if (err) {
260                         ext4_error_err(inode->i_sb, -err,
261                                        "couldn't truncate inode %lu (err %d)",
262                                        inode->i_ino, err);
263                         goto stop_handle;
264                 }
265         }
266
267         /* Remove xattr references. */
268         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
269                                       extra_credits);
270         if (err) {
271                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
272 stop_handle:
273                 ext4_journal_stop(handle);
274                 ext4_orphan_del(NULL, inode);
275                 if (freeze_protected)
276                         sb_end_intwrite(inode->i_sb);
277                 ext4_xattr_inode_array_free(ea_inode_array);
278                 goto no_delete;
279         }
280
281         /*
282          * Kill off the orphan record which ext4_truncate created.
283          * AKPM: I think this can be inside the above `if'.
284          * Note that ext4_orphan_del() has to be able to cope with the
285          * deletion of a non-existent orphan - this is because we don't
286          * know if ext4_truncate() actually created an orphan record.
287          * (Well, we could do this if we need to, but heck - it works)
288          */
289         ext4_orphan_del(handle, inode);
290         EXT4_I(inode)->i_dtime  = (__u32)ktime_get_real_seconds();
291
292         /*
293          * One subtle ordering requirement: if anything has gone wrong
294          * (transaction abort, IO errors, whatever), then we can still
295          * do these next steps (the fs will already have been marked as
296          * having errors), but we can't free the inode if the mark_dirty
297          * fails.
298          */
299         if (ext4_mark_inode_dirty(handle, inode))
300                 /* If that failed, just do the required in-core inode clear. */
301                 ext4_clear_inode(inode);
302         else
303                 ext4_free_inode(handle, inode);
304         ext4_journal_stop(handle);
305         if (freeze_protected)
306                 sb_end_intwrite(inode->i_sb);
307         ext4_xattr_inode_array_free(ea_inode_array);
308         return;
309 no_delete:
310         /*
311          * Check out some where else accidentally dirty the evicting inode,
312          * which may probably cause inode use-after-free issues later.
313          */
314         WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
315
316         if (!list_empty(&EXT4_I(inode)->i_fc_list))
317                 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
318         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
319 }
320
321 #ifdef CONFIG_QUOTA
322 qsize_t *ext4_get_reserved_space(struct inode *inode)
323 {
324         return &EXT4_I(inode)->i_reserved_quota;
325 }
326 #endif
327
328 /*
329  * Called with i_data_sem down, which is important since we can call
330  * ext4_discard_preallocations() from here.
331  */
332 void ext4_da_update_reserve_space(struct inode *inode,
333                                         int used, int quota_claim)
334 {
335         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
336         struct ext4_inode_info *ei = EXT4_I(inode);
337
338         spin_lock(&ei->i_block_reservation_lock);
339         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
340         if (unlikely(used > ei->i_reserved_data_blocks)) {
341                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
342                          "with only %d reserved data blocks",
343                          __func__, inode->i_ino, used,
344                          ei->i_reserved_data_blocks);
345                 WARN_ON(1);
346                 used = ei->i_reserved_data_blocks;
347         }
348
349         /* Update per-inode reservations */
350         ei->i_reserved_data_blocks -= used;
351         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
352
353         spin_unlock(&ei->i_block_reservation_lock);
354
355         /* Update quota subsystem for data blocks */
356         if (quota_claim)
357                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
358         else {
359                 /*
360                  * We did fallocate with an offset that is already delayed
361                  * allocated. So on delayed allocated writeback we should
362                  * not re-claim the quota for fallocated blocks.
363                  */
364                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
365         }
366
367         /*
368          * If we have done all the pending block allocations and if
369          * there aren't any writers on the inode, we can discard the
370          * inode's preallocations.
371          */
372         if ((ei->i_reserved_data_blocks == 0) &&
373             !inode_is_open_for_write(inode))
374                 ext4_discard_preallocations(inode, 0);
375 }
376
377 static int __check_block_validity(struct inode *inode, const char *func,
378                                 unsigned int line,
379                                 struct ext4_map_blocks *map)
380 {
381         if (ext4_has_feature_journal(inode->i_sb) &&
382             (inode->i_ino ==
383              le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
384                 return 0;
385         if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
386                 ext4_error_inode(inode, func, line, map->m_pblk,
387                                  "lblock %lu mapped to illegal pblock %llu "
388                                  "(length %d)", (unsigned long) map->m_lblk,
389                                  map->m_pblk, map->m_len);
390                 return -EFSCORRUPTED;
391         }
392         return 0;
393 }
394
395 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
396                        ext4_lblk_t len)
397 {
398         int ret;
399
400         if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
401                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
402
403         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
404         if (ret > 0)
405                 ret = 0;
406
407         return ret;
408 }
409
410 #define check_block_validity(inode, map)        \
411         __check_block_validity((inode), __func__, __LINE__, (map))
412
413 #ifdef ES_AGGRESSIVE_TEST
414 static void ext4_map_blocks_es_recheck(handle_t *handle,
415                                        struct inode *inode,
416                                        struct ext4_map_blocks *es_map,
417                                        struct ext4_map_blocks *map,
418                                        int flags)
419 {
420         int retval;
421
422         map->m_flags = 0;
423         /*
424          * There is a race window that the result is not the same.
425          * e.g. xfstests #223 when dioread_nolock enables.  The reason
426          * is that we lookup a block mapping in extent status tree with
427          * out taking i_data_sem.  So at the time the unwritten extent
428          * could be converted.
429          */
430         down_read(&EXT4_I(inode)->i_data_sem);
431         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
432                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
433         } else {
434                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
435         }
436         up_read((&EXT4_I(inode)->i_data_sem));
437
438         /*
439          * We don't check m_len because extent will be collpased in status
440          * tree.  So the m_len might not equal.
441          */
442         if (es_map->m_lblk != map->m_lblk ||
443             es_map->m_flags != map->m_flags ||
444             es_map->m_pblk != map->m_pblk) {
445                 printk("ES cache assertion failed for inode: %lu "
446                        "es_cached ex [%d/%d/%llu/%x] != "
447                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
448                        inode->i_ino, es_map->m_lblk, es_map->m_len,
449                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
450                        map->m_len, map->m_pblk, map->m_flags,
451                        retval, flags);
452         }
453 }
454 #endif /* ES_AGGRESSIVE_TEST */
455
456 /*
457  * The ext4_map_blocks() function tries to look up the requested blocks,
458  * and returns if the blocks are already mapped.
459  *
460  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
461  * and store the allocated blocks in the result buffer head and mark it
462  * mapped.
463  *
464  * If file type is extents based, it will call ext4_ext_map_blocks(),
465  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
466  * based files
467  *
468  * On success, it returns the number of blocks being mapped or allocated.  if
469  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
470  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
471  *
472  * It returns 0 if plain look up failed (blocks have not been allocated), in
473  * that case, @map is returned as unmapped but we still do fill map->m_len to
474  * indicate the length of a hole starting at map->m_lblk.
475  *
476  * It returns the error in case of allocation failure.
477  */
478 int ext4_map_blocks(handle_t *handle, struct inode *inode,
479                     struct ext4_map_blocks *map, int flags)
480 {
481         struct extent_status es;
482         int retval;
483         int ret = 0;
484 #ifdef ES_AGGRESSIVE_TEST
485         struct ext4_map_blocks orig_map;
486
487         memcpy(&orig_map, map, sizeof(*map));
488 #endif
489
490         map->m_flags = 0;
491         ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
492                   flags, map->m_len, (unsigned long) map->m_lblk);
493
494         /*
495          * ext4_map_blocks returns an int, and m_len is an unsigned int
496          */
497         if (unlikely(map->m_len > INT_MAX))
498                 map->m_len = INT_MAX;
499
500         /* We can handle the block number less than EXT_MAX_BLOCKS */
501         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
502                 return -EFSCORRUPTED;
503
504         /* Lookup extent status tree firstly */
505         if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
506             ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
507                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
508                         map->m_pblk = ext4_es_pblock(&es) +
509                                         map->m_lblk - es.es_lblk;
510                         map->m_flags |= ext4_es_is_written(&es) ?
511                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
512                         retval = es.es_len - (map->m_lblk - es.es_lblk);
513                         if (retval > map->m_len)
514                                 retval = map->m_len;
515                         map->m_len = retval;
516                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
517                         map->m_pblk = 0;
518                         retval = es.es_len - (map->m_lblk - es.es_lblk);
519                         if (retval > map->m_len)
520                                 retval = map->m_len;
521                         map->m_len = retval;
522                         retval = 0;
523                 } else {
524                         BUG();
525                 }
526
527                 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
528                         return retval;
529 #ifdef ES_AGGRESSIVE_TEST
530                 ext4_map_blocks_es_recheck(handle, inode, map,
531                                            &orig_map, flags);
532 #endif
533                 goto found;
534         }
535         /*
536          * In the query cache no-wait mode, nothing we can do more if we
537          * cannot find extent in the cache.
538          */
539         if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
540                 return 0;
541
542         /*
543          * Try to see if we can get the block without requesting a new
544          * file system block.
545          */
546         down_read(&EXT4_I(inode)->i_data_sem);
547         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
548                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
549         } else {
550                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
551         }
552         if (retval > 0) {
553                 unsigned int status;
554
555                 if (unlikely(retval != map->m_len)) {
556                         ext4_warning(inode->i_sb,
557                                      "ES len assertion failed for inode "
558                                      "%lu: retval %d != map->m_len %d",
559                                      inode->i_ino, retval, map->m_len);
560                         WARN_ON(1);
561                 }
562
563                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
564                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
565                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
566                     !(status & EXTENT_STATUS_WRITTEN) &&
567                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
568                                        map->m_lblk + map->m_len - 1))
569                         status |= EXTENT_STATUS_DELAYED;
570                 ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
571                                       map->m_pblk, status);
572         }
573         up_read((&EXT4_I(inode)->i_data_sem));
574
575 found:
576         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
577                 ret = check_block_validity(inode, map);
578                 if (ret != 0)
579                         return ret;
580         }
581
582         /* If it is only a block(s) look up */
583         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
584                 return retval;
585
586         /*
587          * Returns if the blocks have already allocated
588          *
589          * Note that if blocks have been preallocated
590          * ext4_ext_get_block() returns the create = 0
591          * with buffer head unmapped.
592          */
593         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
594                 /*
595                  * If we need to convert extent to unwritten
596                  * we continue and do the actual work in
597                  * ext4_ext_map_blocks()
598                  */
599                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
600                         return retval;
601
602         /*
603          * Here we clear m_flags because after allocating an new extent,
604          * it will be set again.
605          */
606         map->m_flags &= ~EXT4_MAP_FLAGS;
607
608         /*
609          * New blocks allocate and/or writing to unwritten extent
610          * will possibly result in updating i_data, so we take
611          * the write lock of i_data_sem, and call get_block()
612          * with create == 1 flag.
613          */
614         down_write(&EXT4_I(inode)->i_data_sem);
615
616         /*
617          * We need to check for EXT4 here because migrate
618          * could have changed the inode type in between
619          */
620         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
621                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
622         } else {
623                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
624
625                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
626                         /*
627                          * We allocated new blocks which will result in
628                          * i_data's format changing.  Force the migrate
629                          * to fail by clearing migrate flags
630                          */
631                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
632                 }
633         }
634
635         if (retval > 0) {
636                 unsigned int status;
637
638                 if (unlikely(retval != map->m_len)) {
639                         ext4_warning(inode->i_sb,
640                                      "ES len assertion failed for inode "
641                                      "%lu: retval %d != map->m_len %d",
642                                      inode->i_ino, retval, map->m_len);
643                         WARN_ON(1);
644                 }
645
646                 /*
647                  * We have to zeroout blocks before inserting them into extent
648                  * status tree. Otherwise someone could look them up there and
649                  * use them before they are really zeroed. We also have to
650                  * unmap metadata before zeroing as otherwise writeback can
651                  * overwrite zeros with stale data from block device.
652                  */
653                 if (flags & EXT4_GET_BLOCKS_ZERO &&
654                     map->m_flags & EXT4_MAP_MAPPED &&
655                     map->m_flags & EXT4_MAP_NEW) {
656                         ret = ext4_issue_zeroout(inode, map->m_lblk,
657                                                  map->m_pblk, map->m_len);
658                         if (ret) {
659                                 retval = ret;
660                                 goto out_sem;
661                         }
662                 }
663
664                 /*
665                  * If the extent has been zeroed out, we don't need to update
666                  * extent status tree.
667                  */
668                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
669                     ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
670                         if (ext4_es_is_written(&es))
671                                 goto out_sem;
672                 }
673                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
674                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
675                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
676                     !(status & EXTENT_STATUS_WRITTEN) &&
677                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
678                                        map->m_lblk + map->m_len - 1))
679                         status |= EXTENT_STATUS_DELAYED;
680                 ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
681                                       map->m_pblk, status);
682         }
683
684 out_sem:
685         up_write((&EXT4_I(inode)->i_data_sem));
686         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
687                 ret = check_block_validity(inode, map);
688                 if (ret != 0)
689                         return ret;
690
691                 /*
692                  * Inodes with freshly allocated blocks where contents will be
693                  * visible after transaction commit must be on transaction's
694                  * ordered data list.
695                  */
696                 if (map->m_flags & EXT4_MAP_NEW &&
697                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
698                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
699                     !ext4_is_quota_file(inode) &&
700                     ext4_should_order_data(inode)) {
701                         loff_t start_byte =
702                                 (loff_t)map->m_lblk << inode->i_blkbits;
703                         loff_t length = (loff_t)map->m_len << inode->i_blkbits;
704
705                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
706                                 ret = ext4_jbd2_inode_add_wait(handle, inode,
707                                                 start_byte, length);
708                         else
709                                 ret = ext4_jbd2_inode_add_write(handle, inode,
710                                                 start_byte, length);
711                         if (ret)
712                                 return ret;
713                 }
714         }
715         if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
716                                 map->m_flags & EXT4_MAP_MAPPED))
717                 ext4_fc_track_range(handle, inode, map->m_lblk,
718                                         map->m_lblk + map->m_len - 1);
719         if (retval < 0)
720                 ext_debug(inode, "failed with err %d\n", retval);
721         return retval;
722 }
723
724 /*
725  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
726  * we have to be careful as someone else may be manipulating b_state as well.
727  */
728 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
729 {
730         unsigned long old_state;
731         unsigned long new_state;
732
733         flags &= EXT4_MAP_FLAGS;
734
735         /* Dummy buffer_head? Set non-atomically. */
736         if (!bh->b_page) {
737                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
738                 return;
739         }
740         /*
741          * Someone else may be modifying b_state. Be careful! This is ugly but
742          * once we get rid of using bh as a container for mapping information
743          * to pass to / from get_block functions, this can go away.
744          */
745         old_state = READ_ONCE(bh->b_state);
746         do {
747                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
748         } while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state)));
749 }
750
751 static int _ext4_get_block(struct inode *inode, sector_t iblock,
752                            struct buffer_head *bh, int flags)
753 {
754         struct ext4_map_blocks map;
755         int ret = 0;
756
757         if (ext4_has_inline_data(inode))
758                 return -ERANGE;
759
760         map.m_lblk = iblock;
761         map.m_len = bh->b_size >> inode->i_blkbits;
762
763         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
764                               flags);
765         if (ret > 0) {
766                 map_bh(bh, inode->i_sb, map.m_pblk);
767                 ext4_update_bh_state(bh, map.m_flags);
768                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
769                 ret = 0;
770         } else if (ret == 0) {
771                 /* hole case, need to fill in bh->b_size */
772                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
773         }
774         return ret;
775 }
776
777 int ext4_get_block(struct inode *inode, sector_t iblock,
778                    struct buffer_head *bh, int create)
779 {
780         return _ext4_get_block(inode, iblock, bh,
781                                create ? EXT4_GET_BLOCKS_CREATE : 0);
782 }
783
784 /*
785  * Get block function used when preparing for buffered write if we require
786  * creating an unwritten extent if blocks haven't been allocated.  The extent
787  * will be converted to written after the IO is complete.
788  */
789 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
790                              struct buffer_head *bh_result, int create)
791 {
792         int ret = 0;
793
794         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
795                    inode->i_ino, create);
796         ret = _ext4_get_block(inode, iblock, bh_result,
797                                EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
798
799         /*
800          * If the buffer is marked unwritten, mark it as new to make sure it is
801          * zeroed out correctly in case of partial writes. Otherwise, there is
802          * a chance of stale data getting exposed.
803          */
804         if (ret == 0 && buffer_unwritten(bh_result))
805                 set_buffer_new(bh_result);
806
807         return ret;
808 }
809
810 /* Maximum number of blocks we map for direct IO at once. */
811 #define DIO_MAX_BLOCKS 4096
812
813 /*
814  * `handle' can be NULL if create is zero
815  */
816 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
817                                 ext4_lblk_t block, int map_flags)
818 {
819         struct ext4_map_blocks map;
820         struct buffer_head *bh;
821         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
822         bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
823         int err;
824
825         ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
826                     || handle != NULL || create == 0);
827         ASSERT(create == 0 || !nowait);
828
829         map.m_lblk = block;
830         map.m_len = 1;
831         err = ext4_map_blocks(handle, inode, &map, map_flags);
832
833         if (err == 0)
834                 return create ? ERR_PTR(-ENOSPC) : NULL;
835         if (err < 0)
836                 return ERR_PTR(err);
837
838         if (nowait)
839                 return sb_find_get_block(inode->i_sb, map.m_pblk);
840
841         bh = sb_getblk(inode->i_sb, map.m_pblk);
842         if (unlikely(!bh))
843                 return ERR_PTR(-ENOMEM);
844         if (map.m_flags & EXT4_MAP_NEW) {
845                 ASSERT(create != 0);
846                 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
847                             || (handle != NULL));
848
849                 /*
850                  * Now that we do not always journal data, we should
851                  * keep in mind whether this should always journal the
852                  * new buffer as metadata.  For now, regular file
853                  * writes use ext4_get_block instead, so it's not a
854                  * problem.
855                  */
856                 lock_buffer(bh);
857                 BUFFER_TRACE(bh, "call get_create_access");
858                 err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
859                                                      EXT4_JTR_NONE);
860                 if (unlikely(err)) {
861                         unlock_buffer(bh);
862                         goto errout;
863                 }
864                 if (!buffer_uptodate(bh)) {
865                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
866                         set_buffer_uptodate(bh);
867                 }
868                 unlock_buffer(bh);
869                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
870                 err = ext4_handle_dirty_metadata(handle, inode, bh);
871                 if (unlikely(err))
872                         goto errout;
873         } else
874                 BUFFER_TRACE(bh, "not a new buffer");
875         return bh;
876 errout:
877         brelse(bh);
878         return ERR_PTR(err);
879 }
880
881 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
882                                ext4_lblk_t block, int map_flags)
883 {
884         struct buffer_head *bh;
885         int ret;
886
887         bh = ext4_getblk(handle, inode, block, map_flags);
888         if (IS_ERR(bh))
889                 return bh;
890         if (!bh || ext4_buffer_uptodate(bh))
891                 return bh;
892
893         ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
894         if (ret) {
895                 put_bh(bh);
896                 return ERR_PTR(ret);
897         }
898         return bh;
899 }
900
901 /* Read a contiguous batch of blocks. */
902 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
903                      bool wait, struct buffer_head **bhs)
904 {
905         int i, err;
906
907         for (i = 0; i < bh_count; i++) {
908                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
909                 if (IS_ERR(bhs[i])) {
910                         err = PTR_ERR(bhs[i]);
911                         bh_count = i;
912                         goto out_brelse;
913                 }
914         }
915
916         for (i = 0; i < bh_count; i++)
917                 /* Note that NULL bhs[i] is valid because of holes. */
918                 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
919                         ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
920
921         if (!wait)
922                 return 0;
923
924         for (i = 0; i < bh_count; i++)
925                 if (bhs[i])
926                         wait_on_buffer(bhs[i]);
927
928         for (i = 0; i < bh_count; i++) {
929                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
930                         err = -EIO;
931                         goto out_brelse;
932                 }
933         }
934         return 0;
935
936 out_brelse:
937         for (i = 0; i < bh_count; i++) {
938                 brelse(bhs[i]);
939                 bhs[i] = NULL;
940         }
941         return err;
942 }
943
944 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
945                            struct buffer_head *head,
946                            unsigned from,
947                            unsigned to,
948                            int *partial,
949                            int (*fn)(handle_t *handle, struct inode *inode,
950                                      struct buffer_head *bh))
951 {
952         struct buffer_head *bh;
953         unsigned block_start, block_end;
954         unsigned blocksize = head->b_size;
955         int err, ret = 0;
956         struct buffer_head *next;
957
958         for (bh = head, block_start = 0;
959              ret == 0 && (bh != head || !block_start);
960              block_start = block_end, bh = next) {
961                 next = bh->b_this_page;
962                 block_end = block_start + blocksize;
963                 if (block_end <= from || block_start >= to) {
964                         if (partial && !buffer_uptodate(bh))
965                                 *partial = 1;
966                         continue;
967                 }
968                 err = (*fn)(handle, inode, bh);
969                 if (!ret)
970                         ret = err;
971         }
972         return ret;
973 }
974
975 /*
976  * Helper for handling dirtying of journalled data. We also mark the folio as
977  * dirty so that writeback code knows about this page (and inode) contains
978  * dirty data. ext4_writepages() then commits appropriate transaction to
979  * make data stable.
980  */
981 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh)
982 {
983         folio_mark_dirty(bh->b_folio);
984         return ext4_handle_dirty_metadata(handle, NULL, bh);
985 }
986
987 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
988                                 struct buffer_head *bh)
989 {
990         int dirty = buffer_dirty(bh);
991         int ret;
992
993         if (!buffer_mapped(bh) || buffer_freed(bh))
994                 return 0;
995         /*
996          * __block_write_begin() could have dirtied some buffers. Clean
997          * the dirty bit as jbd2_journal_get_write_access() could complain
998          * otherwise about fs integrity issues. Setting of the dirty bit
999          * by __block_write_begin() isn't a real problem here as we clear
1000          * the bit before releasing a page lock and thus writeback cannot
1001          * ever write the buffer.
1002          */
1003         if (dirty)
1004                 clear_buffer_dirty(bh);
1005         BUFFER_TRACE(bh, "get write access");
1006         ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1007                                             EXT4_JTR_NONE);
1008         if (!ret && dirty)
1009                 ret = ext4_dirty_journalled_data(handle, bh);
1010         return ret;
1011 }
1012
1013 #ifdef CONFIG_FS_ENCRYPTION
1014 static int ext4_block_write_begin(struct folio *folio, loff_t pos, unsigned len,
1015                                   get_block_t *get_block)
1016 {
1017         unsigned from = pos & (PAGE_SIZE - 1);
1018         unsigned to = from + len;
1019         struct inode *inode = folio->mapping->host;
1020         unsigned block_start, block_end;
1021         sector_t block;
1022         int err = 0;
1023         unsigned blocksize = inode->i_sb->s_blocksize;
1024         unsigned bbits;
1025         struct buffer_head *bh, *head, *wait[2];
1026         int nr_wait = 0;
1027         int i;
1028
1029         BUG_ON(!folio_test_locked(folio));
1030         BUG_ON(from > PAGE_SIZE);
1031         BUG_ON(to > PAGE_SIZE);
1032         BUG_ON(from > to);
1033
1034         head = folio_buffers(folio);
1035         if (!head) {
1036                 create_empty_buffers(&folio->page, blocksize, 0);
1037                 head = folio_buffers(folio);
1038         }
1039         bbits = ilog2(blocksize);
1040         block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1041
1042         for (bh = head, block_start = 0; bh != head || !block_start;
1043             block++, block_start = block_end, bh = bh->b_this_page) {
1044                 block_end = block_start + blocksize;
1045                 if (block_end <= from || block_start >= to) {
1046                         if (folio_test_uptodate(folio)) {
1047                                 set_buffer_uptodate(bh);
1048                         }
1049                         continue;
1050                 }
1051                 if (buffer_new(bh))
1052                         clear_buffer_new(bh);
1053                 if (!buffer_mapped(bh)) {
1054                         WARN_ON(bh->b_size != blocksize);
1055                         err = get_block(inode, block, bh, 1);
1056                         if (err)
1057                                 break;
1058                         if (buffer_new(bh)) {
1059                                 if (folio_test_uptodate(folio)) {
1060                                         clear_buffer_new(bh);
1061                                         set_buffer_uptodate(bh);
1062                                         mark_buffer_dirty(bh);
1063                                         continue;
1064                                 }
1065                                 if (block_end > to || block_start < from)
1066                                         folio_zero_segments(folio, to,
1067                                                             block_end,
1068                                                             block_start, from);
1069                                 continue;
1070                         }
1071                 }
1072                 if (folio_test_uptodate(folio)) {
1073                         set_buffer_uptodate(bh);
1074                         continue;
1075                 }
1076                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1077                     !buffer_unwritten(bh) &&
1078                     (block_start < from || block_end > to)) {
1079                         ext4_read_bh_lock(bh, 0, false);
1080                         wait[nr_wait++] = bh;
1081                 }
1082         }
1083         /*
1084          * If we issued read requests, let them complete.
1085          */
1086         for (i = 0; i < nr_wait; i++) {
1087                 wait_on_buffer(wait[i]);
1088                 if (!buffer_uptodate(wait[i]))
1089                         err = -EIO;
1090         }
1091         if (unlikely(err)) {
1092                 folio_zero_new_buffers(folio, from, to);
1093         } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1094                 for (i = 0; i < nr_wait; i++) {
1095                         int err2;
1096
1097                         err2 = fscrypt_decrypt_pagecache_blocks(folio,
1098                                                 blocksize, bh_offset(wait[i]));
1099                         if (err2) {
1100                                 clear_buffer_uptodate(wait[i]);
1101                                 err = err2;
1102                         }
1103                 }
1104         }
1105
1106         return err;
1107 }
1108 #endif
1109
1110 /*
1111  * To preserve ordering, it is essential that the hole instantiation and
1112  * the data write be encapsulated in a single transaction.  We cannot
1113  * close off a transaction and start a new one between the ext4_get_block()
1114  * and the ext4_write_end().  So doing the jbd2_journal_start at the start of
1115  * ext4_write_begin() is the right place.
1116  */
1117 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1118                             loff_t pos, unsigned len,
1119                             struct page **pagep, void **fsdata)
1120 {
1121         struct inode *inode = mapping->host;
1122         int ret, needed_blocks;
1123         handle_t *handle;
1124         int retries = 0;
1125         struct folio *folio;
1126         pgoff_t index;
1127         unsigned from, to;
1128
1129         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
1130                 return -EIO;
1131
1132         trace_ext4_write_begin(inode, pos, len);
1133         /*
1134          * Reserve one block more for addition to orphan list in case
1135          * we allocate blocks but write fails for some reason
1136          */
1137         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1138         index = pos >> PAGE_SHIFT;
1139         from = pos & (PAGE_SIZE - 1);
1140         to = from + len;
1141
1142         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1143                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1144                                                     pagep);
1145                 if (ret < 0)
1146                         return ret;
1147                 if (ret == 1)
1148                         return 0;
1149         }
1150
1151         /*
1152          * __filemap_get_folio() can take a long time if the
1153          * system is thrashing due to memory pressure, or if the folio
1154          * is being written back.  So grab it first before we start
1155          * the transaction handle.  This also allows us to allocate
1156          * the folio (if needed) without using GFP_NOFS.
1157          */
1158 retry_grab:
1159         folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
1160                                         mapping_gfp_mask(mapping));
1161         if (IS_ERR(folio))
1162                 return PTR_ERR(folio);
1163         /*
1164          * The same as page allocation, we prealloc buffer heads before
1165          * starting the handle.
1166          */
1167         if (!folio_buffers(folio))
1168                 create_empty_buffers(&folio->page, inode->i_sb->s_blocksize, 0);
1169
1170         folio_unlock(folio);
1171
1172 retry_journal:
1173         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1174         if (IS_ERR(handle)) {
1175                 folio_put(folio);
1176                 return PTR_ERR(handle);
1177         }
1178
1179         folio_lock(folio);
1180         if (folio->mapping != mapping) {
1181                 /* The folio got truncated from under us */
1182                 folio_unlock(folio);
1183                 folio_put(folio);
1184                 ext4_journal_stop(handle);
1185                 goto retry_grab;
1186         }
1187         /* In case writeback began while the folio was unlocked */
1188         folio_wait_stable(folio);
1189
1190 #ifdef CONFIG_FS_ENCRYPTION
1191         if (ext4_should_dioread_nolock(inode))
1192                 ret = ext4_block_write_begin(folio, pos, len,
1193                                              ext4_get_block_unwritten);
1194         else
1195                 ret = ext4_block_write_begin(folio, pos, len, ext4_get_block);
1196 #else
1197         if (ext4_should_dioread_nolock(inode))
1198                 ret = __block_write_begin(&folio->page, pos, len,
1199                                           ext4_get_block_unwritten);
1200         else
1201                 ret = __block_write_begin(&folio->page, pos, len, ext4_get_block);
1202 #endif
1203         if (!ret && ext4_should_journal_data(inode)) {
1204                 ret = ext4_walk_page_buffers(handle, inode,
1205                                              folio_buffers(folio), from, to,
1206                                              NULL, do_journal_get_write_access);
1207         }
1208
1209         if (ret) {
1210                 bool extended = (pos + len > inode->i_size) &&
1211                                 !ext4_verity_in_progress(inode);
1212
1213                 folio_unlock(folio);
1214                 /*
1215                  * __block_write_begin may have instantiated a few blocks
1216                  * outside i_size.  Trim these off again. Don't need
1217                  * i_size_read because we hold i_rwsem.
1218                  *
1219                  * Add inode to orphan list in case we crash before
1220                  * truncate finishes
1221                  */
1222                 if (extended && ext4_can_truncate(inode))
1223                         ext4_orphan_add(handle, inode);
1224
1225                 ext4_journal_stop(handle);
1226                 if (extended) {
1227                         ext4_truncate_failed_write(inode);
1228                         /*
1229                          * If truncate failed early the inode might
1230                          * still be on the orphan list; we need to
1231                          * make sure the inode is removed from the
1232                          * orphan list in that case.
1233                          */
1234                         if (inode->i_nlink)
1235                                 ext4_orphan_del(NULL, inode);
1236                 }
1237
1238                 if (ret == -ENOSPC &&
1239                     ext4_should_retry_alloc(inode->i_sb, &retries))
1240                         goto retry_journal;
1241                 folio_put(folio);
1242                 return ret;
1243         }
1244         *pagep = &folio->page;
1245         return ret;
1246 }
1247
1248 /* For write_end() in data=journal mode */
1249 static int write_end_fn(handle_t *handle, struct inode *inode,
1250                         struct buffer_head *bh)
1251 {
1252         int ret;
1253         if (!buffer_mapped(bh) || buffer_freed(bh))
1254                 return 0;
1255         set_buffer_uptodate(bh);
1256         ret = ext4_dirty_journalled_data(handle, bh);
1257         clear_buffer_meta(bh);
1258         clear_buffer_prio(bh);
1259         return ret;
1260 }
1261
1262 /*
1263  * We need to pick up the new inode size which generic_commit_write gave us
1264  * `file' can be NULL - eg, when called from page_symlink().
1265  *
1266  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1267  * buffers are managed internally.
1268  */
1269 static int ext4_write_end(struct file *file,
1270                           struct address_space *mapping,
1271                           loff_t pos, unsigned len, unsigned copied,
1272                           struct page *page, void *fsdata)
1273 {
1274         struct folio *folio = page_folio(page);
1275         handle_t *handle = ext4_journal_current_handle();
1276         struct inode *inode = mapping->host;
1277         loff_t old_size = inode->i_size;
1278         int ret = 0, ret2;
1279         int i_size_changed = 0;
1280         bool verity = ext4_verity_in_progress(inode);
1281
1282         trace_ext4_write_end(inode, pos, len, copied);
1283
1284         if (ext4_has_inline_data(inode) &&
1285             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1286                 return ext4_write_inline_data_end(inode, pos, len, copied,
1287                                                   folio);
1288
1289         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1290         /*
1291          * it's important to update i_size while still holding folio lock:
1292          * page writeout could otherwise come in and zero beyond i_size.
1293          *
1294          * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1295          * blocks are being written past EOF, so skip the i_size update.
1296          */
1297         if (!verity)
1298                 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1299         folio_unlock(folio);
1300         folio_put(folio);
1301
1302         if (old_size < pos && !verity)
1303                 pagecache_isize_extended(inode, old_size, pos);
1304         /*
1305          * Don't mark the inode dirty under folio lock. First, it unnecessarily
1306          * makes the holding time of folio lock longer. Second, it forces lock
1307          * ordering of folio lock and transaction start for journaling
1308          * filesystems.
1309          */
1310         if (i_size_changed)
1311                 ret = ext4_mark_inode_dirty(handle, inode);
1312
1313         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1314                 /* if we have allocated more blocks and copied
1315                  * less. We will have blocks allocated outside
1316                  * inode->i_size. So truncate them
1317                  */
1318                 ext4_orphan_add(handle, inode);
1319
1320         ret2 = ext4_journal_stop(handle);
1321         if (!ret)
1322                 ret = ret2;
1323
1324         if (pos + len > inode->i_size && !verity) {
1325                 ext4_truncate_failed_write(inode);
1326                 /*
1327                  * If truncate failed early the inode might still be
1328                  * on the orphan list; we need to make sure the inode
1329                  * is removed from the orphan list in that case.
1330                  */
1331                 if (inode->i_nlink)
1332                         ext4_orphan_del(NULL, inode);
1333         }
1334
1335         return ret ? ret : copied;
1336 }
1337
1338 /*
1339  * This is a private version of folio_zero_new_buffers() which doesn't
1340  * set the buffer to be dirty, since in data=journalled mode we need
1341  * to call ext4_dirty_journalled_data() instead.
1342  */
1343 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1344                                             struct inode *inode,
1345                                             struct folio *folio,
1346                                             unsigned from, unsigned to)
1347 {
1348         unsigned int block_start = 0, block_end;
1349         struct buffer_head *head, *bh;
1350
1351         bh = head = folio_buffers(folio);
1352         do {
1353                 block_end = block_start + bh->b_size;
1354                 if (buffer_new(bh)) {
1355                         if (block_end > from && block_start < to) {
1356                                 if (!folio_test_uptodate(folio)) {
1357                                         unsigned start, size;
1358
1359                                         start = max(from, block_start);
1360                                         size = min(to, block_end) - start;
1361
1362                                         folio_zero_range(folio, start, size);
1363                                         write_end_fn(handle, inode, bh);
1364                                 }
1365                                 clear_buffer_new(bh);
1366                         }
1367                 }
1368                 block_start = block_end;
1369                 bh = bh->b_this_page;
1370         } while (bh != head);
1371 }
1372
1373 static int ext4_journalled_write_end(struct file *file,
1374                                      struct address_space *mapping,
1375                                      loff_t pos, unsigned len, unsigned copied,
1376                                      struct page *page, void *fsdata)
1377 {
1378         struct folio *folio = page_folio(page);
1379         handle_t *handle = ext4_journal_current_handle();
1380         struct inode *inode = mapping->host;
1381         loff_t old_size = inode->i_size;
1382         int ret = 0, ret2;
1383         int partial = 0;
1384         unsigned from, to;
1385         int size_changed = 0;
1386         bool verity = ext4_verity_in_progress(inode);
1387
1388         trace_ext4_journalled_write_end(inode, pos, len, copied);
1389         from = pos & (PAGE_SIZE - 1);
1390         to = from + len;
1391
1392         BUG_ON(!ext4_handle_valid(handle));
1393
1394         if (ext4_has_inline_data(inode))
1395                 return ext4_write_inline_data_end(inode, pos, len, copied,
1396                                                   folio);
1397
1398         if (unlikely(copied < len) && !folio_test_uptodate(folio)) {
1399                 copied = 0;
1400                 ext4_journalled_zero_new_buffers(handle, inode, folio,
1401                                                  from, to);
1402         } else {
1403                 if (unlikely(copied < len))
1404                         ext4_journalled_zero_new_buffers(handle, inode, folio,
1405                                                          from + copied, to);
1406                 ret = ext4_walk_page_buffers(handle, inode,
1407                                              folio_buffers(folio),
1408                                              from, from + copied, &partial,
1409                                              write_end_fn);
1410                 if (!partial)
1411                         folio_mark_uptodate(folio);
1412         }
1413         if (!verity)
1414                 size_changed = ext4_update_inode_size(inode, pos + copied);
1415         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1416         folio_unlock(folio);
1417         folio_put(folio);
1418
1419         if (old_size < pos && !verity)
1420                 pagecache_isize_extended(inode, old_size, pos);
1421
1422         if (size_changed) {
1423                 ret2 = ext4_mark_inode_dirty(handle, inode);
1424                 if (!ret)
1425                         ret = ret2;
1426         }
1427
1428         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1429                 /* if we have allocated more blocks and copied
1430                  * less. We will have blocks allocated outside
1431                  * inode->i_size. So truncate them
1432                  */
1433                 ext4_orphan_add(handle, inode);
1434
1435         ret2 = ext4_journal_stop(handle);
1436         if (!ret)
1437                 ret = ret2;
1438         if (pos + len > inode->i_size && !verity) {
1439                 ext4_truncate_failed_write(inode);
1440                 /*
1441                  * If truncate failed early the inode might still be
1442                  * on the orphan list; we need to make sure the inode
1443                  * is removed from the orphan list in that case.
1444                  */
1445                 if (inode->i_nlink)
1446                         ext4_orphan_del(NULL, inode);
1447         }
1448
1449         return ret ? ret : copied;
1450 }
1451
1452 /*
1453  * Reserve space for a single cluster
1454  */
1455 static int ext4_da_reserve_space(struct inode *inode)
1456 {
1457         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1458         struct ext4_inode_info *ei = EXT4_I(inode);
1459         int ret;
1460
1461         /*
1462          * We will charge metadata quota at writeout time; this saves
1463          * us from metadata over-estimation, though we may go over by
1464          * a small amount in the end.  Here we just reserve for data.
1465          */
1466         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1467         if (ret)
1468                 return ret;
1469
1470         spin_lock(&ei->i_block_reservation_lock);
1471         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1472                 spin_unlock(&ei->i_block_reservation_lock);
1473                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1474                 return -ENOSPC;
1475         }
1476         ei->i_reserved_data_blocks++;
1477         trace_ext4_da_reserve_space(inode);
1478         spin_unlock(&ei->i_block_reservation_lock);
1479
1480         return 0;       /* success */
1481 }
1482
1483 void ext4_da_release_space(struct inode *inode, int to_free)
1484 {
1485         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1486         struct ext4_inode_info *ei = EXT4_I(inode);
1487
1488         if (!to_free)
1489                 return;         /* Nothing to release, exit */
1490
1491         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1492
1493         trace_ext4_da_release_space(inode, to_free);
1494         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1495                 /*
1496                  * if there aren't enough reserved blocks, then the
1497                  * counter is messed up somewhere.  Since this
1498                  * function is called from invalidate page, it's
1499                  * harmless to return without any action.
1500                  */
1501                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1502                          "ino %lu, to_free %d with only %d reserved "
1503                          "data blocks", inode->i_ino, to_free,
1504                          ei->i_reserved_data_blocks);
1505                 WARN_ON(1);
1506                 to_free = ei->i_reserved_data_blocks;
1507         }
1508         ei->i_reserved_data_blocks -= to_free;
1509
1510         /* update fs dirty data blocks counter */
1511         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1512
1513         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1514
1515         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1516 }
1517
1518 /*
1519  * Delayed allocation stuff
1520  */
1521
1522 struct mpage_da_data {
1523         /* These are input fields for ext4_do_writepages() */
1524         struct inode *inode;
1525         struct writeback_control *wbc;
1526         unsigned int can_map:1; /* Can writepages call map blocks? */
1527
1528         /* These are internal state of ext4_do_writepages() */
1529         pgoff_t first_page;     /* The first page to write */
1530         pgoff_t next_page;      /* Current page to examine */
1531         pgoff_t last_page;      /* Last page to examine */
1532         /*
1533          * Extent to map - this can be after first_page because that can be
1534          * fully mapped. We somewhat abuse m_flags to store whether the extent
1535          * is delalloc or unwritten.
1536          */
1537         struct ext4_map_blocks map;
1538         struct ext4_io_submit io_submit;        /* IO submission data */
1539         unsigned int do_map:1;
1540         unsigned int scanned_until_end:1;
1541         unsigned int journalled_more_data:1;
1542 };
1543
1544 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1545                                        bool invalidate)
1546 {
1547         unsigned nr, i;
1548         pgoff_t index, end;
1549         struct folio_batch fbatch;
1550         struct inode *inode = mpd->inode;
1551         struct address_space *mapping = inode->i_mapping;
1552
1553         /* This is necessary when next_page == 0. */
1554         if (mpd->first_page >= mpd->next_page)
1555                 return;
1556
1557         mpd->scanned_until_end = 0;
1558         index = mpd->first_page;
1559         end   = mpd->next_page - 1;
1560         if (invalidate) {
1561                 ext4_lblk_t start, last;
1562                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1563                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1564
1565                 /*
1566                  * avoid racing with extent status tree scans made by
1567                  * ext4_insert_delayed_block()
1568                  */
1569                 down_write(&EXT4_I(inode)->i_data_sem);
1570                 ext4_es_remove_extent(inode, start, last - start + 1);
1571                 up_write(&EXT4_I(inode)->i_data_sem);
1572         }
1573
1574         folio_batch_init(&fbatch);
1575         while (index <= end) {
1576                 nr = filemap_get_folios(mapping, &index, end, &fbatch);
1577                 if (nr == 0)
1578                         break;
1579                 for (i = 0; i < nr; i++) {
1580                         struct folio *folio = fbatch.folios[i];
1581
1582                         if (folio->index < mpd->first_page)
1583                                 continue;
1584                         if (folio_next_index(folio) - 1 > end)
1585                                 continue;
1586                         BUG_ON(!folio_test_locked(folio));
1587                         BUG_ON(folio_test_writeback(folio));
1588                         if (invalidate) {
1589                                 if (folio_mapped(folio))
1590                                         folio_clear_dirty_for_io(folio);
1591                                 block_invalidate_folio(folio, 0,
1592                                                 folio_size(folio));
1593                                 folio_clear_uptodate(folio);
1594                         }
1595                         folio_unlock(folio);
1596                 }
1597                 folio_batch_release(&fbatch);
1598         }
1599 }
1600
1601 static void ext4_print_free_blocks(struct inode *inode)
1602 {
1603         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1604         struct super_block *sb = inode->i_sb;
1605         struct ext4_inode_info *ei = EXT4_I(inode);
1606
1607         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1608                EXT4_C2B(EXT4_SB(inode->i_sb),
1609                         ext4_count_free_clusters(sb)));
1610         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1611         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1612                (long long) EXT4_C2B(EXT4_SB(sb),
1613                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1614         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1615                (long long) EXT4_C2B(EXT4_SB(sb),
1616                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1617         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1618         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1619                  ei->i_reserved_data_blocks);
1620         return;
1621 }
1622
1623 /*
1624  * ext4_insert_delayed_block - adds a delayed block to the extents status
1625  *                             tree, incrementing the reserved cluster/block
1626  *                             count or making a pending reservation
1627  *                             where needed
1628  *
1629  * @inode - file containing the newly added block
1630  * @lblk - logical block to be added
1631  *
1632  * Returns 0 on success, negative error code on failure.
1633  */
1634 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1635 {
1636         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1637         int ret;
1638         bool allocated = false;
1639
1640         /*
1641          * If the cluster containing lblk is shared with a delayed,
1642          * written, or unwritten extent in a bigalloc file system, it's
1643          * already been accounted for and does not need to be reserved.
1644          * A pending reservation must be made for the cluster if it's
1645          * shared with a written or unwritten extent and doesn't already
1646          * have one.  Written and unwritten extents can be purged from the
1647          * extents status tree if the system is under memory pressure, so
1648          * it's necessary to examine the extent tree if a search of the
1649          * extents status tree doesn't get a match.
1650          */
1651         if (sbi->s_cluster_ratio == 1) {
1652                 ret = ext4_da_reserve_space(inode);
1653                 if (ret != 0)   /* ENOSPC */
1654                         return ret;
1655         } else {   /* bigalloc */
1656                 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1657                         if (!ext4_es_scan_clu(inode,
1658                                               &ext4_es_is_mapped, lblk)) {
1659                                 ret = ext4_clu_mapped(inode,
1660                                                       EXT4_B2C(sbi, lblk));
1661                                 if (ret < 0)
1662                                         return ret;
1663                                 if (ret == 0) {
1664                                         ret = ext4_da_reserve_space(inode);
1665                                         if (ret != 0)   /* ENOSPC */
1666                                                 return ret;
1667                                 } else {
1668                                         allocated = true;
1669                                 }
1670                         } else {
1671                                 allocated = true;
1672                         }
1673                 }
1674         }
1675
1676         ext4_es_insert_delayed_block(inode, lblk, allocated);
1677         return 0;
1678 }
1679
1680 /*
1681  * This function is grabs code from the very beginning of
1682  * ext4_map_blocks, but assumes that the caller is from delayed write
1683  * time. This function looks up the requested blocks and sets the
1684  * buffer delay bit under the protection of i_data_sem.
1685  */
1686 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1687                               struct ext4_map_blocks *map,
1688                               struct buffer_head *bh)
1689 {
1690         struct extent_status es;
1691         int retval;
1692         sector_t invalid_block = ~((sector_t) 0xffff);
1693 #ifdef ES_AGGRESSIVE_TEST
1694         struct ext4_map_blocks orig_map;
1695
1696         memcpy(&orig_map, map, sizeof(*map));
1697 #endif
1698
1699         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1700                 invalid_block = ~0;
1701
1702         map->m_flags = 0;
1703         ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1704                   (unsigned long) map->m_lblk);
1705
1706         /* Lookup extent status tree firstly */
1707         if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1708                 if (ext4_es_is_hole(&es)) {
1709                         retval = 0;
1710                         down_read(&EXT4_I(inode)->i_data_sem);
1711                         goto add_delayed;
1712                 }
1713
1714                 /*
1715                  * Delayed extent could be allocated by fallocate.
1716                  * So we need to check it.
1717                  */
1718                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1719                         map_bh(bh, inode->i_sb, invalid_block);
1720                         set_buffer_new(bh);
1721                         set_buffer_delay(bh);
1722                         return 0;
1723                 }
1724
1725                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1726                 retval = es.es_len - (iblock - es.es_lblk);
1727                 if (retval > map->m_len)
1728                         retval = map->m_len;
1729                 map->m_len = retval;
1730                 if (ext4_es_is_written(&es))
1731                         map->m_flags |= EXT4_MAP_MAPPED;
1732                 else if (ext4_es_is_unwritten(&es))
1733                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1734                 else
1735                         BUG();
1736
1737 #ifdef ES_AGGRESSIVE_TEST
1738                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1739 #endif
1740                 return retval;
1741         }
1742
1743         /*
1744          * Try to see if we can get the block without requesting a new
1745          * file system block.
1746          */
1747         down_read(&EXT4_I(inode)->i_data_sem);
1748         if (ext4_has_inline_data(inode))
1749                 retval = 0;
1750         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1751                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1752         else
1753                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1754
1755 add_delayed:
1756         if (retval == 0) {
1757                 int ret;
1758
1759                 /*
1760                  * XXX: __block_prepare_write() unmaps passed block,
1761                  * is it OK?
1762                  */
1763
1764                 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1765                 if (ret != 0) {
1766                         retval = ret;
1767                         goto out_unlock;
1768                 }
1769
1770                 map_bh(bh, inode->i_sb, invalid_block);
1771                 set_buffer_new(bh);
1772                 set_buffer_delay(bh);
1773         } else if (retval > 0) {
1774                 unsigned int status;
1775
1776                 if (unlikely(retval != map->m_len)) {
1777                         ext4_warning(inode->i_sb,
1778                                      "ES len assertion failed for inode "
1779                                      "%lu: retval %d != map->m_len %d",
1780                                      inode->i_ino, retval, map->m_len);
1781                         WARN_ON(1);
1782                 }
1783
1784                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1785                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1786                 ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1787                                       map->m_pblk, status);
1788         }
1789
1790 out_unlock:
1791         up_read((&EXT4_I(inode)->i_data_sem));
1792
1793         return retval;
1794 }
1795
1796 /*
1797  * This is a special get_block_t callback which is used by
1798  * ext4_da_write_begin().  It will either return mapped block or
1799  * reserve space for a single block.
1800  *
1801  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1802  * We also have b_blocknr = -1 and b_bdev initialized properly
1803  *
1804  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1805  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1806  * initialized properly.
1807  */
1808 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1809                            struct buffer_head *bh, int create)
1810 {
1811         struct ext4_map_blocks map;
1812         int ret = 0;
1813
1814         BUG_ON(create == 0);
1815         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1816
1817         map.m_lblk = iblock;
1818         map.m_len = 1;
1819
1820         /*
1821          * first, we need to know whether the block is allocated already
1822          * preallocated blocks are unmapped but should treated
1823          * the same as allocated blocks.
1824          */
1825         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1826         if (ret <= 0)
1827                 return ret;
1828
1829         map_bh(bh, inode->i_sb, map.m_pblk);
1830         ext4_update_bh_state(bh, map.m_flags);
1831
1832         if (buffer_unwritten(bh)) {
1833                 /* A delayed write to unwritten bh should be marked
1834                  * new and mapped.  Mapped ensures that we don't do
1835                  * get_block multiple times when we write to the same
1836                  * offset and new ensures that we do proper zero out
1837                  * for partial write.
1838                  */
1839                 set_buffer_new(bh);
1840                 set_buffer_mapped(bh);
1841         }
1842         return 0;
1843 }
1844
1845 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio)
1846 {
1847         mpd->first_page += folio_nr_pages(folio);
1848         folio_unlock(folio);
1849 }
1850
1851 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio)
1852 {
1853         size_t len;
1854         loff_t size;
1855         int err;
1856
1857         BUG_ON(folio->index != mpd->first_page);
1858         folio_clear_dirty_for_io(folio);
1859         /*
1860          * We have to be very careful here!  Nothing protects writeback path
1861          * against i_size changes and the page can be writeably mapped into
1862          * page tables. So an application can be growing i_size and writing
1863          * data through mmap while writeback runs. folio_clear_dirty_for_io()
1864          * write-protects our page in page tables and the page cannot get
1865          * written to again until we release folio lock. So only after
1866          * folio_clear_dirty_for_io() we are safe to sample i_size for
1867          * ext4_bio_write_folio() to zero-out tail of the written page. We rely
1868          * on the barrier provided by folio_test_clear_dirty() in
1869          * folio_clear_dirty_for_io() to make sure i_size is really sampled only
1870          * after page tables are updated.
1871          */
1872         size = i_size_read(mpd->inode);
1873         len = folio_size(folio);
1874         if (folio_pos(folio) + len > size &&
1875             !ext4_verity_in_progress(mpd->inode))
1876                 len = size & ~PAGE_MASK;
1877         err = ext4_bio_write_folio(&mpd->io_submit, folio, len);
1878         if (!err)
1879                 mpd->wbc->nr_to_write--;
1880
1881         return err;
1882 }
1883
1884 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
1885
1886 /*
1887  * mballoc gives us at most this number of blocks...
1888  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1889  * The rest of mballoc seems to handle chunks up to full group size.
1890  */
1891 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1892
1893 /*
1894  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1895  *
1896  * @mpd - extent of blocks
1897  * @lblk - logical number of the block in the file
1898  * @bh - buffer head we want to add to the extent
1899  *
1900  * The function is used to collect contig. blocks in the same state. If the
1901  * buffer doesn't require mapping for writeback and we haven't started the
1902  * extent of buffers to map yet, the function returns 'true' immediately - the
1903  * caller can write the buffer right away. Otherwise the function returns true
1904  * if the block has been added to the extent, false if the block couldn't be
1905  * added.
1906  */
1907 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1908                                    struct buffer_head *bh)
1909 {
1910         struct ext4_map_blocks *map = &mpd->map;
1911
1912         /* Buffer that doesn't need mapping for writeback? */
1913         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1914             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1915                 /* So far no extent to map => we write the buffer right away */
1916                 if (map->m_len == 0)
1917                         return true;
1918                 return false;
1919         }
1920
1921         /* First block in the extent? */
1922         if (map->m_len == 0) {
1923                 /* We cannot map unless handle is started... */
1924                 if (!mpd->do_map)
1925                         return false;
1926                 map->m_lblk = lblk;
1927                 map->m_len = 1;
1928                 map->m_flags = bh->b_state & BH_FLAGS;
1929                 return true;
1930         }
1931
1932         /* Don't go larger than mballoc is willing to allocate */
1933         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1934                 return false;
1935
1936         /* Can we merge the block to our big extent? */
1937         if (lblk == map->m_lblk + map->m_len &&
1938             (bh->b_state & BH_FLAGS) == map->m_flags) {
1939                 map->m_len++;
1940                 return true;
1941         }
1942         return false;
1943 }
1944
1945 /*
1946  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1947  *
1948  * @mpd - extent of blocks for mapping
1949  * @head - the first buffer in the page
1950  * @bh - buffer we should start processing from
1951  * @lblk - logical number of the block in the file corresponding to @bh
1952  *
1953  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1954  * the page for IO if all buffers in this page were mapped and there's no
1955  * accumulated extent of buffers to map or add buffers in the page to the
1956  * extent of buffers to map. The function returns 1 if the caller can continue
1957  * by processing the next page, 0 if it should stop adding buffers to the
1958  * extent to map because we cannot extend it anymore. It can also return value
1959  * < 0 in case of error during IO submission.
1960  */
1961 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1962                                    struct buffer_head *head,
1963                                    struct buffer_head *bh,
1964                                    ext4_lblk_t lblk)
1965 {
1966         struct inode *inode = mpd->inode;
1967         int err;
1968         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
1969                                                         >> inode->i_blkbits;
1970
1971         if (ext4_verity_in_progress(inode))
1972                 blocks = EXT_MAX_BLOCKS;
1973
1974         do {
1975                 BUG_ON(buffer_locked(bh));
1976
1977                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1978                         /* Found extent to map? */
1979                         if (mpd->map.m_len)
1980                                 return 0;
1981                         /* Buffer needs mapping and handle is not started? */
1982                         if (!mpd->do_map)
1983                                 return 0;
1984                         /* Everything mapped so far and we hit EOF */
1985                         break;
1986                 }
1987         } while (lblk++, (bh = bh->b_this_page) != head);
1988         /* So far everything mapped? Submit the page for IO. */
1989         if (mpd->map.m_len == 0) {
1990                 err = mpage_submit_folio(mpd, head->b_folio);
1991                 if (err < 0)
1992                         return err;
1993                 mpage_folio_done(mpd, head->b_folio);
1994         }
1995         if (lblk >= blocks) {
1996                 mpd->scanned_until_end = 1;
1997                 return 0;
1998         }
1999         return 1;
2000 }
2001
2002 /*
2003  * mpage_process_folio - update folio buffers corresponding to changed extent
2004  *                       and may submit fully mapped page for IO
2005  * @mpd: description of extent to map, on return next extent to map
2006  * @folio: Contains these buffers.
2007  * @m_lblk: logical block mapping.
2008  * @m_pblk: corresponding physical mapping.
2009  * @map_bh: determines on return whether this page requires any further
2010  *                mapping or not.
2011  *
2012  * Scan given folio buffers corresponding to changed extent and update buffer
2013  * state according to new extent state.
2014  * We map delalloc buffers to their physical location, clear unwritten bits.
2015  * If the given folio is not fully mapped, we update @mpd to the next extent in
2016  * the given folio that needs mapping & return @map_bh as true.
2017  */
2018 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio,
2019                               ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2020                               bool *map_bh)
2021 {
2022         struct buffer_head *head, *bh;
2023         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2024         ext4_lblk_t lblk = *m_lblk;
2025         ext4_fsblk_t pblock = *m_pblk;
2026         int err = 0;
2027         int blkbits = mpd->inode->i_blkbits;
2028         ssize_t io_end_size = 0;
2029         struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2030
2031         bh = head = folio_buffers(folio);
2032         do {
2033                 if (lblk < mpd->map.m_lblk)
2034                         continue;
2035                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2036                         /*
2037                          * Buffer after end of mapped extent.
2038                          * Find next buffer in the folio to map.
2039                          */
2040                         mpd->map.m_len = 0;
2041                         mpd->map.m_flags = 0;
2042                         io_end_vec->size += io_end_size;
2043
2044                         err = mpage_process_page_bufs(mpd, head, bh, lblk);
2045                         if (err > 0)
2046                                 err = 0;
2047                         if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2048                                 io_end_vec = ext4_alloc_io_end_vec(io_end);
2049                                 if (IS_ERR(io_end_vec)) {
2050                                         err = PTR_ERR(io_end_vec);
2051                                         goto out;
2052                                 }
2053                                 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2054                         }
2055                         *map_bh = true;
2056                         goto out;
2057                 }
2058                 if (buffer_delay(bh)) {
2059                         clear_buffer_delay(bh);
2060                         bh->b_blocknr = pblock++;
2061                 }
2062                 clear_buffer_unwritten(bh);
2063                 io_end_size += (1 << blkbits);
2064         } while (lblk++, (bh = bh->b_this_page) != head);
2065
2066         io_end_vec->size += io_end_size;
2067         *map_bh = false;
2068 out:
2069         *m_lblk = lblk;
2070         *m_pblk = pblock;
2071         return err;
2072 }
2073
2074 /*
2075  * mpage_map_buffers - update buffers corresponding to changed extent and
2076  *                     submit fully mapped pages for IO
2077  *
2078  * @mpd - description of extent to map, on return next extent to map
2079  *
2080  * Scan buffers corresponding to changed extent (we expect corresponding pages
2081  * to be already locked) and update buffer state according to new extent state.
2082  * We map delalloc buffers to their physical location, clear unwritten bits,
2083  * and mark buffers as uninit when we perform writes to unwritten extents
2084  * and do extent conversion after IO is finished. If the last page is not fully
2085  * mapped, we update @map to the next extent in the last page that needs
2086  * mapping. Otherwise we submit the page for IO.
2087  */
2088 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2089 {
2090         struct folio_batch fbatch;
2091         unsigned nr, i;
2092         struct inode *inode = mpd->inode;
2093         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2094         pgoff_t start, end;
2095         ext4_lblk_t lblk;
2096         ext4_fsblk_t pblock;
2097         int err;
2098         bool map_bh = false;
2099
2100         start = mpd->map.m_lblk >> bpp_bits;
2101         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2102         lblk = start << bpp_bits;
2103         pblock = mpd->map.m_pblk;
2104
2105         folio_batch_init(&fbatch);
2106         while (start <= end) {
2107                 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2108                 if (nr == 0)
2109                         break;
2110                 for (i = 0; i < nr; i++) {
2111                         struct folio *folio = fbatch.folios[i];
2112
2113                         err = mpage_process_folio(mpd, folio, &lblk, &pblock,
2114                                                  &map_bh);
2115                         /*
2116                          * If map_bh is true, means page may require further bh
2117                          * mapping, or maybe the page was submitted for IO.
2118                          * So we return to call further extent mapping.
2119                          */
2120                         if (err < 0 || map_bh)
2121                                 goto out;
2122                         /* Page fully mapped - let IO run! */
2123                         err = mpage_submit_folio(mpd, folio);
2124                         if (err < 0)
2125                                 goto out;
2126                         mpage_folio_done(mpd, folio);
2127                 }
2128                 folio_batch_release(&fbatch);
2129         }
2130         /* Extent fully mapped and matches with page boundary. We are done. */
2131         mpd->map.m_len = 0;
2132         mpd->map.m_flags = 0;
2133         return 0;
2134 out:
2135         folio_batch_release(&fbatch);
2136         return err;
2137 }
2138
2139 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2140 {
2141         struct inode *inode = mpd->inode;
2142         struct ext4_map_blocks *map = &mpd->map;
2143         int get_blocks_flags;
2144         int err, dioread_nolock;
2145
2146         trace_ext4_da_write_pages_extent(inode, map);
2147         /*
2148          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2149          * to convert an unwritten extent to be initialized (in the case
2150          * where we have written into one or more preallocated blocks).  It is
2151          * possible that we're going to need more metadata blocks than
2152          * previously reserved. However we must not fail because we're in
2153          * writeback and there is nothing we can do about it so it might result
2154          * in data loss.  So use reserved blocks to allocate metadata if
2155          * possible.
2156          *
2157          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2158          * the blocks in question are delalloc blocks.  This indicates
2159          * that the blocks and quotas has already been checked when
2160          * the data was copied into the page cache.
2161          */
2162         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2163                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2164                            EXT4_GET_BLOCKS_IO_SUBMIT;
2165         dioread_nolock = ext4_should_dioread_nolock(inode);
2166         if (dioread_nolock)
2167                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2168         if (map->m_flags & BIT(BH_Delay))
2169                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2170
2171         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2172         if (err < 0)
2173                 return err;
2174         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2175                 if (!mpd->io_submit.io_end->handle &&
2176                     ext4_handle_valid(handle)) {
2177                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2178                         handle->h_rsv_handle = NULL;
2179                 }
2180                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2181         }
2182
2183         BUG_ON(map->m_len == 0);
2184         return 0;
2185 }
2186
2187 /*
2188  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2189  *                               mpd->len and submit pages underlying it for IO
2190  *
2191  * @handle - handle for journal operations
2192  * @mpd - extent to map
2193  * @give_up_on_write - we set this to true iff there is a fatal error and there
2194  *                     is no hope of writing the data. The caller should discard
2195  *                     dirty pages to avoid infinite loops.
2196  *
2197  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2198  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2199  * them to initialized or split the described range from larger unwritten
2200  * extent. Note that we need not map all the described range since allocation
2201  * can return less blocks or the range is covered by more unwritten extents. We
2202  * cannot map more because we are limited by reserved transaction credits. On
2203  * the other hand we always make sure that the last touched page is fully
2204  * mapped so that it can be written out (and thus forward progress is
2205  * guaranteed). After mapping we submit all mapped pages for IO.
2206  */
2207 static int mpage_map_and_submit_extent(handle_t *handle,
2208                                        struct mpage_da_data *mpd,
2209                                        bool *give_up_on_write)
2210 {
2211         struct inode *inode = mpd->inode;
2212         struct ext4_map_blocks *map = &mpd->map;
2213         int err;
2214         loff_t disksize;
2215         int progress = 0;
2216         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2217         struct ext4_io_end_vec *io_end_vec;
2218
2219         io_end_vec = ext4_alloc_io_end_vec(io_end);
2220         if (IS_ERR(io_end_vec))
2221                 return PTR_ERR(io_end_vec);
2222         io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2223         do {
2224                 err = mpage_map_one_extent(handle, mpd);
2225                 if (err < 0) {
2226                         struct super_block *sb = inode->i_sb;
2227
2228                         if (ext4_forced_shutdown(sb))
2229                                 goto invalidate_dirty_pages;
2230                         /*
2231                          * Let the uper layers retry transient errors.
2232                          * In the case of ENOSPC, if ext4_count_free_blocks()
2233                          * is non-zero, a commit should free up blocks.
2234                          */
2235                         if ((err == -ENOMEM) ||
2236                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2237                                 if (progress)
2238                                         goto update_disksize;
2239                                 return err;
2240                         }
2241                         ext4_msg(sb, KERN_CRIT,
2242                                  "Delayed block allocation failed for "
2243                                  "inode %lu at logical offset %llu with"
2244                                  " max blocks %u with error %d",
2245                                  inode->i_ino,
2246                                  (unsigned long long)map->m_lblk,
2247                                  (unsigned)map->m_len, -err);
2248                         ext4_msg(sb, KERN_CRIT,
2249                                  "This should not happen!! Data will "
2250                                  "be lost\n");
2251                         if (err == -ENOSPC)
2252                                 ext4_print_free_blocks(inode);
2253                 invalidate_dirty_pages:
2254                         *give_up_on_write = true;
2255                         return err;
2256                 }
2257                 progress = 1;
2258                 /*
2259                  * Update buffer state, submit mapped pages, and get us new
2260                  * extent to map
2261                  */
2262                 err = mpage_map_and_submit_buffers(mpd);
2263                 if (err < 0)
2264                         goto update_disksize;
2265         } while (map->m_len);
2266
2267 update_disksize:
2268         /*
2269          * Update on-disk size after IO is submitted.  Races with
2270          * truncate are avoided by checking i_size under i_data_sem.
2271          */
2272         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2273         if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2274                 int err2;
2275                 loff_t i_size;
2276
2277                 down_write(&EXT4_I(inode)->i_data_sem);
2278                 i_size = i_size_read(inode);
2279                 if (disksize > i_size)
2280                         disksize = i_size;
2281                 if (disksize > EXT4_I(inode)->i_disksize)
2282                         EXT4_I(inode)->i_disksize = disksize;
2283                 up_write(&EXT4_I(inode)->i_data_sem);
2284                 err2 = ext4_mark_inode_dirty(handle, inode);
2285                 if (err2) {
2286                         ext4_error_err(inode->i_sb, -err2,
2287                                        "Failed to mark inode %lu dirty",
2288                                        inode->i_ino);
2289                 }
2290                 if (!err)
2291                         err = err2;
2292         }
2293         return err;
2294 }
2295
2296 /*
2297  * Calculate the total number of credits to reserve for one writepages
2298  * iteration. This is called from ext4_writepages(). We map an extent of
2299  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2300  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2301  * bpp - 1 blocks in bpp different extents.
2302  */
2303 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2304 {
2305         int bpp = ext4_journal_blocks_per_page(inode);
2306
2307         return ext4_meta_trans_blocks(inode,
2308                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2309 }
2310
2311 static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio,
2312                                      size_t len)
2313 {
2314         struct buffer_head *page_bufs = folio_buffers(folio);
2315         struct inode *inode = folio->mapping->host;
2316         int ret, err;
2317
2318         ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2319                                      NULL, do_journal_get_write_access);
2320         err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2321                                      NULL, write_end_fn);
2322         if (ret == 0)
2323                 ret = err;
2324         err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len);
2325         if (ret == 0)
2326                 ret = err;
2327         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2328
2329         return ret;
2330 }
2331
2332 static int mpage_journal_page_buffers(handle_t *handle,
2333                                       struct mpage_da_data *mpd,
2334                                       struct folio *folio)
2335 {
2336         struct inode *inode = mpd->inode;
2337         loff_t size = i_size_read(inode);
2338         size_t len = folio_size(folio);
2339
2340         folio_clear_checked(folio);
2341         mpd->wbc->nr_to_write--;
2342
2343         if (folio_pos(folio) + len > size &&
2344             !ext4_verity_in_progress(inode))
2345                 len = size - folio_pos(folio);
2346
2347         return ext4_journal_folio_buffers(handle, folio, len);
2348 }
2349
2350 /*
2351  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2352  *                               needing mapping, submit mapped pages
2353  *
2354  * @mpd - where to look for pages
2355  *
2356  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2357  * IO immediately. If we cannot map blocks, we submit just already mapped
2358  * buffers in the page for IO and keep page dirty. When we can map blocks and
2359  * we find a page which isn't mapped we start accumulating extent of buffers
2360  * underlying these pages that needs mapping (formed by either delayed or
2361  * unwritten buffers). We also lock the pages containing these buffers. The
2362  * extent found is returned in @mpd structure (starting at mpd->lblk with
2363  * length mpd->len blocks).
2364  *
2365  * Note that this function can attach bios to one io_end structure which are
2366  * neither logically nor physically contiguous. Although it may seem as an
2367  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2368  * case as we need to track IO to all buffers underlying a page in one io_end.
2369  */
2370 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2371 {
2372         struct address_space *mapping = mpd->inode->i_mapping;
2373         struct folio_batch fbatch;
2374         unsigned int nr_folios;
2375         pgoff_t index = mpd->first_page;
2376         pgoff_t end = mpd->last_page;
2377         xa_mark_t tag;
2378         int i, err = 0;
2379         int blkbits = mpd->inode->i_blkbits;
2380         ext4_lblk_t lblk;
2381         struct buffer_head *head;
2382         handle_t *handle = NULL;
2383         int bpp = ext4_journal_blocks_per_page(mpd->inode);
2384
2385         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2386                 tag = PAGECACHE_TAG_TOWRITE;
2387         else
2388                 tag = PAGECACHE_TAG_DIRTY;
2389
2390         mpd->map.m_len = 0;
2391         mpd->next_page = index;
2392         if (ext4_should_journal_data(mpd->inode)) {
2393                 handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE,
2394                                             bpp);
2395                 if (IS_ERR(handle))
2396                         return PTR_ERR(handle);
2397         }
2398         folio_batch_init(&fbatch);
2399         while (index <= end) {
2400                 nr_folios = filemap_get_folios_tag(mapping, &index, end,
2401                                 tag, &fbatch);
2402                 if (nr_folios == 0)
2403                         break;
2404
2405                 for (i = 0; i < nr_folios; i++) {
2406                         struct folio *folio = fbatch.folios[i];
2407
2408                         /*
2409                          * Accumulated enough dirty pages? This doesn't apply
2410                          * to WB_SYNC_ALL mode. For integrity sync we have to
2411                          * keep going because someone may be concurrently
2412                          * dirtying pages, and we might have synced a lot of
2413                          * newly appeared dirty pages, but have not synced all
2414                          * of the old dirty pages.
2415                          */
2416                         if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2417                             mpd->wbc->nr_to_write <=
2418                             mpd->map.m_len >> (PAGE_SHIFT - blkbits))
2419                                 goto out;
2420
2421                         /* If we can't merge this page, we are done. */
2422                         if (mpd->map.m_len > 0 && mpd->next_page != folio->index)
2423                                 goto out;
2424
2425                         if (handle) {
2426                                 err = ext4_journal_ensure_credits(handle, bpp,
2427                                                                   0);
2428                                 if (err < 0)
2429                                         goto out;
2430                         }
2431
2432                         folio_lock(folio);
2433                         /*
2434                          * If the page is no longer dirty, or its mapping no
2435                          * longer corresponds to inode we are writing (which
2436                          * means it has been truncated or invalidated), or the
2437                          * page is already under writeback and we are not doing
2438                          * a data integrity writeback, skip the page
2439                          */
2440                         if (!folio_test_dirty(folio) ||
2441                             (folio_test_writeback(folio) &&
2442                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2443                             unlikely(folio->mapping != mapping)) {
2444                                 folio_unlock(folio);
2445                                 continue;
2446                         }
2447
2448                         folio_wait_writeback(folio);
2449                         BUG_ON(folio_test_writeback(folio));
2450
2451                         /*
2452                          * Should never happen but for buggy code in
2453                          * other subsystems that call
2454                          * set_page_dirty() without properly warning
2455                          * the file system first.  See [1] for more
2456                          * information.
2457                          *
2458                          * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2459                          */
2460                         if (!folio_buffers(folio)) {
2461                                 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index);
2462                                 folio_clear_dirty(folio);
2463                                 folio_unlock(folio);
2464                                 continue;
2465                         }
2466
2467                         if (mpd->map.m_len == 0)
2468                                 mpd->first_page = folio->index;
2469                         mpd->next_page = folio_next_index(folio);
2470                         /*
2471                          * Writeout when we cannot modify metadata is simple.
2472                          * Just submit the page. For data=journal mode we
2473                          * first handle writeout of the page for checkpoint and
2474                          * only after that handle delayed page dirtying. This
2475                          * makes sure current data is checkpointed to the final
2476                          * location before possibly journalling it again which
2477                          * is desirable when the page is frequently dirtied
2478                          * through a pin.
2479                          */
2480                         if (!mpd->can_map) {
2481                                 err = mpage_submit_folio(mpd, folio);
2482                                 if (err < 0)
2483                                         goto out;
2484                                 /* Pending dirtying of journalled data? */
2485                                 if (folio_test_checked(folio)) {
2486                                         err = mpage_journal_page_buffers(handle,
2487                                                 mpd, folio);
2488                                         if (err < 0)
2489                                                 goto out;
2490                                         mpd->journalled_more_data = 1;
2491                                 }
2492                                 mpage_folio_done(mpd, folio);
2493                         } else {
2494                                 /* Add all dirty buffers to mpd */
2495                                 lblk = ((ext4_lblk_t)folio->index) <<
2496                                         (PAGE_SHIFT - blkbits);
2497                                 head = folio_buffers(folio);
2498                                 err = mpage_process_page_bufs(mpd, head, head,
2499                                                 lblk);
2500                                 if (err <= 0)
2501                                         goto out;
2502                                 err = 0;
2503                         }
2504                 }
2505                 folio_batch_release(&fbatch);
2506                 cond_resched();
2507         }
2508         mpd->scanned_until_end = 1;
2509         if (handle)
2510                 ext4_journal_stop(handle);
2511         return 0;
2512 out:
2513         folio_batch_release(&fbatch);
2514         if (handle)
2515                 ext4_journal_stop(handle);
2516         return err;
2517 }
2518
2519 static int ext4_do_writepages(struct mpage_da_data *mpd)
2520 {
2521         struct writeback_control *wbc = mpd->wbc;
2522         pgoff_t writeback_index = 0;
2523         long nr_to_write = wbc->nr_to_write;
2524         int range_whole = 0;
2525         int cycled = 1;
2526         handle_t *handle = NULL;
2527         struct inode *inode = mpd->inode;
2528         struct address_space *mapping = inode->i_mapping;
2529         int needed_blocks, rsv_blocks = 0, ret = 0;
2530         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2531         struct blk_plug plug;
2532         bool give_up_on_write = false;
2533
2534         trace_ext4_writepages(inode, wbc);
2535
2536         /*
2537          * No pages to write? This is mainly a kludge to avoid starting
2538          * a transaction for special inodes like journal inode on last iput()
2539          * because that could violate lock ordering on umount
2540          */
2541         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2542                 goto out_writepages;
2543
2544         /*
2545          * If the filesystem has aborted, it is read-only, so return
2546          * right away instead of dumping stack traces later on that
2547          * will obscure the real source of the problem.  We test
2548          * fs shutdown state instead of sb->s_flag's SB_RDONLY because
2549          * the latter could be true if the filesystem is mounted
2550          * read-only, and in that case, ext4_writepages should
2551          * *never* be called, so if that ever happens, we would want
2552          * the stack trace.
2553          */
2554         if (unlikely(ext4_forced_shutdown(mapping->host->i_sb))) {
2555                 ret = -EROFS;
2556                 goto out_writepages;
2557         }
2558
2559         /*
2560          * If we have inline data and arrive here, it means that
2561          * we will soon create the block for the 1st page, so
2562          * we'd better clear the inline data here.
2563          */
2564         if (ext4_has_inline_data(inode)) {
2565                 /* Just inode will be modified... */
2566                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2567                 if (IS_ERR(handle)) {
2568                         ret = PTR_ERR(handle);
2569                         goto out_writepages;
2570                 }
2571                 BUG_ON(ext4_test_inode_state(inode,
2572                                 EXT4_STATE_MAY_INLINE_DATA));
2573                 ext4_destroy_inline_data(handle, inode);
2574                 ext4_journal_stop(handle);
2575         }
2576
2577         /*
2578          * data=journal mode does not do delalloc so we just need to writeout /
2579          * journal already mapped buffers. On the other hand we need to commit
2580          * transaction to make data stable. We expect all the data to be
2581          * already in the journal (the only exception are DMA pinned pages
2582          * dirtied behind our back) so we commit transaction here and run the
2583          * writeback loop to checkpoint them. The checkpointing is not actually
2584          * necessary to make data persistent *but* quite a few places (extent
2585          * shifting operations, fsverity, ...) depend on being able to drop
2586          * pagecache pages after calling filemap_write_and_wait() and for that
2587          * checkpointing needs to happen.
2588          */
2589         if (ext4_should_journal_data(inode)) {
2590                 mpd->can_map = 0;
2591                 if (wbc->sync_mode == WB_SYNC_ALL)
2592                         ext4_fc_commit(sbi->s_journal,
2593                                        EXT4_I(inode)->i_datasync_tid);
2594         }
2595         mpd->journalled_more_data = 0;
2596
2597         if (ext4_should_dioread_nolock(inode)) {
2598                 /*
2599                  * We may need to convert up to one extent per block in
2600                  * the page and we may dirty the inode.
2601                  */
2602                 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2603                                                 PAGE_SIZE >> inode->i_blkbits);
2604         }
2605
2606         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2607                 range_whole = 1;
2608
2609         if (wbc->range_cyclic) {
2610                 writeback_index = mapping->writeback_index;
2611                 if (writeback_index)
2612                         cycled = 0;
2613                 mpd->first_page = writeback_index;
2614                 mpd->last_page = -1;
2615         } else {
2616                 mpd->first_page = wbc->range_start >> PAGE_SHIFT;
2617                 mpd->last_page = wbc->range_end >> PAGE_SHIFT;
2618         }
2619
2620         ext4_io_submit_init(&mpd->io_submit, wbc);
2621 retry:
2622         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2623                 tag_pages_for_writeback(mapping, mpd->first_page,
2624                                         mpd->last_page);
2625         blk_start_plug(&plug);
2626
2627         /*
2628          * First writeback pages that don't need mapping - we can avoid
2629          * starting a transaction unnecessarily and also avoid being blocked
2630          * in the block layer on device congestion while having transaction
2631          * started.
2632          */
2633         mpd->do_map = 0;
2634         mpd->scanned_until_end = 0;
2635         mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2636         if (!mpd->io_submit.io_end) {
2637                 ret = -ENOMEM;
2638                 goto unplug;
2639         }
2640         ret = mpage_prepare_extent_to_map(mpd);
2641         /* Unlock pages we didn't use */
2642         mpage_release_unused_pages(mpd, false);
2643         /* Submit prepared bio */
2644         ext4_io_submit(&mpd->io_submit);
2645         ext4_put_io_end_defer(mpd->io_submit.io_end);
2646         mpd->io_submit.io_end = NULL;
2647         if (ret < 0)
2648                 goto unplug;
2649
2650         while (!mpd->scanned_until_end && wbc->nr_to_write > 0) {
2651                 /* For each extent of pages we use new io_end */
2652                 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2653                 if (!mpd->io_submit.io_end) {
2654                         ret = -ENOMEM;
2655                         break;
2656                 }
2657
2658                 WARN_ON_ONCE(!mpd->can_map);
2659                 /*
2660                  * We have two constraints: We find one extent to map and we
2661                  * must always write out whole page (makes a difference when
2662                  * blocksize < pagesize) so that we don't block on IO when we
2663                  * try to write out the rest of the page. Journalled mode is
2664                  * not supported by delalloc.
2665                  */
2666                 BUG_ON(ext4_should_journal_data(inode));
2667                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2668
2669                 /* start a new transaction */
2670                 handle = ext4_journal_start_with_reserve(inode,
2671                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2672                 if (IS_ERR(handle)) {
2673                         ret = PTR_ERR(handle);
2674                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2675                                "%ld pages, ino %lu; err %d", __func__,
2676                                 wbc->nr_to_write, inode->i_ino, ret);
2677                         /* Release allocated io_end */
2678                         ext4_put_io_end(mpd->io_submit.io_end);
2679                         mpd->io_submit.io_end = NULL;
2680                         break;
2681                 }
2682                 mpd->do_map = 1;
2683
2684                 trace_ext4_da_write_pages(inode, mpd->first_page, wbc);
2685                 ret = mpage_prepare_extent_to_map(mpd);
2686                 if (!ret && mpd->map.m_len)
2687                         ret = mpage_map_and_submit_extent(handle, mpd,
2688                                         &give_up_on_write);
2689                 /*
2690                  * Caution: If the handle is synchronous,
2691                  * ext4_journal_stop() can wait for transaction commit
2692                  * to finish which may depend on writeback of pages to
2693                  * complete or on page lock to be released.  In that
2694                  * case, we have to wait until after we have
2695                  * submitted all the IO, released page locks we hold,
2696                  * and dropped io_end reference (for extent conversion
2697                  * to be able to complete) before stopping the handle.
2698                  */
2699                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2700                         ext4_journal_stop(handle);
2701                         handle = NULL;
2702                         mpd->do_map = 0;
2703                 }
2704                 /* Unlock pages we didn't use */
2705                 mpage_release_unused_pages(mpd, give_up_on_write);
2706                 /* Submit prepared bio */
2707                 ext4_io_submit(&mpd->io_submit);
2708
2709                 /*
2710                  * Drop our io_end reference we got from init. We have
2711                  * to be careful and use deferred io_end finishing if
2712                  * we are still holding the transaction as we can
2713                  * release the last reference to io_end which may end
2714                  * up doing unwritten extent conversion.
2715                  */
2716                 if (handle) {
2717                         ext4_put_io_end_defer(mpd->io_submit.io_end);
2718                         ext4_journal_stop(handle);
2719                 } else
2720                         ext4_put_io_end(mpd->io_submit.io_end);
2721                 mpd->io_submit.io_end = NULL;
2722
2723                 if (ret == -ENOSPC && sbi->s_journal) {
2724                         /*
2725                          * Commit the transaction which would
2726                          * free blocks released in the transaction
2727                          * and try again
2728                          */
2729                         jbd2_journal_force_commit_nested(sbi->s_journal);
2730                         ret = 0;
2731                         continue;
2732                 }
2733                 /* Fatal error - ENOMEM, EIO... */
2734                 if (ret)
2735                         break;
2736         }
2737 unplug:
2738         blk_finish_plug(&plug);
2739         if (!ret && !cycled && wbc->nr_to_write > 0) {
2740                 cycled = 1;
2741                 mpd->last_page = writeback_index - 1;
2742                 mpd->first_page = 0;
2743                 goto retry;
2744         }
2745
2746         /* Update index */
2747         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2748                 /*
2749                  * Set the writeback_index so that range_cyclic
2750                  * mode will write it back later
2751                  */
2752                 mapping->writeback_index = mpd->first_page;
2753
2754 out_writepages:
2755         trace_ext4_writepages_result(inode, wbc, ret,
2756                                      nr_to_write - wbc->nr_to_write);
2757         return ret;
2758 }
2759
2760 static int ext4_writepages(struct address_space *mapping,
2761                            struct writeback_control *wbc)
2762 {
2763         struct super_block *sb = mapping->host->i_sb;
2764         struct mpage_da_data mpd = {
2765                 .inode = mapping->host,
2766                 .wbc = wbc,
2767                 .can_map = 1,
2768         };
2769         int ret;
2770         int alloc_ctx;
2771
2772         if (unlikely(ext4_forced_shutdown(sb)))
2773                 return -EIO;
2774
2775         alloc_ctx = ext4_writepages_down_read(sb);
2776         ret = ext4_do_writepages(&mpd);
2777         /*
2778          * For data=journal writeback we could have come across pages marked
2779          * for delayed dirtying (PageChecked) which were just added to the
2780          * running transaction. Try once more to get them to stable storage.
2781          */
2782         if (!ret && mpd.journalled_more_data)
2783                 ret = ext4_do_writepages(&mpd);
2784         ext4_writepages_up_read(sb, alloc_ctx);
2785
2786         return ret;
2787 }
2788
2789 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode)
2790 {
2791         struct writeback_control wbc = {
2792                 .sync_mode = WB_SYNC_ALL,
2793                 .nr_to_write = LONG_MAX,
2794                 .range_start = jinode->i_dirty_start,
2795                 .range_end = jinode->i_dirty_end,
2796         };
2797         struct mpage_da_data mpd = {
2798                 .inode = jinode->i_vfs_inode,
2799                 .wbc = &wbc,
2800                 .can_map = 0,
2801         };
2802         return ext4_do_writepages(&mpd);
2803 }
2804
2805 static int ext4_dax_writepages(struct address_space *mapping,
2806                                struct writeback_control *wbc)
2807 {
2808         int ret;
2809         long nr_to_write = wbc->nr_to_write;
2810         struct inode *inode = mapping->host;
2811         int alloc_ctx;
2812
2813         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2814                 return -EIO;
2815
2816         alloc_ctx = ext4_writepages_down_read(inode->i_sb);
2817         trace_ext4_writepages(inode, wbc);
2818
2819         ret = dax_writeback_mapping_range(mapping,
2820                                           EXT4_SB(inode->i_sb)->s_daxdev, wbc);
2821         trace_ext4_writepages_result(inode, wbc, ret,
2822                                      nr_to_write - wbc->nr_to_write);
2823         ext4_writepages_up_read(inode->i_sb, alloc_ctx);
2824         return ret;
2825 }
2826
2827 static int ext4_nonda_switch(struct super_block *sb)
2828 {
2829         s64 free_clusters, dirty_clusters;
2830         struct ext4_sb_info *sbi = EXT4_SB(sb);
2831
2832         /*
2833          * switch to non delalloc mode if we are running low
2834          * on free block. The free block accounting via percpu
2835          * counters can get slightly wrong with percpu_counter_batch getting
2836          * accumulated on each CPU without updating global counters
2837          * Delalloc need an accurate free block accounting. So switch
2838          * to non delalloc when we are near to error range.
2839          */
2840         free_clusters =
2841                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2842         dirty_clusters =
2843                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2844         /*
2845          * Start pushing delalloc when 1/2 of free blocks are dirty.
2846          */
2847         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2848                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2849
2850         if (2 * free_clusters < 3 * dirty_clusters ||
2851             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2852                 /*
2853                  * free block count is less than 150% of dirty blocks
2854                  * or free blocks is less than watermark
2855                  */
2856                 return 1;
2857         }
2858         return 0;
2859 }
2860
2861 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2862                                loff_t pos, unsigned len,
2863                                struct page **pagep, void **fsdata)
2864 {
2865         int ret, retries = 0;
2866         struct folio *folio;
2867         pgoff_t index;
2868         struct inode *inode = mapping->host;
2869
2870         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2871                 return -EIO;
2872
2873         index = pos >> PAGE_SHIFT;
2874
2875         if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
2876                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2877                 return ext4_write_begin(file, mapping, pos,
2878                                         len, pagep, fsdata);
2879         }
2880         *fsdata = (void *)0;
2881         trace_ext4_da_write_begin(inode, pos, len);
2882
2883         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2884                 ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
2885                                                       pagep, fsdata);
2886                 if (ret < 0)
2887                         return ret;
2888                 if (ret == 1)
2889                         return 0;
2890         }
2891
2892 retry:
2893         folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2894                         mapping_gfp_mask(mapping));
2895         if (IS_ERR(folio))
2896                 return PTR_ERR(folio);
2897
2898         /* In case writeback began while the folio was unlocked */
2899         folio_wait_stable(folio);
2900
2901 #ifdef CONFIG_FS_ENCRYPTION
2902         ret = ext4_block_write_begin(folio, pos, len, ext4_da_get_block_prep);
2903 #else
2904         ret = __block_write_begin(&folio->page, pos, len, ext4_da_get_block_prep);
2905 #endif
2906         if (ret < 0) {
2907                 folio_unlock(folio);
2908                 folio_put(folio);
2909                 /*
2910                  * block_write_begin may have instantiated a few blocks
2911                  * outside i_size.  Trim these off again. Don't need
2912                  * i_size_read because we hold inode lock.
2913                  */
2914                 if (pos + len > inode->i_size)
2915                         ext4_truncate_failed_write(inode);
2916
2917                 if (ret == -ENOSPC &&
2918                     ext4_should_retry_alloc(inode->i_sb, &retries))
2919                         goto retry;
2920                 return ret;
2921         }
2922
2923         *pagep = &folio->page;
2924         return ret;
2925 }
2926
2927 /*
2928  * Check if we should update i_disksize
2929  * when write to the end of file but not require block allocation
2930  */
2931 static int ext4_da_should_update_i_disksize(struct folio *folio,
2932                                             unsigned long offset)
2933 {
2934         struct buffer_head *bh;
2935         struct inode *inode = folio->mapping->host;
2936         unsigned int idx;
2937         int i;
2938
2939         bh = folio_buffers(folio);
2940         idx = offset >> inode->i_blkbits;
2941
2942         for (i = 0; i < idx; i++)
2943                 bh = bh->b_this_page;
2944
2945         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2946                 return 0;
2947         return 1;
2948 }
2949
2950 static int ext4_da_do_write_end(struct address_space *mapping,
2951                         loff_t pos, unsigned len, unsigned copied,
2952                         struct page *page)
2953 {
2954         struct inode *inode = mapping->host;
2955         loff_t old_size = inode->i_size;
2956         bool disksize_changed = false;
2957         loff_t new_i_size;
2958
2959         /*
2960          * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES
2961          * flag, which all that's needed to trigger page writeback.
2962          */
2963         copied = block_write_end(NULL, mapping, pos, len, copied, page, NULL);
2964         new_i_size = pos + copied;
2965
2966         /*
2967          * It's important to update i_size while still holding page lock,
2968          * because page writeout could otherwise come in and zero beyond
2969          * i_size.
2970          *
2971          * Since we are holding inode lock, we are sure i_disksize <=
2972          * i_size. We also know that if i_disksize < i_size, there are
2973          * delalloc writes pending in the range up to i_size. If the end of
2974          * the current write is <= i_size, there's no need to touch
2975          * i_disksize since writeback will push i_disksize up to i_size
2976          * eventually. If the end of the current write is > i_size and
2977          * inside an allocated block which ext4_da_should_update_i_disksize()
2978          * checked, we need to update i_disksize here as certain
2979          * ext4_writepages() paths not allocating blocks and update i_disksize.
2980          */
2981         if (new_i_size > inode->i_size) {
2982                 unsigned long end;
2983
2984                 i_size_write(inode, new_i_size);
2985                 end = (new_i_size - 1) & (PAGE_SIZE - 1);
2986                 if (copied && ext4_da_should_update_i_disksize(page_folio(page), end)) {
2987                         ext4_update_i_disksize(inode, new_i_size);
2988                         disksize_changed = true;
2989                 }
2990         }
2991
2992         unlock_page(page);
2993         put_page(page);
2994
2995         if (old_size < pos)
2996                 pagecache_isize_extended(inode, old_size, pos);
2997
2998         if (disksize_changed) {
2999                 handle_t *handle;
3000
3001                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3002                 if (IS_ERR(handle))
3003                         return PTR_ERR(handle);
3004                 ext4_mark_inode_dirty(handle, inode);
3005                 ext4_journal_stop(handle);
3006         }
3007
3008         return copied;
3009 }
3010
3011 static int ext4_da_write_end(struct file *file,
3012                              struct address_space *mapping,
3013                              loff_t pos, unsigned len, unsigned copied,
3014                              struct page *page, void *fsdata)
3015 {
3016         struct inode *inode = mapping->host;
3017         int write_mode = (int)(unsigned long)fsdata;
3018         struct folio *folio = page_folio(page);
3019
3020         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3021                 return ext4_write_end(file, mapping, pos,
3022                                       len, copied, &folio->page, fsdata);
3023
3024         trace_ext4_da_write_end(inode, pos, len, copied);
3025
3026         if (write_mode != CONVERT_INLINE_DATA &&
3027             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3028             ext4_has_inline_data(inode))
3029                 return ext4_write_inline_data_end(inode, pos, len, copied,
3030                                                   folio);
3031
3032         if (unlikely(copied < len) && !PageUptodate(page))
3033                 copied = 0;
3034
3035         return ext4_da_do_write_end(mapping, pos, len, copied, &folio->page);
3036 }
3037
3038 /*
3039  * Force all delayed allocation blocks to be allocated for a given inode.
3040  */
3041 int ext4_alloc_da_blocks(struct inode *inode)
3042 {
3043         trace_ext4_alloc_da_blocks(inode);
3044
3045         if (!EXT4_I(inode)->i_reserved_data_blocks)
3046                 return 0;
3047
3048         /*
3049          * We do something simple for now.  The filemap_flush() will
3050          * also start triggering a write of the data blocks, which is
3051          * not strictly speaking necessary (and for users of
3052          * laptop_mode, not even desirable).  However, to do otherwise
3053          * would require replicating code paths in:
3054          *
3055          * ext4_writepages() ->
3056          *    write_cache_pages() ---> (via passed in callback function)
3057          *        __mpage_da_writepage() -->
3058          *           mpage_add_bh_to_extent()
3059          *           mpage_da_map_blocks()
3060          *
3061          * The problem is that write_cache_pages(), located in
3062          * mm/page-writeback.c, marks pages clean in preparation for
3063          * doing I/O, which is not desirable if we're not planning on
3064          * doing I/O at all.
3065          *
3066          * We could call write_cache_pages(), and then redirty all of
3067          * the pages by calling redirty_page_for_writepage() but that
3068          * would be ugly in the extreme.  So instead we would need to
3069          * replicate parts of the code in the above functions,
3070          * simplifying them because we wouldn't actually intend to
3071          * write out the pages, but rather only collect contiguous
3072          * logical block extents, call the multi-block allocator, and
3073          * then update the buffer heads with the block allocations.
3074          *
3075          * For now, though, we'll cheat by calling filemap_flush(),
3076          * which will map the blocks, and start the I/O, but not
3077          * actually wait for the I/O to complete.
3078          */
3079         return filemap_flush(inode->i_mapping);
3080 }
3081
3082 /*
3083  * bmap() is special.  It gets used by applications such as lilo and by
3084  * the swapper to find the on-disk block of a specific piece of data.
3085  *
3086  * Naturally, this is dangerous if the block concerned is still in the
3087  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3088  * filesystem and enables swap, then they may get a nasty shock when the
3089  * data getting swapped to that swapfile suddenly gets overwritten by
3090  * the original zero's written out previously to the journal and
3091  * awaiting writeback in the kernel's buffer cache.
3092  *
3093  * So, if we see any bmap calls here on a modified, data-journaled file,
3094  * take extra steps to flush any blocks which might be in the cache.
3095  */
3096 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3097 {
3098         struct inode *inode = mapping->host;
3099         sector_t ret = 0;
3100
3101         inode_lock_shared(inode);
3102         /*
3103          * We can get here for an inline file via the FIBMAP ioctl
3104          */
3105         if (ext4_has_inline_data(inode))
3106                 goto out;
3107
3108         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3109             (test_opt(inode->i_sb, DELALLOC) ||
3110              ext4_should_journal_data(inode))) {
3111                 /*
3112                  * With delalloc or journalled data we want to sync the file so
3113                  * that we can make sure we allocate blocks for file and data
3114                  * is in place for the user to see it
3115                  */
3116                 filemap_write_and_wait(mapping);
3117         }
3118
3119         ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3120
3121 out:
3122         inode_unlock_shared(inode);
3123         return ret;
3124 }
3125
3126 static int ext4_read_folio(struct file *file, struct folio *folio)
3127 {
3128         int ret = -EAGAIN;
3129         struct inode *inode = folio->mapping->host;
3130
3131         trace_ext4_read_folio(inode, folio);
3132
3133         if (ext4_has_inline_data(inode))
3134                 ret = ext4_readpage_inline(inode, folio);
3135
3136         if (ret == -EAGAIN)
3137                 return ext4_mpage_readpages(inode, NULL, folio);
3138
3139         return ret;
3140 }
3141
3142 static void ext4_readahead(struct readahead_control *rac)
3143 {
3144         struct inode *inode = rac->mapping->host;
3145
3146         /* If the file has inline data, no need to do readahead. */
3147         if (ext4_has_inline_data(inode))
3148                 return;
3149
3150         ext4_mpage_readpages(inode, rac, NULL);
3151 }
3152
3153 static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3154                                 size_t length)
3155 {
3156         trace_ext4_invalidate_folio(folio, offset, length);
3157
3158         /* No journalling happens on data buffers when this function is used */
3159         WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3160
3161         block_invalidate_folio(folio, offset, length);
3162 }
3163
3164 static int __ext4_journalled_invalidate_folio(struct folio *folio,
3165                                             size_t offset, size_t length)
3166 {
3167         journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3168
3169         trace_ext4_journalled_invalidate_folio(folio, offset, length);
3170
3171         /*
3172          * If it's a full truncate we just forget about the pending dirtying
3173          */
3174         if (offset == 0 && length == folio_size(folio))
3175                 folio_clear_checked(folio);
3176
3177         return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3178 }
3179
3180 /* Wrapper for aops... */
3181 static void ext4_journalled_invalidate_folio(struct folio *folio,
3182                                            size_t offset,
3183                                            size_t length)
3184 {
3185         WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3186 }
3187
3188 static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3189 {
3190         struct inode *inode = folio->mapping->host;
3191         journal_t *journal = EXT4_JOURNAL(inode);
3192
3193         trace_ext4_release_folio(inode, folio);
3194
3195         /* Page has dirty journalled data -> cannot release */
3196         if (folio_test_checked(folio))
3197                 return false;
3198         if (journal)
3199                 return jbd2_journal_try_to_free_buffers(journal, folio);
3200         else
3201                 return try_to_free_buffers(folio);
3202 }
3203
3204 static bool ext4_inode_datasync_dirty(struct inode *inode)
3205 {
3206         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3207
3208         if (journal) {
3209                 if (jbd2_transaction_committed(journal,
3210                         EXT4_I(inode)->i_datasync_tid))
3211                         return false;
3212                 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3213                         return !list_empty(&EXT4_I(inode)->i_fc_list);
3214                 return true;
3215         }
3216
3217         /* Any metadata buffers to write? */
3218         if (!list_empty(&inode->i_mapping->private_list))
3219                 return true;
3220         return inode->i_state & I_DIRTY_DATASYNC;
3221 }
3222
3223 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3224                            struct ext4_map_blocks *map, loff_t offset,
3225                            loff_t length, unsigned int flags)
3226 {
3227         u8 blkbits = inode->i_blkbits;
3228
3229         /*
3230          * Writes that span EOF might trigger an I/O size update on completion,
3231          * so consider them to be dirty for the purpose of O_DSYNC, even if
3232          * there is no other metadata changes being made or are pending.
3233          */
3234         iomap->flags = 0;
3235         if (ext4_inode_datasync_dirty(inode) ||
3236             offset + length > i_size_read(inode))
3237                 iomap->flags |= IOMAP_F_DIRTY;
3238
3239         if (map->m_flags & EXT4_MAP_NEW)
3240                 iomap->flags |= IOMAP_F_NEW;
3241
3242         if (flags & IOMAP_DAX)
3243                 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3244         else
3245                 iomap->bdev = inode->i_sb->s_bdev;
3246         iomap->offset = (u64) map->m_lblk << blkbits;
3247         iomap->length = (u64) map->m_len << blkbits;
3248
3249         if ((map->m_flags & EXT4_MAP_MAPPED) &&
3250             !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3251                 iomap->flags |= IOMAP_F_MERGED;
3252
3253         /*
3254          * Flags passed to ext4_map_blocks() for direct I/O writes can result
3255          * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3256          * set. In order for any allocated unwritten extents to be converted
3257          * into written extents correctly within the ->end_io() handler, we
3258          * need to ensure that the iomap->type is set appropriately. Hence, the
3259          * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3260          * been set first.
3261          */
3262         if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3263                 iomap->type = IOMAP_UNWRITTEN;
3264                 iomap->addr = (u64) map->m_pblk << blkbits;
3265                 if (flags & IOMAP_DAX)
3266                         iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3267         } else if (map->m_flags & EXT4_MAP_MAPPED) {
3268                 iomap->type = IOMAP_MAPPED;
3269                 iomap->addr = (u64) map->m_pblk << blkbits;
3270                 if (flags & IOMAP_DAX)
3271                         iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3272         } else {
3273                 iomap->type = IOMAP_HOLE;
3274                 iomap->addr = IOMAP_NULL_ADDR;
3275         }
3276 }
3277
3278 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3279                             unsigned int flags)
3280 {
3281         handle_t *handle;
3282         u8 blkbits = inode->i_blkbits;
3283         int ret, dio_credits, m_flags = 0, retries = 0;
3284
3285         /*
3286          * Trim the mapping request to the maximum value that we can map at
3287          * once for direct I/O.
3288          */
3289         if (map->m_len > DIO_MAX_BLOCKS)
3290                 map->m_len = DIO_MAX_BLOCKS;
3291         dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3292
3293 retry:
3294         /*
3295          * Either we allocate blocks and then don't get an unwritten extent, so
3296          * in that case we have reserved enough credits. Or, the blocks are
3297          * already allocated and unwritten. In that case, the extent conversion
3298          * fits into the credits as well.
3299          */
3300         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3301         if (IS_ERR(handle))
3302                 return PTR_ERR(handle);
3303
3304         /*
3305          * DAX and direct I/O are the only two operations that are currently
3306          * supported with IOMAP_WRITE.
3307          */
3308         WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3309         if (flags & IOMAP_DAX)
3310                 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3311         /*
3312          * We use i_size instead of i_disksize here because delalloc writeback
3313          * can complete at any point during the I/O and subsequently push the
3314          * i_disksize out to i_size. This could be beyond where direct I/O is
3315          * happening and thus expose allocated blocks to direct I/O reads.
3316          */
3317         else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3318                 m_flags = EXT4_GET_BLOCKS_CREATE;
3319         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3320                 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3321
3322         ret = ext4_map_blocks(handle, inode, map, m_flags);
3323
3324         /*
3325          * We cannot fill holes in indirect tree based inodes as that could
3326          * expose stale data in the case of a crash. Use the magic error code
3327          * to fallback to buffered I/O.
3328          */
3329         if (!m_flags && !ret)
3330                 ret = -ENOTBLK;
3331
3332         ext4_journal_stop(handle);
3333         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3334                 goto retry;
3335
3336         return ret;
3337 }
3338
3339
3340 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3341                 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3342 {
3343         int ret;
3344         struct ext4_map_blocks map;
3345         u8 blkbits = inode->i_blkbits;
3346
3347         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3348                 return -EINVAL;
3349
3350         if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3351                 return -ERANGE;
3352
3353         /*
3354          * Calculate the first and last logical blocks respectively.
3355          */
3356         map.m_lblk = offset >> blkbits;
3357         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3358                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3359
3360         if (flags & IOMAP_WRITE) {
3361                 /*
3362                  * We check here if the blocks are already allocated, then we
3363                  * don't need to start a journal txn and we can directly return
3364                  * the mapping information. This could boost performance
3365                  * especially in multi-threaded overwrite requests.
3366                  */
3367                 if (offset + length <= i_size_read(inode)) {
3368                         ret = ext4_map_blocks(NULL, inode, &map, 0);
3369                         if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3370                                 goto out;
3371                 }
3372                 ret = ext4_iomap_alloc(inode, &map, flags);
3373         } else {
3374                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3375         }
3376
3377         if (ret < 0)
3378                 return ret;
3379 out:
3380         /*
3381          * When inline encryption is enabled, sometimes I/O to an encrypted file
3382          * has to be broken up to guarantee DUN contiguity.  Handle this by
3383          * limiting the length of the mapping returned.
3384          */
3385         map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3386
3387         ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3388
3389         return 0;
3390 }
3391
3392 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3393                 loff_t length, unsigned flags, struct iomap *iomap,
3394                 struct iomap *srcmap)
3395 {
3396         int ret;
3397
3398         /*
3399          * Even for writes we don't need to allocate blocks, so just pretend
3400          * we are reading to save overhead of starting a transaction.
3401          */
3402         flags &= ~IOMAP_WRITE;
3403         ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3404         WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED);
3405         return ret;
3406 }
3407
3408 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3409                           ssize_t written, unsigned flags, struct iomap *iomap)
3410 {
3411         /*
3412          * Check to see whether an error occurred while writing out the data to
3413          * the allocated blocks. If so, return the magic error code so that we
3414          * fallback to buffered I/O and attempt to complete the remainder of
3415          * the I/O. Any blocks that may have been allocated in preparation for
3416          * the direct I/O will be reused during buffered I/O.
3417          */
3418         if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3419                 return -ENOTBLK;
3420
3421         return 0;
3422 }
3423
3424 const struct iomap_ops ext4_iomap_ops = {
3425         .iomap_begin            = ext4_iomap_begin,
3426         .iomap_end              = ext4_iomap_end,
3427 };
3428
3429 const struct iomap_ops ext4_iomap_overwrite_ops = {
3430         .iomap_begin            = ext4_iomap_overwrite_begin,
3431         .iomap_end              = ext4_iomap_end,
3432 };
3433
3434 static bool ext4_iomap_is_delalloc(struct inode *inode,
3435                                    struct ext4_map_blocks *map)
3436 {
3437         struct extent_status es;
3438         ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3439
3440         ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3441                                   map->m_lblk, end, &es);
3442
3443         if (!es.es_len || es.es_lblk > end)
3444                 return false;
3445
3446         if (es.es_lblk > map->m_lblk) {
3447                 map->m_len = es.es_lblk - map->m_lblk;
3448                 return false;
3449         }
3450
3451         offset = map->m_lblk - es.es_lblk;
3452         map->m_len = es.es_len - offset;
3453
3454         return true;
3455 }
3456
3457 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3458                                    loff_t length, unsigned int flags,
3459                                    struct iomap *iomap, struct iomap *srcmap)
3460 {
3461         int ret;
3462         bool delalloc = false;
3463         struct ext4_map_blocks map;
3464         u8 blkbits = inode->i_blkbits;
3465
3466         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3467                 return -EINVAL;
3468
3469         if (ext4_has_inline_data(inode)) {
3470                 ret = ext4_inline_data_iomap(inode, iomap);
3471                 if (ret != -EAGAIN) {
3472                         if (ret == 0 && offset >= iomap->length)
3473                                 ret = -ENOENT;
3474                         return ret;
3475                 }
3476         }
3477
3478         /*
3479          * Calculate the first and last logical block respectively.
3480          */
3481         map.m_lblk = offset >> blkbits;
3482         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3483                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3484
3485         /*
3486          * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3487          * So handle it here itself instead of querying ext4_map_blocks().
3488          * Since ext4_map_blocks() will warn about it and will return
3489          * -EIO error.
3490          */
3491         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3492                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3493
3494                 if (offset >= sbi->s_bitmap_maxbytes) {
3495                         map.m_flags = 0;
3496                         goto set_iomap;
3497                 }
3498         }
3499
3500         ret = ext4_map_blocks(NULL, inode, &map, 0);
3501         if (ret < 0)
3502                 return ret;
3503         if (ret == 0)
3504                 delalloc = ext4_iomap_is_delalloc(inode, &map);
3505
3506 set_iomap:
3507         ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3508         if (delalloc && iomap->type == IOMAP_HOLE)
3509                 iomap->type = IOMAP_DELALLOC;
3510
3511         return 0;
3512 }
3513
3514 const struct iomap_ops ext4_iomap_report_ops = {
3515         .iomap_begin = ext4_iomap_begin_report,
3516 };
3517
3518 /*
3519  * For data=journal mode, folio should be marked dirty only when it was
3520  * writeably mapped. When that happens, it was already attached to the
3521  * transaction and marked as jbddirty (we take care of this in
3522  * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings
3523  * so we should have nothing to do here, except for the case when someone
3524  * had the page pinned and dirtied the page through this pin (e.g. by doing
3525  * direct IO to it). In that case we'd need to attach buffers here to the
3526  * transaction but we cannot due to lock ordering.  We cannot just dirty the
3527  * folio and leave attached buffers clean, because the buffers' dirty state is
3528  * "definitive".  We cannot just set the buffers dirty or jbddirty because all
3529  * the journalling code will explode.  So what we do is to mark the folio
3530  * "pending dirty" and next time ext4_writepages() is called, attach buffers
3531  * to the transaction appropriately.
3532  */
3533 static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3534                 struct folio *folio)
3535 {
3536         WARN_ON_ONCE(!folio_buffers(folio));
3537         if (folio_maybe_dma_pinned(folio))
3538                 folio_set_checked(folio);
3539         return filemap_dirty_folio(mapping, folio);
3540 }
3541
3542 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3543 {
3544         WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3545         WARN_ON_ONCE(!folio_buffers(folio));
3546         return block_dirty_folio(mapping, folio);
3547 }
3548
3549 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3550                                     struct file *file, sector_t *span)
3551 {
3552         return iomap_swapfile_activate(sis, file, span,
3553                                        &ext4_iomap_report_ops);
3554 }
3555
3556 static const struct address_space_operations ext4_aops = {
3557         .read_folio             = ext4_read_folio,
3558         .readahead              = ext4_readahead,
3559         .writepages             = ext4_writepages,
3560         .write_begin            = ext4_write_begin,
3561         .write_end              = ext4_write_end,
3562         .dirty_folio            = ext4_dirty_folio,
3563         .bmap                   = ext4_bmap,
3564         .invalidate_folio       = ext4_invalidate_folio,
3565         .release_folio          = ext4_release_folio,
3566         .direct_IO              = noop_direct_IO,
3567         .migrate_folio          = buffer_migrate_folio,
3568         .is_partially_uptodate  = block_is_partially_uptodate,
3569         .error_remove_page      = generic_error_remove_page,
3570         .swap_activate          = ext4_iomap_swap_activate,
3571 };
3572
3573 static const struct address_space_operations ext4_journalled_aops = {
3574         .read_folio             = ext4_read_folio,
3575         .readahead              = ext4_readahead,
3576         .writepages             = ext4_writepages,
3577         .write_begin            = ext4_write_begin,
3578         .write_end              = ext4_journalled_write_end,
3579         .dirty_folio            = ext4_journalled_dirty_folio,
3580         .bmap                   = ext4_bmap,
3581         .invalidate_folio       = ext4_journalled_invalidate_folio,
3582         .release_folio          = ext4_release_folio,
3583         .direct_IO              = noop_direct_IO,
3584         .migrate_folio          = buffer_migrate_folio_norefs,
3585         .is_partially_uptodate  = block_is_partially_uptodate,
3586         .error_remove_page      = generic_error_remove_page,
3587         .swap_activate          = ext4_iomap_swap_activate,
3588 };
3589
3590 static const struct address_space_operations ext4_da_aops = {
3591         .read_folio             = ext4_read_folio,
3592         .readahead              = ext4_readahead,
3593         .writepages             = ext4_writepages,
3594         .write_begin            = ext4_da_write_begin,
3595         .write_end              = ext4_da_write_end,
3596         .dirty_folio            = ext4_dirty_folio,
3597         .bmap                   = ext4_bmap,
3598         .invalidate_folio       = ext4_invalidate_folio,
3599         .release_folio          = ext4_release_folio,
3600         .direct_IO              = noop_direct_IO,
3601         .migrate_folio          = buffer_migrate_folio,
3602         .is_partially_uptodate  = block_is_partially_uptodate,
3603         .error_remove_page      = generic_error_remove_page,
3604         .swap_activate          = ext4_iomap_swap_activate,
3605 };
3606
3607 static const struct address_space_operations ext4_dax_aops = {
3608         .writepages             = ext4_dax_writepages,
3609         .direct_IO              = noop_direct_IO,
3610         .dirty_folio            = noop_dirty_folio,
3611         .bmap                   = ext4_bmap,
3612         .swap_activate          = ext4_iomap_swap_activate,
3613 };
3614
3615 void ext4_set_aops(struct inode *inode)
3616 {
3617         switch (ext4_inode_journal_mode(inode)) {
3618         case EXT4_INODE_ORDERED_DATA_MODE:
3619         case EXT4_INODE_WRITEBACK_DATA_MODE:
3620                 break;
3621         case EXT4_INODE_JOURNAL_DATA_MODE:
3622                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3623                 return;
3624         default:
3625                 BUG();
3626         }
3627         if (IS_DAX(inode))
3628                 inode->i_mapping->a_ops = &ext4_dax_aops;
3629         else if (test_opt(inode->i_sb, DELALLOC))
3630                 inode->i_mapping->a_ops = &ext4_da_aops;
3631         else
3632                 inode->i_mapping->a_ops = &ext4_aops;
3633 }
3634
3635 static int __ext4_block_zero_page_range(handle_t *handle,
3636                 struct address_space *mapping, loff_t from, loff_t length)
3637 {
3638         ext4_fsblk_t index = from >> PAGE_SHIFT;
3639         unsigned offset = from & (PAGE_SIZE-1);
3640         unsigned blocksize, pos;
3641         ext4_lblk_t iblock;
3642         struct inode *inode = mapping->host;
3643         struct buffer_head *bh;
3644         struct folio *folio;
3645         int err = 0;
3646
3647         folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT,
3648                                     FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3649                                     mapping_gfp_constraint(mapping, ~__GFP_FS));
3650         if (IS_ERR(folio))
3651                 return PTR_ERR(folio);
3652
3653         blocksize = inode->i_sb->s_blocksize;
3654
3655         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3656
3657         bh = folio_buffers(folio);
3658         if (!bh) {
3659                 create_empty_buffers(&folio->page, blocksize, 0);
3660                 bh = folio_buffers(folio);
3661         }
3662
3663         /* Find the buffer that contains "offset" */
3664         pos = blocksize;
3665         while (offset >= pos) {
3666                 bh = bh->b_this_page;
3667                 iblock++;
3668                 pos += blocksize;
3669         }
3670         if (buffer_freed(bh)) {
3671                 BUFFER_TRACE(bh, "freed: skip");
3672                 goto unlock;
3673         }
3674         if (!buffer_mapped(bh)) {
3675                 BUFFER_TRACE(bh, "unmapped");
3676                 ext4_get_block(inode, iblock, bh, 0);
3677                 /* unmapped? It's a hole - nothing to do */
3678                 if (!buffer_mapped(bh)) {
3679                         BUFFER_TRACE(bh, "still unmapped");
3680                         goto unlock;
3681                 }
3682         }
3683
3684         /* Ok, it's mapped. Make sure it's up-to-date */
3685         if (folio_test_uptodate(folio))
3686                 set_buffer_uptodate(bh);
3687
3688         if (!buffer_uptodate(bh)) {
3689                 err = ext4_read_bh_lock(bh, 0, true);
3690                 if (err)
3691                         goto unlock;
3692                 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3693                         /* We expect the key to be set. */
3694                         BUG_ON(!fscrypt_has_encryption_key(inode));
3695                         err = fscrypt_decrypt_pagecache_blocks(folio,
3696                                                                blocksize,
3697                                                                bh_offset(bh));
3698                         if (err) {
3699                                 clear_buffer_uptodate(bh);
3700                                 goto unlock;
3701                         }
3702                 }
3703         }
3704         if (ext4_should_journal_data(inode)) {
3705                 BUFFER_TRACE(bh, "get write access");
3706                 err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3707                                                     EXT4_JTR_NONE);
3708                 if (err)
3709                         goto unlock;
3710         }
3711         folio_zero_range(folio, offset, length);
3712         BUFFER_TRACE(bh, "zeroed end of block");
3713
3714         if (ext4_should_journal_data(inode)) {
3715                 err = ext4_dirty_journalled_data(handle, bh);
3716         } else {
3717                 err = 0;
3718                 mark_buffer_dirty(bh);
3719                 if (ext4_should_order_data(inode))
3720                         err = ext4_jbd2_inode_add_write(handle, inode, from,
3721                                         length);
3722         }
3723
3724 unlock:
3725         folio_unlock(folio);
3726         folio_put(folio);
3727         return err;
3728 }
3729
3730 /*
3731  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3732  * starting from file offset 'from'.  The range to be zero'd must
3733  * be contained with in one block.  If the specified range exceeds
3734  * the end of the block it will be shortened to end of the block
3735  * that corresponds to 'from'
3736  */
3737 static int ext4_block_zero_page_range(handle_t *handle,
3738                 struct address_space *mapping, loff_t from, loff_t length)
3739 {
3740         struct inode *inode = mapping->host;
3741         unsigned offset = from & (PAGE_SIZE-1);
3742         unsigned blocksize = inode->i_sb->s_blocksize;
3743         unsigned max = blocksize - (offset & (blocksize - 1));
3744
3745         /*
3746          * correct length if it does not fall between
3747          * 'from' and the end of the block
3748          */
3749         if (length > max || length < 0)
3750                 length = max;
3751
3752         if (IS_DAX(inode)) {
3753                 return dax_zero_range(inode, from, length, NULL,
3754                                       &ext4_iomap_ops);
3755         }
3756         return __ext4_block_zero_page_range(handle, mapping, from, length);
3757 }
3758
3759 /*
3760  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3761  * up to the end of the block which corresponds to `from'.
3762  * This required during truncate. We need to physically zero the tail end
3763  * of that block so it doesn't yield old data if the file is later grown.
3764  */
3765 static int ext4_block_truncate_page(handle_t *handle,
3766                 struct address_space *mapping, loff_t from)
3767 {
3768         unsigned offset = from & (PAGE_SIZE-1);
3769         unsigned length;
3770         unsigned blocksize;
3771         struct inode *inode = mapping->host;
3772
3773         /* If we are processing an encrypted inode during orphan list handling */
3774         if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3775                 return 0;
3776
3777         blocksize = inode->i_sb->s_blocksize;
3778         length = blocksize - (offset & (blocksize - 1));
3779
3780         return ext4_block_zero_page_range(handle, mapping, from, length);
3781 }
3782
3783 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3784                              loff_t lstart, loff_t length)
3785 {
3786         struct super_block *sb = inode->i_sb;
3787         struct address_space *mapping = inode->i_mapping;
3788         unsigned partial_start, partial_end;
3789         ext4_fsblk_t start, end;
3790         loff_t byte_end = (lstart + length - 1);
3791         int err = 0;
3792
3793         partial_start = lstart & (sb->s_blocksize - 1);
3794         partial_end = byte_end & (sb->s_blocksize - 1);
3795
3796         start = lstart >> sb->s_blocksize_bits;
3797         end = byte_end >> sb->s_blocksize_bits;
3798
3799         /* Handle partial zero within the single block */
3800         if (start == end &&
3801             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3802                 err = ext4_block_zero_page_range(handle, mapping,
3803                                                  lstart, length);
3804                 return err;
3805         }
3806         /* Handle partial zero out on the start of the range */
3807         if (partial_start) {
3808                 err = ext4_block_zero_page_range(handle, mapping,
3809                                                  lstart, sb->s_blocksize);
3810                 if (err)
3811                         return err;
3812         }
3813         /* Handle partial zero out on the end of the range */
3814         if (partial_end != sb->s_blocksize - 1)
3815                 err = ext4_block_zero_page_range(handle, mapping,
3816                                                  byte_end - partial_end,
3817                                                  partial_end + 1);
3818         return err;
3819 }
3820
3821 int ext4_can_truncate(struct inode *inode)
3822 {
3823         if (S_ISREG(inode->i_mode))
3824                 return 1;
3825         if (S_ISDIR(inode->i_mode))
3826                 return 1;
3827         if (S_ISLNK(inode->i_mode))
3828                 return !ext4_inode_is_fast_symlink(inode);
3829         return 0;
3830 }
3831
3832 /*
3833  * We have to make sure i_disksize gets properly updated before we truncate
3834  * page cache due to hole punching or zero range. Otherwise i_disksize update
3835  * can get lost as it may have been postponed to submission of writeback but
3836  * that will never happen after we truncate page cache.
3837  */
3838 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3839                                       loff_t len)
3840 {
3841         handle_t *handle;
3842         int ret;
3843
3844         loff_t size = i_size_read(inode);
3845
3846         WARN_ON(!inode_is_locked(inode));
3847         if (offset > size || offset + len < size)
3848                 return 0;
3849
3850         if (EXT4_I(inode)->i_disksize >= size)
3851                 return 0;
3852
3853         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3854         if (IS_ERR(handle))
3855                 return PTR_ERR(handle);
3856         ext4_update_i_disksize(inode, size);
3857         ret = ext4_mark_inode_dirty(handle, inode);
3858         ext4_journal_stop(handle);
3859
3860         return ret;
3861 }
3862
3863 static void ext4_wait_dax_page(struct inode *inode)
3864 {
3865         filemap_invalidate_unlock(inode->i_mapping);
3866         schedule();
3867         filemap_invalidate_lock(inode->i_mapping);
3868 }
3869
3870 int ext4_break_layouts(struct inode *inode)
3871 {
3872         struct page *page;
3873         int error;
3874
3875         if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3876                 return -EINVAL;
3877
3878         do {
3879                 page = dax_layout_busy_page(inode->i_mapping);
3880                 if (!page)
3881                         return 0;
3882
3883                 error = ___wait_var_event(&page->_refcount,
3884                                 atomic_read(&page->_refcount) == 1,
3885                                 TASK_INTERRUPTIBLE, 0, 0,
3886                                 ext4_wait_dax_page(inode));
3887         } while (error == 0);
3888
3889         return error;
3890 }
3891
3892 /*
3893  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3894  * associated with the given offset and length
3895  *
3896  * @inode:  File inode
3897  * @offset: The offset where the hole will begin
3898  * @len:    The length of the hole
3899  *
3900  * Returns: 0 on success or negative on failure
3901  */
3902
3903 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3904 {
3905         struct inode *inode = file_inode(file);
3906         struct super_block *sb = inode->i_sb;
3907         ext4_lblk_t first_block, stop_block;
3908         struct address_space *mapping = inode->i_mapping;
3909         loff_t first_block_offset, last_block_offset, max_length;
3910         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3911         handle_t *handle;
3912         unsigned int credits;
3913         int ret = 0, ret2 = 0;
3914
3915         trace_ext4_punch_hole(inode, offset, length, 0);
3916
3917         /*
3918          * Write out all dirty pages to avoid race conditions
3919          * Then release them.
3920          */
3921         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3922                 ret = filemap_write_and_wait_range(mapping, offset,
3923                                                    offset + length - 1);
3924                 if (ret)
3925                         return ret;
3926         }
3927
3928         inode_lock(inode);
3929
3930         /* No need to punch hole beyond i_size */
3931         if (offset >= inode->i_size)
3932                 goto out_mutex;
3933
3934         /*
3935          * If the hole extends beyond i_size, set the hole
3936          * to end after the page that contains i_size
3937          */
3938         if (offset + length > inode->i_size) {
3939                 length = inode->i_size +
3940                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3941                    offset;
3942         }
3943
3944         /*
3945          * For punch hole the length + offset needs to be within one block
3946          * before last range. Adjust the length if it goes beyond that limit.
3947          */
3948         max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
3949         if (offset + length > max_length)
3950                 length = max_length - offset;
3951
3952         if (offset & (sb->s_blocksize - 1) ||
3953             (offset + length) & (sb->s_blocksize - 1)) {
3954                 /*
3955                  * Attach jinode to inode for jbd2 if we do any zeroing of
3956                  * partial block
3957                  */
3958                 ret = ext4_inode_attach_jinode(inode);
3959                 if (ret < 0)
3960                         goto out_mutex;
3961
3962         }
3963
3964         /* Wait all existing dio workers, newcomers will block on i_rwsem */
3965         inode_dio_wait(inode);
3966
3967         ret = file_modified(file);
3968         if (ret)
3969                 goto out_mutex;
3970
3971         /*
3972          * Prevent page faults from reinstantiating pages we have released from
3973          * page cache.
3974          */
3975         filemap_invalidate_lock(mapping);
3976
3977         ret = ext4_break_layouts(inode);
3978         if (ret)
3979                 goto out_dio;
3980
3981         first_block_offset = round_up(offset, sb->s_blocksize);
3982         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3983
3984         /* Now release the pages and zero block aligned part of pages*/
3985         if (last_block_offset > first_block_offset) {
3986                 ret = ext4_update_disksize_before_punch(inode, offset, length);
3987                 if (ret)
3988                         goto out_dio;
3989                 truncate_pagecache_range(inode, first_block_offset,
3990                                          last_block_offset);
3991         }
3992
3993         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3994                 credits = ext4_writepage_trans_blocks(inode);
3995         else
3996                 credits = ext4_blocks_for_truncate(inode);
3997         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3998         if (IS_ERR(handle)) {
3999                 ret = PTR_ERR(handle);
4000                 ext4_std_error(sb, ret);
4001                 goto out_dio;
4002         }
4003
4004         ret = ext4_zero_partial_blocks(handle, inode, offset,
4005                                        length);
4006         if (ret)
4007                 goto out_stop;
4008
4009         first_block = (offset + sb->s_blocksize - 1) >>
4010                 EXT4_BLOCK_SIZE_BITS(sb);
4011         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4012
4013         /* If there are blocks to remove, do it */
4014         if (stop_block > first_block) {
4015
4016                 down_write(&EXT4_I(inode)->i_data_sem);
4017                 ext4_discard_preallocations(inode, 0);
4018
4019                 ext4_es_remove_extent(inode, first_block,
4020                                       stop_block - first_block);
4021
4022                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4023                         ret = ext4_ext_remove_space(inode, first_block,
4024                                                     stop_block - 1);
4025                 else
4026                         ret = ext4_ind_remove_space(handle, inode, first_block,
4027                                                     stop_block);
4028
4029                 up_write(&EXT4_I(inode)->i_data_sem);
4030         }
4031         ext4_fc_track_range(handle, inode, first_block, stop_block);
4032         if (IS_SYNC(inode))
4033                 ext4_handle_sync(handle);
4034
4035         inode->i_mtime = inode_set_ctime_current(inode);
4036         ret2 = ext4_mark_inode_dirty(handle, inode);
4037         if (unlikely(ret2))
4038                 ret = ret2;
4039         if (ret >= 0)
4040                 ext4_update_inode_fsync_trans(handle, inode, 1);
4041 out_stop:
4042         ext4_journal_stop(handle);
4043 out_dio:
4044         filemap_invalidate_unlock(mapping);
4045 out_mutex:
4046         inode_unlock(inode);
4047         return ret;
4048 }
4049
4050 int ext4_inode_attach_jinode(struct inode *inode)
4051 {
4052         struct ext4_inode_info *ei = EXT4_I(inode);
4053         struct jbd2_inode *jinode;
4054
4055         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4056                 return 0;
4057
4058         jinode = jbd2_alloc_inode(GFP_KERNEL);
4059         spin_lock(&inode->i_lock);
4060         if (!ei->jinode) {
4061                 if (!jinode) {
4062                         spin_unlock(&inode->i_lock);
4063                         return -ENOMEM;
4064                 }
4065                 ei->jinode = jinode;
4066                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4067                 jinode = NULL;
4068         }
4069         spin_unlock(&inode->i_lock);
4070         if (unlikely(jinode != NULL))
4071                 jbd2_free_inode(jinode);
4072         return 0;
4073 }
4074
4075 /*
4076  * ext4_truncate()
4077  *
4078  * We block out ext4_get_block() block instantiations across the entire
4079  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4080  * simultaneously on behalf of the same inode.
4081  *
4082  * As we work through the truncate and commit bits of it to the journal there
4083  * is one core, guiding principle: the file's tree must always be consistent on
4084  * disk.  We must be able to restart the truncate after a crash.
4085  *
4086  * The file's tree may be transiently inconsistent in memory (although it
4087  * probably isn't), but whenever we close off and commit a journal transaction,
4088  * the contents of (the filesystem + the journal) must be consistent and
4089  * restartable.  It's pretty simple, really: bottom up, right to left (although
4090  * left-to-right works OK too).
4091  *
4092  * Note that at recovery time, journal replay occurs *before* the restart of
4093  * truncate against the orphan inode list.
4094  *
4095  * The committed inode has the new, desired i_size (which is the same as
4096  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4097  * that this inode's truncate did not complete and it will again call
4098  * ext4_truncate() to have another go.  So there will be instantiated blocks
4099  * to the right of the truncation point in a crashed ext4 filesystem.  But
4100  * that's fine - as long as they are linked from the inode, the post-crash
4101  * ext4_truncate() run will find them and release them.
4102  */
4103 int ext4_truncate(struct inode *inode)
4104 {
4105         struct ext4_inode_info *ei = EXT4_I(inode);
4106         unsigned int credits;
4107         int err = 0, err2;
4108         handle_t *handle;
4109         struct address_space *mapping = inode->i_mapping;
4110
4111         /*
4112          * There is a possibility that we're either freeing the inode
4113          * or it's a completely new inode. In those cases we might not
4114          * have i_rwsem locked because it's not necessary.
4115          */
4116         if (!(inode->i_state & (I_NEW|I_FREEING)))
4117                 WARN_ON(!inode_is_locked(inode));
4118         trace_ext4_truncate_enter(inode);
4119
4120         if (!ext4_can_truncate(inode))
4121                 goto out_trace;
4122
4123         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4124                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4125
4126         if (ext4_has_inline_data(inode)) {
4127                 int has_inline = 1;
4128
4129                 err = ext4_inline_data_truncate(inode, &has_inline);
4130                 if (err || has_inline)
4131                         goto out_trace;
4132         }
4133
4134         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4135         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4136                 err = ext4_inode_attach_jinode(inode);
4137                 if (err)
4138                         goto out_trace;
4139         }
4140
4141         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4142                 credits = ext4_writepage_trans_blocks(inode);
4143         else
4144                 credits = ext4_blocks_for_truncate(inode);
4145
4146         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4147         if (IS_ERR(handle)) {
4148                 err = PTR_ERR(handle);
4149                 goto out_trace;
4150         }
4151
4152         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4153                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4154
4155         /*
4156          * We add the inode to the orphan list, so that if this
4157          * truncate spans multiple transactions, and we crash, we will
4158          * resume the truncate when the filesystem recovers.  It also
4159          * marks the inode dirty, to catch the new size.
4160          *
4161          * Implication: the file must always be in a sane, consistent
4162          * truncatable state while each transaction commits.
4163          */
4164         err = ext4_orphan_add(handle, inode);
4165         if (err)
4166                 goto out_stop;
4167
4168         down_write(&EXT4_I(inode)->i_data_sem);
4169
4170         ext4_discard_preallocations(inode, 0);
4171
4172         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4173                 err = ext4_ext_truncate(handle, inode);
4174         else
4175                 ext4_ind_truncate(handle, inode);
4176
4177         up_write(&ei->i_data_sem);
4178         if (err)
4179                 goto out_stop;
4180
4181         if (IS_SYNC(inode))
4182                 ext4_handle_sync(handle);
4183
4184 out_stop:
4185         /*
4186          * If this was a simple ftruncate() and the file will remain alive,
4187          * then we need to clear up the orphan record which we created above.
4188          * However, if this was a real unlink then we were called by
4189          * ext4_evict_inode(), and we allow that function to clean up the
4190          * orphan info for us.
4191          */
4192         if (inode->i_nlink)
4193                 ext4_orphan_del(handle, inode);
4194
4195         inode->i_mtime = inode_set_ctime_current(inode);
4196         err2 = ext4_mark_inode_dirty(handle, inode);
4197         if (unlikely(err2 && !err))
4198                 err = err2;
4199         ext4_journal_stop(handle);
4200
4201 out_trace:
4202         trace_ext4_truncate_exit(inode);
4203         return err;
4204 }
4205
4206 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4207 {
4208         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4209                 return inode_peek_iversion_raw(inode);
4210         else
4211                 return inode_peek_iversion(inode);
4212 }
4213
4214 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4215                                  struct ext4_inode_info *ei)
4216 {
4217         struct inode *inode = &(ei->vfs_inode);
4218         u64 i_blocks = READ_ONCE(inode->i_blocks);
4219         struct super_block *sb = inode->i_sb;
4220
4221         if (i_blocks <= ~0U) {
4222                 /*
4223                  * i_blocks can be represented in a 32 bit variable
4224                  * as multiple of 512 bytes
4225                  */
4226                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4227                 raw_inode->i_blocks_high = 0;
4228                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4229                 return 0;
4230         }
4231
4232         /*
4233          * This should never happen since sb->s_maxbytes should not have
4234          * allowed this, sb->s_maxbytes was set according to the huge_file
4235          * feature in ext4_fill_super().
4236          */
4237         if (!ext4_has_feature_huge_file(sb))
4238                 return -EFSCORRUPTED;
4239
4240         if (i_blocks <= 0xffffffffffffULL) {
4241                 /*
4242                  * i_blocks can be represented in a 48 bit variable
4243                  * as multiple of 512 bytes
4244                  */
4245                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4246                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4247                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4248         } else {
4249                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4250                 /* i_block is stored in file system block size */
4251                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4252                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4253                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4254         }
4255         return 0;
4256 }
4257
4258 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4259 {
4260         struct ext4_inode_info *ei = EXT4_I(inode);
4261         uid_t i_uid;
4262         gid_t i_gid;
4263         projid_t i_projid;
4264         int block;
4265         int err;
4266
4267         err = ext4_inode_blocks_set(raw_inode, ei);
4268
4269         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4270         i_uid = i_uid_read(inode);
4271         i_gid = i_gid_read(inode);
4272         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4273         if (!(test_opt(inode->i_sb, NO_UID32))) {
4274                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4275                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4276                 /*
4277                  * Fix up interoperability with old kernels. Otherwise,
4278                  * old inodes get re-used with the upper 16 bits of the
4279                  * uid/gid intact.
4280                  */
4281                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4282                         raw_inode->i_uid_high = 0;
4283                         raw_inode->i_gid_high = 0;
4284                 } else {
4285                         raw_inode->i_uid_high =
4286                                 cpu_to_le16(high_16_bits(i_uid));
4287                         raw_inode->i_gid_high =
4288                                 cpu_to_le16(high_16_bits(i_gid));
4289                 }
4290         } else {
4291                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4292                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4293                 raw_inode->i_uid_high = 0;
4294                 raw_inode->i_gid_high = 0;
4295         }
4296         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4297
4298         EXT4_INODE_SET_CTIME(inode, raw_inode);
4299         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4300         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4301         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4302
4303         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4304         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4305         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4306                 raw_inode->i_file_acl_high =
4307                         cpu_to_le16(ei->i_file_acl >> 32);
4308         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4309         ext4_isize_set(raw_inode, ei->i_disksize);
4310
4311         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4312         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4313                 if (old_valid_dev(inode->i_rdev)) {
4314                         raw_inode->i_block[0] =
4315                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4316                         raw_inode->i_block[1] = 0;
4317                 } else {
4318                         raw_inode->i_block[0] = 0;
4319                         raw_inode->i_block[1] =
4320                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4321                         raw_inode->i_block[2] = 0;
4322                 }
4323         } else if (!ext4_has_inline_data(inode)) {
4324                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4325                         raw_inode->i_block[block] = ei->i_data[block];
4326         }
4327
4328         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4329                 u64 ivers = ext4_inode_peek_iversion(inode);
4330
4331                 raw_inode->i_disk_version = cpu_to_le32(ivers);
4332                 if (ei->i_extra_isize) {
4333                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4334                                 raw_inode->i_version_hi =
4335                                         cpu_to_le32(ivers >> 32);
4336                         raw_inode->i_extra_isize =
4337                                 cpu_to_le16(ei->i_extra_isize);
4338                 }
4339         }
4340
4341         if (i_projid != EXT4_DEF_PROJID &&
4342             !ext4_has_feature_project(inode->i_sb))
4343                 err = err ?: -EFSCORRUPTED;
4344
4345         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4346             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4347                 raw_inode->i_projid = cpu_to_le32(i_projid);
4348
4349         ext4_inode_csum_set(inode, raw_inode, ei);
4350         return err;
4351 }
4352
4353 /*
4354  * ext4_get_inode_loc returns with an extra refcount against the inode's
4355  * underlying buffer_head on success. If we pass 'inode' and it does not
4356  * have in-inode xattr, we have all inode data in memory that is needed
4357  * to recreate the on-disk version of this inode.
4358  */
4359 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4360                                 struct inode *inode, struct ext4_iloc *iloc,
4361                                 ext4_fsblk_t *ret_block)
4362 {
4363         struct ext4_group_desc  *gdp;
4364         struct buffer_head      *bh;
4365         ext4_fsblk_t            block;
4366         struct blk_plug         plug;
4367         int                     inodes_per_block, inode_offset;
4368
4369         iloc->bh = NULL;
4370         if (ino < EXT4_ROOT_INO ||
4371             ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4372                 return -EFSCORRUPTED;
4373
4374         iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4375         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4376         if (!gdp)
4377                 return -EIO;
4378
4379         /*
4380          * Figure out the offset within the block group inode table
4381          */
4382         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4383         inode_offset = ((ino - 1) %
4384                         EXT4_INODES_PER_GROUP(sb));
4385         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4386
4387         block = ext4_inode_table(sb, gdp);
4388         if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4389             (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4390                 ext4_error(sb, "Invalid inode table block %llu in "
4391                            "block_group %u", block, iloc->block_group);
4392                 return -EFSCORRUPTED;
4393         }
4394         block += (inode_offset / inodes_per_block);
4395
4396         bh = sb_getblk(sb, block);
4397         if (unlikely(!bh))
4398                 return -ENOMEM;
4399         if (ext4_buffer_uptodate(bh))
4400                 goto has_buffer;
4401
4402         lock_buffer(bh);
4403         if (ext4_buffer_uptodate(bh)) {
4404                 /* Someone brought it uptodate while we waited */
4405                 unlock_buffer(bh);
4406                 goto has_buffer;
4407         }
4408
4409         /*
4410          * If we have all information of the inode in memory and this
4411          * is the only valid inode in the block, we need not read the
4412          * block.
4413          */
4414         if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4415                 struct buffer_head *bitmap_bh;
4416                 int i, start;
4417
4418                 start = inode_offset & ~(inodes_per_block - 1);
4419
4420                 /* Is the inode bitmap in cache? */
4421                 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4422                 if (unlikely(!bitmap_bh))
4423                         goto make_io;
4424
4425                 /*
4426                  * If the inode bitmap isn't in cache then the
4427                  * optimisation may end up performing two reads instead
4428                  * of one, so skip it.
4429                  */
4430                 if (!buffer_uptodate(bitmap_bh)) {
4431                         brelse(bitmap_bh);
4432                         goto make_io;
4433                 }
4434                 for (i = start; i < start + inodes_per_block; i++) {
4435                         if (i == inode_offset)
4436                                 continue;
4437                         if (ext4_test_bit(i, bitmap_bh->b_data))
4438                                 break;
4439                 }
4440                 brelse(bitmap_bh);
4441                 if (i == start + inodes_per_block) {
4442                         struct ext4_inode *raw_inode =
4443                                 (struct ext4_inode *) (bh->b_data + iloc->offset);
4444
4445                         /* all other inodes are free, so skip I/O */
4446                         memset(bh->b_data, 0, bh->b_size);
4447                         if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4448                                 ext4_fill_raw_inode(inode, raw_inode);
4449                         set_buffer_uptodate(bh);
4450                         unlock_buffer(bh);
4451                         goto has_buffer;
4452                 }
4453         }
4454
4455 make_io:
4456         /*
4457          * If we need to do any I/O, try to pre-readahead extra
4458          * blocks from the inode table.
4459          */
4460         blk_start_plug(&plug);
4461         if (EXT4_SB(sb)->s_inode_readahead_blks) {
4462                 ext4_fsblk_t b, end, table;
4463                 unsigned num;
4464                 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4465
4466                 table = ext4_inode_table(sb, gdp);
4467                 /* s_inode_readahead_blks is always a power of 2 */
4468                 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4469                 if (table > b)
4470                         b = table;
4471                 end = b + ra_blks;
4472                 num = EXT4_INODES_PER_GROUP(sb);
4473                 if (ext4_has_group_desc_csum(sb))
4474                         num -= ext4_itable_unused_count(sb, gdp);
4475                 table += num / inodes_per_block;
4476                 if (end > table)
4477                         end = table;
4478                 while (b <= end)
4479                         ext4_sb_breadahead_unmovable(sb, b++);
4480         }
4481
4482         /*
4483          * There are other valid inodes in the buffer, this inode
4484          * has in-inode xattrs, or we don't have this inode in memory.
4485          * Read the block from disk.
4486          */
4487         trace_ext4_load_inode(sb, ino);
4488         ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4489         blk_finish_plug(&plug);
4490         wait_on_buffer(bh);
4491         ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4492         if (!buffer_uptodate(bh)) {
4493                 if (ret_block)
4494                         *ret_block = block;
4495                 brelse(bh);
4496                 return -EIO;
4497         }
4498 has_buffer:
4499         iloc->bh = bh;
4500         return 0;
4501 }
4502
4503 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4504                                         struct ext4_iloc *iloc)
4505 {
4506         ext4_fsblk_t err_blk = 0;
4507         int ret;
4508
4509         ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4510                                         &err_blk);
4511
4512         if (ret == -EIO)
4513                 ext4_error_inode_block(inode, err_blk, EIO,
4514                                         "unable to read itable block");
4515
4516         return ret;
4517 }
4518
4519 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4520 {
4521         ext4_fsblk_t err_blk = 0;
4522         int ret;
4523
4524         ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4525                                         &err_blk);
4526
4527         if (ret == -EIO)
4528                 ext4_error_inode_block(inode, err_blk, EIO,
4529                                         "unable to read itable block");
4530
4531         return ret;
4532 }
4533
4534
4535 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4536                           struct ext4_iloc *iloc)
4537 {
4538         return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4539 }
4540
4541 static bool ext4_should_enable_dax(struct inode *inode)
4542 {
4543         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4544
4545         if (test_opt2(inode->i_sb, DAX_NEVER))
4546                 return false;
4547         if (!S_ISREG(inode->i_mode))
4548                 return false;
4549         if (ext4_should_journal_data(inode))
4550                 return false;
4551         if (ext4_has_inline_data(inode))
4552                 return false;
4553         if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4554                 return false;
4555         if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4556                 return false;
4557         if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4558                 return false;
4559         if (test_opt(inode->i_sb, DAX_ALWAYS))
4560                 return true;
4561
4562         return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4563 }
4564
4565 void ext4_set_inode_flags(struct inode *inode, bool init)
4566 {
4567         unsigned int flags = EXT4_I(inode)->i_flags;
4568         unsigned int new_fl = 0;
4569
4570         WARN_ON_ONCE(IS_DAX(inode) && init);
4571
4572         if (flags & EXT4_SYNC_FL)
4573                 new_fl |= S_SYNC;
4574         if (flags & EXT4_APPEND_FL)
4575                 new_fl |= S_APPEND;
4576         if (flags & EXT4_IMMUTABLE_FL)
4577                 new_fl |= S_IMMUTABLE;
4578         if (flags & EXT4_NOATIME_FL)
4579                 new_fl |= S_NOATIME;
4580         if (flags & EXT4_DIRSYNC_FL)
4581                 new_fl |= S_DIRSYNC;
4582
4583         /* Because of the way inode_set_flags() works we must preserve S_DAX
4584          * here if already set. */
4585         new_fl |= (inode->i_flags & S_DAX);
4586         if (init && ext4_should_enable_dax(inode))
4587                 new_fl |= S_DAX;
4588
4589         if (flags & EXT4_ENCRYPT_FL)
4590                 new_fl |= S_ENCRYPTED;
4591         if (flags & EXT4_CASEFOLD_FL)
4592                 new_fl |= S_CASEFOLD;
4593         if (flags & EXT4_VERITY_FL)
4594                 new_fl |= S_VERITY;
4595         inode_set_flags(inode, new_fl,
4596                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4597                         S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4598 }
4599
4600 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4601                                   struct ext4_inode_info *ei)
4602 {
4603         blkcnt_t i_blocks ;
4604         struct inode *inode = &(ei->vfs_inode);
4605         struct super_block *sb = inode->i_sb;
4606
4607         if (ext4_has_feature_huge_file(sb)) {
4608                 /* we are using combined 48 bit field */
4609                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4610                                         le32_to_cpu(raw_inode->i_blocks_lo);
4611                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4612                         /* i_blocks represent file system block size */
4613                         return i_blocks  << (inode->i_blkbits - 9);
4614                 } else {
4615                         return i_blocks;
4616                 }
4617         } else {
4618                 return le32_to_cpu(raw_inode->i_blocks_lo);
4619         }
4620 }
4621
4622 static inline int ext4_iget_extra_inode(struct inode *inode,
4623                                          struct ext4_inode *raw_inode,
4624                                          struct ext4_inode_info *ei)
4625 {
4626         __le32 *magic = (void *)raw_inode +
4627                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4628
4629         if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
4630             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4631                 int err;
4632
4633                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4634                 err = ext4_find_inline_data_nolock(inode);
4635                 if (!err && ext4_has_inline_data(inode))
4636                         ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4637                 return err;
4638         } else
4639                 EXT4_I(inode)->i_inline_off = 0;
4640         return 0;
4641 }
4642
4643 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4644 {
4645         if (!ext4_has_feature_project(inode->i_sb))
4646                 return -EOPNOTSUPP;
4647         *projid = EXT4_I(inode)->i_projid;
4648         return 0;
4649 }
4650
4651 /*
4652  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4653  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4654  * set.
4655  */
4656 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4657 {
4658         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4659                 inode_set_iversion_raw(inode, val);
4660         else
4661                 inode_set_iversion_queried(inode, val);
4662 }
4663
4664 static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags)
4665
4666 {
4667         if (flags & EXT4_IGET_EA_INODE) {
4668                 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4669                         return "missing EA_INODE flag";
4670                 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4671                     EXT4_I(inode)->i_file_acl)
4672                         return "ea_inode with extended attributes";
4673         } else {
4674                 if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4675                         return "unexpected EA_INODE flag";
4676         }
4677         if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD))
4678                 return "unexpected bad inode w/o EXT4_IGET_BAD";
4679         return NULL;
4680 }
4681
4682 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4683                           ext4_iget_flags flags, const char *function,
4684                           unsigned int line)
4685 {
4686         struct ext4_iloc iloc;
4687         struct ext4_inode *raw_inode;
4688         struct ext4_inode_info *ei;
4689         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4690         struct inode *inode;
4691         const char *err_str;
4692         journal_t *journal = EXT4_SB(sb)->s_journal;
4693         long ret;
4694         loff_t size;
4695         int block;
4696         uid_t i_uid;
4697         gid_t i_gid;
4698         projid_t i_projid;
4699
4700         if ((!(flags & EXT4_IGET_SPECIAL) &&
4701              ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4702               ino == le32_to_cpu(es->s_usr_quota_inum) ||
4703               ino == le32_to_cpu(es->s_grp_quota_inum) ||
4704               ino == le32_to_cpu(es->s_prj_quota_inum) ||
4705               ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4706             (ino < EXT4_ROOT_INO) ||
4707             (ino > le32_to_cpu(es->s_inodes_count))) {
4708                 if (flags & EXT4_IGET_HANDLE)
4709                         return ERR_PTR(-ESTALE);
4710                 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4711                              "inode #%lu: comm %s: iget: illegal inode #",
4712                              ino, current->comm);
4713                 return ERR_PTR(-EFSCORRUPTED);
4714         }
4715
4716         inode = iget_locked(sb, ino);
4717         if (!inode)
4718                 return ERR_PTR(-ENOMEM);
4719         if (!(inode->i_state & I_NEW)) {
4720                 if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4721                         ext4_error_inode(inode, function, line, 0, err_str);
4722                         iput(inode);
4723                         return ERR_PTR(-EFSCORRUPTED);
4724                 }
4725                 return inode;
4726         }
4727
4728         ei = EXT4_I(inode);
4729         iloc.bh = NULL;
4730
4731         ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4732         if (ret < 0)
4733                 goto bad_inode;
4734         raw_inode = ext4_raw_inode(&iloc);
4735
4736         if ((flags & EXT4_IGET_HANDLE) &&
4737             (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4738                 ret = -ESTALE;
4739                 goto bad_inode;
4740         }
4741
4742         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4743                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4744                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4745                         EXT4_INODE_SIZE(inode->i_sb) ||
4746                     (ei->i_extra_isize & 3)) {
4747                         ext4_error_inode(inode, function, line, 0,
4748                                          "iget: bad extra_isize %u "
4749                                          "(inode size %u)",
4750                                          ei->i_extra_isize,
4751                                          EXT4_INODE_SIZE(inode->i_sb));
4752                         ret = -EFSCORRUPTED;
4753                         goto bad_inode;
4754                 }
4755         } else
4756                 ei->i_extra_isize = 0;
4757
4758         /* Precompute checksum seed for inode metadata */
4759         if (ext4_has_metadata_csum(sb)) {
4760                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4761                 __u32 csum;
4762                 __le32 inum = cpu_to_le32(inode->i_ino);
4763                 __le32 gen = raw_inode->i_generation;
4764                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4765                                    sizeof(inum));
4766                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4767                                               sizeof(gen));
4768         }
4769
4770         if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4771             ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4772              (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4773                 ext4_error_inode_err(inode, function, line, 0,
4774                                 EFSBADCRC, "iget: checksum invalid");
4775                 ret = -EFSBADCRC;
4776                 goto bad_inode;
4777         }
4778
4779         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4780         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4781         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4782         if (ext4_has_feature_project(sb) &&
4783             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4784             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4785                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4786         else
4787                 i_projid = EXT4_DEF_PROJID;
4788
4789         if (!(test_opt(inode->i_sb, NO_UID32))) {
4790                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4791                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4792         }
4793         i_uid_write(inode, i_uid);
4794         i_gid_write(inode, i_gid);
4795         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4796         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4797
4798         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4799         ei->i_inline_off = 0;
4800         ei->i_dir_start_lookup = 0;
4801         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4802         /* We now have enough fields to check if the inode was active or not.
4803          * This is needed because nfsd might try to access dead inodes
4804          * the test is that same one that e2fsck uses
4805          * NeilBrown 1999oct15
4806          */
4807         if (inode->i_nlink == 0) {
4808                 if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
4809                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4810                     ino != EXT4_BOOT_LOADER_INO) {
4811                         /* this inode is deleted or unallocated */
4812                         if (flags & EXT4_IGET_SPECIAL) {
4813                                 ext4_error_inode(inode, function, line, 0,
4814                                                  "iget: special inode unallocated");
4815                                 ret = -EFSCORRUPTED;
4816                         } else
4817                                 ret = -ESTALE;
4818                         goto bad_inode;
4819                 }
4820                 /* The only unlinked inodes we let through here have
4821                  * valid i_mode and are being read by the orphan
4822                  * recovery code: that's fine, we're about to complete
4823                  * the process of deleting those.
4824                  * OR it is the EXT4_BOOT_LOADER_INO which is
4825                  * not initialized on a new filesystem. */
4826         }
4827         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4828         ext4_set_inode_flags(inode, true);
4829         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4830         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4831         if (ext4_has_feature_64bit(sb))
4832                 ei->i_file_acl |=
4833                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4834         inode->i_size = ext4_isize(sb, raw_inode);
4835         if ((size = i_size_read(inode)) < 0) {
4836                 ext4_error_inode(inode, function, line, 0,
4837                                  "iget: bad i_size value: %lld", size);
4838                 ret = -EFSCORRUPTED;
4839                 goto bad_inode;
4840         }
4841         /*
4842          * If dir_index is not enabled but there's dir with INDEX flag set,
4843          * we'd normally treat htree data as empty space. But with metadata
4844          * checksumming that corrupts checksums so forbid that.
4845          */
4846         if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4847             ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4848                 ext4_error_inode(inode, function, line, 0,
4849                          "iget: Dir with htree data on filesystem without dir_index feature.");
4850                 ret = -EFSCORRUPTED;
4851                 goto bad_inode;
4852         }
4853         ei->i_disksize = inode->i_size;
4854 #ifdef CONFIG_QUOTA
4855         ei->i_reserved_quota = 0;
4856 #endif
4857         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4858         ei->i_block_group = iloc.block_group;
4859         ei->i_last_alloc_group = ~0;
4860         /*
4861          * NOTE! The in-memory inode i_data array is in little-endian order
4862          * even on big-endian machines: we do NOT byteswap the block numbers!
4863          */
4864         for (block = 0; block < EXT4_N_BLOCKS; block++)
4865                 ei->i_data[block] = raw_inode->i_block[block];
4866         INIT_LIST_HEAD(&ei->i_orphan);
4867         ext4_fc_init_inode(&ei->vfs_inode);
4868
4869         /*
4870          * Set transaction id's of transactions that have to be committed
4871          * to finish f[data]sync. We set them to currently running transaction
4872          * as we cannot be sure that the inode or some of its metadata isn't
4873          * part of the transaction - the inode could have been reclaimed and
4874          * now it is reread from disk.
4875          */
4876         if (journal) {
4877                 transaction_t *transaction;
4878                 tid_t tid;
4879
4880                 read_lock(&journal->j_state_lock);
4881                 if (journal->j_running_transaction)
4882                         transaction = journal->j_running_transaction;
4883                 else
4884                         transaction = journal->j_committing_transaction;
4885                 if (transaction)
4886                         tid = transaction->t_tid;
4887                 else
4888                         tid = journal->j_commit_sequence;
4889                 read_unlock(&journal->j_state_lock);
4890                 ei->i_sync_tid = tid;
4891                 ei->i_datasync_tid = tid;
4892         }
4893
4894         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4895                 if (ei->i_extra_isize == 0) {
4896                         /* The extra space is currently unused. Use it. */
4897                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4898                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4899                                             EXT4_GOOD_OLD_INODE_SIZE;
4900                 } else {
4901                         ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4902                         if (ret)
4903                                 goto bad_inode;
4904                 }
4905         }
4906
4907         EXT4_INODE_GET_CTIME(inode, raw_inode);
4908         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4909         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4910         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4911
4912         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4913                 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4914
4915                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4916                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4917                                 ivers |=
4918                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4919                 }
4920                 ext4_inode_set_iversion_queried(inode, ivers);
4921         }
4922
4923         ret = 0;
4924         if (ei->i_file_acl &&
4925             !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4926                 ext4_error_inode(inode, function, line, 0,
4927                                  "iget: bad extended attribute block %llu",
4928                                  ei->i_file_acl);
4929                 ret = -EFSCORRUPTED;
4930                 goto bad_inode;
4931         } else if (!ext4_has_inline_data(inode)) {
4932                 /* validate the block references in the inode */
4933                 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4934                         (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4935                         (S_ISLNK(inode->i_mode) &&
4936                         !ext4_inode_is_fast_symlink(inode)))) {
4937                         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4938                                 ret = ext4_ext_check_inode(inode);
4939                         else
4940                                 ret = ext4_ind_check_inode(inode);
4941                 }
4942         }
4943         if (ret)
4944                 goto bad_inode;
4945
4946         if (S_ISREG(inode->i_mode)) {
4947                 inode->i_op = &ext4_file_inode_operations;
4948                 inode->i_fop = &ext4_file_operations;
4949                 ext4_set_aops(inode);
4950         } else if (S_ISDIR(inode->i_mode)) {
4951                 inode->i_op = &ext4_dir_inode_operations;
4952                 inode->i_fop = &ext4_dir_operations;
4953         } else if (S_ISLNK(inode->i_mode)) {
4954                 /* VFS does not allow setting these so must be corruption */
4955                 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4956                         ext4_error_inode(inode, function, line, 0,
4957                                          "iget: immutable or append flags "
4958                                          "not allowed on symlinks");
4959                         ret = -EFSCORRUPTED;
4960                         goto bad_inode;
4961                 }
4962                 if (IS_ENCRYPTED(inode)) {
4963                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4964                 } else if (ext4_inode_is_fast_symlink(inode)) {
4965                         inode->i_link = (char *)ei->i_data;
4966                         inode->i_op = &ext4_fast_symlink_inode_operations;
4967                         nd_terminate_link(ei->i_data, inode->i_size,
4968                                 sizeof(ei->i_data) - 1);
4969                 } else {
4970                         inode->i_op = &ext4_symlink_inode_operations;
4971                 }
4972         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4973               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4974                 inode->i_op = &ext4_special_inode_operations;
4975                 if (raw_inode->i_block[0])
4976                         init_special_inode(inode, inode->i_mode,
4977                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4978                 else
4979                         init_special_inode(inode, inode->i_mode,
4980                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4981         } else if (ino == EXT4_BOOT_LOADER_INO) {
4982                 make_bad_inode(inode);
4983         } else {
4984                 ret = -EFSCORRUPTED;
4985                 ext4_error_inode(inode, function, line, 0,
4986                                  "iget: bogus i_mode (%o)", inode->i_mode);
4987                 goto bad_inode;
4988         }
4989         if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) {
4990                 ext4_error_inode(inode, function, line, 0,
4991                                  "casefold flag without casefold feature");
4992                 ret = -EFSCORRUPTED;
4993                 goto bad_inode;
4994         }
4995         if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4996                 ext4_error_inode(inode, function, line, 0, err_str);
4997                 ret = -EFSCORRUPTED;
4998                 goto bad_inode;
4999         }
5000
5001         brelse(iloc.bh);
5002         unlock_new_inode(inode);
5003         return inode;
5004
5005 bad_inode:
5006         brelse(iloc.bh);
5007         iget_failed(inode);
5008         return ERR_PTR(ret);
5009 }
5010
5011 static void __ext4_update_other_inode_time(struct super_block *sb,
5012                                            unsigned long orig_ino,
5013                                            unsigned long ino,
5014                                            struct ext4_inode *raw_inode)
5015 {
5016         struct inode *inode;
5017
5018         inode = find_inode_by_ino_rcu(sb, ino);
5019         if (!inode)
5020                 return;
5021
5022         if (!inode_is_dirtytime_only(inode))
5023                 return;
5024
5025         spin_lock(&inode->i_lock);
5026         if (inode_is_dirtytime_only(inode)) {
5027                 struct ext4_inode_info  *ei = EXT4_I(inode);
5028
5029                 inode->i_state &= ~I_DIRTY_TIME;
5030                 spin_unlock(&inode->i_lock);
5031
5032                 spin_lock(&ei->i_raw_lock);
5033                 EXT4_INODE_SET_CTIME(inode, raw_inode);
5034                 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5035                 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5036                 ext4_inode_csum_set(inode, raw_inode, ei);
5037                 spin_unlock(&ei->i_raw_lock);
5038                 trace_ext4_other_inode_update_time(inode, orig_ino);
5039                 return;
5040         }
5041         spin_unlock(&inode->i_lock);
5042 }
5043
5044 /*
5045  * Opportunistically update the other time fields for other inodes in
5046  * the same inode table block.
5047  */
5048 static void ext4_update_other_inodes_time(struct super_block *sb,
5049                                           unsigned long orig_ino, char *buf)
5050 {
5051         unsigned long ino;
5052         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5053         int inode_size = EXT4_INODE_SIZE(sb);
5054
5055         /*
5056          * Calculate the first inode in the inode table block.  Inode
5057          * numbers are one-based.  That is, the first inode in a block
5058          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5059          */
5060         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5061         rcu_read_lock();
5062         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5063                 if (ino == orig_ino)
5064                         continue;
5065                 __ext4_update_other_inode_time(sb, orig_ino, ino,
5066                                                (struct ext4_inode *)buf);
5067         }
5068         rcu_read_unlock();
5069 }
5070
5071 /*
5072  * Post the struct inode info into an on-disk inode location in the
5073  * buffer-cache.  This gobbles the caller's reference to the
5074  * buffer_head in the inode location struct.
5075  *
5076  * The caller must have write access to iloc->bh.
5077  */
5078 static int ext4_do_update_inode(handle_t *handle,
5079                                 struct inode *inode,
5080                                 struct ext4_iloc *iloc)
5081 {
5082         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5083         struct ext4_inode_info *ei = EXT4_I(inode);
5084         struct buffer_head *bh = iloc->bh;
5085         struct super_block *sb = inode->i_sb;
5086         int err;
5087         int need_datasync = 0, set_large_file = 0;
5088
5089         spin_lock(&ei->i_raw_lock);
5090
5091         /*
5092          * For fields not tracked in the in-memory inode, initialise them
5093          * to zero for new inodes.
5094          */
5095         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5096                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5097
5098         if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5099                 need_datasync = 1;
5100         if (ei->i_disksize > 0x7fffffffULL) {
5101                 if (!ext4_has_feature_large_file(sb) ||
5102                     EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5103                         set_large_file = 1;
5104         }
5105
5106         err = ext4_fill_raw_inode(inode, raw_inode);
5107         spin_unlock(&ei->i_raw_lock);
5108         if (err) {
5109                 EXT4_ERROR_INODE(inode, "corrupted inode contents");
5110                 goto out_brelse;
5111         }
5112
5113         if (inode->i_sb->s_flags & SB_LAZYTIME)
5114                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5115                                               bh->b_data);
5116
5117         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5118         err = ext4_handle_dirty_metadata(handle, NULL, bh);
5119         if (err)
5120                 goto out_error;
5121         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5122         if (set_large_file) {
5123                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5124                 err = ext4_journal_get_write_access(handle, sb,
5125                                                     EXT4_SB(sb)->s_sbh,
5126                                                     EXT4_JTR_NONE);
5127                 if (err)
5128                         goto out_error;
5129                 lock_buffer(EXT4_SB(sb)->s_sbh);
5130                 ext4_set_feature_large_file(sb);
5131                 ext4_superblock_csum_set(sb);
5132                 unlock_buffer(EXT4_SB(sb)->s_sbh);
5133                 ext4_handle_sync(handle);
5134                 err = ext4_handle_dirty_metadata(handle, NULL,
5135                                                  EXT4_SB(sb)->s_sbh);
5136         }
5137         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5138 out_error:
5139         ext4_std_error(inode->i_sb, err);
5140 out_brelse:
5141         brelse(bh);
5142         return err;
5143 }
5144
5145 /*
5146  * ext4_write_inode()
5147  *
5148  * We are called from a few places:
5149  *
5150  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5151  *   Here, there will be no transaction running. We wait for any running
5152  *   transaction to commit.
5153  *
5154  * - Within flush work (sys_sync(), kupdate and such).
5155  *   We wait on commit, if told to.
5156  *
5157  * - Within iput_final() -> write_inode_now()
5158  *   We wait on commit, if told to.
5159  *
5160  * In all cases it is actually safe for us to return without doing anything,
5161  * because the inode has been copied into a raw inode buffer in
5162  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5163  * writeback.
5164  *
5165  * Note that we are absolutely dependent upon all inode dirtiers doing the
5166  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5167  * which we are interested.
5168  *
5169  * It would be a bug for them to not do this.  The code:
5170  *
5171  *      mark_inode_dirty(inode)
5172  *      stuff();
5173  *      inode->i_size = expr;
5174  *
5175  * is in error because write_inode() could occur while `stuff()' is running,
5176  * and the new i_size will be lost.  Plus the inode will no longer be on the
5177  * superblock's dirty inode list.
5178  */
5179 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5180 {
5181         int err;
5182
5183         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5184                 return 0;
5185
5186         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5187                 return -EIO;
5188
5189         if (EXT4_SB(inode->i_sb)->s_journal) {
5190                 if (ext4_journal_current_handle()) {
5191                         ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5192                         dump_stack();
5193                         return -EIO;
5194                 }
5195
5196                 /*
5197                  * No need to force transaction in WB_SYNC_NONE mode. Also
5198                  * ext4_sync_fs() will force the commit after everything is
5199                  * written.
5200                  */
5201                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5202                         return 0;
5203
5204                 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5205                                                 EXT4_I(inode)->i_sync_tid);
5206         } else {
5207                 struct ext4_iloc iloc;
5208
5209                 err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5210                 if (err)
5211                         return err;
5212                 /*
5213                  * sync(2) will flush the whole buffer cache. No need to do
5214                  * it here separately for each inode.
5215                  */
5216                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5217                         sync_dirty_buffer(iloc.bh);
5218                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5219                         ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5220                                                "IO error syncing inode");
5221                         err = -EIO;
5222                 }
5223                 brelse(iloc.bh);
5224         }
5225         return err;
5226 }
5227
5228 /*
5229  * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5230  * buffers that are attached to a folio straddling i_size and are undergoing
5231  * commit. In that case we have to wait for commit to finish and try again.
5232  */
5233 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5234 {
5235         unsigned offset;
5236         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5237         tid_t commit_tid = 0;
5238         int ret;
5239
5240         offset = inode->i_size & (PAGE_SIZE - 1);
5241         /*
5242          * If the folio is fully truncated, we don't need to wait for any commit
5243          * (and we even should not as __ext4_journalled_invalidate_folio() may
5244          * strip all buffers from the folio but keep the folio dirty which can then
5245          * confuse e.g. concurrent ext4_writepages() seeing dirty folio without
5246          * buffers). Also we don't need to wait for any commit if all buffers in
5247          * the folio remain valid. This is most beneficial for the common case of
5248          * blocksize == PAGESIZE.
5249          */
5250         if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5251                 return;
5252         while (1) {
5253                 struct folio *folio = filemap_lock_folio(inode->i_mapping,
5254                                       inode->i_size >> PAGE_SHIFT);
5255                 if (IS_ERR(folio))
5256                         return;
5257                 ret = __ext4_journalled_invalidate_folio(folio, offset,
5258                                                 folio_size(folio) - offset);
5259                 folio_unlock(folio);
5260                 folio_put(folio);
5261                 if (ret != -EBUSY)
5262                         return;
5263                 commit_tid = 0;
5264                 read_lock(&journal->j_state_lock);
5265                 if (journal->j_committing_transaction)
5266                         commit_tid = journal->j_committing_transaction->t_tid;
5267                 read_unlock(&journal->j_state_lock);
5268                 if (commit_tid)
5269                         jbd2_log_wait_commit(journal, commit_tid);
5270         }
5271 }
5272
5273 /*
5274  * ext4_setattr()
5275  *
5276  * Called from notify_change.
5277  *
5278  * We want to trap VFS attempts to truncate the file as soon as
5279  * possible.  In particular, we want to make sure that when the VFS
5280  * shrinks i_size, we put the inode on the orphan list and modify
5281  * i_disksize immediately, so that during the subsequent flushing of
5282  * dirty pages and freeing of disk blocks, we can guarantee that any
5283  * commit will leave the blocks being flushed in an unused state on
5284  * disk.  (On recovery, the inode will get truncated and the blocks will
5285  * be freed, so we have a strong guarantee that no future commit will
5286  * leave these blocks visible to the user.)
5287  *
5288  * Another thing we have to assure is that if we are in ordered mode
5289  * and inode is still attached to the committing transaction, we must
5290  * we start writeout of all the dirty pages which are being truncated.
5291  * This way we are sure that all the data written in the previous
5292  * transaction are already on disk (truncate waits for pages under
5293  * writeback).
5294  *
5295  * Called with inode->i_rwsem down.
5296  */
5297 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5298                  struct iattr *attr)
5299 {
5300         struct inode *inode = d_inode(dentry);
5301         int error, rc = 0;
5302         int orphan = 0;
5303         const unsigned int ia_valid = attr->ia_valid;
5304         bool inc_ivers = true;
5305
5306         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5307                 return -EIO;
5308
5309         if (unlikely(IS_IMMUTABLE(inode)))
5310                 return -EPERM;
5311
5312         if (unlikely(IS_APPEND(inode) &&
5313                      (ia_valid & (ATTR_MODE | ATTR_UID |
5314                                   ATTR_GID | ATTR_TIMES_SET))))
5315                 return -EPERM;
5316
5317         error = setattr_prepare(idmap, dentry, attr);
5318         if (error)
5319                 return error;
5320
5321         error = fscrypt_prepare_setattr(dentry, attr);
5322         if (error)
5323                 return error;
5324
5325         error = fsverity_prepare_setattr(dentry, attr);
5326         if (error)
5327                 return error;
5328
5329         if (is_quota_modification(idmap, inode, attr)) {
5330                 error = dquot_initialize(inode);
5331                 if (error)
5332                         return error;
5333         }
5334
5335         if (i_uid_needs_update(idmap, attr, inode) ||
5336             i_gid_needs_update(idmap, attr, inode)) {
5337                 handle_t *handle;
5338
5339                 /* (user+group)*(old+new) structure, inode write (sb,
5340                  * inode block, ? - but truncate inode update has it) */
5341                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5342                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5343                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5344                 if (IS_ERR(handle)) {
5345                         error = PTR_ERR(handle);
5346                         goto err_out;
5347                 }
5348
5349                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5350                  * counts xattr inode references.
5351                  */
5352                 down_read(&EXT4_I(inode)->xattr_sem);
5353                 error = dquot_transfer(idmap, inode, attr);
5354                 up_read(&EXT4_I(inode)->xattr_sem);
5355
5356                 if (error) {
5357                         ext4_journal_stop(handle);
5358                         return error;
5359                 }
5360                 /* Update corresponding info in inode so that everything is in
5361                  * one transaction */
5362                 i_uid_update(idmap, attr, inode);
5363                 i_gid_update(idmap, attr, inode);
5364                 error = ext4_mark_inode_dirty(handle, inode);
5365                 ext4_journal_stop(handle);
5366                 if (unlikely(error)) {
5367                         return error;
5368                 }
5369         }
5370
5371         if (attr->ia_valid & ATTR_SIZE) {
5372                 handle_t *handle;
5373                 loff_t oldsize = inode->i_size;
5374                 loff_t old_disksize;
5375                 int shrink = (attr->ia_size < inode->i_size);
5376
5377                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5378                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5379
5380                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5381                                 return -EFBIG;
5382                         }
5383                 }
5384                 if (!S_ISREG(inode->i_mode)) {
5385                         return -EINVAL;
5386                 }
5387
5388                 if (attr->ia_size == inode->i_size)
5389                         inc_ivers = false;
5390
5391                 if (shrink) {
5392                         if (ext4_should_order_data(inode)) {
5393                                 error = ext4_begin_ordered_truncate(inode,
5394                                                             attr->ia_size);
5395                                 if (error)
5396                                         goto err_out;
5397                         }
5398                         /*
5399                          * Blocks are going to be removed from the inode. Wait
5400                          * for dio in flight.
5401                          */
5402                         inode_dio_wait(inode);
5403                 }
5404
5405                 filemap_invalidate_lock(inode->i_mapping);
5406
5407                 rc = ext4_break_layouts(inode);
5408                 if (rc) {
5409                         filemap_invalidate_unlock(inode->i_mapping);
5410                         goto err_out;
5411                 }
5412
5413                 if (attr->ia_size != inode->i_size) {
5414                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5415                         if (IS_ERR(handle)) {
5416                                 error = PTR_ERR(handle);
5417                                 goto out_mmap_sem;
5418                         }
5419                         if (ext4_handle_valid(handle) && shrink) {
5420                                 error = ext4_orphan_add(handle, inode);
5421                                 orphan = 1;
5422                         }
5423                         /*
5424                          * Update c/mtime on truncate up, ext4_truncate() will
5425                          * update c/mtime in shrink case below
5426                          */
5427                         if (!shrink)
5428                                 inode->i_mtime = inode_set_ctime_current(inode);
5429
5430                         if (shrink)
5431                                 ext4_fc_track_range(handle, inode,
5432                                         (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5433                                         inode->i_sb->s_blocksize_bits,
5434                                         EXT_MAX_BLOCKS - 1);
5435                         else
5436                                 ext4_fc_track_range(
5437                                         handle, inode,
5438                                         (oldsize > 0 ? oldsize - 1 : oldsize) >>
5439                                         inode->i_sb->s_blocksize_bits,
5440                                         (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5441                                         inode->i_sb->s_blocksize_bits);
5442
5443                         down_write(&EXT4_I(inode)->i_data_sem);
5444                         old_disksize = EXT4_I(inode)->i_disksize;
5445                         EXT4_I(inode)->i_disksize = attr->ia_size;
5446                         rc = ext4_mark_inode_dirty(handle, inode);
5447                         if (!error)
5448                                 error = rc;
5449                         /*
5450                          * We have to update i_size under i_data_sem together
5451                          * with i_disksize to avoid races with writeback code
5452                          * running ext4_wb_update_i_disksize().
5453                          */
5454                         if (!error)
5455                                 i_size_write(inode, attr->ia_size);
5456                         else
5457                                 EXT4_I(inode)->i_disksize = old_disksize;
5458                         up_write(&EXT4_I(inode)->i_data_sem);
5459                         ext4_journal_stop(handle);
5460                         if (error)
5461                                 goto out_mmap_sem;
5462                         if (!shrink) {
5463                                 pagecache_isize_extended(inode, oldsize,
5464                                                          inode->i_size);
5465                         } else if (ext4_should_journal_data(inode)) {
5466                                 ext4_wait_for_tail_page_commit(inode);
5467                         }
5468                 }
5469
5470                 /*
5471                  * Truncate pagecache after we've waited for commit
5472                  * in data=journal mode to make pages freeable.
5473                  */
5474                 truncate_pagecache(inode, inode->i_size);
5475                 /*
5476                  * Call ext4_truncate() even if i_size didn't change to
5477                  * truncate possible preallocated blocks.
5478                  */
5479                 if (attr->ia_size <= oldsize) {
5480                         rc = ext4_truncate(inode);
5481                         if (rc)
5482                                 error = rc;
5483                 }
5484 out_mmap_sem:
5485                 filemap_invalidate_unlock(inode->i_mapping);
5486         }
5487
5488         if (!error) {
5489                 if (inc_ivers)
5490                         inode_inc_iversion(inode);
5491                 setattr_copy(idmap, inode, attr);
5492                 mark_inode_dirty(inode);
5493         }
5494
5495         /*
5496          * If the call to ext4_truncate failed to get a transaction handle at
5497          * all, we need to clean up the in-core orphan list manually.
5498          */
5499         if (orphan && inode->i_nlink)
5500                 ext4_orphan_del(NULL, inode);
5501
5502         if (!error && (ia_valid & ATTR_MODE))
5503                 rc = posix_acl_chmod(idmap, dentry, inode->i_mode);
5504
5505 err_out:
5506         if  (error)
5507                 ext4_std_error(inode->i_sb, error);
5508         if (!error)
5509                 error = rc;
5510         return error;
5511 }
5512
5513 u32 ext4_dio_alignment(struct inode *inode)
5514 {
5515         if (fsverity_active(inode))
5516                 return 0;
5517         if (ext4_should_journal_data(inode))
5518                 return 0;
5519         if (ext4_has_inline_data(inode))
5520                 return 0;
5521         if (IS_ENCRYPTED(inode)) {
5522                 if (!fscrypt_dio_supported(inode))
5523                         return 0;
5524                 return i_blocksize(inode);
5525         }
5526         return 1; /* use the iomap defaults */
5527 }
5528
5529 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path,
5530                  struct kstat *stat, u32 request_mask, unsigned int query_flags)
5531 {
5532         struct inode *inode = d_inode(path->dentry);
5533         struct ext4_inode *raw_inode;
5534         struct ext4_inode_info *ei = EXT4_I(inode);
5535         unsigned int flags;
5536
5537         if ((request_mask & STATX_BTIME) &&
5538             EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5539                 stat->result_mask |= STATX_BTIME;
5540                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5541                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5542         }
5543
5544         /*
5545          * Return the DIO alignment restrictions if requested.  We only return
5546          * this information when requested, since on encrypted files it might
5547          * take a fair bit of work to get if the file wasn't opened recently.
5548          */
5549         if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5550                 u32 dio_align = ext4_dio_alignment(inode);
5551
5552                 stat->result_mask |= STATX_DIOALIGN;
5553                 if (dio_align == 1) {
5554                         struct block_device *bdev = inode->i_sb->s_bdev;
5555
5556                         /* iomap defaults */
5557                         stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5558                         stat->dio_offset_align = bdev_logical_block_size(bdev);
5559                 } else {
5560                         stat->dio_mem_align = dio_align;
5561                         stat->dio_offset_align = dio_align;
5562                 }
5563         }
5564
5565         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5566         if (flags & EXT4_APPEND_FL)
5567                 stat->attributes |= STATX_ATTR_APPEND;
5568         if (flags & EXT4_COMPR_FL)
5569                 stat->attributes |= STATX_ATTR_COMPRESSED;
5570         if (flags & EXT4_ENCRYPT_FL)
5571                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5572         if (flags & EXT4_IMMUTABLE_FL)
5573                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5574         if (flags & EXT4_NODUMP_FL)
5575                 stat->attributes |= STATX_ATTR_NODUMP;
5576         if (flags & EXT4_VERITY_FL)
5577                 stat->attributes |= STATX_ATTR_VERITY;
5578
5579         stat->attributes_mask |= (STATX_ATTR_APPEND |
5580                                   STATX_ATTR_COMPRESSED |
5581                                   STATX_ATTR_ENCRYPTED |
5582                                   STATX_ATTR_IMMUTABLE |
5583                                   STATX_ATTR_NODUMP |
5584                                   STATX_ATTR_VERITY);
5585
5586         generic_fillattr(idmap, request_mask, inode, stat);
5587         return 0;
5588 }
5589
5590 int ext4_file_getattr(struct mnt_idmap *idmap,
5591                       const struct path *path, struct kstat *stat,
5592                       u32 request_mask, unsigned int query_flags)
5593 {
5594         struct inode *inode = d_inode(path->dentry);
5595         u64 delalloc_blocks;
5596
5597         ext4_getattr(idmap, path, stat, request_mask, query_flags);
5598
5599         /*
5600          * If there is inline data in the inode, the inode will normally not
5601          * have data blocks allocated (it may have an external xattr block).
5602          * Report at least one sector for such files, so tools like tar, rsync,
5603          * others don't incorrectly think the file is completely sparse.
5604          */
5605         if (unlikely(ext4_has_inline_data(inode)))
5606                 stat->blocks += (stat->size + 511) >> 9;
5607
5608         /*
5609          * We can't update i_blocks if the block allocation is delayed
5610          * otherwise in the case of system crash before the real block
5611          * allocation is done, we will have i_blocks inconsistent with
5612          * on-disk file blocks.
5613          * We always keep i_blocks updated together with real
5614          * allocation. But to not confuse with user, stat
5615          * will return the blocks that include the delayed allocation
5616          * blocks for this file.
5617          */
5618         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5619                                    EXT4_I(inode)->i_reserved_data_blocks);
5620         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5621         return 0;
5622 }
5623
5624 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5625                                    int pextents)
5626 {
5627         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5628                 return ext4_ind_trans_blocks(inode, lblocks);
5629         return ext4_ext_index_trans_blocks(inode, pextents);
5630 }
5631
5632 /*
5633  * Account for index blocks, block groups bitmaps and block group
5634  * descriptor blocks if modify datablocks and index blocks
5635  * worse case, the indexs blocks spread over different block groups
5636  *
5637  * If datablocks are discontiguous, they are possible to spread over
5638  * different block groups too. If they are contiguous, with flexbg,
5639  * they could still across block group boundary.
5640  *
5641  * Also account for superblock, inode, quota and xattr blocks
5642  */
5643 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5644                                   int pextents)
5645 {
5646         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5647         int gdpblocks;
5648         int idxblocks;
5649         int ret;
5650
5651         /*
5652          * How many index blocks need to touch to map @lblocks logical blocks
5653          * to @pextents physical extents?
5654          */
5655         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5656
5657         ret = idxblocks;
5658
5659         /*
5660          * Now let's see how many group bitmaps and group descriptors need
5661          * to account
5662          */
5663         groups = idxblocks + pextents;
5664         gdpblocks = groups;
5665         if (groups > ngroups)
5666                 groups = ngroups;
5667         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5668                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5669
5670         /* bitmaps and block group descriptor blocks */
5671         ret += groups + gdpblocks;
5672
5673         /* Blocks for super block, inode, quota and xattr blocks */
5674         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5675
5676         return ret;
5677 }
5678
5679 /*
5680  * Calculate the total number of credits to reserve to fit
5681  * the modification of a single pages into a single transaction,
5682  * which may include multiple chunks of block allocations.
5683  *
5684  * This could be called via ext4_write_begin()
5685  *
5686  * We need to consider the worse case, when
5687  * one new block per extent.
5688  */
5689 int ext4_writepage_trans_blocks(struct inode *inode)
5690 {
5691         int bpp = ext4_journal_blocks_per_page(inode);
5692         int ret;
5693
5694         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5695
5696         /* Account for data blocks for journalled mode */
5697         if (ext4_should_journal_data(inode))
5698                 ret += bpp;
5699         return ret;
5700 }
5701
5702 /*
5703  * Calculate the journal credits for a chunk of data modification.
5704  *
5705  * This is called from DIO, fallocate or whoever calling
5706  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5707  *
5708  * journal buffers for data blocks are not included here, as DIO
5709  * and fallocate do no need to journal data buffers.
5710  */
5711 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5712 {
5713         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5714 }
5715
5716 /*
5717  * The caller must have previously called ext4_reserve_inode_write().
5718  * Give this, we know that the caller already has write access to iloc->bh.
5719  */
5720 int ext4_mark_iloc_dirty(handle_t *handle,
5721                          struct inode *inode, struct ext4_iloc *iloc)
5722 {
5723         int err = 0;
5724
5725         if (unlikely(ext4_forced_shutdown(inode->i_sb))) {
5726                 put_bh(iloc->bh);
5727                 return -EIO;
5728         }
5729         ext4_fc_track_inode(handle, inode);
5730
5731         /* the do_update_inode consumes one bh->b_count */
5732         get_bh(iloc->bh);
5733
5734         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5735         err = ext4_do_update_inode(handle, inode, iloc);
5736         put_bh(iloc->bh);
5737         return err;
5738 }
5739
5740 /*
5741  * On success, We end up with an outstanding reference count against
5742  * iloc->bh.  This _must_ be cleaned up later.
5743  */
5744
5745 int
5746 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5747                          struct ext4_iloc *iloc)
5748 {
5749         int err;
5750
5751         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5752                 return -EIO;
5753
5754         err = ext4_get_inode_loc(inode, iloc);
5755         if (!err) {
5756                 BUFFER_TRACE(iloc->bh, "get_write_access");
5757                 err = ext4_journal_get_write_access(handle, inode->i_sb,
5758                                                     iloc->bh, EXT4_JTR_NONE);
5759                 if (err) {
5760                         brelse(iloc->bh);
5761                         iloc->bh = NULL;
5762                 }
5763         }
5764         ext4_std_error(inode->i_sb, err);
5765         return err;
5766 }
5767
5768 static int __ext4_expand_extra_isize(struct inode *inode,
5769                                      unsigned int new_extra_isize,
5770                                      struct ext4_iloc *iloc,
5771                                      handle_t *handle, int *no_expand)
5772 {
5773         struct ext4_inode *raw_inode;
5774         struct ext4_xattr_ibody_header *header;
5775         unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5776         struct ext4_inode_info *ei = EXT4_I(inode);
5777         int error;
5778
5779         /* this was checked at iget time, but double check for good measure */
5780         if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5781             (ei->i_extra_isize & 3)) {
5782                 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5783                                  ei->i_extra_isize,
5784                                  EXT4_INODE_SIZE(inode->i_sb));
5785                 return -EFSCORRUPTED;
5786         }
5787         if ((new_extra_isize < ei->i_extra_isize) ||
5788             (new_extra_isize < 4) ||
5789             (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5790                 return -EINVAL; /* Should never happen */
5791
5792         raw_inode = ext4_raw_inode(iloc);
5793
5794         header = IHDR(inode, raw_inode);
5795
5796         /* No extended attributes present */
5797         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5798             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5799                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5800                        EXT4_I(inode)->i_extra_isize, 0,
5801                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5802                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5803                 return 0;
5804         }
5805
5806         /*
5807          * We may need to allocate external xattr block so we need quotas
5808          * initialized. Here we can be called with various locks held so we
5809          * cannot affort to initialize quotas ourselves. So just bail.
5810          */
5811         if (dquot_initialize_needed(inode))
5812                 return -EAGAIN;
5813
5814         /* try to expand with EAs present */
5815         error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5816                                            raw_inode, handle);
5817         if (error) {
5818                 /*
5819                  * Inode size expansion failed; don't try again
5820                  */
5821                 *no_expand = 1;
5822         }
5823
5824         return error;
5825 }
5826
5827 /*
5828  * Expand an inode by new_extra_isize bytes.
5829  * Returns 0 on success or negative error number on failure.
5830  */
5831 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5832                                           unsigned int new_extra_isize,
5833                                           struct ext4_iloc iloc,
5834                                           handle_t *handle)
5835 {
5836         int no_expand;
5837         int error;
5838
5839         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5840                 return -EOVERFLOW;
5841
5842         /*
5843          * In nojournal mode, we can immediately attempt to expand
5844          * the inode.  When journaled, we first need to obtain extra
5845          * buffer credits since we may write into the EA block
5846          * with this same handle. If journal_extend fails, then it will
5847          * only result in a minor loss of functionality for that inode.
5848          * If this is felt to be critical, then e2fsck should be run to
5849          * force a large enough s_min_extra_isize.
5850          */
5851         if (ext4_journal_extend(handle,
5852                                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5853                 return -ENOSPC;
5854
5855         if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5856                 return -EBUSY;
5857
5858         error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5859                                           handle, &no_expand);
5860         ext4_write_unlock_xattr(inode, &no_expand);
5861
5862         return error;
5863 }
5864
5865 int ext4_expand_extra_isize(struct inode *inode,
5866                             unsigned int new_extra_isize,
5867                             struct ext4_iloc *iloc)
5868 {
5869         handle_t *handle;
5870         int no_expand;
5871         int error, rc;
5872
5873         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5874                 brelse(iloc->bh);
5875                 return -EOVERFLOW;
5876         }
5877
5878         handle = ext4_journal_start(inode, EXT4_HT_INODE,
5879                                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5880         if (IS_ERR(handle)) {
5881                 error = PTR_ERR(handle);
5882                 brelse(iloc->bh);
5883                 return error;
5884         }
5885
5886         ext4_write_lock_xattr(inode, &no_expand);
5887
5888         BUFFER_TRACE(iloc->bh, "get_write_access");
5889         error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5890                                               EXT4_JTR_NONE);
5891         if (error) {
5892                 brelse(iloc->bh);
5893                 goto out_unlock;
5894         }
5895
5896         error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5897                                           handle, &no_expand);
5898
5899         rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5900         if (!error)
5901                 error = rc;
5902
5903 out_unlock:
5904         ext4_write_unlock_xattr(inode, &no_expand);
5905         ext4_journal_stop(handle);
5906         return error;
5907 }
5908
5909 /*
5910  * What we do here is to mark the in-core inode as clean with respect to inode
5911  * dirtiness (it may still be data-dirty).
5912  * This means that the in-core inode may be reaped by prune_icache
5913  * without having to perform any I/O.  This is a very good thing,
5914  * because *any* task may call prune_icache - even ones which
5915  * have a transaction open against a different journal.
5916  *
5917  * Is this cheating?  Not really.  Sure, we haven't written the
5918  * inode out, but prune_icache isn't a user-visible syncing function.
5919  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5920  * we start and wait on commits.
5921  */
5922 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5923                                 const char *func, unsigned int line)
5924 {
5925         struct ext4_iloc iloc;
5926         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5927         int err;
5928
5929         might_sleep();
5930         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5931         err = ext4_reserve_inode_write(handle, inode, &iloc);
5932         if (err)
5933                 goto out;
5934
5935         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5936                 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5937                                                iloc, handle);
5938
5939         err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5940 out:
5941         if (unlikely(err))
5942                 ext4_error_inode_err(inode, func, line, 0, err,
5943                                         "mark_inode_dirty error");
5944         return err;
5945 }
5946
5947 /*
5948  * ext4_dirty_inode() is called from __mark_inode_dirty()
5949  *
5950  * We're really interested in the case where a file is being extended.
5951  * i_size has been changed by generic_commit_write() and we thus need
5952  * to include the updated inode in the current transaction.
5953  *
5954  * Also, dquot_alloc_block() will always dirty the inode when blocks
5955  * are allocated to the file.
5956  *
5957  * If the inode is marked synchronous, we don't honour that here - doing
5958  * so would cause a commit on atime updates, which we don't bother doing.
5959  * We handle synchronous inodes at the highest possible level.
5960  */
5961 void ext4_dirty_inode(struct inode *inode, int flags)
5962 {
5963         handle_t *handle;
5964
5965         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5966         if (IS_ERR(handle))
5967                 return;
5968         ext4_mark_inode_dirty(handle, inode);
5969         ext4_journal_stop(handle);
5970 }
5971
5972 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5973 {
5974         journal_t *journal;
5975         handle_t *handle;
5976         int err;
5977         int alloc_ctx;
5978
5979         /*
5980          * We have to be very careful here: changing a data block's
5981          * journaling status dynamically is dangerous.  If we write a
5982          * data block to the journal, change the status and then delete
5983          * that block, we risk forgetting to revoke the old log record
5984          * from the journal and so a subsequent replay can corrupt data.
5985          * So, first we make sure that the journal is empty and that
5986          * nobody is changing anything.
5987          */
5988
5989         journal = EXT4_JOURNAL(inode);
5990         if (!journal)
5991                 return 0;
5992         if (is_journal_aborted(journal))
5993                 return -EROFS;
5994
5995         /* Wait for all existing dio workers */
5996         inode_dio_wait(inode);
5997
5998         /*
5999          * Before flushing the journal and switching inode's aops, we have
6000          * to flush all dirty data the inode has. There can be outstanding
6001          * delayed allocations, there can be unwritten extents created by
6002          * fallocate or buffered writes in dioread_nolock mode covered by
6003          * dirty data which can be converted only after flushing the dirty
6004          * data (and journalled aops don't know how to handle these cases).
6005          */
6006         if (val) {
6007                 filemap_invalidate_lock(inode->i_mapping);
6008                 err = filemap_write_and_wait(inode->i_mapping);
6009                 if (err < 0) {
6010                         filemap_invalidate_unlock(inode->i_mapping);
6011                         return err;
6012                 }
6013         }
6014
6015         alloc_ctx = ext4_writepages_down_write(inode->i_sb);
6016         jbd2_journal_lock_updates(journal);
6017
6018         /*
6019          * OK, there are no updates running now, and all cached data is
6020          * synced to disk.  We are now in a completely consistent state
6021          * which doesn't have anything in the journal, and we know that
6022          * no filesystem updates are running, so it is safe to modify
6023          * the inode's in-core data-journaling state flag now.
6024          */
6025
6026         if (val)
6027                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6028         else {
6029                 err = jbd2_journal_flush(journal, 0);
6030                 if (err < 0) {
6031                         jbd2_journal_unlock_updates(journal);
6032                         ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6033                         return err;
6034                 }
6035                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6036         }
6037         ext4_set_aops(inode);
6038
6039         jbd2_journal_unlock_updates(journal);
6040         ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6041
6042         if (val)
6043                 filemap_invalidate_unlock(inode->i_mapping);
6044
6045         /* Finally we can mark the inode as dirty. */
6046
6047         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6048         if (IS_ERR(handle))
6049                 return PTR_ERR(handle);
6050
6051         ext4_fc_mark_ineligible(inode->i_sb,
6052                 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6053         err = ext4_mark_inode_dirty(handle, inode);
6054         ext4_handle_sync(handle);
6055         ext4_journal_stop(handle);
6056         ext4_std_error(inode->i_sb, err);
6057
6058         return err;
6059 }
6060
6061 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6062                             struct buffer_head *bh)
6063 {
6064         return !buffer_mapped(bh);
6065 }
6066
6067 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6068 {
6069         struct vm_area_struct *vma = vmf->vma;
6070         struct folio *folio = page_folio(vmf->page);
6071         loff_t size;
6072         unsigned long len;
6073         int err;
6074         vm_fault_t ret;
6075         struct file *file = vma->vm_file;
6076         struct inode *inode = file_inode(file);
6077         struct address_space *mapping = inode->i_mapping;
6078         handle_t *handle;
6079         get_block_t *get_block;
6080         int retries = 0;
6081
6082         if (unlikely(IS_IMMUTABLE(inode)))
6083                 return VM_FAULT_SIGBUS;
6084
6085         sb_start_pagefault(inode->i_sb);
6086         file_update_time(vma->vm_file);
6087
6088         filemap_invalidate_lock_shared(mapping);
6089
6090         err = ext4_convert_inline_data(inode);
6091         if (err)
6092                 goto out_ret;
6093
6094         /*
6095          * On data journalling we skip straight to the transaction handle:
6096          * there's no delalloc; page truncated will be checked later; the
6097          * early return w/ all buffers mapped (calculates size/len) can't
6098          * be used; and there's no dioread_nolock, so only ext4_get_block.
6099          */
6100         if (ext4_should_journal_data(inode))
6101                 goto retry_alloc;
6102
6103         /* Delalloc case is easy... */
6104         if (test_opt(inode->i_sb, DELALLOC) &&
6105             !ext4_nonda_switch(inode->i_sb)) {
6106                 do {
6107                         err = block_page_mkwrite(vma, vmf,
6108                                                    ext4_da_get_block_prep);
6109                 } while (err == -ENOSPC &&
6110                        ext4_should_retry_alloc(inode->i_sb, &retries));
6111                 goto out_ret;
6112         }
6113
6114         folio_lock(folio);
6115         size = i_size_read(inode);
6116         /* Page got truncated from under us? */
6117         if (folio->mapping != mapping || folio_pos(folio) > size) {
6118                 folio_unlock(folio);
6119                 ret = VM_FAULT_NOPAGE;
6120                 goto out;
6121         }
6122
6123         len = folio_size(folio);
6124         if (folio_pos(folio) + len > size)
6125                 len = size - folio_pos(folio);
6126         /*
6127          * Return if we have all the buffers mapped. This avoids the need to do
6128          * journal_start/journal_stop which can block and take a long time
6129          *
6130          * This cannot be done for data journalling, as we have to add the
6131          * inode to the transaction's list to writeprotect pages on commit.
6132          */
6133         if (folio_buffers(folio)) {
6134                 if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio),
6135                                             0, len, NULL,
6136                                             ext4_bh_unmapped)) {
6137                         /* Wait so that we don't change page under IO */
6138                         folio_wait_stable(folio);
6139                         ret = VM_FAULT_LOCKED;
6140                         goto out;
6141                 }
6142         }
6143         folio_unlock(folio);
6144         /* OK, we need to fill the hole... */
6145         if (ext4_should_dioread_nolock(inode))
6146                 get_block = ext4_get_block_unwritten;
6147         else
6148                 get_block = ext4_get_block;
6149 retry_alloc:
6150         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6151                                     ext4_writepage_trans_blocks(inode));
6152         if (IS_ERR(handle)) {
6153                 ret = VM_FAULT_SIGBUS;
6154                 goto out;
6155         }
6156         /*
6157          * Data journalling can't use block_page_mkwrite() because it
6158          * will set_buffer_dirty() before do_journal_get_write_access()
6159          * thus might hit warning messages for dirty metadata buffers.
6160          */
6161         if (!ext4_should_journal_data(inode)) {
6162                 err = block_page_mkwrite(vma, vmf, get_block);
6163         } else {
6164                 folio_lock(folio);
6165                 size = i_size_read(inode);
6166                 /* Page got truncated from under us? */
6167                 if (folio->mapping != mapping || folio_pos(folio) > size) {
6168                         ret = VM_FAULT_NOPAGE;
6169                         goto out_error;
6170                 }
6171
6172                 len = folio_size(folio);
6173                 if (folio_pos(folio) + len > size)
6174                         len = size - folio_pos(folio);
6175
6176                 err = __block_write_begin(&folio->page, 0, len, ext4_get_block);
6177                 if (!err) {
6178                         ret = VM_FAULT_SIGBUS;
6179                         if (ext4_journal_folio_buffers(handle, folio, len))
6180                                 goto out_error;
6181                 } else {
6182                         folio_unlock(folio);
6183                 }
6184         }
6185         ext4_journal_stop(handle);
6186         if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6187                 goto retry_alloc;
6188 out_ret:
6189         ret = vmf_fs_error(err);
6190 out:
6191         filemap_invalidate_unlock_shared(mapping);
6192         sb_end_pagefault(inode->i_sb);
6193         return ret;
6194 out_error:
6195         folio_unlock(folio);
6196         ext4_journal_stop(handle);
6197         goto out;
6198 }