ab2247d642c66528ef77270cb55756375696958b
[platform/adaptation/renesas_rcar/renesas_kernel.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41 #include <linux/kernel.h>
42 #include <linux/slab.h>
43
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "ext4_extents.h"
48
49 #include <trace/events/ext4.h>
50
51 #define MPAGE_DA_EXTENT_TAIL 0x01
52
53 static inline int ext4_begin_ordered_truncate(struct inode *inode,
54                                               loff_t new_size)
55 {
56         return jbd2_journal_begin_ordered_truncate(
57                                         EXT4_SB(inode->i_sb)->s_journal,
58                                         &EXT4_I(inode)->jinode,
59                                         new_size);
60 }
61
62 static void ext4_invalidatepage(struct page *page, unsigned long offset);
63
64 /*
65  * Test whether an inode is a fast symlink.
66  */
67 static int ext4_inode_is_fast_symlink(struct inode *inode)
68 {
69         int ea_blocks = EXT4_I(inode)->i_file_acl ?
70                 (inode->i_sb->s_blocksize >> 9) : 0;
71
72         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
73 }
74
75 /*
76  * Work out how many blocks we need to proceed with the next chunk of a
77  * truncate transaction.
78  */
79 static unsigned long blocks_for_truncate(struct inode *inode)
80 {
81         ext4_lblk_t needed;
82
83         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
84
85         /* Give ourselves just enough room to cope with inodes in which
86          * i_blocks is corrupt: we've seen disk corruptions in the past
87          * which resulted in random data in an inode which looked enough
88          * like a regular file for ext4 to try to delete it.  Things
89          * will go a bit crazy if that happens, but at least we should
90          * try not to panic the whole kernel. */
91         if (needed < 2)
92                 needed = 2;
93
94         /* But we need to bound the transaction so we don't overflow the
95          * journal. */
96         if (needed > EXT4_MAX_TRANS_DATA)
97                 needed = EXT4_MAX_TRANS_DATA;
98
99         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
100 }
101
102 /*
103  * Truncate transactions can be complex and absolutely huge.  So we need to
104  * be able to restart the transaction at a conventient checkpoint to make
105  * sure we don't overflow the journal.
106  *
107  * start_transaction gets us a new handle for a truncate transaction,
108  * and extend_transaction tries to extend the existing one a bit.  If
109  * extend fails, we need to propagate the failure up and restart the
110  * transaction in the top-level truncate loop. --sct
111  */
112 static handle_t *start_transaction(struct inode *inode)
113 {
114         handle_t *result;
115
116         result = ext4_journal_start(inode, blocks_for_truncate(inode));
117         if (!IS_ERR(result))
118                 return result;
119
120         ext4_std_error(inode->i_sb, PTR_ERR(result));
121         return result;
122 }
123
124 /*
125  * Try to extend this transaction for the purposes of truncation.
126  *
127  * Returns 0 if we managed to create more room.  If we can't create more
128  * room, and the transaction must be restarted we return 1.
129  */
130 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
131 {
132         if (!ext4_handle_valid(handle))
133                 return 0;
134         if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
135                 return 0;
136         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
137                 return 0;
138         return 1;
139 }
140
141 /*
142  * Restart the transaction associated with *handle.  This does a commit,
143  * so before we call here everything must be consistently dirtied against
144  * this transaction.
145  */
146 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
147                                  int nblocks)
148 {
149         int ret;
150
151         /*
152          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
153          * moment, get_block can be called only for blocks inside i_size since
154          * page cache has been already dropped and writes are blocked by
155          * i_mutex. So we can safely drop the i_data_sem here.
156          */
157         BUG_ON(EXT4_JOURNAL(inode) == NULL);
158         jbd_debug(2, "restarting handle %p\n", handle);
159         up_write(&EXT4_I(inode)->i_data_sem);
160         ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
161         down_write(&EXT4_I(inode)->i_data_sem);
162         ext4_discard_preallocations(inode);
163
164         return ret;
165 }
166
167 /*
168  * Called at the last iput() if i_nlink is zero.
169  */
170 void ext4_delete_inode(struct inode *inode)
171 {
172         handle_t *handle;
173         int err;
174
175         if (!is_bad_inode(inode))
176                 dquot_initialize(inode);
177
178         if (ext4_should_order_data(inode))
179                 ext4_begin_ordered_truncate(inode, 0);
180         truncate_inode_pages(&inode->i_data, 0);
181
182         if (is_bad_inode(inode))
183                 goto no_delete;
184
185         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
186         if (IS_ERR(handle)) {
187                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
188                 /*
189                  * If we're going to skip the normal cleanup, we still need to
190                  * make sure that the in-core orphan linked list is properly
191                  * cleaned up.
192                  */
193                 ext4_orphan_del(NULL, inode);
194                 goto no_delete;
195         }
196
197         if (IS_SYNC(inode))
198                 ext4_handle_sync(handle);
199         inode->i_size = 0;
200         err = ext4_mark_inode_dirty(handle, inode);
201         if (err) {
202                 ext4_warning(inode->i_sb,
203                              "couldn't mark inode dirty (err %d)", err);
204                 goto stop_handle;
205         }
206         if (inode->i_blocks)
207                 ext4_truncate(inode);
208
209         /*
210          * ext4_ext_truncate() doesn't reserve any slop when it
211          * restarts journal transactions; therefore there may not be
212          * enough credits left in the handle to remove the inode from
213          * the orphan list and set the dtime field.
214          */
215         if (!ext4_handle_has_enough_credits(handle, 3)) {
216                 err = ext4_journal_extend(handle, 3);
217                 if (err > 0)
218                         err = ext4_journal_restart(handle, 3);
219                 if (err != 0) {
220                         ext4_warning(inode->i_sb,
221                                      "couldn't extend journal (err %d)", err);
222                 stop_handle:
223                         ext4_journal_stop(handle);
224                         ext4_orphan_del(NULL, inode);
225                         goto no_delete;
226                 }
227         }
228
229         /*
230          * Kill off the orphan record which ext4_truncate created.
231          * AKPM: I think this can be inside the above `if'.
232          * Note that ext4_orphan_del() has to be able to cope with the
233          * deletion of a non-existent orphan - this is because we don't
234          * know if ext4_truncate() actually created an orphan record.
235          * (Well, we could do this if we need to, but heck - it works)
236          */
237         ext4_orphan_del(handle, inode);
238         EXT4_I(inode)->i_dtime  = get_seconds();
239
240         /*
241          * One subtle ordering requirement: if anything has gone wrong
242          * (transaction abort, IO errors, whatever), then we can still
243          * do these next steps (the fs will already have been marked as
244          * having errors), but we can't free the inode if the mark_dirty
245          * fails.
246          */
247         if (ext4_mark_inode_dirty(handle, inode))
248                 /* If that failed, just do the required in-core inode clear. */
249                 clear_inode(inode);
250         else
251                 ext4_free_inode(handle, inode);
252         ext4_journal_stop(handle);
253         return;
254 no_delete:
255         clear_inode(inode);     /* We must guarantee clearing of inode... */
256 }
257
258 typedef struct {
259         __le32  *p;
260         __le32  key;
261         struct buffer_head *bh;
262 } Indirect;
263
264 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
265 {
266         p->key = *(p->p = v);
267         p->bh = bh;
268 }
269
270 /**
271  *      ext4_block_to_path - parse the block number into array of offsets
272  *      @inode: inode in question (we are only interested in its superblock)
273  *      @i_block: block number to be parsed
274  *      @offsets: array to store the offsets in
275  *      @boundary: set this non-zero if the referred-to block is likely to be
276  *             followed (on disk) by an indirect block.
277  *
278  *      To store the locations of file's data ext4 uses a data structure common
279  *      for UNIX filesystems - tree of pointers anchored in the inode, with
280  *      data blocks at leaves and indirect blocks in intermediate nodes.
281  *      This function translates the block number into path in that tree -
282  *      return value is the path length and @offsets[n] is the offset of
283  *      pointer to (n+1)th node in the nth one. If @block is out of range
284  *      (negative or too large) warning is printed and zero returned.
285  *
286  *      Note: function doesn't find node addresses, so no IO is needed. All
287  *      we need to know is the capacity of indirect blocks (taken from the
288  *      inode->i_sb).
289  */
290
291 /*
292  * Portability note: the last comparison (check that we fit into triple
293  * indirect block) is spelled differently, because otherwise on an
294  * architecture with 32-bit longs and 8Kb pages we might get into trouble
295  * if our filesystem had 8Kb blocks. We might use long long, but that would
296  * kill us on x86. Oh, well, at least the sign propagation does not matter -
297  * i_block would have to be negative in the very beginning, so we would not
298  * get there at all.
299  */
300
301 static int ext4_block_to_path(struct inode *inode,
302                               ext4_lblk_t i_block,
303                               ext4_lblk_t offsets[4], int *boundary)
304 {
305         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
306         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
307         const long direct_blocks = EXT4_NDIR_BLOCKS,
308                 indirect_blocks = ptrs,
309                 double_blocks = (1 << (ptrs_bits * 2));
310         int n = 0;
311         int final = 0;
312
313         if (i_block < direct_blocks) {
314                 offsets[n++] = i_block;
315                 final = direct_blocks;
316         } else if ((i_block -= direct_blocks) < indirect_blocks) {
317                 offsets[n++] = EXT4_IND_BLOCK;
318                 offsets[n++] = i_block;
319                 final = ptrs;
320         } else if ((i_block -= indirect_blocks) < double_blocks) {
321                 offsets[n++] = EXT4_DIND_BLOCK;
322                 offsets[n++] = i_block >> ptrs_bits;
323                 offsets[n++] = i_block & (ptrs - 1);
324                 final = ptrs;
325         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
326                 offsets[n++] = EXT4_TIND_BLOCK;
327                 offsets[n++] = i_block >> (ptrs_bits * 2);
328                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
329                 offsets[n++] = i_block & (ptrs - 1);
330                 final = ptrs;
331         } else {
332                 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
333                              i_block + direct_blocks +
334                              indirect_blocks + double_blocks, inode->i_ino);
335         }
336         if (boundary)
337                 *boundary = final - 1 - (i_block & (ptrs - 1));
338         return n;
339 }
340
341 static int __ext4_check_blockref(const char *function, unsigned int line,
342                                  struct inode *inode,
343                                  __le32 *p, unsigned int max)
344 {
345         struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
346         __le32 *bref = p;
347         unsigned int blk;
348
349         while (bref < p+max) {
350                 blk = le32_to_cpu(*bref++);
351                 if (blk &&
352                     unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
353                                                     blk, 1))) {
354                         es->s_last_error_block = cpu_to_le64(blk);
355                         ext4_error_inode(inode, function, line, blk,
356                                          "invalid block");
357                         return -EIO;
358                 }
359         }
360         return 0;
361 }
362
363
364 #define ext4_check_indirect_blockref(inode, bh)                         \
365         __ext4_check_blockref(__func__, __LINE__, inode,                \
366                               (__le32 *)(bh)->b_data,                   \
367                               EXT4_ADDR_PER_BLOCK((inode)->i_sb))
368
369 #define ext4_check_inode_blockref(inode)                                \
370         __ext4_check_blockref(__func__, __LINE__, inode,                \
371                               EXT4_I(inode)->i_data,                    \
372                               EXT4_NDIR_BLOCKS)
373
374 /**
375  *      ext4_get_branch - read the chain of indirect blocks leading to data
376  *      @inode: inode in question
377  *      @depth: depth of the chain (1 - direct pointer, etc.)
378  *      @offsets: offsets of pointers in inode/indirect blocks
379  *      @chain: place to store the result
380  *      @err: here we store the error value
381  *
382  *      Function fills the array of triples <key, p, bh> and returns %NULL
383  *      if everything went OK or the pointer to the last filled triple
384  *      (incomplete one) otherwise. Upon the return chain[i].key contains
385  *      the number of (i+1)-th block in the chain (as it is stored in memory,
386  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
387  *      number (it points into struct inode for i==0 and into the bh->b_data
388  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
389  *      block for i>0 and NULL for i==0. In other words, it holds the block
390  *      numbers of the chain, addresses they were taken from (and where we can
391  *      verify that chain did not change) and buffer_heads hosting these
392  *      numbers.
393  *
394  *      Function stops when it stumbles upon zero pointer (absent block)
395  *              (pointer to last triple returned, *@err == 0)
396  *      or when it gets an IO error reading an indirect block
397  *              (ditto, *@err == -EIO)
398  *      or when it reads all @depth-1 indirect blocks successfully and finds
399  *      the whole chain, all way to the data (returns %NULL, *err == 0).
400  *
401  *      Need to be called with
402  *      down_read(&EXT4_I(inode)->i_data_sem)
403  */
404 static Indirect *ext4_get_branch(struct inode *inode, int depth,
405                                  ext4_lblk_t  *offsets,
406                                  Indirect chain[4], int *err)
407 {
408         struct super_block *sb = inode->i_sb;
409         Indirect *p = chain;
410         struct buffer_head *bh;
411
412         *err = 0;
413         /* i_data is not going away, no lock needed */
414         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
415         if (!p->key)
416                 goto no_block;
417         while (--depth) {
418                 bh = sb_getblk(sb, le32_to_cpu(p->key));
419                 if (unlikely(!bh))
420                         goto failure;
421
422                 if (!bh_uptodate_or_lock(bh)) {
423                         if (bh_submit_read(bh) < 0) {
424                                 put_bh(bh);
425                                 goto failure;
426                         }
427                         /* validate block references */
428                         if (ext4_check_indirect_blockref(inode, bh)) {
429                                 put_bh(bh);
430                                 goto failure;
431                         }
432                 }
433
434                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
435                 /* Reader: end */
436                 if (!p->key)
437                         goto no_block;
438         }
439         return NULL;
440
441 failure:
442         *err = -EIO;
443 no_block:
444         return p;
445 }
446
447 /**
448  *      ext4_find_near - find a place for allocation with sufficient locality
449  *      @inode: owner
450  *      @ind: descriptor of indirect block.
451  *
452  *      This function returns the preferred place for block allocation.
453  *      It is used when heuristic for sequential allocation fails.
454  *      Rules are:
455  *        + if there is a block to the left of our position - allocate near it.
456  *        + if pointer will live in indirect block - allocate near that block.
457  *        + if pointer will live in inode - allocate in the same
458  *          cylinder group.
459  *
460  * In the latter case we colour the starting block by the callers PID to
461  * prevent it from clashing with concurrent allocations for a different inode
462  * in the same block group.   The PID is used here so that functionally related
463  * files will be close-by on-disk.
464  *
465  *      Caller must make sure that @ind is valid and will stay that way.
466  */
467 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
468 {
469         struct ext4_inode_info *ei = EXT4_I(inode);
470         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
471         __le32 *p;
472         ext4_fsblk_t bg_start;
473         ext4_fsblk_t last_block;
474         ext4_grpblk_t colour;
475         ext4_group_t block_group;
476         int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
477
478         /* Try to find previous block */
479         for (p = ind->p - 1; p >= start; p--) {
480                 if (*p)
481                         return le32_to_cpu(*p);
482         }
483
484         /* No such thing, so let's try location of indirect block */
485         if (ind->bh)
486                 return ind->bh->b_blocknr;
487
488         /*
489          * It is going to be referred to from the inode itself? OK, just put it
490          * into the same cylinder group then.
491          */
492         block_group = ei->i_block_group;
493         if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
494                 block_group &= ~(flex_size-1);
495                 if (S_ISREG(inode->i_mode))
496                         block_group++;
497         }
498         bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
499         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
500
501         /*
502          * If we are doing delayed allocation, we don't need take
503          * colour into account.
504          */
505         if (test_opt(inode->i_sb, DELALLOC))
506                 return bg_start;
507
508         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
509                 colour = (current->pid % 16) *
510                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
511         else
512                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
513         return bg_start + colour;
514 }
515
516 /**
517  *      ext4_find_goal - find a preferred place for allocation.
518  *      @inode: owner
519  *      @block:  block we want
520  *      @partial: pointer to the last triple within a chain
521  *
522  *      Normally this function find the preferred place for block allocation,
523  *      returns it.
524  *      Because this is only used for non-extent files, we limit the block nr
525  *      to 32 bits.
526  */
527 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
528                                    Indirect *partial)
529 {
530         ext4_fsblk_t goal;
531
532         /*
533          * XXX need to get goal block from mballoc's data structures
534          */
535
536         goal = ext4_find_near(inode, partial);
537         goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
538         return goal;
539 }
540
541 /**
542  *      ext4_blks_to_allocate: Look up the block map and count the number
543  *      of direct blocks need to be allocated for the given branch.
544  *
545  *      @branch: chain of indirect blocks
546  *      @k: number of blocks need for indirect blocks
547  *      @blks: number of data blocks to be mapped.
548  *      @blocks_to_boundary:  the offset in the indirect block
549  *
550  *      return the total number of blocks to be allocate, including the
551  *      direct and indirect blocks.
552  */
553 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
554                                  int blocks_to_boundary)
555 {
556         unsigned int count = 0;
557
558         /*
559          * Simple case, [t,d]Indirect block(s) has not allocated yet
560          * then it's clear blocks on that path have not allocated
561          */
562         if (k > 0) {
563                 /* right now we don't handle cross boundary allocation */
564                 if (blks < blocks_to_boundary + 1)
565                         count += blks;
566                 else
567                         count += blocks_to_boundary + 1;
568                 return count;
569         }
570
571         count++;
572         while (count < blks && count <= blocks_to_boundary &&
573                 le32_to_cpu(*(branch[0].p + count)) == 0) {
574                 count++;
575         }
576         return count;
577 }
578
579 /**
580  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
581  *      @indirect_blks: the number of blocks need to allocate for indirect
582  *                      blocks
583  *
584  *      @new_blocks: on return it will store the new block numbers for
585  *      the indirect blocks(if needed) and the first direct block,
586  *      @blks:  on return it will store the total number of allocated
587  *              direct blocks
588  */
589 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
590                              ext4_lblk_t iblock, ext4_fsblk_t goal,
591                              int indirect_blks, int blks,
592                              ext4_fsblk_t new_blocks[4], int *err)
593 {
594         struct ext4_allocation_request ar;
595         int target, i;
596         unsigned long count = 0, blk_allocated = 0;
597         int index = 0;
598         ext4_fsblk_t current_block = 0;
599         int ret = 0;
600
601         /*
602          * Here we try to allocate the requested multiple blocks at once,
603          * on a best-effort basis.
604          * To build a branch, we should allocate blocks for
605          * the indirect blocks(if not allocated yet), and at least
606          * the first direct block of this branch.  That's the
607          * minimum number of blocks need to allocate(required)
608          */
609         /* first we try to allocate the indirect blocks */
610         target = indirect_blks;
611         while (target > 0) {
612                 count = target;
613                 /* allocating blocks for indirect blocks and direct blocks */
614                 current_block = ext4_new_meta_blocks(handle, inode,
615                                                         goal, &count, err);
616                 if (*err)
617                         goto failed_out;
618
619                 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
620                         EXT4_ERROR_INODE(inode,
621                                          "current_block %llu + count %lu > %d!",
622                                          current_block, count,
623                                          EXT4_MAX_BLOCK_FILE_PHYS);
624                         *err = -EIO;
625                         goto failed_out;
626                 }
627
628                 target -= count;
629                 /* allocate blocks for indirect blocks */
630                 while (index < indirect_blks && count) {
631                         new_blocks[index++] = current_block++;
632                         count--;
633                 }
634                 if (count > 0) {
635                         /*
636                          * save the new block number
637                          * for the first direct block
638                          */
639                         new_blocks[index] = current_block;
640                         printk(KERN_INFO "%s returned more blocks than "
641                                                 "requested\n", __func__);
642                         WARN_ON(1);
643                         break;
644                 }
645         }
646
647         target = blks - count ;
648         blk_allocated = count;
649         if (!target)
650                 goto allocated;
651         /* Now allocate data blocks */
652         memset(&ar, 0, sizeof(ar));
653         ar.inode = inode;
654         ar.goal = goal;
655         ar.len = target;
656         ar.logical = iblock;
657         if (S_ISREG(inode->i_mode))
658                 /* enable in-core preallocation only for regular files */
659                 ar.flags = EXT4_MB_HINT_DATA;
660
661         current_block = ext4_mb_new_blocks(handle, &ar, err);
662         if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
663                 EXT4_ERROR_INODE(inode,
664                                  "current_block %llu + ar.len %d > %d!",
665                                  current_block, ar.len,
666                                  EXT4_MAX_BLOCK_FILE_PHYS);
667                 *err = -EIO;
668                 goto failed_out;
669         }
670
671         if (*err && (target == blks)) {
672                 /*
673                  * if the allocation failed and we didn't allocate
674                  * any blocks before
675                  */
676                 goto failed_out;
677         }
678         if (!*err) {
679                 if (target == blks) {
680                         /*
681                          * save the new block number
682                          * for the first direct block
683                          */
684                         new_blocks[index] = current_block;
685                 }
686                 blk_allocated += ar.len;
687         }
688 allocated:
689         /* total number of blocks allocated for direct blocks */
690         ret = blk_allocated;
691         *err = 0;
692         return ret;
693 failed_out:
694         for (i = 0; i < index; i++)
695                 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
696         return ret;
697 }
698
699 /**
700  *      ext4_alloc_branch - allocate and set up a chain of blocks.
701  *      @inode: owner
702  *      @indirect_blks: number of allocated indirect blocks
703  *      @blks: number of allocated direct blocks
704  *      @offsets: offsets (in the blocks) to store the pointers to next.
705  *      @branch: place to store the chain in.
706  *
707  *      This function allocates blocks, zeroes out all but the last one,
708  *      links them into chain and (if we are synchronous) writes them to disk.
709  *      In other words, it prepares a branch that can be spliced onto the
710  *      inode. It stores the information about that chain in the branch[], in
711  *      the same format as ext4_get_branch() would do. We are calling it after
712  *      we had read the existing part of chain and partial points to the last
713  *      triple of that (one with zero ->key). Upon the exit we have the same
714  *      picture as after the successful ext4_get_block(), except that in one
715  *      place chain is disconnected - *branch->p is still zero (we did not
716  *      set the last link), but branch->key contains the number that should
717  *      be placed into *branch->p to fill that gap.
718  *
719  *      If allocation fails we free all blocks we've allocated (and forget
720  *      their buffer_heads) and return the error value the from failed
721  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
722  *      as described above and return 0.
723  */
724 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
725                              ext4_lblk_t iblock, int indirect_blks,
726                              int *blks, ext4_fsblk_t goal,
727                              ext4_lblk_t *offsets, Indirect *branch)
728 {
729         int blocksize = inode->i_sb->s_blocksize;
730         int i, n = 0;
731         int err = 0;
732         struct buffer_head *bh;
733         int num;
734         ext4_fsblk_t new_blocks[4];
735         ext4_fsblk_t current_block;
736
737         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
738                                 *blks, new_blocks, &err);
739         if (err)
740                 return err;
741
742         branch[0].key = cpu_to_le32(new_blocks[0]);
743         /*
744          * metadata blocks and data blocks are allocated.
745          */
746         for (n = 1; n <= indirect_blks;  n++) {
747                 /*
748                  * Get buffer_head for parent block, zero it out
749                  * and set the pointer to new one, then send
750                  * parent to disk.
751                  */
752                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
753                 branch[n].bh = bh;
754                 lock_buffer(bh);
755                 BUFFER_TRACE(bh, "call get_create_access");
756                 err = ext4_journal_get_create_access(handle, bh);
757                 if (err) {
758                         /* Don't brelse(bh) here; it's done in
759                          * ext4_journal_forget() below */
760                         unlock_buffer(bh);
761                         goto failed;
762                 }
763
764                 memset(bh->b_data, 0, blocksize);
765                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
766                 branch[n].key = cpu_to_le32(new_blocks[n]);
767                 *branch[n].p = branch[n].key;
768                 if (n == indirect_blks) {
769                         current_block = new_blocks[n];
770                         /*
771                          * End of chain, update the last new metablock of
772                          * the chain to point to the new allocated
773                          * data blocks numbers
774                          */
775                         for (i = 1; i < num; i++)
776                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
777                 }
778                 BUFFER_TRACE(bh, "marking uptodate");
779                 set_buffer_uptodate(bh);
780                 unlock_buffer(bh);
781
782                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
783                 err = ext4_handle_dirty_metadata(handle, inode, bh);
784                 if (err)
785                         goto failed;
786         }
787         *blks = num;
788         return err;
789 failed:
790         /* Allocation failed, free what we already allocated */
791         ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
792         for (i = 1; i <= n ; i++) {
793                 /*
794                  * branch[i].bh is newly allocated, so there is no
795                  * need to revoke the block, which is why we don't
796                  * need to set EXT4_FREE_BLOCKS_METADATA.
797                  */
798                 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
799                                  EXT4_FREE_BLOCKS_FORGET);
800         }
801         for (i = n+1; i < indirect_blks; i++)
802                 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
803
804         ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
805
806         return err;
807 }
808
809 /**
810  * ext4_splice_branch - splice the allocated branch onto inode.
811  * @inode: owner
812  * @block: (logical) number of block we are adding
813  * @chain: chain of indirect blocks (with a missing link - see
814  *      ext4_alloc_branch)
815  * @where: location of missing link
816  * @num:   number of indirect blocks we are adding
817  * @blks:  number of direct blocks we are adding
818  *
819  * This function fills the missing link and does all housekeeping needed in
820  * inode (->i_blocks, etc.). In case of success we end up with the full
821  * chain to new block and return 0.
822  */
823 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
824                               ext4_lblk_t block, Indirect *where, int num,
825                               int blks)
826 {
827         int i;
828         int err = 0;
829         ext4_fsblk_t current_block;
830
831         /*
832          * If we're splicing into a [td]indirect block (as opposed to the
833          * inode) then we need to get write access to the [td]indirect block
834          * before the splice.
835          */
836         if (where->bh) {
837                 BUFFER_TRACE(where->bh, "get_write_access");
838                 err = ext4_journal_get_write_access(handle, where->bh);
839                 if (err)
840                         goto err_out;
841         }
842         /* That's it */
843
844         *where->p = where->key;
845
846         /*
847          * Update the host buffer_head or inode to point to more just allocated
848          * direct blocks blocks
849          */
850         if (num == 0 && blks > 1) {
851                 current_block = le32_to_cpu(where->key) + 1;
852                 for (i = 1; i < blks; i++)
853                         *(where->p + i) = cpu_to_le32(current_block++);
854         }
855
856         /* We are done with atomic stuff, now do the rest of housekeeping */
857         /* had we spliced it onto indirect block? */
858         if (where->bh) {
859                 /*
860                  * If we spliced it onto an indirect block, we haven't
861                  * altered the inode.  Note however that if it is being spliced
862                  * onto an indirect block at the very end of the file (the
863                  * file is growing) then we *will* alter the inode to reflect
864                  * the new i_size.  But that is not done here - it is done in
865                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
866                  */
867                 jbd_debug(5, "splicing indirect only\n");
868                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
869                 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
870                 if (err)
871                         goto err_out;
872         } else {
873                 /*
874                  * OK, we spliced it into the inode itself on a direct block.
875                  */
876                 ext4_mark_inode_dirty(handle, inode);
877                 jbd_debug(5, "splicing direct\n");
878         }
879         return err;
880
881 err_out:
882         for (i = 1; i <= num; i++) {
883                 /*
884                  * branch[i].bh is newly allocated, so there is no
885                  * need to revoke the block, which is why we don't
886                  * need to set EXT4_FREE_BLOCKS_METADATA.
887                  */
888                 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
889                                  EXT4_FREE_BLOCKS_FORGET);
890         }
891         ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
892                          blks, 0);
893
894         return err;
895 }
896
897 /*
898  * The ext4_ind_map_blocks() function handles non-extents inodes
899  * (i.e., using the traditional indirect/double-indirect i_blocks
900  * scheme) for ext4_map_blocks().
901  *
902  * Allocation strategy is simple: if we have to allocate something, we will
903  * have to go the whole way to leaf. So let's do it before attaching anything
904  * to tree, set linkage between the newborn blocks, write them if sync is
905  * required, recheck the path, free and repeat if check fails, otherwise
906  * set the last missing link (that will protect us from any truncate-generated
907  * removals - all blocks on the path are immune now) and possibly force the
908  * write on the parent block.
909  * That has a nice additional property: no special recovery from the failed
910  * allocations is needed - we simply release blocks and do not touch anything
911  * reachable from inode.
912  *
913  * `handle' can be NULL if create == 0.
914  *
915  * return > 0, # of blocks mapped or allocated.
916  * return = 0, if plain lookup failed.
917  * return < 0, error case.
918  *
919  * The ext4_ind_get_blocks() function should be called with
920  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
921  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
922  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
923  * blocks.
924  */
925 static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
926                                struct ext4_map_blocks *map,
927                                int flags)
928 {
929         int err = -EIO;
930         ext4_lblk_t offsets[4];
931         Indirect chain[4];
932         Indirect *partial;
933         ext4_fsblk_t goal;
934         int indirect_blks;
935         int blocks_to_boundary = 0;
936         int depth;
937         int count = 0;
938         ext4_fsblk_t first_block = 0;
939
940         J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
941         J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
942         depth = ext4_block_to_path(inode, map->m_lblk, offsets,
943                                    &blocks_to_boundary);
944
945         if (depth == 0)
946                 goto out;
947
948         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
949
950         /* Simplest case - block found, no allocation needed */
951         if (!partial) {
952                 first_block = le32_to_cpu(chain[depth - 1].key);
953                 count++;
954                 /*map more blocks*/
955                 while (count < map->m_len && count <= blocks_to_boundary) {
956                         ext4_fsblk_t blk;
957
958                         blk = le32_to_cpu(*(chain[depth-1].p + count));
959
960                         if (blk == first_block + count)
961                                 count++;
962                         else
963                                 break;
964                 }
965                 goto got_it;
966         }
967
968         /* Next simple case - plain lookup or failed read of indirect block */
969         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
970                 goto cleanup;
971
972         /*
973          * Okay, we need to do block allocation.
974         */
975         goal = ext4_find_goal(inode, map->m_lblk, partial);
976
977         /* the number of blocks need to allocate for [d,t]indirect blocks */
978         indirect_blks = (chain + depth) - partial - 1;
979
980         /*
981          * Next look up the indirect map to count the totoal number of
982          * direct blocks to allocate for this branch.
983          */
984         count = ext4_blks_to_allocate(partial, indirect_blks,
985                                       map->m_len, blocks_to_boundary);
986         /*
987          * Block out ext4_truncate while we alter the tree
988          */
989         err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
990                                 &count, goal,
991                                 offsets + (partial - chain), partial);
992
993         /*
994          * The ext4_splice_branch call will free and forget any buffers
995          * on the new chain if there is a failure, but that risks using
996          * up transaction credits, especially for bitmaps where the
997          * credits cannot be returned.  Can we handle this somehow?  We
998          * may need to return -EAGAIN upwards in the worst case.  --sct
999          */
1000         if (!err)
1001                 err = ext4_splice_branch(handle, inode, map->m_lblk,
1002                                          partial, indirect_blks, count);
1003         if (err)
1004                 goto cleanup;
1005
1006         map->m_flags |= EXT4_MAP_NEW;
1007
1008         ext4_update_inode_fsync_trans(handle, inode, 1);
1009 got_it:
1010         map->m_flags |= EXT4_MAP_MAPPED;
1011         map->m_pblk = le32_to_cpu(chain[depth-1].key);
1012         map->m_len = count;
1013         if (count > blocks_to_boundary)
1014                 map->m_flags |= EXT4_MAP_BOUNDARY;
1015         err = count;
1016         /* Clean up and exit */
1017         partial = chain + depth - 1;    /* the whole chain */
1018 cleanup:
1019         while (partial > chain) {
1020                 BUFFER_TRACE(partial->bh, "call brelse");
1021                 brelse(partial->bh);
1022                 partial--;
1023         }
1024 out:
1025         return err;
1026 }
1027
1028 #ifdef CONFIG_QUOTA
1029 qsize_t *ext4_get_reserved_space(struct inode *inode)
1030 {
1031         return &EXT4_I(inode)->i_reserved_quota;
1032 }
1033 #endif
1034
1035 /*
1036  * Calculate the number of metadata blocks need to reserve
1037  * to allocate a new block at @lblocks for non extent file based file
1038  */
1039 static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1040                                               sector_t lblock)
1041 {
1042         struct ext4_inode_info *ei = EXT4_I(inode);
1043         sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1044         int blk_bits;
1045
1046         if (lblock < EXT4_NDIR_BLOCKS)
1047                 return 0;
1048
1049         lblock -= EXT4_NDIR_BLOCKS;
1050
1051         if (ei->i_da_metadata_calc_len &&
1052             (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1053                 ei->i_da_metadata_calc_len++;
1054                 return 0;
1055         }
1056         ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1057         ei->i_da_metadata_calc_len = 1;
1058         blk_bits = order_base_2(lblock);
1059         return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1060 }
1061
1062 /*
1063  * Calculate the number of metadata blocks need to reserve
1064  * to allocate a block located at @lblock
1065  */
1066 static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
1067 {
1068         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1069                 return ext4_ext_calc_metadata_amount(inode, lblock);
1070
1071         return ext4_indirect_calc_metadata_amount(inode, lblock);
1072 }
1073
1074 /*
1075  * Called with i_data_sem down, which is important since we can call
1076  * ext4_discard_preallocations() from here.
1077  */
1078 void ext4_da_update_reserve_space(struct inode *inode,
1079                                         int used, int quota_claim)
1080 {
1081         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1082         struct ext4_inode_info *ei = EXT4_I(inode);
1083
1084         spin_lock(&ei->i_block_reservation_lock);
1085         trace_ext4_da_update_reserve_space(inode, used);
1086         if (unlikely(used > ei->i_reserved_data_blocks)) {
1087                 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1088                          "with only %d reserved data blocks\n",
1089                          __func__, inode->i_ino, used,
1090                          ei->i_reserved_data_blocks);
1091                 WARN_ON(1);
1092                 used = ei->i_reserved_data_blocks;
1093         }
1094
1095         /* Update per-inode reservations */
1096         ei->i_reserved_data_blocks -= used;
1097         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1098         percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1099                            used + ei->i_allocated_meta_blocks);
1100         ei->i_allocated_meta_blocks = 0;
1101
1102         if (ei->i_reserved_data_blocks == 0) {
1103                 /*
1104                  * We can release all of the reserved metadata blocks
1105                  * only when we have written all of the delayed
1106                  * allocation blocks.
1107                  */
1108                 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1109                                    ei->i_reserved_meta_blocks);
1110                 ei->i_reserved_meta_blocks = 0;
1111                 ei->i_da_metadata_calc_len = 0;
1112         }
1113         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1114
1115         /* Update quota subsystem for data blocks */
1116         if (quota_claim)
1117                 dquot_claim_block(inode, used);
1118         else {
1119                 /*
1120                  * We did fallocate with an offset that is already delayed
1121                  * allocated. So on delayed allocated writeback we should
1122                  * not re-claim the quota for fallocated blocks.
1123                  */
1124                 dquot_release_reservation_block(inode, used);
1125         }
1126
1127         /*
1128          * If we have done all the pending block allocations and if
1129          * there aren't any writers on the inode, we can discard the
1130          * inode's preallocations.
1131          */
1132         if ((ei->i_reserved_data_blocks == 0) &&
1133             (atomic_read(&inode->i_writecount) == 0))
1134                 ext4_discard_preallocations(inode);
1135 }
1136
1137 static int __check_block_validity(struct inode *inode, const char *func,
1138                                 unsigned int line,
1139                                 struct ext4_map_blocks *map)
1140 {
1141         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
1142                                    map->m_len)) {
1143                 ext4_error_inode(inode, func, line, map->m_pblk,
1144                                  "lblock %lu mapped to illegal pblock "
1145                                  "(length %d)", (unsigned long) map->m_lblk,
1146                                  map->m_len);
1147                 return -EIO;
1148         }
1149         return 0;
1150 }
1151
1152 #define check_block_validity(inode, map)        \
1153         __check_block_validity((inode), __func__, __LINE__, (map))
1154
1155 /*
1156  * Return the number of contiguous dirty pages in a given inode
1157  * starting at page frame idx.
1158  */
1159 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1160                                     unsigned int max_pages)
1161 {
1162         struct address_space *mapping = inode->i_mapping;
1163         pgoff_t index;
1164         struct pagevec pvec;
1165         pgoff_t num = 0;
1166         int i, nr_pages, done = 0;
1167
1168         if (max_pages == 0)
1169                 return 0;
1170         pagevec_init(&pvec, 0);
1171         while (!done) {
1172                 index = idx;
1173                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1174                                               PAGECACHE_TAG_DIRTY,
1175                                               (pgoff_t)PAGEVEC_SIZE);
1176                 if (nr_pages == 0)
1177                         break;
1178                 for (i = 0; i < nr_pages; i++) {
1179                         struct page *page = pvec.pages[i];
1180                         struct buffer_head *bh, *head;
1181
1182                         lock_page(page);
1183                         if (unlikely(page->mapping != mapping) ||
1184                             !PageDirty(page) ||
1185                             PageWriteback(page) ||
1186                             page->index != idx) {
1187                                 done = 1;
1188                                 unlock_page(page);
1189                                 break;
1190                         }
1191                         if (page_has_buffers(page)) {
1192                                 bh = head = page_buffers(page);
1193                                 do {
1194                                         if (!buffer_delay(bh) &&
1195                                             !buffer_unwritten(bh))
1196                                                 done = 1;
1197                                         bh = bh->b_this_page;
1198                                 } while (!done && (bh != head));
1199                         }
1200                         unlock_page(page);
1201                         if (done)
1202                                 break;
1203                         idx++;
1204                         num++;
1205                         if (num >= max_pages)
1206                                 break;
1207                 }
1208                 pagevec_release(&pvec);
1209         }
1210         return num;
1211 }
1212
1213 /*
1214  * The ext4_map_blocks() function tries to look up the requested blocks,
1215  * and returns if the blocks are already mapped.
1216  *
1217  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1218  * and store the allocated blocks in the result buffer head and mark it
1219  * mapped.
1220  *
1221  * If file type is extents based, it will call ext4_ext_map_blocks(),
1222  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1223  * based files
1224  *
1225  * On success, it returns the number of blocks being mapped or allocate.
1226  * if create==0 and the blocks are pre-allocated and uninitialized block,
1227  * the result buffer head is unmapped. If the create ==1, it will make sure
1228  * the buffer head is mapped.
1229  *
1230  * It returns 0 if plain look up failed (blocks have not been allocated), in
1231  * that casem, buffer head is unmapped
1232  *
1233  * It returns the error in case of allocation failure.
1234  */
1235 int ext4_map_blocks(handle_t *handle, struct inode *inode,
1236                     struct ext4_map_blocks *map, int flags)
1237 {
1238         int retval;
1239
1240         map->m_flags = 0;
1241         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
1242                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
1243                   (unsigned long) map->m_lblk);
1244         /*
1245          * Try to see if we can get the block without requesting a new
1246          * file system block.
1247          */
1248         down_read((&EXT4_I(inode)->i_data_sem));
1249         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1250                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
1251         } else {
1252                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
1253         }
1254         up_read((&EXT4_I(inode)->i_data_sem));
1255
1256         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1257                 int ret = check_block_validity(inode, map);
1258                 if (ret != 0)
1259                         return ret;
1260         }
1261
1262         /* If it is only a block(s) look up */
1263         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1264                 return retval;
1265
1266         /*
1267          * Returns if the blocks have already allocated
1268          *
1269          * Note that if blocks have been preallocated
1270          * ext4_ext_get_block() returns th create = 0
1271          * with buffer head unmapped.
1272          */
1273         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
1274                 return retval;
1275
1276         /*
1277          * When we call get_blocks without the create flag, the
1278          * BH_Unwritten flag could have gotten set if the blocks
1279          * requested were part of a uninitialized extent.  We need to
1280          * clear this flag now that we are committed to convert all or
1281          * part of the uninitialized extent to be an initialized
1282          * extent.  This is because we need to avoid the combination
1283          * of BH_Unwritten and BH_Mapped flags being simultaneously
1284          * set on the buffer_head.
1285          */
1286         map->m_flags &= ~EXT4_MAP_UNWRITTEN;
1287
1288         /*
1289          * New blocks allocate and/or writing to uninitialized extent
1290          * will possibly result in updating i_data, so we take
1291          * the write lock of i_data_sem, and call get_blocks()
1292          * with create == 1 flag.
1293          */
1294         down_write((&EXT4_I(inode)->i_data_sem));
1295
1296         /*
1297          * if the caller is from delayed allocation writeout path
1298          * we have already reserved fs blocks for allocation
1299          * let the underlying get_block() function know to
1300          * avoid double accounting
1301          */
1302         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1303                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1304         /*
1305          * We need to check for EXT4 here because migrate
1306          * could have changed the inode type in between
1307          */
1308         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1309                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
1310         } else {
1311                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
1312
1313                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
1314                         /*
1315                          * We allocated new blocks which will result in
1316                          * i_data's format changing.  Force the migrate
1317                          * to fail by clearing migrate flags
1318                          */
1319                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1320                 }
1321
1322                 /*
1323                  * Update reserved blocks/metadata blocks after successful
1324                  * block allocation which had been deferred till now. We don't
1325                  * support fallocate for non extent files. So we can update
1326                  * reserve space here.
1327                  */
1328                 if ((retval > 0) &&
1329                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1330                         ext4_da_update_reserve_space(inode, retval, 1);
1331         }
1332         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1333                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1334
1335         up_write((&EXT4_I(inode)->i_data_sem));
1336         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1337                 int ret = check_block_validity(inode, map);
1338                 if (ret != 0)
1339                         return ret;
1340         }
1341         return retval;
1342 }
1343
1344 /* Maximum number of blocks we map for direct IO at once. */
1345 #define DIO_MAX_BLOCKS 4096
1346
1347 static int _ext4_get_block(struct inode *inode, sector_t iblock,
1348                            struct buffer_head *bh, int flags)
1349 {
1350         handle_t *handle = ext4_journal_current_handle();
1351         struct ext4_map_blocks map;
1352         int ret = 0, started = 0;
1353         int dio_credits;
1354
1355         map.m_lblk = iblock;
1356         map.m_len = bh->b_size >> inode->i_blkbits;
1357
1358         if (flags && !handle) {
1359                 /* Direct IO write... */
1360                 if (map.m_len > DIO_MAX_BLOCKS)
1361                         map.m_len = DIO_MAX_BLOCKS;
1362                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
1363                 handle = ext4_journal_start(inode, dio_credits);
1364                 if (IS_ERR(handle)) {
1365                         ret = PTR_ERR(handle);
1366                         return ret;
1367                 }
1368                 started = 1;
1369         }
1370
1371         ret = ext4_map_blocks(handle, inode, &map, flags);
1372         if (ret > 0) {
1373                 map_bh(bh, inode->i_sb, map.m_pblk);
1374                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1375                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
1376                 ret = 0;
1377         }
1378         if (started)
1379                 ext4_journal_stop(handle);
1380         return ret;
1381 }
1382
1383 int ext4_get_block(struct inode *inode, sector_t iblock,
1384                    struct buffer_head *bh, int create)
1385 {
1386         return _ext4_get_block(inode, iblock, bh,
1387                                create ? EXT4_GET_BLOCKS_CREATE : 0);
1388 }
1389
1390 /*
1391  * `handle' can be NULL if create is zero
1392  */
1393 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1394                                 ext4_lblk_t block, int create, int *errp)
1395 {
1396         struct ext4_map_blocks map;
1397         struct buffer_head *bh;
1398         int fatal = 0, err;
1399
1400         J_ASSERT(handle != NULL || create == 0);
1401
1402         map.m_lblk = block;
1403         map.m_len = 1;
1404         err = ext4_map_blocks(handle, inode, &map,
1405                               create ? EXT4_GET_BLOCKS_CREATE : 0);
1406
1407         if (err < 0)
1408                 *errp = err;
1409         if (err <= 0)
1410                 return NULL;
1411         *errp = 0;
1412
1413         bh = sb_getblk(inode->i_sb, map.m_pblk);
1414         if (!bh) {
1415                 *errp = -EIO;
1416                 return NULL;
1417         }
1418         if (map.m_flags & EXT4_MAP_NEW) {
1419                 J_ASSERT(create != 0);
1420                 J_ASSERT(handle != NULL);
1421
1422                 /*
1423                  * Now that we do not always journal data, we should
1424                  * keep in mind whether this should always journal the
1425                  * new buffer as metadata.  For now, regular file
1426                  * writes use ext4_get_block instead, so it's not a
1427                  * problem.
1428                  */
1429                 lock_buffer(bh);
1430                 BUFFER_TRACE(bh, "call get_create_access");
1431                 fatal = ext4_journal_get_create_access(handle, bh);
1432                 if (!fatal && !buffer_uptodate(bh)) {
1433                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1434                         set_buffer_uptodate(bh);
1435                 }
1436                 unlock_buffer(bh);
1437                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1438                 err = ext4_handle_dirty_metadata(handle, inode, bh);
1439                 if (!fatal)
1440                         fatal = err;
1441         } else {
1442                 BUFFER_TRACE(bh, "not a new buffer");
1443         }
1444         if (fatal) {
1445                 *errp = fatal;
1446                 brelse(bh);
1447                 bh = NULL;
1448         }
1449         return bh;
1450 }
1451
1452 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1453                                ext4_lblk_t block, int create, int *err)
1454 {
1455         struct buffer_head *bh;
1456
1457         bh = ext4_getblk(handle, inode, block, create, err);
1458         if (!bh)
1459                 return bh;
1460         if (buffer_uptodate(bh))
1461                 return bh;
1462         ll_rw_block(READ_META, 1, &bh);
1463         wait_on_buffer(bh);
1464         if (buffer_uptodate(bh))
1465                 return bh;
1466         put_bh(bh);
1467         *err = -EIO;
1468         return NULL;
1469 }
1470
1471 static int walk_page_buffers(handle_t *handle,
1472                              struct buffer_head *head,
1473                              unsigned from,
1474                              unsigned to,
1475                              int *partial,
1476                              int (*fn)(handle_t *handle,
1477                                        struct buffer_head *bh))
1478 {
1479         struct buffer_head *bh;
1480         unsigned block_start, block_end;
1481         unsigned blocksize = head->b_size;
1482         int err, ret = 0;
1483         struct buffer_head *next;
1484
1485         for (bh = head, block_start = 0;
1486              ret == 0 && (bh != head || !block_start);
1487              block_start = block_end, bh = next) {
1488                 next = bh->b_this_page;
1489                 block_end = block_start + blocksize;
1490                 if (block_end <= from || block_start >= to) {
1491                         if (partial && !buffer_uptodate(bh))
1492                                 *partial = 1;
1493                         continue;
1494                 }
1495                 err = (*fn)(handle, bh);
1496                 if (!ret)
1497                         ret = err;
1498         }
1499         return ret;
1500 }
1501
1502 /*
1503  * To preserve ordering, it is essential that the hole instantiation and
1504  * the data write be encapsulated in a single transaction.  We cannot
1505  * close off a transaction and start a new one between the ext4_get_block()
1506  * and the commit_write().  So doing the jbd2_journal_start at the start of
1507  * prepare_write() is the right place.
1508  *
1509  * Also, this function can nest inside ext4_writepage() ->
1510  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1511  * has generated enough buffer credits to do the whole page.  So we won't
1512  * block on the journal in that case, which is good, because the caller may
1513  * be PF_MEMALLOC.
1514  *
1515  * By accident, ext4 can be reentered when a transaction is open via
1516  * quota file writes.  If we were to commit the transaction while thus
1517  * reentered, there can be a deadlock - we would be holding a quota
1518  * lock, and the commit would never complete if another thread had a
1519  * transaction open and was blocking on the quota lock - a ranking
1520  * violation.
1521  *
1522  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1523  * will _not_ run commit under these circumstances because handle->h_ref
1524  * is elevated.  We'll still have enough credits for the tiny quotafile
1525  * write.
1526  */
1527 static int do_journal_get_write_access(handle_t *handle,
1528                                        struct buffer_head *bh)
1529 {
1530         if (!buffer_mapped(bh) || buffer_freed(bh))
1531                 return 0;
1532         return ext4_journal_get_write_access(handle, bh);
1533 }
1534
1535 /*
1536  * Truncate blocks that were not used by write. We have to truncate the
1537  * pagecache as well so that corresponding buffers get properly unmapped.
1538  */
1539 static void ext4_truncate_failed_write(struct inode *inode)
1540 {
1541         truncate_inode_pages(inode->i_mapping, inode->i_size);
1542         ext4_truncate(inode);
1543 }
1544
1545 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1546                    struct buffer_head *bh_result, int create);
1547 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1548                             loff_t pos, unsigned len, unsigned flags,
1549                             struct page **pagep, void **fsdata)
1550 {
1551         struct inode *inode = mapping->host;
1552         int ret, needed_blocks;
1553         handle_t *handle;
1554         int retries = 0;
1555         struct page *page;
1556         pgoff_t index;
1557         unsigned from, to;
1558
1559         trace_ext4_write_begin(inode, pos, len, flags);
1560         /*
1561          * Reserve one block more for addition to orphan list in case
1562          * we allocate blocks but write fails for some reason
1563          */
1564         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1565         index = pos >> PAGE_CACHE_SHIFT;
1566         from = pos & (PAGE_CACHE_SIZE - 1);
1567         to = from + len;
1568
1569 retry:
1570         handle = ext4_journal_start(inode, needed_blocks);
1571         if (IS_ERR(handle)) {
1572                 ret = PTR_ERR(handle);
1573                 goto out;
1574         }
1575
1576         /* We cannot recurse into the filesystem as the transaction is already
1577          * started */
1578         flags |= AOP_FLAG_NOFS;
1579
1580         page = grab_cache_page_write_begin(mapping, index, flags);
1581         if (!page) {
1582                 ext4_journal_stop(handle);
1583                 ret = -ENOMEM;
1584                 goto out;
1585         }
1586         *pagep = page;
1587
1588         if (ext4_should_dioread_nolock(inode))
1589                 ret = block_write_begin(file, mapping, pos, len, flags, pagep,
1590                                 fsdata, ext4_get_block_write);
1591         else
1592                 ret = block_write_begin(file, mapping, pos, len, flags, pagep,
1593                                 fsdata, ext4_get_block);
1594
1595         if (!ret && ext4_should_journal_data(inode)) {
1596                 ret = walk_page_buffers(handle, page_buffers(page),
1597                                 from, to, NULL, do_journal_get_write_access);
1598         }
1599
1600         if (ret) {
1601                 unlock_page(page);
1602                 page_cache_release(page);
1603                 /*
1604                  * block_write_begin may have instantiated a few blocks
1605                  * outside i_size.  Trim these off again. Don't need
1606                  * i_size_read because we hold i_mutex.
1607                  *
1608                  * Add inode to orphan list in case we crash before
1609                  * truncate finishes
1610                  */
1611                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1612                         ext4_orphan_add(handle, inode);
1613
1614                 ext4_journal_stop(handle);
1615                 if (pos + len > inode->i_size) {
1616                         ext4_truncate_failed_write(inode);
1617                         /*
1618                          * If truncate failed early the inode might
1619                          * still be on the orphan list; we need to
1620                          * make sure the inode is removed from the
1621                          * orphan list in that case.
1622                          */
1623                         if (inode->i_nlink)
1624                                 ext4_orphan_del(NULL, inode);
1625                 }
1626         }
1627
1628         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1629                 goto retry;
1630 out:
1631         return ret;
1632 }
1633
1634 /* For write_end() in data=journal mode */
1635 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1636 {
1637         if (!buffer_mapped(bh) || buffer_freed(bh))
1638                 return 0;
1639         set_buffer_uptodate(bh);
1640         return ext4_handle_dirty_metadata(handle, NULL, bh);
1641 }
1642
1643 static int ext4_generic_write_end(struct file *file,
1644                                   struct address_space *mapping,
1645                                   loff_t pos, unsigned len, unsigned copied,
1646                                   struct page *page, void *fsdata)
1647 {
1648         int i_size_changed = 0;
1649         struct inode *inode = mapping->host;
1650         handle_t *handle = ext4_journal_current_handle();
1651
1652         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1653
1654         /*
1655          * No need to use i_size_read() here, the i_size
1656          * cannot change under us because we hold i_mutex.
1657          *
1658          * But it's important to update i_size while still holding page lock:
1659          * page writeout could otherwise come in and zero beyond i_size.
1660          */
1661         if (pos + copied > inode->i_size) {
1662                 i_size_write(inode, pos + copied);
1663                 i_size_changed = 1;
1664         }
1665
1666         if (pos + copied >  EXT4_I(inode)->i_disksize) {
1667                 /* We need to mark inode dirty even if
1668                  * new_i_size is less that inode->i_size
1669                  * bu greater than i_disksize.(hint delalloc)
1670                  */
1671                 ext4_update_i_disksize(inode, (pos + copied));
1672                 i_size_changed = 1;
1673         }
1674         unlock_page(page);
1675         page_cache_release(page);
1676
1677         /*
1678          * Don't mark the inode dirty under page lock. First, it unnecessarily
1679          * makes the holding time of page lock longer. Second, it forces lock
1680          * ordering of page lock and transaction start for journaling
1681          * filesystems.
1682          */
1683         if (i_size_changed)
1684                 ext4_mark_inode_dirty(handle, inode);
1685
1686         return copied;
1687 }
1688
1689 /*
1690  * We need to pick up the new inode size which generic_commit_write gave us
1691  * `file' can be NULL - eg, when called from page_symlink().
1692  *
1693  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1694  * buffers are managed internally.
1695  */
1696 static int ext4_ordered_write_end(struct file *file,
1697                                   struct address_space *mapping,
1698                                   loff_t pos, unsigned len, unsigned copied,
1699                                   struct page *page, void *fsdata)
1700 {
1701         handle_t *handle = ext4_journal_current_handle();
1702         struct inode *inode = mapping->host;
1703         int ret = 0, ret2;
1704
1705         trace_ext4_ordered_write_end(inode, pos, len, copied);
1706         ret = ext4_jbd2_file_inode(handle, inode);
1707
1708         if (ret == 0) {
1709                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1710                                                         page, fsdata);
1711                 copied = ret2;
1712                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1713                         /* if we have allocated more blocks and copied
1714                          * less. We will have blocks allocated outside
1715                          * inode->i_size. So truncate them
1716                          */
1717                         ext4_orphan_add(handle, inode);
1718                 if (ret2 < 0)
1719                         ret = ret2;
1720         }
1721         ret2 = ext4_journal_stop(handle);
1722         if (!ret)
1723                 ret = ret2;
1724
1725         if (pos + len > inode->i_size) {
1726                 ext4_truncate_failed_write(inode);
1727                 /*
1728                  * If truncate failed early the inode might still be
1729                  * on the orphan list; we need to make sure the inode
1730                  * is removed from the orphan list in that case.
1731                  */
1732                 if (inode->i_nlink)
1733                         ext4_orphan_del(NULL, inode);
1734         }
1735
1736
1737         return ret ? ret : copied;
1738 }
1739
1740 static int ext4_writeback_write_end(struct file *file,
1741                                     struct address_space *mapping,
1742                                     loff_t pos, unsigned len, unsigned copied,
1743                                     struct page *page, void *fsdata)
1744 {
1745         handle_t *handle = ext4_journal_current_handle();
1746         struct inode *inode = mapping->host;
1747         int ret = 0, ret2;
1748
1749         trace_ext4_writeback_write_end(inode, pos, len, copied);
1750         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1751                                                         page, fsdata);
1752         copied = ret2;
1753         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1754                 /* if we have allocated more blocks and copied
1755                  * less. We will have blocks allocated outside
1756                  * inode->i_size. So truncate them
1757                  */
1758                 ext4_orphan_add(handle, inode);
1759
1760         if (ret2 < 0)
1761                 ret = ret2;
1762
1763         ret2 = ext4_journal_stop(handle);
1764         if (!ret)
1765                 ret = ret2;
1766
1767         if (pos + len > inode->i_size) {
1768                 ext4_truncate_failed_write(inode);
1769                 /*
1770                  * If truncate failed early the inode might still be
1771                  * on the orphan list; we need to make sure the inode
1772                  * is removed from the orphan list in that case.
1773                  */
1774                 if (inode->i_nlink)
1775                         ext4_orphan_del(NULL, inode);
1776         }
1777
1778         return ret ? ret : copied;
1779 }
1780
1781 static int ext4_journalled_write_end(struct file *file,
1782                                      struct address_space *mapping,
1783                                      loff_t pos, unsigned len, unsigned copied,
1784                                      struct page *page, void *fsdata)
1785 {
1786         handle_t *handle = ext4_journal_current_handle();
1787         struct inode *inode = mapping->host;
1788         int ret = 0, ret2;
1789         int partial = 0;
1790         unsigned from, to;
1791         loff_t new_i_size;
1792
1793         trace_ext4_journalled_write_end(inode, pos, len, copied);
1794         from = pos & (PAGE_CACHE_SIZE - 1);
1795         to = from + len;
1796
1797         if (copied < len) {
1798                 if (!PageUptodate(page))
1799                         copied = 0;
1800                 page_zero_new_buffers(page, from+copied, to);
1801         }
1802
1803         ret = walk_page_buffers(handle, page_buffers(page), from,
1804                                 to, &partial, write_end_fn);
1805         if (!partial)
1806                 SetPageUptodate(page);
1807         new_i_size = pos + copied;
1808         if (new_i_size > inode->i_size)
1809                 i_size_write(inode, pos+copied);
1810         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1811         if (new_i_size > EXT4_I(inode)->i_disksize) {
1812                 ext4_update_i_disksize(inode, new_i_size);
1813                 ret2 = ext4_mark_inode_dirty(handle, inode);
1814                 if (!ret)
1815                         ret = ret2;
1816         }
1817
1818         unlock_page(page);
1819         page_cache_release(page);
1820         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1821                 /* if we have allocated more blocks and copied
1822                  * less. We will have blocks allocated outside
1823                  * inode->i_size. So truncate them
1824                  */
1825                 ext4_orphan_add(handle, inode);
1826
1827         ret2 = ext4_journal_stop(handle);
1828         if (!ret)
1829                 ret = ret2;
1830         if (pos + len > inode->i_size) {
1831                 ext4_truncate_failed_write(inode);
1832                 /*
1833                  * If truncate failed early the inode might still be
1834                  * on the orphan list; we need to make sure the inode
1835                  * is removed from the orphan list in that case.
1836                  */
1837                 if (inode->i_nlink)
1838                         ext4_orphan_del(NULL, inode);
1839         }
1840
1841         return ret ? ret : copied;
1842 }
1843
1844 /*
1845  * Reserve a single block located at lblock
1846  */
1847 static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
1848 {
1849         int retries = 0;
1850         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1851         struct ext4_inode_info *ei = EXT4_I(inode);
1852         unsigned long md_needed;
1853         int ret;
1854
1855         /*
1856          * recalculate the amount of metadata blocks to reserve
1857          * in order to allocate nrblocks
1858          * worse case is one extent per block
1859          */
1860 repeat:
1861         spin_lock(&ei->i_block_reservation_lock);
1862         md_needed = ext4_calc_metadata_amount(inode, lblock);
1863         trace_ext4_da_reserve_space(inode, md_needed);
1864         spin_unlock(&ei->i_block_reservation_lock);
1865
1866         /*
1867          * We will charge metadata quota at writeout time; this saves
1868          * us from metadata over-estimation, though we may go over by
1869          * a small amount in the end.  Here we just reserve for data.
1870          */
1871         ret = dquot_reserve_block(inode, 1);
1872         if (ret)
1873                 return ret;
1874         /*
1875          * We do still charge estimated metadata to the sb though;
1876          * we cannot afford to run out of free blocks.
1877          */
1878         if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1879                 dquot_release_reservation_block(inode, 1);
1880                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1881                         yield();
1882                         goto repeat;
1883                 }
1884                 return -ENOSPC;
1885         }
1886         spin_lock(&ei->i_block_reservation_lock);
1887         ei->i_reserved_data_blocks++;
1888         ei->i_reserved_meta_blocks += md_needed;
1889         spin_unlock(&ei->i_block_reservation_lock);
1890
1891         return 0;       /* success */
1892 }
1893
1894 static void ext4_da_release_space(struct inode *inode, int to_free)
1895 {
1896         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1897         struct ext4_inode_info *ei = EXT4_I(inode);
1898
1899         if (!to_free)
1900                 return;         /* Nothing to release, exit */
1901
1902         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1903
1904         trace_ext4_da_release_space(inode, to_free);
1905         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1906                 /*
1907                  * if there aren't enough reserved blocks, then the
1908                  * counter is messed up somewhere.  Since this
1909                  * function is called from invalidate page, it's
1910                  * harmless to return without any action.
1911                  */
1912                 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1913                          "ino %lu, to_free %d with only %d reserved "
1914                          "data blocks\n", inode->i_ino, to_free,
1915                          ei->i_reserved_data_blocks);
1916                 WARN_ON(1);
1917                 to_free = ei->i_reserved_data_blocks;
1918         }
1919         ei->i_reserved_data_blocks -= to_free;
1920
1921         if (ei->i_reserved_data_blocks == 0) {
1922                 /*
1923                  * We can release all of the reserved metadata blocks
1924                  * only when we have written all of the delayed
1925                  * allocation blocks.
1926                  */
1927                 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1928                                    ei->i_reserved_meta_blocks);
1929                 ei->i_reserved_meta_blocks = 0;
1930                 ei->i_da_metadata_calc_len = 0;
1931         }
1932
1933         /* update fs dirty data blocks counter */
1934         percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1935
1936         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1937
1938         dquot_release_reservation_block(inode, to_free);
1939 }
1940
1941 static void ext4_da_page_release_reservation(struct page *page,
1942                                              unsigned long offset)
1943 {
1944         int to_release = 0;
1945         struct buffer_head *head, *bh;
1946         unsigned int curr_off = 0;
1947
1948         head = page_buffers(page);
1949         bh = head;
1950         do {
1951                 unsigned int next_off = curr_off + bh->b_size;
1952
1953                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1954                         to_release++;
1955                         clear_buffer_delay(bh);
1956                 }
1957                 curr_off = next_off;
1958         } while ((bh = bh->b_this_page) != head);
1959         ext4_da_release_space(page->mapping->host, to_release);
1960 }
1961
1962 /*
1963  * Delayed allocation stuff
1964  */
1965
1966 /*
1967  * mpage_da_submit_io - walks through extent of pages and try to write
1968  * them with writepage() call back
1969  *
1970  * @mpd->inode: inode
1971  * @mpd->first_page: first page of the extent
1972  * @mpd->next_page: page after the last page of the extent
1973  *
1974  * By the time mpage_da_submit_io() is called we expect all blocks
1975  * to be allocated. this may be wrong if allocation failed.
1976  *
1977  * As pages are already locked by write_cache_pages(), we can't use it
1978  */
1979 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1980 {
1981         long pages_skipped;
1982         struct pagevec pvec;
1983         unsigned long index, end;
1984         int ret = 0, err, nr_pages, i;
1985         struct inode *inode = mpd->inode;
1986         struct address_space *mapping = inode->i_mapping;
1987
1988         BUG_ON(mpd->next_page <= mpd->first_page);
1989         /*
1990          * We need to start from the first_page to the next_page - 1
1991          * to make sure we also write the mapped dirty buffer_heads.
1992          * If we look at mpd->b_blocknr we would only be looking
1993          * at the currently mapped buffer_heads.
1994          */
1995         index = mpd->first_page;
1996         end = mpd->next_page - 1;
1997
1998         pagevec_init(&pvec, 0);
1999         while (index <= end) {
2000                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2001                 if (nr_pages == 0)
2002                         break;
2003                 for (i = 0; i < nr_pages; i++) {
2004                         struct page *page = pvec.pages[i];
2005
2006                         index = page->index;
2007                         if (index > end)
2008                                 break;
2009                         index++;
2010
2011                         BUG_ON(!PageLocked(page));
2012                         BUG_ON(PageWriteback(page));
2013
2014                         pages_skipped = mpd->wbc->pages_skipped;
2015                         err = mapping->a_ops->writepage(page, mpd->wbc);
2016                         if (!err && (pages_skipped == mpd->wbc->pages_skipped))
2017                                 /*
2018                                  * have successfully written the page
2019                                  * without skipping the same
2020                                  */
2021                                 mpd->pages_written++;
2022                         /*
2023                          * In error case, we have to continue because
2024                          * remaining pages are still locked
2025                          * XXX: unlock and re-dirty them?
2026                          */
2027                         if (ret == 0)
2028                                 ret = err;
2029                 }
2030                 pagevec_release(&pvec);
2031         }
2032         return ret;
2033 }
2034
2035 /*
2036  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2037  *
2038  * the function goes through all passed space and put actual disk
2039  * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2040  */
2041 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd,
2042                                  struct ext4_map_blocks *map)
2043 {
2044         struct inode *inode = mpd->inode;
2045         struct address_space *mapping = inode->i_mapping;
2046         int blocks = map->m_len;
2047         sector_t pblock = map->m_pblk, cur_logical;
2048         struct buffer_head *head, *bh;
2049         pgoff_t index, end;
2050         struct pagevec pvec;
2051         int nr_pages, i;
2052
2053         index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2054         end = (map->m_lblk + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2055         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2056
2057         pagevec_init(&pvec, 0);
2058
2059         while (index <= end) {
2060                 /* XXX: optimize tail */
2061                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2062                 if (nr_pages == 0)
2063                         break;
2064                 for (i = 0; i < nr_pages; i++) {
2065                         struct page *page = pvec.pages[i];
2066
2067                         index = page->index;
2068                         if (index > end)
2069                                 break;
2070                         index++;
2071
2072                         BUG_ON(!PageLocked(page));
2073                         BUG_ON(PageWriteback(page));
2074                         BUG_ON(!page_has_buffers(page));
2075
2076                         bh = page_buffers(page);
2077                         head = bh;
2078
2079                         /* skip blocks out of the range */
2080                         do {
2081                                 if (cur_logical >= map->m_lblk)
2082                                         break;
2083                                 cur_logical++;
2084                         } while ((bh = bh->b_this_page) != head);
2085
2086                         do {
2087                                 if (cur_logical >= map->m_lblk + blocks)
2088                                         break;
2089
2090                                 if (buffer_delay(bh) || buffer_unwritten(bh)) {
2091
2092                                         BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2093
2094                                         if (buffer_delay(bh)) {
2095                                                 clear_buffer_delay(bh);
2096                                                 bh->b_blocknr = pblock;
2097                                         } else {
2098                                                 /*
2099                                                  * unwritten already should have
2100                                                  * blocknr assigned. Verify that
2101                                                  */
2102                                                 clear_buffer_unwritten(bh);
2103                                                 BUG_ON(bh->b_blocknr != pblock);
2104                                         }
2105
2106                                 } else if (buffer_mapped(bh))
2107                                         BUG_ON(bh->b_blocknr != pblock);
2108
2109                                 if (map->m_flags & EXT4_MAP_UNINIT)
2110                                         set_buffer_uninit(bh);
2111                                 cur_logical++;
2112                                 pblock++;
2113                         } while ((bh = bh->b_this_page) != head);
2114                 }
2115                 pagevec_release(&pvec);
2116         }
2117 }
2118
2119
2120 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2121                                         sector_t logical, long blk_cnt)
2122 {
2123         int nr_pages, i;
2124         pgoff_t index, end;
2125         struct pagevec pvec;
2126         struct inode *inode = mpd->inode;
2127         struct address_space *mapping = inode->i_mapping;
2128
2129         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2130         end   = (logical + blk_cnt - 1) >>
2131                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2132         while (index <= end) {
2133                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2134                 if (nr_pages == 0)
2135                         break;
2136                 for (i = 0; i < nr_pages; i++) {
2137                         struct page *page = pvec.pages[i];
2138                         if (page->index > end)
2139                                 break;
2140                         BUG_ON(!PageLocked(page));
2141                         BUG_ON(PageWriteback(page));
2142                         block_invalidatepage(page, 0);
2143                         ClearPageUptodate(page);
2144                         unlock_page(page);
2145                 }
2146                 index = pvec.pages[nr_pages - 1]->index + 1;
2147                 pagevec_release(&pvec);
2148         }
2149         return;
2150 }
2151
2152 static void ext4_print_free_blocks(struct inode *inode)
2153 {
2154         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2155         printk(KERN_CRIT "Total free blocks count %lld\n",
2156                ext4_count_free_blocks(inode->i_sb));
2157         printk(KERN_CRIT "Free/Dirty block details\n");
2158         printk(KERN_CRIT "free_blocks=%lld\n",
2159                (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2160         printk(KERN_CRIT "dirty_blocks=%lld\n",
2161                (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2162         printk(KERN_CRIT "Block reservation details\n");
2163         printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2164                EXT4_I(inode)->i_reserved_data_blocks);
2165         printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2166                EXT4_I(inode)->i_reserved_meta_blocks);
2167         return;
2168 }
2169
2170 /*
2171  * mpage_da_map_blocks - go through given space
2172  *
2173  * @mpd - bh describing space
2174  *
2175  * The function skips space we know is already mapped to disk blocks.
2176  *
2177  */
2178 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2179 {
2180         int err, blks, get_blocks_flags;
2181         struct ext4_map_blocks map;
2182         sector_t next = mpd->b_blocknr;
2183         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2184         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2185         handle_t *handle = NULL;
2186
2187         /*
2188          * We consider only non-mapped and non-allocated blocks
2189          */
2190         if ((mpd->b_state  & (1 << BH_Mapped)) &&
2191                 !(mpd->b_state & (1 << BH_Delay)) &&
2192                 !(mpd->b_state & (1 << BH_Unwritten)))
2193                 return 0;
2194
2195         /*
2196          * If we didn't accumulate anything to write simply return
2197          */
2198         if (!mpd->b_size)
2199                 return 0;
2200
2201         handle = ext4_journal_current_handle();
2202         BUG_ON(!handle);
2203
2204         /*
2205          * Call ext4_map_blocks() to allocate any delayed allocation
2206          * blocks, or to convert an uninitialized extent to be
2207          * initialized (in the case where we have written into
2208          * one or more preallocated blocks).
2209          *
2210          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2211          * indicate that we are on the delayed allocation path.  This
2212          * affects functions in many different parts of the allocation
2213          * call path.  This flag exists primarily because we don't
2214          * want to change *many* call functions, so ext4_map_blocks()
2215          * will set the magic i_delalloc_reserved_flag once the
2216          * inode's allocation semaphore is taken.
2217          *
2218          * If the blocks in questions were delalloc blocks, set
2219          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2220          * variables are updated after the blocks have been allocated.
2221          */
2222         map.m_lblk = next;
2223         map.m_len = max_blocks;
2224         get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2225         if (ext4_should_dioread_nolock(mpd->inode))
2226                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2227         if (mpd->b_state & (1 << BH_Delay))
2228                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2229
2230         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2231         if (blks < 0) {
2232                 struct super_block *sb = mpd->inode->i_sb;
2233
2234                 err = blks;
2235                 /*
2236                  * If get block returns with error we simply
2237                  * return. Later writepage will redirty the page and
2238                  * writepages will find the dirty page again
2239                  */
2240                 if (err == -EAGAIN)
2241                         return 0;
2242
2243                 if (err == -ENOSPC &&
2244                     ext4_count_free_blocks(sb)) {
2245                         mpd->retval = err;
2246                         return 0;
2247                 }
2248
2249                 /*
2250                  * get block failure will cause us to loop in
2251                  * writepages, because a_ops->writepage won't be able
2252                  * to make progress. The page will be redirtied by
2253                  * writepage and writepages will again try to write
2254                  * the same.
2255                  */
2256                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2257                         ext4_msg(sb, KERN_CRIT,
2258                                  "delayed block allocation failed for inode %lu "
2259                                  "at logical offset %llu with max blocks %zd "
2260                                  "with error %d", mpd->inode->i_ino,
2261                                  (unsigned long long) next,
2262                                  mpd->b_size >> mpd->inode->i_blkbits, err);
2263                         ext4_msg(sb, KERN_CRIT,
2264                                 "This should not happen!! Data will be lost\n");
2265                         if (err == -ENOSPC)
2266                                 ext4_print_free_blocks(mpd->inode);
2267                 }
2268                 /* invalidate all the pages */
2269                 ext4_da_block_invalidatepages(mpd, next,
2270                                 mpd->b_size >> mpd->inode->i_blkbits);
2271                 return err;
2272         }
2273         BUG_ON(blks == 0);
2274
2275         if (map.m_flags & EXT4_MAP_NEW) {
2276                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
2277                 int i;
2278
2279                 for (i = 0; i < map.m_len; i++)
2280                         unmap_underlying_metadata(bdev, map.m_pblk + i);
2281         }
2282
2283         /*
2284          * If blocks are delayed marked, we need to
2285          * put actual blocknr and drop delayed bit
2286          */
2287         if ((mpd->b_state & (1 << BH_Delay)) ||
2288             (mpd->b_state & (1 << BH_Unwritten)))
2289                 mpage_put_bnr_to_bhs(mpd, &map);
2290
2291         if (ext4_should_order_data(mpd->inode)) {
2292                 err = ext4_jbd2_file_inode(handle, mpd->inode);
2293                 if (err)
2294                         return err;
2295         }
2296
2297         /*
2298          * Update on-disk size along with block allocation.
2299          */
2300         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2301         if (disksize > i_size_read(mpd->inode))
2302                 disksize = i_size_read(mpd->inode);
2303         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2304                 ext4_update_i_disksize(mpd->inode, disksize);
2305                 return ext4_mark_inode_dirty(handle, mpd->inode);
2306         }
2307
2308         return 0;
2309 }
2310
2311 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2312                 (1 << BH_Delay) | (1 << BH_Unwritten))
2313
2314 /*
2315  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2316  *
2317  * @mpd->lbh - extent of blocks
2318  * @logical - logical number of the block in the file
2319  * @bh - bh of the block (used to access block's state)
2320  *
2321  * the function is used to collect contig. blocks in same state
2322  */
2323 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2324                                    sector_t logical, size_t b_size,
2325                                    unsigned long b_state)
2326 {
2327         sector_t next;
2328         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2329
2330         /*
2331          * XXX Don't go larger than mballoc is willing to allocate
2332          * This is a stopgap solution.  We eventually need to fold
2333          * mpage_da_submit_io() into this function and then call
2334          * ext4_map_blocks() multiple times in a loop
2335          */
2336         if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
2337                 goto flush_it;
2338
2339         /* check if thereserved journal credits might overflow */
2340         if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
2341                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2342                         /*
2343                          * With non-extent format we are limited by the journal
2344                          * credit available.  Total credit needed to insert
2345                          * nrblocks contiguous blocks is dependent on the
2346                          * nrblocks.  So limit nrblocks.
2347                          */
2348                         goto flush_it;
2349                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2350                                 EXT4_MAX_TRANS_DATA) {
2351                         /*
2352                          * Adding the new buffer_head would make it cross the
2353                          * allowed limit for which we have journal credit
2354                          * reserved. So limit the new bh->b_size
2355                          */
2356                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2357                                                 mpd->inode->i_blkbits;
2358                         /* we will do mpage_da_submit_io in the next loop */
2359                 }
2360         }
2361         /*
2362          * First block in the extent
2363          */
2364         if (mpd->b_size == 0) {
2365                 mpd->b_blocknr = logical;
2366                 mpd->b_size = b_size;
2367                 mpd->b_state = b_state & BH_FLAGS;
2368                 return;
2369         }
2370
2371         next = mpd->b_blocknr + nrblocks;
2372         /*
2373          * Can we merge the block to our big extent?
2374          */
2375         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2376                 mpd->b_size += b_size;
2377                 return;
2378         }
2379
2380 flush_it:
2381         /*
2382          * We couldn't merge the block to our extent, so we
2383          * need to flush current  extent and start new one
2384          */
2385         if (mpage_da_map_blocks(mpd) == 0)
2386                 mpage_da_submit_io(mpd);
2387         mpd->io_done = 1;
2388         return;
2389 }
2390
2391 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2392 {
2393         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2394 }
2395
2396 /*
2397  * __mpage_da_writepage - finds extent of pages and blocks
2398  *
2399  * @page: page to consider
2400  * @wbc: not used, we just follow rules
2401  * @data: context
2402  *
2403  * The function finds extents of pages and scan them for all blocks.
2404  */
2405 static int __mpage_da_writepage(struct page *page,
2406                                 struct writeback_control *wbc, void *data)
2407 {
2408         struct mpage_da_data *mpd = data;
2409         struct inode *inode = mpd->inode;
2410         struct buffer_head *bh, *head;
2411         sector_t logical;
2412
2413         /*
2414          * Can we merge this page to current extent?
2415          */
2416         if (mpd->next_page != page->index) {
2417                 /*
2418                  * Nope, we can't. So, we map non-allocated blocks
2419                  * and start IO on them using writepage()
2420                  */
2421                 if (mpd->next_page != mpd->first_page) {
2422                         if (mpage_da_map_blocks(mpd) == 0)
2423                                 mpage_da_submit_io(mpd);
2424                         /*
2425                          * skip rest of the page in the page_vec
2426                          */
2427                         mpd->io_done = 1;
2428                         redirty_page_for_writepage(wbc, page);
2429                         unlock_page(page);
2430                         return MPAGE_DA_EXTENT_TAIL;
2431                 }
2432
2433                 /*
2434                  * Start next extent of pages ...
2435                  */
2436                 mpd->first_page = page->index;
2437
2438                 /*
2439                  * ... and blocks
2440                  */
2441                 mpd->b_size = 0;
2442                 mpd->b_state = 0;
2443                 mpd->b_blocknr = 0;
2444         }
2445
2446         mpd->next_page = page->index + 1;
2447         logical = (sector_t) page->index <<
2448                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2449
2450         if (!page_has_buffers(page)) {
2451                 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2452                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2453                 if (mpd->io_done)
2454                         return MPAGE_DA_EXTENT_TAIL;
2455         } else {
2456                 /*
2457                  * Page with regular buffer heads, just add all dirty ones
2458                  */
2459                 head = page_buffers(page);
2460                 bh = head;
2461                 do {
2462                         BUG_ON(buffer_locked(bh));
2463                         /*
2464                          * We need to try to allocate
2465                          * unmapped blocks in the same page.
2466                          * Otherwise we won't make progress
2467                          * with the page in ext4_writepage
2468                          */
2469                         if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2470                                 mpage_add_bh_to_extent(mpd, logical,
2471                                                        bh->b_size,
2472                                                        bh->b_state);
2473                                 if (mpd->io_done)
2474                                         return MPAGE_DA_EXTENT_TAIL;
2475                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2476                                 /*
2477                                  * mapped dirty buffer. We need to update
2478                                  * the b_state because we look at
2479                                  * b_state in mpage_da_map_blocks. We don't
2480                                  * update b_size because if we find an
2481                                  * unmapped buffer_head later we need to
2482                                  * use the b_state flag of that buffer_head.
2483                                  */
2484                                 if (mpd->b_size == 0)
2485                                         mpd->b_state = bh->b_state & BH_FLAGS;
2486                         }
2487                         logical++;
2488                 } while ((bh = bh->b_this_page) != head);
2489         }
2490
2491         return 0;
2492 }
2493
2494 /*
2495  * This is a special get_blocks_t callback which is used by
2496  * ext4_da_write_begin().  It will either return mapped block or
2497  * reserve space for a single block.
2498  *
2499  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2500  * We also have b_blocknr = -1 and b_bdev initialized properly
2501  *
2502  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2503  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2504  * initialized properly.
2505  */
2506 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2507                                   struct buffer_head *bh, int create)
2508 {
2509         struct ext4_map_blocks map;
2510         int ret = 0;
2511         sector_t invalid_block = ~((sector_t) 0xffff);
2512
2513         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2514                 invalid_block = ~0;
2515
2516         BUG_ON(create == 0);
2517         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2518
2519         map.m_lblk = iblock;
2520         map.m_len = 1;
2521
2522         /*
2523          * first, we need to know whether the block is allocated already
2524          * preallocated blocks are unmapped but should treated
2525          * the same as allocated blocks.
2526          */
2527         ret = ext4_map_blocks(NULL, inode, &map, 0);
2528         if (ret < 0)
2529                 return ret;
2530         if (ret == 0) {
2531                 if (buffer_delay(bh))
2532                         return 0; /* Not sure this could or should happen */
2533                 /*
2534                  * XXX: __block_prepare_write() unmaps passed block,
2535                  * is it OK?
2536                  */
2537                 ret = ext4_da_reserve_space(inode, iblock);
2538                 if (ret)
2539                         /* not enough space to reserve */
2540                         return ret;
2541
2542                 map_bh(bh, inode->i_sb, invalid_block);
2543                 set_buffer_new(bh);
2544                 set_buffer_delay(bh);
2545                 return 0;
2546         }
2547
2548         map_bh(bh, inode->i_sb, map.m_pblk);
2549         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2550
2551         if (buffer_unwritten(bh)) {
2552                 /* A delayed write to unwritten bh should be marked
2553                  * new and mapped.  Mapped ensures that we don't do
2554                  * get_block multiple times when we write to the same
2555                  * offset and new ensures that we do proper zero out
2556                  * for partial write.
2557                  */
2558                 set_buffer_new(bh);
2559                 set_buffer_mapped(bh);
2560         }
2561         return 0;
2562 }
2563
2564 /*
2565  * This function is used as a standard get_block_t calback function
2566  * when there is no desire to allocate any blocks.  It is used as a
2567  * callback function for block_prepare_write() and block_write_full_page().
2568  * These functions should only try to map a single block at a time.
2569  *
2570  * Since this function doesn't do block allocations even if the caller
2571  * requests it by passing in create=1, it is critically important that
2572  * any caller checks to make sure that any buffer heads are returned
2573  * by this function are either all already mapped or marked for
2574  * delayed allocation before calling  block_write_full_page().  Otherwise,
2575  * b_blocknr could be left unitialized, and the page write functions will
2576  * be taken by surprise.
2577  */
2578 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2579                                    struct buffer_head *bh_result, int create)
2580 {
2581         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2582         return _ext4_get_block(inode, iblock, bh_result, 0);
2583 }
2584
2585 static int bget_one(handle_t *handle, struct buffer_head *bh)
2586 {
2587         get_bh(bh);
2588         return 0;
2589 }
2590
2591 static int bput_one(handle_t *handle, struct buffer_head *bh)
2592 {
2593         put_bh(bh);
2594         return 0;
2595 }
2596
2597 static int __ext4_journalled_writepage(struct page *page,
2598                                        unsigned int len)
2599 {
2600         struct address_space *mapping = page->mapping;
2601         struct inode *inode = mapping->host;
2602         struct buffer_head *page_bufs;
2603         handle_t *handle = NULL;
2604         int ret = 0;
2605         int err;
2606
2607         page_bufs = page_buffers(page);
2608         BUG_ON(!page_bufs);
2609         walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2610         /* As soon as we unlock the page, it can go away, but we have
2611          * references to buffers so we are safe */
2612         unlock_page(page);
2613
2614         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2615         if (IS_ERR(handle)) {
2616                 ret = PTR_ERR(handle);
2617                 goto out;
2618         }
2619
2620         ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2621                                 do_journal_get_write_access);
2622
2623         err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2624                                 write_end_fn);
2625         if (ret == 0)
2626                 ret = err;
2627         err = ext4_journal_stop(handle);
2628         if (!ret)
2629                 ret = err;
2630
2631         walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2632         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2633 out:
2634         return ret;
2635 }
2636
2637 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2638 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2639
2640 /*
2641  * Note that we don't need to start a transaction unless we're journaling data
2642  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2643  * need to file the inode to the transaction's list in ordered mode because if
2644  * we are writing back data added by write(), the inode is already there and if
2645  * we are writing back data modified via mmap(), noone guarantees in which
2646  * transaction the data will hit the disk. In case we are journaling data, we
2647  * cannot start transaction directly because transaction start ranks above page
2648  * lock so we have to do some magic.
2649  *
2650  * This function can get called via...
2651  *   - ext4_da_writepages after taking page lock (have journal handle)
2652  *   - journal_submit_inode_data_buffers (no journal handle)
2653  *   - shrink_page_list via pdflush (no journal handle)
2654  *   - grab_page_cache when doing write_begin (have journal handle)
2655  *
2656  * We don't do any block allocation in this function. If we have page with
2657  * multiple blocks we need to write those buffer_heads that are mapped. This
2658  * is important for mmaped based write. So if we do with blocksize 1K
2659  * truncate(f, 1024);
2660  * a = mmap(f, 0, 4096);
2661  * a[0] = 'a';
2662  * truncate(f, 4096);
2663  * we have in the page first buffer_head mapped via page_mkwrite call back
2664  * but other bufer_heads would be unmapped but dirty(dirty done via the
2665  * do_wp_page). So writepage should write the first block. If we modify
2666  * the mmap area beyond 1024 we will again get a page_fault and the
2667  * page_mkwrite callback will do the block allocation and mark the
2668  * buffer_heads mapped.
2669  *
2670  * We redirty the page if we have any buffer_heads that is either delay or
2671  * unwritten in the page.
2672  *
2673  * We can get recursively called as show below.
2674  *
2675  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2676  *              ext4_writepage()
2677  *
2678  * But since we don't do any block allocation we should not deadlock.
2679  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2680  */
2681 static int ext4_writepage(struct page *page,
2682                           struct writeback_control *wbc)
2683 {
2684         int ret = 0;
2685         loff_t size;
2686         unsigned int len;
2687         struct buffer_head *page_bufs = NULL;
2688         struct inode *inode = page->mapping->host;
2689
2690         trace_ext4_writepage(inode, page);
2691         size = i_size_read(inode);
2692         if (page->index == size >> PAGE_CACHE_SHIFT)
2693                 len = size & ~PAGE_CACHE_MASK;
2694         else
2695                 len = PAGE_CACHE_SIZE;
2696
2697         if (page_has_buffers(page)) {
2698                 page_bufs = page_buffers(page);
2699                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2700                                         ext4_bh_delay_or_unwritten)) {
2701                         /*
2702                          * We don't want to do  block allocation
2703                          * So redirty the page and return
2704                          * We may reach here when we do a journal commit
2705                          * via journal_submit_inode_data_buffers.
2706                          * If we don't have mapping block we just ignore
2707                          * them. We can also reach here via shrink_page_list
2708                          */
2709                         redirty_page_for_writepage(wbc, page);
2710                         unlock_page(page);
2711                         return 0;
2712                 }
2713         } else {
2714                 /*
2715                  * The test for page_has_buffers() is subtle:
2716                  * We know the page is dirty but it lost buffers. That means
2717                  * that at some moment in time after write_begin()/write_end()
2718                  * has been called all buffers have been clean and thus they
2719                  * must have been written at least once. So they are all
2720                  * mapped and we can happily proceed with mapping them
2721                  * and writing the page.
2722                  *
2723                  * Try to initialize the buffer_heads and check whether
2724                  * all are mapped and non delay. We don't want to
2725                  * do block allocation here.
2726                  */
2727                 ret = block_prepare_write(page, 0, len,
2728                                           noalloc_get_block_write);
2729                 if (!ret) {
2730                         page_bufs = page_buffers(page);
2731                         /* check whether all are mapped and non delay */
2732                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2733                                                 ext4_bh_delay_or_unwritten)) {
2734                                 redirty_page_for_writepage(wbc, page);
2735                                 unlock_page(page);
2736                                 return 0;
2737                         }
2738                 } else {
2739                         /*
2740                          * We can't do block allocation here
2741                          * so just redity the page and unlock
2742                          * and return
2743                          */
2744                         redirty_page_for_writepage(wbc, page);
2745                         unlock_page(page);
2746                         return 0;
2747                 }
2748                 /* now mark the buffer_heads as dirty and uptodate */
2749                 block_commit_write(page, 0, len);
2750         }
2751
2752         if (PageChecked(page) && ext4_should_journal_data(inode)) {
2753                 /*
2754                  * It's mmapped pagecache.  Add buffers and journal it.  There
2755                  * doesn't seem much point in redirtying the page here.
2756                  */
2757                 ClearPageChecked(page);
2758                 return __ext4_journalled_writepage(page, len);
2759         }
2760
2761         if (page_bufs && buffer_uninit(page_bufs)) {
2762                 ext4_set_bh_endio(page_bufs, inode);
2763                 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2764                                             wbc, ext4_end_io_buffer_write);
2765         } else
2766                 ret = block_write_full_page(page, noalloc_get_block_write,
2767                                             wbc);
2768
2769         return ret;
2770 }
2771
2772 /*
2773  * This is called via ext4_da_writepages() to
2774  * calulate the total number of credits to reserve to fit
2775  * a single extent allocation into a single transaction,
2776  * ext4_da_writpeages() will loop calling this before
2777  * the block allocation.
2778  */
2779
2780 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2781 {
2782         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2783
2784         /*
2785          * With non-extent format the journal credit needed to
2786          * insert nrblocks contiguous block is dependent on
2787          * number of contiguous block. So we will limit
2788          * number of contiguous block to a sane value
2789          */
2790         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2791             (max_blocks > EXT4_MAX_TRANS_DATA))
2792                 max_blocks = EXT4_MAX_TRANS_DATA;
2793
2794         return ext4_chunk_trans_blocks(inode, max_blocks);
2795 }
2796
2797 /*
2798  * write_cache_pages_da - walk the list of dirty pages of the given
2799  * address space and call the callback function (which usually writes
2800  * the pages).
2801  *
2802  * This is a forked version of write_cache_pages().  Differences:
2803  *      Range cyclic is ignored.
2804  *      no_nrwrite_index_update is always presumed true
2805  */
2806 static int write_cache_pages_da(struct address_space *mapping,
2807                                 struct writeback_control *wbc,
2808                                 struct mpage_da_data *mpd)
2809 {
2810         int ret = 0;
2811         int done = 0;
2812         struct pagevec pvec;
2813         int nr_pages;
2814         pgoff_t index;
2815         pgoff_t end;            /* Inclusive */
2816         long nr_to_write = wbc->nr_to_write;
2817
2818         pagevec_init(&pvec, 0);
2819         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2820         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2821
2822         while (!done && (index <= end)) {
2823                 int i;
2824
2825                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2826                               PAGECACHE_TAG_DIRTY,
2827                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2828                 if (nr_pages == 0)
2829                         break;
2830
2831                 for (i = 0; i < nr_pages; i++) {
2832                         struct page *page = pvec.pages[i];
2833
2834                         /*
2835                          * At this point, the page may be truncated or
2836                          * invalidated (changing page->mapping to NULL), or
2837                          * even swizzled back from swapper_space to tmpfs file
2838                          * mapping. However, page->index will not change
2839                          * because we have a reference on the page.
2840                          */
2841                         if (page->index > end) {
2842                                 done = 1;
2843                                 break;
2844                         }
2845
2846                         lock_page(page);
2847
2848                         /*
2849                          * Page truncated or invalidated. We can freely skip it
2850                          * then, even for data integrity operations: the page
2851                          * has disappeared concurrently, so there could be no
2852                          * real expectation of this data interity operation
2853                          * even if there is now a new, dirty page at the same
2854                          * pagecache address.
2855                          */
2856                         if (unlikely(page->mapping != mapping)) {
2857 continue_unlock:
2858                                 unlock_page(page);
2859                                 continue;
2860                         }
2861
2862                         if (!PageDirty(page)) {
2863                                 /* someone wrote it for us */
2864                                 goto continue_unlock;
2865                         }
2866
2867                         if (PageWriteback(page)) {
2868                                 if (wbc->sync_mode != WB_SYNC_NONE)
2869                                         wait_on_page_writeback(page);
2870                                 else
2871                                         goto continue_unlock;
2872                         }
2873
2874                         BUG_ON(PageWriteback(page));
2875                         if (!clear_page_dirty_for_io(page))
2876                                 goto continue_unlock;
2877
2878                         ret = __mpage_da_writepage(page, wbc, mpd);
2879                         if (unlikely(ret)) {
2880                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2881                                         unlock_page(page);
2882                                         ret = 0;
2883                                 } else {
2884                                         done = 1;
2885                                         break;
2886                                 }
2887                         }
2888
2889                         if (nr_to_write > 0) {
2890                                 nr_to_write--;
2891                                 if (nr_to_write == 0 &&
2892                                     wbc->sync_mode == WB_SYNC_NONE) {
2893                                         /*
2894                                          * We stop writing back only if we are
2895                                          * not doing integrity sync. In case of
2896                                          * integrity sync we have to keep going
2897                                          * because someone may be concurrently
2898                                          * dirtying pages, and we might have
2899                                          * synced a lot of newly appeared dirty
2900                                          * pages, but have not synced all of the
2901                                          * old dirty pages.
2902                                          */
2903                                         done = 1;
2904                                         break;
2905                                 }
2906                         }
2907                 }
2908                 pagevec_release(&pvec);
2909                 cond_resched();
2910         }
2911         return ret;
2912 }
2913
2914
2915 static int ext4_da_writepages(struct address_space *mapping,
2916                               struct writeback_control *wbc)
2917 {
2918         pgoff_t index;
2919         int range_whole = 0;
2920         handle_t *handle = NULL;
2921         struct mpage_da_data mpd;
2922         struct inode *inode = mapping->host;
2923         int pages_written = 0;
2924         long pages_skipped;
2925         unsigned int max_pages;
2926         int range_cyclic, cycled = 1, io_done = 0;
2927         int needed_blocks, ret = 0;
2928         long desired_nr_to_write, nr_to_writebump = 0;
2929         loff_t range_start = wbc->range_start;
2930         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2931
2932         trace_ext4_da_writepages(inode, wbc);
2933
2934         /*
2935          * No pages to write? This is mainly a kludge to avoid starting
2936          * a transaction for special inodes like journal inode on last iput()
2937          * because that could violate lock ordering on umount
2938          */
2939         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2940                 return 0;
2941
2942         /*
2943          * If the filesystem has aborted, it is read-only, so return
2944          * right away instead of dumping stack traces later on that
2945          * will obscure the real source of the problem.  We test
2946          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2947          * the latter could be true if the filesystem is mounted
2948          * read-only, and in that case, ext4_da_writepages should
2949          * *never* be called, so if that ever happens, we would want
2950          * the stack trace.
2951          */
2952         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2953                 return -EROFS;
2954
2955         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2956                 range_whole = 1;
2957
2958         range_cyclic = wbc->range_cyclic;
2959         if (wbc->range_cyclic) {
2960                 index = mapping->writeback_index;
2961                 if (index)
2962                         cycled = 0;
2963                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2964                 wbc->range_end  = LLONG_MAX;
2965                 wbc->range_cyclic = 0;
2966         } else
2967                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2968
2969         /*
2970          * This works around two forms of stupidity.  The first is in
2971          * the writeback code, which caps the maximum number of pages
2972          * written to be 1024 pages.  This is wrong on multiple
2973          * levels; different architectues have a different page size,
2974          * which changes the maximum amount of data which gets
2975          * written.  Secondly, 4 megabytes is way too small.  XFS
2976          * forces this value to be 16 megabytes by multiplying
2977          * nr_to_write parameter by four, and then relies on its
2978          * allocator to allocate larger extents to make them
2979          * contiguous.  Unfortunately this brings us to the second
2980          * stupidity, which is that ext4's mballoc code only allocates
2981          * at most 2048 blocks.  So we force contiguous writes up to
2982          * the number of dirty blocks in the inode, or
2983          * sbi->max_writeback_mb_bump whichever is smaller.
2984          */
2985         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2986         if (!range_cyclic && range_whole)
2987                 desired_nr_to_write = wbc->nr_to_write * 8;
2988         else
2989                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2990                                                            max_pages);
2991         if (desired_nr_to_write > max_pages)
2992                 desired_nr_to_write = max_pages;
2993
2994         if (wbc->nr_to_write < desired_nr_to_write) {
2995                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2996                 wbc->nr_to_write = desired_nr_to_write;
2997         }
2998
2999         mpd.wbc = wbc;
3000         mpd.inode = mapping->host;
3001
3002         pages_skipped = wbc->pages_skipped;
3003
3004 retry:
3005         while (!ret && wbc->nr_to_write > 0) {
3006
3007                 /*
3008                  * we  insert one extent at a time. So we need
3009                  * credit needed for single extent allocation.
3010                  * journalled mode is currently not supported
3011                  * by delalloc
3012                  */
3013                 BUG_ON(ext4_should_journal_data(inode));
3014                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
3015
3016                 /* start a new transaction*/
3017                 handle = ext4_journal_start(inode, needed_blocks);
3018                 if (IS_ERR(handle)) {
3019                         ret = PTR_ERR(handle);
3020                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
3021                                "%ld pages, ino %lu; err %d", __func__,
3022                                 wbc->nr_to_write, inode->i_ino, ret);
3023                         goto out_writepages;
3024                 }
3025
3026                 /*
3027                  * Now call __mpage_da_writepage to find the next
3028                  * contiguous region of logical blocks that need
3029                  * blocks to be allocated by ext4.  We don't actually
3030                  * submit the blocks for I/O here, even though
3031                  * write_cache_pages thinks it will, and will set the
3032                  * pages as clean for write before calling
3033                  * __mpage_da_writepage().
3034                  */
3035                 mpd.b_size = 0;
3036                 mpd.b_state = 0;
3037                 mpd.b_blocknr = 0;
3038                 mpd.first_page = 0;
3039                 mpd.next_page = 0;
3040                 mpd.io_done = 0;
3041                 mpd.pages_written = 0;
3042                 mpd.retval = 0;
3043                 ret = write_cache_pages_da(mapping, wbc, &mpd);
3044                 /*
3045                  * If we have a contiguous extent of pages and we
3046                  * haven't done the I/O yet, map the blocks and submit
3047                  * them for I/O.
3048                  */
3049                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
3050                         if (mpage_da_map_blocks(&mpd) == 0)
3051                                 mpage_da_submit_io(&mpd);
3052                         mpd.io_done = 1;
3053                         ret = MPAGE_DA_EXTENT_TAIL;
3054                 }
3055                 trace_ext4_da_write_pages(inode, &mpd);
3056                 wbc->nr_to_write -= mpd.pages_written;
3057
3058                 ext4_journal_stop(handle);
3059
3060                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
3061                         /* commit the transaction which would
3062                          * free blocks released in the transaction
3063                          * and try again
3064                          */
3065                         jbd2_journal_force_commit_nested(sbi->s_journal);
3066                         wbc->pages_skipped = pages_skipped;
3067                         ret = 0;
3068                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
3069                         /*
3070                          * got one extent now try with
3071                          * rest of the pages
3072                          */
3073                         pages_written += mpd.pages_written;
3074                         wbc->pages_skipped = pages_skipped;
3075                         ret = 0;
3076                         io_done = 1;
3077                 } else if (wbc->nr_to_write)
3078                         /*
3079                          * There is no more writeout needed
3080                          * or we requested for a noblocking writeout
3081                          * and we found the device congested
3082                          */
3083                         break;
3084         }
3085         if (!io_done && !cycled) {
3086                 cycled = 1;
3087                 index = 0;
3088                 wbc->range_start = index << PAGE_CACHE_SHIFT;
3089                 wbc->range_end  = mapping->writeback_index - 1;
3090                 goto retry;
3091         }
3092         if (pages_skipped != wbc->pages_skipped)
3093                 ext4_msg(inode->i_sb, KERN_CRIT,
3094                          "This should not happen leaving %s "
3095                          "with nr_to_write = %ld ret = %d",
3096                          __func__, wbc->nr_to_write, ret);
3097
3098         /* Update index */
3099         index += pages_written;
3100         wbc->range_cyclic = range_cyclic;
3101         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3102                 /*
3103                  * set the writeback_index so that range_cyclic
3104                  * mode will write it back later
3105                  */
3106                 mapping->writeback_index = index;
3107
3108 out_writepages:
3109         wbc->nr_to_write -= nr_to_writebump;
3110         wbc->range_start = range_start;
3111         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3112         return ret;
3113 }
3114
3115 #define FALL_BACK_TO_NONDELALLOC 1
3116 static int ext4_nonda_switch(struct super_block *sb)
3117 {
3118         s64 free_blocks, dirty_blocks;
3119         struct ext4_sb_info *sbi = EXT4_SB(sb);
3120
3121         /*
3122          * switch to non delalloc mode if we are running low
3123          * on free block. The free block accounting via percpu
3124          * counters can get slightly wrong with percpu_counter_batch getting
3125          * accumulated on each CPU without updating global counters
3126          * Delalloc need an accurate free block accounting. So switch
3127          * to non delalloc when we are near to error range.
3128          */
3129         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3130         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3131         if (2 * free_blocks < 3 * dirty_blocks ||
3132                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3133                 /*
3134                  * free block count is less than 150% of dirty blocks
3135                  * or free blocks is less than watermark
3136                  */
3137                 return 1;
3138         }
3139         /*
3140          * Even if we don't switch but are nearing capacity,
3141          * start pushing delalloc when 1/2 of free blocks are dirty.
3142          */
3143         if (free_blocks < 2 * dirty_blocks)
3144                 writeback_inodes_sb_if_idle(sb);
3145
3146         return 0;
3147 }
3148
3149 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3150                                loff_t pos, unsigned len, unsigned flags,
3151                                struct page **pagep, void **fsdata)
3152 {
3153         int ret, retries = 0;
3154         struct page *page;
3155         pgoff_t index;
3156         struct inode *inode = mapping->host;
3157         handle_t *handle;
3158
3159         index = pos >> PAGE_CACHE_SHIFT;
3160
3161         if (ext4_nonda_switch(inode->i_sb)) {
3162                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3163                 return ext4_write_begin(file, mapping, pos,
3164                                         len, flags, pagep, fsdata);
3165         }
3166         *fsdata = (void *)0;
3167         trace_ext4_da_write_begin(inode, pos, len, flags);
3168 retry:
3169         /*
3170          * With delayed allocation, we don't log the i_disksize update
3171          * if there is delayed block allocation. But we still need
3172          * to journalling the i_disksize update if writes to the end
3173          * of file which has an already mapped buffer.
3174          */
3175         handle = ext4_journal_start(inode, 1);
3176         if (IS_ERR(handle)) {
3177                 ret = PTR_ERR(handle);
3178                 goto out;
3179         }
3180         /* We cannot recurse into the filesystem as the transaction is already
3181          * started */
3182         flags |= AOP_FLAG_NOFS;
3183
3184         page = grab_cache_page_write_begin(mapping, index, flags);
3185         if (!page) {
3186                 ext4_journal_stop(handle);
3187                 ret = -ENOMEM;
3188                 goto out;
3189         }
3190         *pagep = page;
3191
3192         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
3193                                 ext4_da_get_block_prep);
3194         if (ret < 0) {
3195                 unlock_page(page);
3196                 ext4_journal_stop(handle);
3197                 page_cache_release(page);
3198                 /*
3199                  * block_write_begin may have instantiated a few blocks
3200                  * outside i_size.  Trim these off again. Don't need
3201                  * i_size_read because we hold i_mutex.
3202                  */
3203                 if (pos + len > inode->i_size)
3204                         ext4_truncate_failed_write(inode);
3205         }
3206
3207         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3208                 goto retry;
3209 out:
3210         return ret;
3211 }
3212
3213 /*
3214  * Check if we should update i_disksize
3215  * when write to the end of file but not require block allocation
3216  */
3217 static int ext4_da_should_update_i_disksize(struct page *page,
3218                                             unsigned long offset)
3219 {
3220         struct buffer_head *bh;
3221         struct inode *inode = page->mapping->host;
3222         unsigned int idx;
3223         int i;
3224
3225         bh = page_buffers(page);
3226         idx = offset >> inode->i_blkbits;
3227
3228         for (i = 0; i < idx; i++)
3229                 bh = bh->b_this_page;
3230
3231         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3232                 return 0;
3233         return 1;
3234 }
3235
3236 static int ext4_da_write_end(struct file *file,
3237                              struct address_space *mapping,
3238                              loff_t pos, unsigned len, unsigned copied,
3239                              struct page *page, void *fsdata)
3240 {
3241         struct inode *inode = mapping->host;
3242         int ret = 0, ret2;
3243         handle_t *handle = ext4_journal_current_handle();
3244         loff_t new_i_size;
3245         unsigned long start, end;
3246         int write_mode = (int)(unsigned long)fsdata;
3247
3248         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3249                 if (ext4_should_order_data(inode)) {
3250                         return ext4_ordered_write_end(file, mapping, pos,
3251                                         len, copied, page, fsdata);
3252                 } else if (ext4_should_writeback_data(inode)) {
3253                         return ext4_writeback_write_end(file, mapping, pos,
3254                                         len, copied, page, fsdata);
3255                 } else {
3256                         BUG();
3257                 }
3258         }
3259
3260         trace_ext4_da_write_end(inode, pos, len, copied);
3261         start = pos & (PAGE_CACHE_SIZE - 1);
3262         end = start + copied - 1;
3263
3264         /*
3265          * generic_write_end() will run mark_inode_dirty() if i_size
3266          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3267          * into that.
3268          */
3269
3270         new_i_size = pos + copied;
3271         if (new_i_size > EXT4_I(inode)->i_disksize) {
3272                 if (ext4_da_should_update_i_disksize(page, end)) {
3273                         down_write(&EXT4_I(inode)->i_data_sem);
3274                         if (new_i_size > EXT4_I(inode)->i_disksize) {
3275                                 /*
3276                                  * Updating i_disksize when extending file
3277                                  * without needing block allocation
3278                                  */
3279                                 if (ext4_should_order_data(inode))
3280                                         ret = ext4_jbd2_file_inode(handle,
3281                                                                    inode);
3282
3283                                 EXT4_I(inode)->i_disksize = new_i_size;
3284                         }
3285                         up_write(&EXT4_I(inode)->i_data_sem);
3286                         /* We need to mark inode dirty even if
3287                          * new_i_size is less that inode->i_size
3288                          * bu greater than i_disksize.(hint delalloc)
3289                          */
3290                         ext4_mark_inode_dirty(handle, inode);
3291                 }
3292         }
3293         ret2 = generic_write_end(file, mapping, pos, len, copied,
3294                                                         page, fsdata);
3295         copied = ret2;
3296         if (ret2 < 0)
3297                 ret = ret2;
3298         ret2 = ext4_journal_stop(handle);
3299         if (!ret)
3300                 ret = ret2;
3301
3302         return ret ? ret : copied;
3303 }
3304
3305 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3306 {
3307         /*
3308          * Drop reserved blocks
3309          */
3310         BUG_ON(!PageLocked(page));
3311         if (!page_has_buffers(page))
3312                 goto out;
3313
3314         ext4_da_page_release_reservation(page, offset);
3315
3316 out:
3317         ext4_invalidatepage(page, offset);
3318
3319         return;
3320 }
3321
3322 /*
3323  * Force all delayed allocation blocks to be allocated for a given inode.
3324  */
3325 int ext4_alloc_da_blocks(struct inode *inode)
3326 {
3327         trace_ext4_alloc_da_blocks(inode);
3328
3329         if (!EXT4_I(inode)->i_reserved_data_blocks &&
3330             !EXT4_I(inode)->i_reserved_meta_blocks)
3331                 return 0;
3332
3333         /*
3334          * We do something simple for now.  The filemap_flush() will
3335          * also start triggering a write of the data blocks, which is
3336          * not strictly speaking necessary (and for users of
3337          * laptop_mode, not even desirable).  However, to do otherwise
3338          * would require replicating code paths in:
3339          *
3340          * ext4_da_writepages() ->
3341          *    write_cache_pages() ---> (via passed in callback function)
3342          *        __mpage_da_writepage() -->
3343          *           mpage_add_bh_to_extent()
3344          *           mpage_da_map_blocks()
3345          *
3346          * The problem is that write_cache_pages(), located in
3347          * mm/page-writeback.c, marks pages clean in preparation for
3348          * doing I/O, which is not desirable if we're not planning on
3349          * doing I/O at all.
3350          *
3351          * We could call write_cache_pages(), and then redirty all of
3352          * the pages by calling redirty_page_for_writeback() but that
3353          * would be ugly in the extreme.  So instead we would need to
3354          * replicate parts of the code in the above functions,
3355          * simplifying them becuase we wouldn't actually intend to
3356          * write out the pages, but rather only collect contiguous
3357          * logical block extents, call the multi-block allocator, and
3358          * then update the buffer heads with the block allocations.
3359          *
3360          * For now, though, we'll cheat by calling filemap_flush(),
3361          * which will map the blocks, and start the I/O, but not
3362          * actually wait for the I/O to complete.
3363          */
3364         return filemap_flush(inode->i_mapping);
3365 }
3366
3367 /*
3368  * bmap() is special.  It gets used by applications such as lilo and by
3369  * the swapper to find the on-disk block of a specific piece of data.
3370  *
3371  * Naturally, this is dangerous if the block concerned is still in the
3372  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3373  * filesystem and enables swap, then they may get a nasty shock when the
3374  * data getting swapped to that swapfile suddenly gets overwritten by
3375  * the original zero's written out previously to the journal and
3376  * awaiting writeback in the kernel's buffer cache.
3377  *
3378  * So, if we see any bmap calls here on a modified, data-journaled file,
3379  * take extra steps to flush any blocks which might be in the cache.
3380  */
3381 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3382 {
3383         struct inode *inode = mapping->host;
3384         journal_t *journal;
3385         int err;
3386
3387         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3388                         test_opt(inode->i_sb, DELALLOC)) {
3389                 /*
3390                  * With delalloc we want to sync the file
3391                  * so that we can make sure we allocate
3392                  * blocks for file
3393                  */
3394                 filemap_write_and_wait(mapping);
3395         }
3396
3397         if (EXT4_JOURNAL(inode) &&
3398             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3399                 /*
3400                  * This is a REALLY heavyweight approach, but the use of
3401                  * bmap on dirty files is expected to be extremely rare:
3402                  * only if we run lilo or swapon on a freshly made file
3403                  * do we expect this to happen.
3404                  *
3405                  * (bmap requires CAP_SYS_RAWIO so this does not
3406                  * represent an unprivileged user DOS attack --- we'd be
3407                  * in trouble if mortal users could trigger this path at
3408                  * will.)
3409                  *
3410                  * NB. EXT4_STATE_JDATA is not set on files other than
3411                  * regular files.  If somebody wants to bmap a directory
3412                  * or symlink and gets confused because the buffer
3413                  * hasn't yet been flushed to disk, they deserve
3414                  * everything they get.
3415                  */
3416
3417                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3418                 journal = EXT4_JOURNAL(inode);
3419                 jbd2_journal_lock_updates(journal);
3420                 err = jbd2_journal_flush(journal);
3421                 jbd2_journal_unlock_updates(journal);
3422
3423                 if (err)
3424                         return 0;
3425         }
3426
3427         return generic_block_bmap(mapping, block, ext4_get_block);
3428 }
3429
3430 static int ext4_readpage(struct file *file, struct page *page)
3431 {
3432         return mpage_readpage(page, ext4_get_block);
3433 }
3434
3435 static int
3436 ext4_readpages(struct file *file, struct address_space *mapping,
3437                 struct list_head *pages, unsigned nr_pages)
3438 {
3439         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3440 }
3441
3442 static void ext4_free_io_end(ext4_io_end_t *io)
3443 {
3444         BUG_ON(!io);
3445         if (io->page)
3446                 put_page(io->page);
3447         iput(io->inode);
3448         kfree(io);
3449 }
3450
3451 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3452 {
3453         struct buffer_head *head, *bh;
3454         unsigned int curr_off = 0;
3455
3456         if (!page_has_buffers(page))
3457                 return;
3458         head = bh = page_buffers(page);
3459         do {
3460                 if (offset <= curr_off && test_clear_buffer_uninit(bh)
3461                                         && bh->b_private) {
3462                         ext4_free_io_end(bh->b_private);
3463                         bh->b_private = NULL;
3464                         bh->b_end_io = NULL;
3465                 }
3466                 curr_off = curr_off + bh->b_size;
3467                 bh = bh->b_this_page;
3468         } while (bh != head);
3469 }
3470
3471 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3472 {
3473         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3474
3475         /*
3476          * free any io_end structure allocated for buffers to be discarded
3477          */
3478         if (ext4_should_dioread_nolock(page->mapping->host))
3479                 ext4_invalidatepage_free_endio(page, offset);
3480         /*
3481          * If it's a full truncate we just forget about the pending dirtying
3482          */
3483         if (offset == 0)
3484                 ClearPageChecked(page);
3485
3486         if (journal)
3487                 jbd2_journal_invalidatepage(journal, page, offset);
3488         else
3489                 block_invalidatepage(page, offset);
3490 }
3491
3492 static int ext4_releasepage(struct page *page, gfp_t wait)
3493 {
3494         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3495
3496         WARN_ON(PageChecked(page));
3497         if (!page_has_buffers(page))
3498                 return 0;
3499         if (journal)
3500                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3501         else
3502                 return try_to_free_buffers(page);
3503 }
3504
3505 /*
3506  * O_DIRECT for ext3 (or indirect map) based files
3507  *
3508  * If the O_DIRECT write will extend the file then add this inode to the
3509  * orphan list.  So recovery will truncate it back to the original size
3510  * if the machine crashes during the write.
3511  *
3512  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3513  * crashes then stale disk data _may_ be exposed inside the file. But current
3514  * VFS code falls back into buffered path in that case so we are safe.
3515  */
3516 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3517                               const struct iovec *iov, loff_t offset,
3518                               unsigned long nr_segs)
3519 {
3520         struct file *file = iocb->ki_filp;
3521         struct inode *inode = file->f_mapping->host;
3522         struct ext4_inode_info *ei = EXT4_I(inode);
3523         handle_t *handle;
3524         ssize_t ret;
3525         int orphan = 0;
3526         size_t count = iov_length(iov, nr_segs);
3527         int retries = 0;
3528
3529         if (rw == WRITE) {
3530                 loff_t final_size = offset + count;
3531
3532                 if (final_size > inode->i_size) {
3533                         /* Credits for sb + inode write */
3534                         handle = ext4_journal_start(inode, 2);
3535                         if (IS_ERR(handle)) {
3536                                 ret = PTR_ERR(handle);
3537                                 goto out;
3538                         }
3539                         ret = ext4_orphan_add(handle, inode);
3540                         if (ret) {
3541                                 ext4_journal_stop(handle);
3542                                 goto out;
3543                         }
3544                         orphan = 1;
3545                         ei->i_disksize = inode->i_size;
3546                         ext4_journal_stop(handle);
3547                 }
3548         }
3549
3550 retry:
3551         if (rw == READ && ext4_should_dioread_nolock(inode))
3552                 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
3553                                  inode->i_sb->s_bdev, iov,
3554                                  offset, nr_segs,
3555                                  ext4_get_block, NULL);
3556         else
3557                 ret = blockdev_direct_IO(rw, iocb, inode,
3558                                  inode->i_sb->s_bdev, iov,
3559                                  offset, nr_segs,
3560                                  ext4_get_block, NULL);
3561         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3562                 goto retry;
3563
3564         if (orphan) {
3565                 int err;
3566
3567                 /* Credits for sb + inode write */
3568                 handle = ext4_journal_start(inode, 2);
3569                 if (IS_ERR(handle)) {
3570                         /* This is really bad luck. We've written the data
3571                          * but cannot extend i_size. Bail out and pretend
3572                          * the write failed... */
3573                         ret = PTR_ERR(handle);
3574                         if (inode->i_nlink)
3575                                 ext4_orphan_del(NULL, inode);
3576
3577                         goto out;
3578                 }
3579                 if (inode->i_nlink)
3580                         ext4_orphan_del(handle, inode);
3581                 if (ret > 0) {
3582                         loff_t end = offset + ret;
3583                         if (end > inode->i_size) {
3584                                 ei->i_disksize = end;
3585                                 i_size_write(inode, end);
3586                                 /*
3587                                  * We're going to return a positive `ret'
3588                                  * here due to non-zero-length I/O, so there's
3589                                  * no way of reporting error returns from
3590                                  * ext4_mark_inode_dirty() to userspace.  So
3591                                  * ignore it.
3592                                  */
3593                                 ext4_mark_inode_dirty(handle, inode);
3594                         }
3595                 }
3596                 err = ext4_journal_stop(handle);
3597                 if (ret == 0)
3598                         ret = err;
3599         }
3600 out:
3601         return ret;
3602 }
3603
3604 /*
3605  * ext4_get_block used when preparing for a DIO write or buffer write.
3606  * We allocate an uinitialized extent if blocks haven't been allocated.
3607  * The extent will be converted to initialized after the IO is complete.
3608  */
3609 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3610                    struct buffer_head *bh_result, int create)
3611 {
3612         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3613                    inode->i_ino, create);
3614         return _ext4_get_block(inode, iblock, bh_result,
3615                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3616 }
3617
3618 static void dump_completed_IO(struct inode * inode)
3619 {
3620 #ifdef  EXT4_DEBUG
3621         struct list_head *cur, *before, *after;
3622         ext4_io_end_t *io, *io0, *io1;
3623         unsigned long flags;
3624
3625         if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
3626                 ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
3627                 return;
3628         }
3629
3630         ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
3631         spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3632         list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
3633                 cur = &io->list;
3634                 before = cur->prev;
3635                 io0 = container_of(before, ext4_io_end_t, list);
3636                 after = cur->next;
3637                 io1 = container_of(after, ext4_io_end_t, list);
3638
3639                 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3640                             io, inode->i_ino, io0, io1);
3641         }
3642         spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3643 #endif
3644 }
3645
3646 /*
3647  * check a range of space and convert unwritten extents to written.
3648  */
3649 static int ext4_end_io_nolock(ext4_io_end_t *io)
3650 {
3651         struct inode *inode = io->inode;
3652         loff_t offset = io->offset;
3653         ssize_t size = io->size;
3654         int ret = 0;
3655
3656         ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
3657                    "list->prev 0x%p\n",
3658                    io, inode->i_ino, io->list.next, io->list.prev);
3659
3660         if (list_empty(&io->list))
3661                 return ret;
3662
3663         if (io->flag != EXT4_IO_UNWRITTEN)
3664                 return ret;
3665
3666         ret = ext4_convert_unwritten_extents(inode, offset, size);
3667         if (ret < 0) {
3668                 printk(KERN_EMERG "%s: failed to convert unwritten"
3669                         "extents to written extents, error is %d"
3670                         " io is still on inode %lu aio dio list\n",
3671                        __func__, ret, inode->i_ino);
3672                 return ret;
3673         }
3674
3675         if (io->iocb)
3676                 aio_complete(io->iocb, io->result, 0);
3677         /* clear the DIO AIO unwritten flag */
3678         io->flag = 0;
3679         return ret;
3680 }
3681
3682 /*
3683  * work on completed aio dio IO, to convert unwritten extents to extents
3684  */
3685 static void ext4_end_io_work(struct work_struct *work)
3686 {
3687         ext4_io_end_t           *io = container_of(work, ext4_io_end_t, work);
3688         struct inode            *inode = io->inode;
3689         struct ext4_inode_info  *ei = EXT4_I(inode);
3690         unsigned long           flags;
3691         int                     ret;
3692
3693         mutex_lock(&inode->i_mutex);
3694         ret = ext4_end_io_nolock(io);
3695         if (ret < 0) {
3696                 mutex_unlock(&inode->i_mutex);
3697                 return;
3698         }
3699
3700         spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3701         if (!list_empty(&io->list))
3702                 list_del_init(&io->list);
3703         spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3704         mutex_unlock(&inode->i_mutex);
3705         ext4_free_io_end(io);
3706 }
3707
3708 /*
3709  * This function is called from ext4_sync_file().
3710  *
3711  * When IO is completed, the work to convert unwritten extents to
3712  * written is queued on workqueue but may not get immediately
3713  * scheduled. When fsync is called, we need to ensure the
3714  * conversion is complete before fsync returns.
3715  * The inode keeps track of a list of pending/completed IO that
3716  * might needs to do the conversion. This function walks through
3717  * the list and convert the related unwritten extents for completed IO
3718  * to written.
3719  * The function return the number of pending IOs on success.
3720  */
3721 int flush_completed_IO(struct inode *inode)
3722 {
3723         ext4_io_end_t *io;
3724         struct ext4_inode_info *ei = EXT4_I(inode);
3725         unsigned long flags;
3726         int ret = 0;
3727         int ret2 = 0;
3728
3729         if (list_empty(&ei->i_completed_io_list))
3730                 return ret;
3731
3732         dump_completed_IO(inode);
3733         spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3734         while (!list_empty(&ei->i_completed_io_list)){
3735                 io = list_entry(ei->i_completed_io_list.next,
3736                                 ext4_io_end_t, list);
3737                 /*
3738                  * Calling ext4_end_io_nolock() to convert completed
3739                  * IO to written.
3740                  *
3741                  * When ext4_sync_file() is called, run_queue() may already
3742                  * about to flush the work corresponding to this io structure.
3743                  * It will be upset if it founds the io structure related
3744                  * to the work-to-be schedule is freed.
3745                  *
3746                  * Thus we need to keep the io structure still valid here after
3747                  * convertion finished. The io structure has a flag to
3748                  * avoid double converting from both fsync and background work
3749                  * queue work.
3750                  */
3751                 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3752                 ret = ext4_end_io_nolock(io);
3753                 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3754                 if (ret < 0)
3755                         ret2 = ret;
3756                 else
3757                         list_del_init(&io->list);
3758         }
3759         spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3760         return (ret2 < 0) ? ret2 : 0;
3761 }
3762
3763 static ext4_io_end_t *ext4_init_io_end (struct inode *inode, gfp_t flags)
3764 {
3765         ext4_io_end_t *io = NULL;
3766
3767         io = kmalloc(sizeof(*io), flags);
3768
3769         if (io) {
3770                 igrab(inode);
3771                 io->inode = inode;
3772                 io->flag = 0;
3773                 io->offset = 0;
3774                 io->size = 0;
3775                 io->page = NULL;
3776                 io->iocb = NULL;
3777                 io->result = 0;
3778                 INIT_WORK(&io->work, ext4_end_io_work);
3779                 INIT_LIST_HEAD(&io->list);
3780         }
3781
3782         return io;
3783 }
3784
3785 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3786                             ssize_t size, void *private, int ret,
3787                             bool is_async)
3788 {
3789         ext4_io_end_t *io_end = iocb->private;
3790         struct workqueue_struct *wq;
3791         unsigned long flags;
3792         struct ext4_inode_info *ei;
3793
3794         /* if not async direct IO or dio with 0 bytes write, just return */
3795         if (!io_end || !size)
3796                 goto out;
3797
3798         ext_debug("ext4_end_io_dio(): io_end 0x%p"
3799                   "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3800                   iocb->private, io_end->inode->i_ino, iocb, offset,
3801                   size);
3802
3803         /* if not aio dio with unwritten extents, just free io and return */
3804         if (io_end->flag != EXT4_IO_UNWRITTEN){
3805                 ext4_free_io_end(io_end);
3806                 iocb->private = NULL;
3807 out:
3808                 if (is_async)
3809                         aio_complete(iocb, ret, 0);
3810                 return;
3811         }
3812
3813         io_end->offset = offset;
3814         io_end->size = size;
3815         if (is_async) {
3816                 io_end->iocb = iocb;
3817                 io_end->result = ret;
3818         }
3819         wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3820
3821         /* queue the work to convert unwritten extents to written */
3822         queue_work(wq, &io_end->work);
3823
3824         /* Add the io_end to per-inode completed aio dio list*/
3825         ei = EXT4_I(io_end->inode);
3826         spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3827         list_add_tail(&io_end->list, &ei->i_completed_io_list);
3828         spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3829         iocb->private = NULL;
3830 }
3831
3832 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3833 {
3834         ext4_io_end_t *io_end = bh->b_private;
3835         struct workqueue_struct *wq;
3836         struct inode *inode;
3837         unsigned long flags;
3838
3839         if (!test_clear_buffer_uninit(bh) || !io_end)
3840                 goto out;
3841
3842         if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3843                 printk("sb umounted, discard end_io request for inode %lu\n",
3844                         io_end->inode->i_ino);
3845                 ext4_free_io_end(io_end);
3846                 goto out;
3847         }
3848
3849         io_end->flag = EXT4_IO_UNWRITTEN;
3850         inode = io_end->inode;
3851
3852         /* Add the io_end to per-inode completed io list*/
3853         spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3854         list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3855         spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3856
3857         wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3858         /* queue the work to convert unwritten extents to written */
3859         queue_work(wq, &io_end->work);
3860 out:
3861         bh->b_private = NULL;
3862         bh->b_end_io = NULL;
3863         clear_buffer_uninit(bh);
3864         end_buffer_async_write(bh, uptodate);
3865 }
3866
3867 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3868 {
3869         ext4_io_end_t *io_end;
3870         struct page *page = bh->b_page;
3871         loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3872         size_t size = bh->b_size;
3873
3874 retry:
3875         io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3876         if (!io_end) {
3877                 if (printk_ratelimit())
3878                         printk(KERN_WARNING "%s: allocation fail\n", __func__);
3879                 schedule();
3880                 goto retry;
3881         }
3882         io_end->offset = offset;
3883         io_end->size = size;
3884         /*
3885          * We need to hold a reference to the page to make sure it
3886          * doesn't get evicted before ext4_end_io_work() has a chance
3887          * to convert the extent from written to unwritten.
3888          */
3889         io_end->page = page;
3890         get_page(io_end->page);
3891
3892         bh->b_private = io_end;
3893         bh->b_end_io = ext4_end_io_buffer_write;
3894         return 0;
3895 }
3896
3897 /*
3898  * For ext4 extent files, ext4 will do direct-io write to holes,
3899  * preallocated extents, and those write extend the file, no need to
3900  * fall back to buffered IO.
3901  *
3902  * For holes, we fallocate those blocks, mark them as unintialized
3903  * If those blocks were preallocated, we mark sure they are splited, but
3904  * still keep the range to write as unintialized.
3905  *
3906  * The unwrritten extents will be converted to written when DIO is completed.
3907  * For async direct IO, since the IO may still pending when return, we
3908  * set up an end_io call back function, which will do the convertion
3909  * when async direct IO completed.
3910  *
3911  * If the O_DIRECT write will extend the file then add this inode to the
3912  * orphan list.  So recovery will truncate it back to the original size
3913  * if the machine crashes during the write.
3914  *
3915  */
3916 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3917                               const struct iovec *iov, loff_t offset,
3918                               unsigned long nr_segs)
3919 {
3920         struct file *file = iocb->ki_filp;
3921         struct inode *inode = file->f_mapping->host;
3922         ssize_t ret;
3923         size_t count = iov_length(iov, nr_segs);
3924
3925         loff_t final_size = offset + count;
3926         if (rw == WRITE && final_size <= inode->i_size) {
3927                 /*
3928                  * We could direct write to holes and fallocate.
3929                  *
3930                  * Allocated blocks to fill the hole are marked as uninitialized
3931                  * to prevent paralel buffered read to expose the stale data
3932                  * before DIO complete the data IO.
3933                  *
3934                  * As to previously fallocated extents, ext4 get_block
3935                  * will just simply mark the buffer mapped but still
3936                  * keep the extents uninitialized.
3937                  *
3938                  * for non AIO case, we will convert those unwritten extents
3939                  * to written after return back from blockdev_direct_IO.
3940                  *
3941                  * for async DIO, the conversion needs to be defered when
3942                  * the IO is completed. The ext4 end_io callback function
3943                  * will be called to take care of the conversion work.
3944                  * Here for async case, we allocate an io_end structure to
3945                  * hook to the iocb.
3946                  */
3947                 iocb->private = NULL;
3948                 EXT4_I(inode)->cur_aio_dio = NULL;
3949                 if (!is_sync_kiocb(iocb)) {
3950                         iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3951                         if (!iocb->private)
3952                                 return -ENOMEM;
3953                         /*
3954                          * we save the io structure for current async
3955                          * direct IO, so that later ext4_map_blocks()
3956                          * could flag the io structure whether there
3957                          * is a unwritten extents needs to be converted
3958                          * when IO is completed.
3959                          */
3960                         EXT4_I(inode)->cur_aio_dio = iocb->private;
3961                 }
3962
3963                 ret = blockdev_direct_IO(rw, iocb, inode,
3964                                          inode->i_sb->s_bdev, iov,
3965                                          offset, nr_segs,
3966                                          ext4_get_block_write,
3967                                          ext4_end_io_dio);
3968                 if (iocb->private)
3969                         EXT4_I(inode)->cur_aio_dio = NULL;
3970                 /*
3971                  * The io_end structure takes a reference to the inode,
3972                  * that structure needs to be destroyed and the
3973                  * reference to the inode need to be dropped, when IO is
3974                  * complete, even with 0 byte write, or failed.
3975                  *
3976                  * In the successful AIO DIO case, the io_end structure will be
3977                  * desctroyed and the reference to the inode will be dropped
3978                  * after the end_io call back function is called.
3979                  *
3980                  * In the case there is 0 byte write, or error case, since
3981                  * VFS direct IO won't invoke the end_io call back function,
3982                  * we need to free the end_io structure here.
3983                  */
3984                 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3985                         ext4_free_io_end(iocb->private);
3986                         iocb->private = NULL;
3987                 } else if (ret > 0 && ext4_test_inode_state(inode,
3988                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3989                         int err;
3990                         /*
3991                          * for non AIO case, since the IO is already
3992                          * completed, we could do the convertion right here
3993                          */
3994                         err = ext4_convert_unwritten_extents(inode,
3995                                                              offset, ret);
3996                         if (err < 0)
3997                                 ret = err;
3998                         ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3999                 }
4000                 return ret;
4001         }
4002
4003         /* for write the the end of file case, we fall back to old way */
4004         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4005 }
4006
4007 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
4008                               const struct iovec *iov, loff_t offset,
4009                               unsigned long nr_segs)
4010 {
4011         struct file *file = iocb->ki_filp;
4012         struct inode *inode = file->f_mapping->host;
4013
4014         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4015                 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
4016
4017         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4018 }
4019
4020 /*
4021  * Pages can be marked dirty completely asynchronously from ext4's journalling
4022  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
4023  * much here because ->set_page_dirty is called under VFS locks.  The page is
4024  * not necessarily locked.
4025  *
4026  * We cannot just dirty the page and leave attached buffers clean, because the
4027  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
4028  * or jbddirty because all the journalling code will explode.
4029  *
4030  * So what we do is to mark the page "pending dirty" and next time writepage
4031  * is called, propagate that into the buffers appropriately.
4032  */
4033 static int ext4_journalled_set_page_dirty(struct page *page)
4034 {
4035         SetPageChecked(page);
4036         return __set_page_dirty_nobuffers(page);
4037 }
4038
4039 static const struct address_space_operations ext4_ordered_aops = {
4040         .readpage               = ext4_readpage,
4041         .readpages              = ext4_readpages,
4042         .writepage              = ext4_writepage,
4043         .sync_page              = block_sync_page,
4044         .write_begin            = ext4_write_begin,
4045         .write_end              = ext4_ordered_write_end,
4046         .bmap                   = ext4_bmap,
4047         .invalidatepage         = ext4_invalidatepage,
4048         .releasepage            = ext4_releasepage,
4049         .direct_IO              = ext4_direct_IO,
4050         .migratepage            = buffer_migrate_page,
4051         .is_partially_uptodate  = block_is_partially_uptodate,
4052         .error_remove_page      = generic_error_remove_page,
4053 };
4054
4055 static const struct address_space_operations ext4_writeback_aops = {
4056         .readpage               = ext4_readpage,
4057         .readpages              = ext4_readpages,
4058         .writepage              = ext4_writepage,
4059         .sync_page              = block_sync_page,
4060         .write_begin            = ext4_write_begin,
4061         .write_end              = ext4_writeback_write_end,
4062         .bmap                   = ext4_bmap,
4063         .invalidatepage         = ext4_invalidatepage,
4064         .releasepage            = ext4_releasepage,
4065         .direct_IO              = ext4_direct_IO,
4066         .migratepage            = buffer_migrate_page,
4067         .is_partially_uptodate  = block_is_partially_uptodate,
4068         .error_remove_page      = generic_error_remove_page,
4069 };
4070
4071 static const struct address_space_operations ext4_journalled_aops = {
4072         .readpage               = ext4_readpage,
4073         .readpages              = ext4_readpages,
4074         .writepage              = ext4_writepage,
4075         .sync_page              = block_sync_page,
4076         .write_begin            = ext4_write_begin,
4077         .write_end              = ext4_journalled_write_end,
4078         .set_page_dirty         = ext4_journalled_set_page_dirty,
4079         .bmap                   = ext4_bmap,
4080         .invalidatepage         = ext4_invalidatepage,
4081         .releasepage            = ext4_releasepage,
4082         .is_partially_uptodate  = block_is_partially_uptodate,
4083         .error_remove_page      = generic_error_remove_page,
4084 };
4085
4086 static const struct address_space_operations ext4_da_aops = {
4087         .readpage               = ext4_readpage,
4088         .readpages              = ext4_readpages,
4089         .writepage              = ext4_writepage,
4090         .writepages             = ext4_da_writepages,
4091         .sync_page              = block_sync_page,
4092         .write_begin            = ext4_da_write_begin,
4093         .write_end              = ext4_da_write_end,
4094         .bmap                   = ext4_bmap,
4095         .invalidatepage         = ext4_da_invalidatepage,
4096         .releasepage            = ext4_releasepage,
4097         .direct_IO              = ext4_direct_IO,
4098         .migratepage            = buffer_migrate_page,
4099         .is_partially_uptodate  = block_is_partially_uptodate,
4100         .error_remove_page      = generic_error_remove_page,
4101 };
4102
4103 void ext4_set_aops(struct inode *inode)
4104 {
4105         if (ext4_should_order_data(inode) &&
4106                 test_opt(inode->i_sb, DELALLOC))
4107                 inode->i_mapping->a_ops = &ext4_da_aops;
4108         else if (ext4_should_order_data(inode))
4109                 inode->i_mapping->a_ops = &ext4_ordered_aops;
4110         else if (ext4_should_writeback_data(inode) &&
4111                  test_opt(inode->i_sb, DELALLOC))
4112                 inode->i_mapping->a_ops = &ext4_da_aops;
4113         else if (ext4_should_writeback_data(inode))
4114                 inode->i_mapping->a_ops = &ext4_writeback_aops;
4115         else
4116                 inode->i_mapping->a_ops = &ext4_journalled_aops;
4117 }
4118
4119 /*
4120  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4121  * up to the end of the block which corresponds to `from'.
4122  * This required during truncate. We need to physically zero the tail end
4123  * of that block so it doesn't yield old data if the file is later grown.
4124  */
4125 int ext4_block_truncate_page(handle_t *handle,
4126                 struct address_space *mapping, loff_t from)
4127 {
4128         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
4129         unsigned offset = from & (PAGE_CACHE_SIZE-1);
4130         unsigned blocksize, length, pos;
4131         ext4_lblk_t iblock;
4132         struct inode *inode = mapping->host;
4133         struct buffer_head *bh;
4134         struct page *page;
4135         int err = 0;
4136
4137         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
4138                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
4139         if (!page)
4140                 return -EINVAL;
4141
4142         blocksize = inode->i_sb->s_blocksize;
4143         length = blocksize - (offset & (blocksize - 1));
4144         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
4145
4146         if (!page_has_buffers(page))
4147                 create_empty_buffers(page, blocksize, 0);
4148
4149         /* Find the buffer that contains "offset" */
4150         bh = page_buffers(page);
4151         pos = blocksize;
4152         while (offset >= pos) {
4153                 bh = bh->b_this_page;
4154                 iblock++;
4155                 pos += blocksize;
4156         }
4157
4158         err = 0;
4159         if (buffer_freed(bh)) {
4160                 BUFFER_TRACE(bh, "freed: skip");
4161                 goto unlock;
4162         }
4163
4164         if (!buffer_mapped(bh)) {
4165                 BUFFER_TRACE(bh, "unmapped");
4166                 ext4_get_block(inode, iblock, bh, 0);
4167                 /* unmapped? It's a hole - nothing to do */
4168                 if (!buffer_mapped(bh)) {
4169                         BUFFER_TRACE(bh, "still unmapped");
4170                         goto unlock;
4171                 }
4172         }
4173
4174         /* Ok, it's mapped. Make sure it's up-to-date */
4175         if (PageUptodate(page))
4176                 set_buffer_uptodate(bh);
4177
4178         if (!buffer_uptodate(bh)) {
4179                 err = -EIO;
4180                 ll_rw_block(READ, 1, &bh);
4181                 wait_on_buffer(bh);
4182                 /* Uhhuh. Read error. Complain and punt. */
4183                 if (!buffer_uptodate(bh))
4184                         goto unlock;
4185         }
4186
4187         if (ext4_should_journal_data(inode)) {
4188                 BUFFER_TRACE(bh, "get write access");
4189                 err = ext4_journal_get_write_access(handle, bh);
4190                 if (err)
4191                         goto unlock;
4192         }
4193
4194         zero_user(page, offset, length);
4195
4196         BUFFER_TRACE(bh, "zeroed end of block");
4197
4198         err = 0;
4199         if (ext4_should_journal_data(inode)) {
4200                 err = ext4_handle_dirty_metadata(handle, inode, bh);
4201         } else {
4202                 if (ext4_should_order_data(inode))
4203                         err = ext4_jbd2_file_inode(handle, inode);
4204                 mark_buffer_dirty(bh);
4205         }
4206
4207 unlock:
4208         unlock_page(page);
4209         page_cache_release(page);
4210         return err;
4211 }
4212
4213 /*
4214  * Probably it should be a library function... search for first non-zero word
4215  * or memcmp with zero_page, whatever is better for particular architecture.
4216  * Linus?
4217  */
4218 static inline int all_zeroes(__le32 *p, __le32 *q)
4219 {
4220         while (p < q)
4221                 if (*p++)
4222                         return 0;
4223         return 1;
4224 }
4225
4226 /**
4227  *      ext4_find_shared - find the indirect blocks for partial truncation.
4228  *      @inode:   inode in question
4229  *      @depth:   depth of the affected branch
4230  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4231  *      @chain:   place to store the pointers to partial indirect blocks
4232  *      @top:     place to the (detached) top of branch
4233  *
4234  *      This is a helper function used by ext4_truncate().
4235  *
4236  *      When we do truncate() we may have to clean the ends of several
4237  *      indirect blocks but leave the blocks themselves alive. Block is
4238  *      partially truncated if some data below the new i_size is refered
4239  *      from it (and it is on the path to the first completely truncated
4240  *      data block, indeed).  We have to free the top of that path along
4241  *      with everything to the right of the path. Since no allocation
4242  *      past the truncation point is possible until ext4_truncate()
4243  *      finishes, we may safely do the latter, but top of branch may
4244  *      require special attention - pageout below the truncation point
4245  *      might try to populate it.
4246  *
4247  *      We atomically detach the top of branch from the tree, store the
4248  *      block number of its root in *@top, pointers to buffer_heads of
4249  *      partially truncated blocks - in @chain[].bh and pointers to
4250  *      their last elements that should not be removed - in
4251  *      @chain[].p. Return value is the pointer to last filled element
4252  *      of @chain.
4253  *
4254  *      The work left to caller to do the actual freeing of subtrees:
4255  *              a) free the subtree starting from *@top
4256  *              b) free the subtrees whose roots are stored in
4257  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4258  *              c) free the subtrees growing from the inode past the @chain[0].
4259  *                      (no partially truncated stuff there).  */
4260
4261 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4262                                   ext4_lblk_t offsets[4], Indirect chain[4],
4263                                   __le32 *top)
4264 {
4265         Indirect *partial, *p;
4266         int k, err;
4267
4268         *top = 0;
4269         /* Make k index the deepest non-null offset + 1 */
4270         for (k = depth; k > 1 && !offsets[k-1]; k--)
4271                 ;
4272         partial = ext4_get_branch(inode, k, offsets, chain, &err);
4273         /* Writer: pointers */
4274         if (!partial)
4275                 partial = chain + k-1;
4276         /*
4277          * If the branch acquired continuation since we've looked at it -
4278          * fine, it should all survive and (new) top doesn't belong to us.
4279          */
4280         if (!partial->key && *partial->p)
4281                 /* Writer: end */
4282                 goto no_top;
4283         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4284                 ;
4285         /*
4286          * OK, we've found the last block that must survive. The rest of our
4287          * branch should be detached before unlocking. However, if that rest
4288          * of branch is all ours and does not grow immediately from the inode
4289          * it's easier to cheat and just decrement partial->p.
4290          */
4291         if (p == chain + k - 1 && p > chain) {
4292                 p->p--;
4293         } else {
4294                 *top = *p->p;
4295                 /* Nope, don't do this in ext4.  Must leave the tree intact */
4296 #if 0
4297                 *p->p = 0;
4298 #endif
4299         }
4300         /* Writer: end */
4301
4302         while (partial > p) {
4303                 brelse(partial->bh);
4304                 partial--;
4305         }
4306 no_top:
4307         return partial;
4308 }
4309
4310 /*
4311  * Zero a number of block pointers in either an inode or an indirect block.
4312  * If we restart the transaction we must again get write access to the
4313  * indirect block for further modification.
4314  *
4315  * We release `count' blocks on disk, but (last - first) may be greater
4316  * than `count' because there can be holes in there.
4317  */
4318 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4319                              struct buffer_head *bh,
4320                              ext4_fsblk_t block_to_free,
4321                              unsigned long count, __le32 *first,
4322                              __le32 *last)
4323 {
4324         __le32 *p;
4325         int     flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4326
4327         if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4328                 flags |= EXT4_FREE_BLOCKS_METADATA;
4329
4330         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4331                                    count)) {
4332                 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
4333                                  "blocks %llu len %lu",
4334                                  (unsigned long long) block_to_free, count);
4335                 return 1;
4336         }
4337
4338         if (try_to_extend_transaction(handle, inode)) {
4339                 if (bh) {
4340                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4341                         ext4_handle_dirty_metadata(handle, inode, bh);
4342                 }
4343                 ext4_mark_inode_dirty(handle, inode);
4344                 ext4_truncate_restart_trans(handle, inode,
4345                                             blocks_for_truncate(inode));
4346                 if (bh) {
4347                         BUFFER_TRACE(bh, "retaking write access");
4348                         ext4_journal_get_write_access(handle, bh);
4349                 }
4350         }
4351
4352         for (p = first; p < last; p++)
4353                 *p = 0;
4354
4355         ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4356         return 0;
4357 }
4358
4359 /**
4360  * ext4_free_data - free a list of data blocks
4361  * @handle:     handle for this transaction
4362  * @inode:      inode we are dealing with
4363  * @this_bh:    indirect buffer_head which contains *@first and *@last
4364  * @first:      array of block numbers
4365  * @last:       points immediately past the end of array
4366  *
4367  * We are freeing all blocks refered from that array (numbers are stored as
4368  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4369  *
4370  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
4371  * blocks are contiguous then releasing them at one time will only affect one
4372  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4373  * actually use a lot of journal space.
4374  *
4375  * @this_bh will be %NULL if @first and @last point into the inode's direct
4376  * block pointers.
4377  */
4378 static void ext4_free_data(handle_t *handle, struct inode *inode,
4379                            struct buffer_head *this_bh,
4380                            __le32 *first, __le32 *last)
4381 {
4382         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4383         unsigned long count = 0;            /* Number of blocks in the run */
4384         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
4385                                                corresponding to
4386                                                block_to_free */
4387         ext4_fsblk_t nr;                    /* Current block # */
4388         __le32 *p;                          /* Pointer into inode/ind
4389                                                for current block */
4390         int err;
4391
4392         if (this_bh) {                          /* For indirect block */
4393                 BUFFER_TRACE(this_bh, "get_write_access");
4394                 err = ext4_journal_get_write_access(handle, this_bh);
4395                 /* Important: if we can't update the indirect pointers
4396                  * to the blocks, we can't free them. */
4397                 if (err)
4398                         return;
4399         }
4400
4401         for (p = first; p < last; p++) {
4402                 nr = le32_to_cpu(*p);
4403                 if (nr) {
4404                         /* accumulate blocks to free if they're contiguous */
4405                         if (count == 0) {
4406                                 block_to_free = nr;
4407                                 block_to_free_p = p;
4408                                 count = 1;
4409                         } else if (nr == block_to_free + count) {
4410                                 count++;
4411                         } else {
4412                                 if (ext4_clear_blocks(handle, inode, this_bh,
4413                                                       block_to_free, count,
4414                                                       block_to_free_p, p))
4415                                         break;
4416                                 block_to_free = nr;
4417                                 block_to_free_p = p;
4418                                 count = 1;
4419                         }
4420                 }
4421         }
4422
4423         if (count > 0)
4424                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4425                                   count, block_to_free_p, p);
4426
4427         if (this_bh) {
4428                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4429
4430                 /*
4431                  * The buffer head should have an attached journal head at this
4432                  * point. However, if the data is corrupted and an indirect
4433                  * block pointed to itself, it would have been detached when
4434                  * the block was cleared. Check for this instead of OOPSing.
4435                  */
4436                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4437                         ext4_handle_dirty_metadata(handle, inode, this_bh);
4438                 else
4439                         EXT4_ERROR_INODE(inode,
4440                                          "circular indirect block detected at "
4441                                          "block %llu",
4442                                 (unsigned long long) this_bh->b_blocknr);
4443         }
4444 }
4445
4446 /**
4447  *      ext4_free_branches - free an array of branches
4448  *      @handle: JBD handle for this transaction
4449  *      @inode: inode we are dealing with
4450  *      @parent_bh: the buffer_head which contains *@first and *@last
4451  *      @first: array of block numbers
4452  *      @last:  pointer immediately past the end of array
4453  *      @depth: depth of the branches to free
4454  *
4455  *      We are freeing all blocks refered from these branches (numbers are
4456  *      stored as little-endian 32-bit) and updating @inode->i_blocks
4457  *      appropriately.
4458  */
4459 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4460                                struct buffer_head *parent_bh,
4461                                __le32 *first, __le32 *last, int depth)
4462 {
4463         ext4_fsblk_t nr;
4464         __le32 *p;
4465
4466         if (ext4_handle_is_aborted(handle))
4467                 return;
4468
4469         if (depth--) {
4470                 struct buffer_head *bh;
4471                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4472                 p = last;
4473                 while (--p >= first) {
4474                         nr = le32_to_cpu(*p);
4475                         if (!nr)
4476                                 continue;               /* A hole */
4477
4478                         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4479                                                    nr, 1)) {
4480                                 EXT4_ERROR_INODE(inode,
4481                                                  "invalid indirect mapped "
4482                                                  "block %lu (level %d)",
4483                                                  (unsigned long) nr, depth);
4484                                 break;
4485                         }
4486
4487                         /* Go read the buffer for the next level down */
4488                         bh = sb_bread(inode->i_sb, nr);
4489
4490                         /*
4491                          * A read failure? Report error and clear slot
4492                          * (should be rare).
4493                          */
4494                         if (!bh) {
4495                                 EXT4_ERROR_INODE_BLOCK(inode, nr,
4496                                                        "Read failure");
4497                                 continue;
4498                         }
4499
4500                         /* This zaps the entire block.  Bottom up. */
4501                         BUFFER_TRACE(bh, "free child branches");
4502                         ext4_free_branches(handle, inode, bh,
4503                                         (__le32 *) bh->b_data,
4504                                         (__le32 *) bh->b_data + addr_per_block,
4505                                         depth);
4506
4507                         /*
4508                          * Everything below this this pointer has been
4509                          * released.  Now let this top-of-subtree go.
4510                          *
4511                          * We want the freeing of this indirect block to be
4512                          * atomic in the journal with the updating of the
4513                          * bitmap block which owns it.  So make some room in
4514                          * the journal.
4515                          *
4516                          * We zero the parent pointer *after* freeing its
4517                          * pointee in the bitmaps, so if extend_transaction()
4518                          * for some reason fails to put the bitmap changes and
4519                          * the release into the same transaction, recovery
4520                          * will merely complain about releasing a free block,
4521                          * rather than leaking blocks.
4522                          */
4523                         if (ext4_handle_is_aborted(handle))
4524                                 return;
4525                         if (try_to_extend_transaction(handle, inode)) {
4526                                 ext4_mark_inode_dirty(handle, inode);
4527                                 ext4_truncate_restart_trans(handle, inode,
4528                                             blocks_for_truncate(inode));
4529                         }
4530
4531                         /*
4532                          * The forget flag here is critical because if
4533                          * we are journaling (and not doing data
4534                          * journaling), we have to make sure a revoke
4535                          * record is written to prevent the journal
4536                          * replay from overwriting the (former)
4537                          * indirect block if it gets reallocated as a
4538                          * data block.  This must happen in the same
4539                          * transaction where the data blocks are
4540                          * actually freed.
4541                          */
4542                         ext4_free_blocks(handle, inode, 0, nr, 1,
4543                                          EXT4_FREE_BLOCKS_METADATA|
4544                                          EXT4_FREE_BLOCKS_FORGET);
4545
4546                         if (parent_bh) {
4547                                 /*
4548                                  * The block which we have just freed is
4549                                  * pointed to by an indirect block: journal it
4550                                  */
4551                                 BUFFER_TRACE(parent_bh, "get_write_access");
4552                                 if (!ext4_journal_get_write_access(handle,
4553                                                                    parent_bh)){
4554                                         *p = 0;
4555                                         BUFFER_TRACE(parent_bh,
4556                                         "call ext4_handle_dirty_metadata");
4557                                         ext4_handle_dirty_metadata(handle,
4558                                                                    inode,
4559                                                                    parent_bh);
4560                                 }
4561                         }
4562                 }
4563         } else {
4564                 /* We have reached the bottom of the tree. */
4565                 BUFFER_TRACE(parent_bh, "free data blocks");
4566                 ext4_free_data(handle, inode, parent_bh, first, last);
4567         }
4568 }
4569
4570 int ext4_can_truncate(struct inode *inode)
4571 {
4572         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4573                 return 0;
4574         if (S_ISREG(inode->i_mode))
4575                 return 1;
4576         if (S_ISDIR(inode->i_mode))
4577                 return 1;
4578         if (S_ISLNK(inode->i_mode))
4579                 return !ext4_inode_is_fast_symlink(inode);
4580         return 0;
4581 }
4582
4583 /*
4584  * ext4_truncate()
4585  *
4586  * We block out ext4_get_block() block instantiations across the entire
4587  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4588  * simultaneously on behalf of the same inode.
4589  *
4590  * As we work through the truncate and commmit bits of it to the journal there
4591  * is one core, guiding principle: the file's tree must always be consistent on
4592  * disk.  We must be able to restart the truncate after a crash.
4593  *
4594  * The file's tree may be transiently inconsistent in memory (although it
4595  * probably isn't), but whenever we close off and commit a journal transaction,
4596  * the contents of (the filesystem + the journal) must be consistent and
4597  * restartable.  It's pretty simple, really: bottom up, right to left (although
4598  * left-to-right works OK too).
4599  *
4600  * Note that at recovery time, journal replay occurs *before* the restart of
4601  * truncate against the orphan inode list.
4602  *
4603  * The committed inode has the new, desired i_size (which is the same as
4604  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4605  * that this inode's truncate did not complete and it will again call
4606  * ext4_truncate() to have another go.  So there will be instantiated blocks
4607  * to the right of the truncation point in a crashed ext4 filesystem.  But
4608  * that's fine - as long as they are linked from the inode, the post-crash
4609  * ext4_truncate() run will find them and release them.
4610  */
4611 void ext4_truncate(struct inode *inode)
4612 {
4613         handle_t *handle;
4614         struct ext4_inode_info *ei = EXT4_I(inode);
4615         __le32 *i_data = ei->i_data;
4616         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4617         struct address_space *mapping = inode->i_mapping;
4618         ext4_lblk_t offsets[4];
4619         Indirect chain[4];
4620         Indirect *partial;
4621         __le32 nr = 0;
4622         int n;
4623         ext4_lblk_t last_block;
4624         unsigned blocksize = inode->i_sb->s_blocksize;
4625
4626         if (!ext4_can_truncate(inode))
4627                 return;
4628
4629         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4630
4631         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4632                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4633
4634         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4635                 ext4_ext_truncate(inode);
4636                 return;
4637         }
4638
4639         handle = start_transaction(inode);
4640         if (IS_ERR(handle))
4641                 return;         /* AKPM: return what? */
4642
4643         last_block = (inode->i_size + blocksize-1)
4644                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4645
4646         if (inode->i_size & (blocksize - 1))
4647                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4648                         goto out_stop;
4649
4650         n = ext4_block_to_path(inode, last_block, offsets, NULL);
4651         if (n == 0)
4652                 goto out_stop;  /* error */
4653
4654         /*
4655          * OK.  This truncate is going to happen.  We add the inode to the
4656          * orphan list, so that if this truncate spans multiple transactions,
4657          * and we crash, we will resume the truncate when the filesystem
4658          * recovers.  It also marks the inode dirty, to catch the new size.
4659          *
4660          * Implication: the file must always be in a sane, consistent
4661          * truncatable state while each transaction commits.
4662          */
4663         if (ext4_orphan_add(handle, inode))
4664                 goto out_stop;
4665
4666         /*
4667          * From here we block out all ext4_get_block() callers who want to
4668          * modify the block allocation tree.
4669          */
4670         down_write(&ei->i_data_sem);
4671
4672         ext4_discard_preallocations(inode);
4673
4674         /*
4675          * The orphan list entry will now protect us from any crash which
4676          * occurs before the truncate completes, so it is now safe to propagate
4677          * the new, shorter inode size (held for now in i_size) into the
4678          * on-disk inode. We do this via i_disksize, which is the value which
4679          * ext4 *really* writes onto the disk inode.
4680          */
4681         ei->i_disksize = inode->i_size;
4682
4683         if (n == 1) {           /* direct blocks */
4684                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4685                                i_data + EXT4_NDIR_BLOCKS);
4686                 goto do_indirects;
4687         }
4688
4689         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4690         /* Kill the top of shared branch (not detached) */
4691         if (nr) {
4692                 if (partial == chain) {
4693                         /* Shared branch grows from the inode */
4694                         ext4_free_branches(handle, inode, NULL,
4695                                            &nr, &nr+1, (chain+n-1) - partial);
4696                         *partial->p = 0;
4697                         /*
4698                          * We mark the inode dirty prior to restart,
4699                          * and prior to stop.  No need for it here.
4700                          */
4701                 } else {
4702                         /* Shared branch grows from an indirect block */
4703                         BUFFER_TRACE(partial->bh, "get_write_access");
4704                         ext4_free_branches(handle, inode, partial->bh,
4705                                         partial->p,
4706                                         partial->p+1, (chain+n-1) - partial);
4707                 }
4708         }
4709         /* Clear the ends of indirect blocks on the shared branch */
4710         while (partial > chain) {
4711                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4712                                    (__le32*)partial->bh->b_data+addr_per_block,
4713                                    (chain+n-1) - partial);
4714                 BUFFER_TRACE(partial->bh, "call brelse");
4715                 brelse(partial->bh);
4716                 partial--;
4717         }
4718 do_indirects:
4719         /* Kill the remaining (whole) subtrees */
4720         switch (offsets[0]) {
4721         default:
4722                 nr = i_data[EXT4_IND_BLOCK];
4723                 if (nr) {
4724                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4725                         i_data[EXT4_IND_BLOCK] = 0;
4726                 }
4727         case EXT4_IND_BLOCK:
4728                 nr = i_data[EXT4_DIND_BLOCK];
4729                 if (nr) {
4730                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4731                         i_data[EXT4_DIND_BLOCK] = 0;
4732                 }
4733         case EXT4_DIND_BLOCK:
4734                 nr = i_data[EXT4_TIND_BLOCK];
4735                 if (nr) {
4736                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4737                         i_data[EXT4_TIND_BLOCK] = 0;
4738                 }
4739         case EXT4_TIND_BLOCK:
4740                 ;
4741         }
4742
4743         up_write(&ei->i_data_sem);
4744         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4745         ext4_mark_inode_dirty(handle, inode);
4746
4747         /*
4748          * In a multi-transaction truncate, we only make the final transaction
4749          * synchronous
4750          */
4751         if (IS_SYNC(inode))
4752                 ext4_handle_sync(handle);
4753 out_stop:
4754         /*
4755          * If this was a simple ftruncate(), and the file will remain alive
4756          * then we need to clear up the orphan record which we created above.
4757          * However, if this was a real unlink then we were called by
4758          * ext4_delete_inode(), and we allow that function to clean up the
4759          * orphan info for us.
4760          */
4761         if (inode->i_nlink)
4762                 ext4_orphan_del(handle, inode);
4763
4764         ext4_journal_stop(handle);
4765 }
4766
4767 /*
4768  * ext4_get_inode_loc returns with an extra refcount against the inode's
4769  * underlying buffer_head on success. If 'in_mem' is true, we have all
4770  * data in memory that is needed to recreate the on-disk version of this
4771  * inode.
4772  */
4773 static int __ext4_get_inode_loc(struct inode *inode,
4774                                 struct ext4_iloc *iloc, int in_mem)
4775 {
4776         struct ext4_group_desc  *gdp;
4777         struct buffer_head      *bh;
4778         struct super_block      *sb = inode->i_sb;
4779         ext4_fsblk_t            block;
4780         int                     inodes_per_block, inode_offset;
4781
4782         iloc->bh = NULL;
4783         if (!ext4_valid_inum(sb, inode->i_ino))
4784                 return -EIO;
4785
4786         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4787         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4788         if (!gdp)
4789                 return -EIO;
4790
4791         /*
4792          * Figure out the offset within the block group inode table
4793          */
4794         inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4795         inode_offset = ((inode->i_ino - 1) %
4796                         EXT4_INODES_PER_GROUP(sb));
4797         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4798         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4799
4800         bh = sb_getblk(sb, block);
4801         if (!bh) {
4802                 EXT4_ERROR_INODE_BLOCK(inode, block,
4803                                        "unable to read itable block");
4804                 return -EIO;
4805         }
4806         if (!buffer_uptodate(bh)) {
4807                 lock_buffer(bh);
4808
4809                 /*
4810                  * If the buffer has the write error flag, we have failed
4811                  * to write out another inode in the same block.  In this
4812                  * case, we don't have to read the block because we may
4813                  * read the old inode data successfully.
4814                  */
4815                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4816                         set_buffer_uptodate(bh);
4817
4818                 if (buffer_uptodate(bh)) {
4819                         /* someone brought it uptodate while we waited */
4820                         unlock_buffer(bh);
4821                         goto has_buffer;
4822                 }
4823
4824                 /*
4825                  * If we have all information of the inode in memory and this
4826                  * is the only valid inode in the block, we need not read the
4827                  * block.
4828                  */
4829                 if (in_mem) {
4830                         struct buffer_head *bitmap_bh;
4831                         int i, start;
4832
4833                         start = inode_offset & ~(inodes_per_block - 1);
4834
4835                         /* Is the inode bitmap in cache? */
4836                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4837                         if (!bitmap_bh)
4838                                 goto make_io;
4839
4840                         /*
4841                          * If the inode bitmap isn't in cache then the
4842                          * optimisation may end up performing two reads instead
4843                          * of one, so skip it.
4844                          */
4845                         if (!buffer_uptodate(bitmap_bh)) {
4846                                 brelse(bitmap_bh);
4847                                 goto make_io;
4848                         }
4849                         for (i = start; i < start + inodes_per_block; i++) {
4850                                 if (i == inode_offset)
4851                                         continue;
4852                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4853                                         break;
4854                         }
4855                         brelse(bitmap_bh);
4856                         if (i == start + inodes_per_block) {
4857                                 /* all other inodes are free, so skip I/O */
4858                                 memset(bh->b_data, 0, bh->b_size);
4859                                 set_buffer_uptodate(bh);
4860                                 unlock_buffer(bh);
4861                                 goto has_buffer;
4862                         }
4863                 }
4864
4865 make_io:
4866                 /*
4867                  * If we need to do any I/O, try to pre-readahead extra
4868                  * blocks from the inode table.
4869                  */
4870                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4871                         ext4_fsblk_t b, end, table;
4872                         unsigned num;
4873
4874                         table = ext4_inode_table(sb, gdp);
4875                         /* s_inode_readahead_blks is always a power of 2 */
4876                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4877                         if (table > b)
4878                                 b = table;
4879                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4880                         num = EXT4_INODES_PER_GROUP(sb);
4881                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4882                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4883                                 num -= ext4_itable_unused_count(sb, gdp);
4884                         table += num / inodes_per_block;
4885                         if (end > table)
4886                                 end = table;
4887                         while (b <= end)
4888                                 sb_breadahead(sb, b++);
4889                 }
4890
4891                 /*
4892                  * There are other valid inodes in the buffer, this inode
4893                  * has in-inode xattrs, or we don't have this inode in memory.
4894                  * Read the block from disk.
4895                  */
4896                 get_bh(bh);
4897                 bh->b_end_io = end_buffer_read_sync;
4898                 submit_bh(READ_META, bh);
4899                 wait_on_buffer(bh);
4900                 if (!buffer_uptodate(bh)) {
4901                         EXT4_ERROR_INODE_BLOCK(inode, block,
4902                                                "unable to read itable block");
4903                         brelse(bh);
4904                         return -EIO;
4905                 }
4906         }
4907 has_buffer:
4908         iloc->bh = bh;
4909         return 0;
4910 }
4911
4912 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4913 {
4914         /* We have all inode data except xattrs in memory here. */
4915         return __ext4_get_inode_loc(inode, iloc,
4916                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4917 }
4918
4919 void ext4_set_inode_flags(struct inode *inode)
4920 {
4921         unsigned int flags = EXT4_I(inode)->i_flags;
4922
4923         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4924         if (flags & EXT4_SYNC_FL)
4925                 inode->i_flags |= S_SYNC;
4926         if (flags & EXT4_APPEND_FL)
4927                 inode->i_flags |= S_APPEND;
4928         if (flags & EXT4_IMMUTABLE_FL)
4929                 inode->i_flags |= S_IMMUTABLE;
4930         if (flags & EXT4_NOATIME_FL)
4931                 inode->i_flags |= S_NOATIME;
4932         if (flags & EXT4_DIRSYNC_FL)
4933                 inode->i_flags |= S_DIRSYNC;
4934 }
4935
4936 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4937 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4938 {
4939         unsigned int vfs_fl;
4940         unsigned long old_fl, new_fl;
4941
4942         do {
4943                 vfs_fl = ei->vfs_inode.i_flags;
4944                 old_fl = ei->i_flags;
4945                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4946                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4947                                 EXT4_DIRSYNC_FL);
4948                 if (vfs_fl & S_SYNC)
4949                         new_fl |= EXT4_SYNC_FL;
4950                 if (vfs_fl & S_APPEND)
4951                         new_fl |= EXT4_APPEND_FL;
4952                 if (vfs_fl & S_IMMUTABLE)
4953                         new_fl |= EXT4_IMMUTABLE_FL;
4954                 if (vfs_fl & S_NOATIME)
4955                         new_fl |= EXT4_NOATIME_FL;
4956                 if (vfs_fl & S_DIRSYNC)
4957                         new_fl |= EXT4_DIRSYNC_FL;
4958         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4959 }
4960
4961 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4962                                   struct ext4_inode_info *ei)
4963 {
4964         blkcnt_t i_blocks ;
4965         struct inode *inode = &(ei->vfs_inode);
4966         struct super_block *sb = inode->i_sb;
4967
4968         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4969                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4970                 /* we are using combined 48 bit field */
4971                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4972                                         le32_to_cpu(raw_inode->i_blocks_lo);
4973                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4974                         /* i_blocks represent file system block size */
4975                         return i_blocks  << (inode->i_blkbits - 9);
4976                 } else {
4977                         return i_blocks;
4978                 }
4979         } else {
4980                 return le32_to_cpu(raw_inode->i_blocks_lo);
4981         }
4982 }
4983
4984 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4985 {
4986         struct ext4_iloc iloc;
4987         struct ext4_inode *raw_inode;
4988         struct ext4_inode_info *ei;
4989         struct inode *inode;
4990         journal_t *journal = EXT4_SB(sb)->s_journal;
4991         long ret;
4992         int block;
4993
4994         inode = iget_locked(sb, ino);
4995         if (!inode)
4996                 return ERR_PTR(-ENOMEM);
4997         if (!(inode->i_state & I_NEW))
4998                 return inode;
4999
5000         ei = EXT4_I(inode);
5001         iloc.bh = 0;
5002
5003         ret = __ext4_get_inode_loc(inode, &iloc, 0);
5004         if (ret < 0)
5005                 goto bad_inode;
5006         raw_inode = ext4_raw_inode(&iloc);
5007         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
5008         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
5009         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
5010         if (!(test_opt(inode->i_sb, NO_UID32))) {
5011                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
5012                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
5013         }
5014         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
5015
5016         ei->i_state_flags = 0;
5017         ei->i_dir_start_lookup = 0;
5018         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
5019         /* We now have enough fields to check if the inode was active or not.
5020          * This is needed because nfsd might try to access dead inodes
5021          * the test is that same one that e2fsck uses
5022          * NeilBrown 1999oct15
5023          */
5024         if (inode->i_nlink == 0) {
5025                 if (inode->i_mode == 0 ||
5026                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
5027                         /* this inode is deleted */
5028                         ret = -ESTALE;
5029                         goto bad_inode;
5030                 }
5031                 /* The only unlinked inodes we let through here have
5032                  * valid i_mode and are being read by the orphan
5033                  * recovery code: that's fine, we're about to complete
5034                  * the process of deleting those. */
5035         }
5036         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
5037         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
5038         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
5039         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
5040                 ei->i_file_acl |=
5041                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
5042         inode->i_size = ext4_isize(raw_inode);
5043         ei->i_disksize = inode->i_size;
5044 #ifdef CONFIG_QUOTA
5045         ei->i_reserved_quota = 0;
5046 #endif
5047         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
5048         ei->i_block_group = iloc.block_group;
5049         ei->i_last_alloc_group = ~0;
5050         /*
5051          * NOTE! The in-memory inode i_data array is in little-endian order
5052          * even on big-endian machines: we do NOT byteswap the block numbers!
5053          */
5054         for (block = 0; block < EXT4_N_BLOCKS; block++)
5055                 ei->i_data[block] = raw_inode->i_block[block];
5056         INIT_LIST_HEAD(&ei->i_orphan);
5057
5058         /*
5059          * Set transaction id's of transactions that have to be committed
5060          * to finish f[data]sync. We set them to currently running transaction
5061          * as we cannot be sure that the inode or some of its metadata isn't
5062          * part of the transaction - the inode could have been reclaimed and
5063          * now it is reread from disk.
5064          */
5065         if (journal) {
5066                 transaction_t *transaction;
5067                 tid_t tid;
5068
5069                 read_lock(&journal->j_state_lock);
5070                 if (journal->j_running_transaction)
5071                         transaction = journal->j_running_transaction;
5072                 else
5073                         transaction = journal->j_committing_transaction;
5074                 if (transaction)
5075                         tid = transaction->t_tid;
5076                 else
5077                         tid = journal->j_commit_sequence;
5078                 read_unlock(&journal->j_state_lock);
5079                 ei->i_sync_tid = tid;
5080                 ei->i_datasync_tid = tid;
5081         }
5082
5083         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5084                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
5085                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
5086                     EXT4_INODE_SIZE(inode->i_sb)) {
5087                         ret = -EIO;
5088                         goto bad_inode;
5089                 }
5090                 if (ei->i_extra_isize == 0) {
5091                         /* The extra space is currently unused. Use it. */
5092                         ei->i_extra_isize = sizeof(struct ext4_inode) -
5093                                             EXT4_GOOD_OLD_INODE_SIZE;
5094                 } else {
5095                         __le32 *magic = (void *)raw_inode +
5096                                         EXT4_GOOD_OLD_INODE_SIZE +
5097                                         ei->i_extra_isize;
5098                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
5099                                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
5100                 }
5101         } else
5102                 ei->i_extra_isize = 0;
5103
5104         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5105         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5106         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5107         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5108
5109         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
5110         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5111                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5112                         inode->i_version |=
5113                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5114         }
5115
5116         ret = 0;
5117         if (ei->i_file_acl &&
5118             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5119                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
5120                                  ei->i_file_acl);
5121                 ret = -EIO;
5122                 goto bad_inode;
5123         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5124                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5125                     (S_ISLNK(inode->i_mode) &&
5126                      !ext4_inode_is_fast_symlink(inode)))
5127                         /* Validate extent which is part of inode */
5128                         ret = ext4_ext_check_inode(inode);
5129         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5130                    (S_ISLNK(inode->i_mode) &&
5131                     !ext4_inode_is_fast_symlink(inode))) {
5132                 /* Validate block references which are part of inode */
5133                 ret = ext4_check_inode_blockref(inode);
5134         }
5135         if (ret)
5136                 goto bad_inode;
5137
5138         if (S_ISREG(inode->i_mode)) {
5139                 inode->i_op = &ext4_file_inode_operations;
5140                 inode->i_fop = &ext4_file_operations;
5141                 ext4_set_aops(inode);
5142         } else if (S_ISDIR(inode->i_mode)) {
5143                 inode->i_op = &ext4_dir_inode_operations;
5144                 inode->i_fop = &ext4_dir_operations;
5145         } else if (S_ISLNK(inode->i_mode)) {
5146                 if (ext4_inode_is_fast_symlink(inode)) {
5147                         inode->i_op = &ext4_fast_symlink_inode_operations;
5148                         nd_terminate_link(ei->i_data, inode->i_size,
5149                                 sizeof(ei->i_data) - 1);
5150                 } else {
5151                         inode->i_op = &ext4_symlink_inode_operations;
5152                         ext4_set_aops(inode);
5153                 }
5154         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5155               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5156                 inode->i_op = &ext4_special_inode_operations;
5157                 if (raw_inode->i_block[0])
5158                         init_special_inode(inode, inode->i_mode,
5159                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5160                 else
5161                         init_special_inode(inode, inode->i_mode,
5162                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5163         } else {
5164                 ret = -EIO;
5165                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
5166                 goto bad_inode;
5167         }
5168         brelse(iloc.bh);
5169         ext4_set_inode_flags(inode);
5170         unlock_new_inode(inode);
5171         return inode;
5172
5173 bad_inode:
5174         brelse(iloc.bh);
5175         iget_failed(inode);
5176         return ERR_PTR(ret);
5177 }
5178
5179 static int ext4_inode_blocks_set(handle_t *handle,
5180                                 struct ext4_inode *raw_inode,
5181                                 struct ext4_inode_info *ei)
5182 {
5183         struct inode *inode = &(ei->vfs_inode);
5184         u64 i_blocks = inode->i_blocks;
5185         struct super_block *sb = inode->i_sb;
5186
5187         if (i_blocks <= ~0U) {
5188                 /*
5189                  * i_blocks can be represnted in a 32 bit variable
5190                  * as multiple of 512 bytes
5191                  */
5192                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5193                 raw_inode->i_blocks_high = 0;
5194                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5195                 return 0;
5196         }
5197         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5198                 return -EFBIG;
5199
5200         if (i_blocks <= 0xffffffffffffULL) {
5201                 /*
5202                  * i_blocks can be represented in a 48 bit variable
5203                  * as multiple of 512 bytes
5204                  */
5205                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5206                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5207                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5208         } else {
5209                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5210                 /* i_block is stored in file system block size */
5211                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5212                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5213                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5214         }
5215         return 0;
5216 }
5217
5218 /*
5219  * Post the struct inode info into an on-disk inode location in the
5220  * buffer-cache.  This gobbles the caller's reference to the
5221  * buffer_head in the inode location struct.
5222  *
5223  * The caller must have write access to iloc->bh.
5224  */
5225 static int ext4_do_update_inode(handle_t *handle,
5226                                 struct inode *inode,
5227                                 struct ext4_iloc *iloc)
5228 {
5229         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5230         struct ext4_inode_info *ei = EXT4_I(inode);
5231         struct buffer_head *bh = iloc->bh;
5232         int err = 0, rc, block;
5233
5234         /* For fields not not tracking in the in-memory inode,
5235          * initialise them to zero for new inodes. */
5236         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5237                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5238
5239         ext4_get_inode_flags(ei);
5240         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5241         if (!(test_opt(inode->i_sb, NO_UID32))) {
5242                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5243                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5244 /*
5245  * Fix up interoperability with old kernels. Otherwise, old inodes get
5246  * re-used with the upper 16 bits of the uid/gid intact
5247  */
5248                 if (!ei->i_dtime) {
5249                         raw_inode->i_uid_high =
5250                                 cpu_to_le16(high_16_bits(inode->i_uid));
5251                         raw_inode->i_gid_high =
5252                                 cpu_to_le16(high_16_bits(inode->i_gid));
5253                 } else {
5254                         raw_inode->i_uid_high = 0;
5255                         raw_inode->i_gid_high = 0;
5256                 }
5257         } else {
5258                 raw_inode->i_uid_low =
5259                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
5260                 raw_inode->i_gid_low =
5261                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
5262                 raw_inode->i_uid_high = 0;
5263                 raw_inode->i_gid_high = 0;
5264         }
5265         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5266
5267         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5268         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5269         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5270         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5271
5272         if (ext4_inode_blocks_set(handle, raw_inode, ei))
5273                 goto out_brelse;
5274         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5275         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5276         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5277             cpu_to_le32(EXT4_OS_HURD))
5278                 raw_inode->i_file_acl_high =
5279                         cpu_to_le16(ei->i_file_acl >> 32);
5280         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5281         ext4_isize_set(raw_inode, ei->i_disksize);
5282         if (ei->i_disksize > 0x7fffffffULL) {
5283                 struct super_block *sb = inode->i_sb;
5284                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5285                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5286                                 EXT4_SB(sb)->s_es->s_rev_level ==
5287                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5288                         /* If this is the first large file
5289                          * created, add a flag to the superblock.
5290                          */
5291                         err = ext4_journal_get_write_access(handle,
5292                                         EXT4_SB(sb)->s_sbh);
5293                         if (err)
5294                                 goto out_brelse;
5295                         ext4_update_dynamic_rev(sb);
5296                         EXT4_SET_RO_COMPAT_FEATURE(sb,
5297                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5298                         sb->s_dirt = 1;
5299                         ext4_handle_sync(handle);
5300                         err = ext4_handle_dirty_metadata(handle, NULL,
5301                                         EXT4_SB(sb)->s_sbh);
5302                 }
5303         }
5304         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5305         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5306                 if (old_valid_dev(inode->i_rdev)) {
5307                         raw_inode->i_block[0] =
5308                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5309                         raw_inode->i_block[1] = 0;
5310                 } else {
5311                         raw_inode->i_block[0] = 0;
5312                         raw_inode->i_block[1] =
5313                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5314                         raw_inode->i_block[2] = 0;
5315                 }
5316         } else
5317                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5318                         raw_inode->i_block[block] = ei->i_data[block];
5319
5320         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5321         if (ei->i_extra_isize) {
5322                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5323                         raw_inode->i_version_hi =
5324                         cpu_to_le32(inode->i_version >> 32);
5325                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5326         }
5327
5328         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5329         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5330         if (!err)
5331                 err = rc;
5332         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5333
5334         ext4_update_inode_fsync_trans(handle, inode, 0);
5335 out_brelse:
5336         brelse(bh);
5337         ext4_std_error(inode->i_sb, err);
5338         return err;
5339 }
5340
5341 /*
5342  * ext4_write_inode()
5343  *
5344  * We are called from a few places:
5345  *
5346  * - Within generic_file_write() for O_SYNC files.
5347  *   Here, there will be no transaction running. We wait for any running
5348  *   trasnaction to commit.
5349  *
5350  * - Within sys_sync(), kupdate and such.
5351  *   We wait on commit, if tol to.
5352  *
5353  * - Within prune_icache() (PF_MEMALLOC == true)
5354  *   Here we simply return.  We can't afford to block kswapd on the
5355  *   journal commit.
5356  *
5357  * In all cases it is actually safe for us to return without doing anything,
5358  * because the inode has been copied into a raw inode buffer in
5359  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5360  * knfsd.
5361  *
5362  * Note that we are absolutely dependent upon all inode dirtiers doing the
5363  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5364  * which we are interested.
5365  *
5366  * It would be a bug for them to not do this.  The code:
5367  *
5368  *      mark_inode_dirty(inode)
5369  *      stuff();
5370  *      inode->i_size = expr;
5371  *
5372  * is in error because a kswapd-driven write_inode() could occur while
5373  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
5374  * will no longer be on the superblock's dirty inode list.
5375  */
5376 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5377 {
5378         int err;
5379
5380         if (current->flags & PF_MEMALLOC)
5381                 return 0;
5382
5383         if (EXT4_SB(inode->i_sb)->s_journal) {
5384                 if (ext4_journal_current_handle()) {
5385                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5386                         dump_stack();
5387                         return -EIO;
5388                 }
5389
5390                 if (wbc->sync_mode != WB_SYNC_ALL)
5391                         return 0;
5392
5393                 err = ext4_force_commit(inode->i_sb);
5394         } else {
5395                 struct ext4_iloc iloc;
5396
5397                 err = __ext4_get_inode_loc(inode, &iloc, 0);
5398                 if (err)
5399                         return err;
5400                 if (wbc->sync_mode == WB_SYNC_ALL)
5401                         sync_dirty_buffer(iloc.bh);
5402                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5403                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5404                                          "IO error syncing inode");
5405                         err = -EIO;
5406                 }
5407                 brelse(iloc.bh);
5408         }
5409         return err;
5410 }
5411
5412 /*
5413  * ext4_setattr()
5414  *
5415  * Called from notify_change.
5416  *
5417  * We want to trap VFS attempts to truncate the file as soon as
5418  * possible.  In particular, we want to make sure that when the VFS
5419  * shrinks i_size, we put the inode on the orphan list and modify
5420  * i_disksize immediately, so that during the subsequent flushing of
5421  * dirty pages and freeing of disk blocks, we can guarantee that any
5422  * commit will leave the blocks being flushed in an unused state on
5423  * disk.  (On recovery, the inode will get truncated and the blocks will
5424  * be freed, so we have a strong guarantee that no future commit will
5425  * leave these blocks visible to the user.)
5426  *
5427  * Another thing we have to assure is that if we are in ordered mode
5428  * and inode is still attached to the committing transaction, we must
5429  * we start writeout of all the dirty pages which are being truncated.
5430  * This way we are sure that all the data written in the previous
5431  * transaction are already on disk (truncate waits for pages under
5432  * writeback).
5433  *
5434  * Called with inode->i_mutex down.
5435  */
5436 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5437 {
5438         struct inode *inode = dentry->d_inode;
5439         int error, rc = 0;
5440         const unsigned int ia_valid = attr->ia_valid;
5441
5442         error = inode_change_ok(inode, attr);
5443         if (error)
5444                 return error;
5445
5446         if (is_quota_modification(inode, attr))
5447                 dquot_initialize(inode);
5448         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5449                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5450                 handle_t *handle;
5451
5452                 /* (user+group)*(old+new) structure, inode write (sb,
5453                  * inode block, ? - but truncate inode update has it) */
5454                 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5455                                         EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5456                 if (IS_ERR(handle)) {
5457                         error = PTR_ERR(handle);
5458                         goto err_out;
5459                 }
5460                 error = dquot_transfer(inode, attr);
5461                 if (error) {
5462                         ext4_journal_stop(handle);
5463                         return error;
5464                 }
5465                 /* Update corresponding info in inode so that everything is in
5466                  * one transaction */
5467                 if (attr->ia_valid & ATTR_UID)
5468                         inode->i_uid = attr->ia_uid;
5469                 if (attr->ia_valid & ATTR_GID)
5470                         inode->i_gid = attr->ia_gid;
5471                 error = ext4_mark_inode_dirty(handle, inode);
5472                 ext4_journal_stop(handle);
5473         }
5474
5475         if (attr->ia_valid & ATTR_SIZE) {
5476                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5477                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5478
5479                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
5480                                 return -EFBIG;
5481                 }
5482         }
5483
5484         if (S_ISREG(inode->i_mode) &&
5485             attr->ia_valid & ATTR_SIZE &&
5486             (attr->ia_size < inode->i_size ||
5487              (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
5488                 handle_t *handle;
5489
5490                 handle = ext4_journal_start(inode, 3);
5491                 if (IS_ERR(handle)) {
5492                         error = PTR_ERR(handle);
5493                         goto err_out;
5494                 }
5495
5496                 error = ext4_orphan_add(handle, inode);
5497                 EXT4_I(inode)->i_disksize = attr->ia_size;
5498                 rc = ext4_mark_inode_dirty(handle, inode);
5499                 if (!error)
5500                         error = rc;
5501                 ext4_journal_stop(handle);
5502
5503                 if (ext4_should_order_data(inode)) {
5504                         error = ext4_begin_ordered_truncate(inode,
5505                                                             attr->ia_size);
5506                         if (error) {
5507                                 /* Do as much error cleanup as possible */
5508                                 handle = ext4_journal_start(inode, 3);
5509                                 if (IS_ERR(handle)) {
5510                                         ext4_orphan_del(NULL, inode);
5511                                         goto err_out;
5512                                 }
5513                                 ext4_orphan_del(handle, inode);
5514                                 ext4_journal_stop(handle);
5515                                 goto err_out;
5516                         }
5517                 }
5518                 /* ext4_truncate will clear the flag */
5519                 if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
5520                         ext4_truncate(inode);
5521         }
5522
5523         rc = inode_setattr(inode, attr);
5524
5525         /* If inode_setattr's call to ext4_truncate failed to get a
5526          * transaction handle at all, we need to clean up the in-core
5527          * orphan list manually. */
5528         if (inode->i_nlink)
5529                 ext4_orphan_del(NULL, inode);
5530
5531         if (!rc && (ia_valid & ATTR_MODE))
5532                 rc = ext4_acl_chmod(inode);
5533
5534 err_out:
5535         ext4_std_error(inode->i_sb, error);
5536         if (!error)
5537                 error = rc;
5538         return error;
5539 }
5540
5541 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5542                  struct kstat *stat)
5543 {
5544         struct inode *inode;
5545         unsigned long delalloc_blocks;
5546
5547         inode = dentry->d_inode;
5548         generic_fillattr(inode, stat);
5549
5550         /*
5551          * We can't update i_blocks if the block allocation is delayed
5552          * otherwise in the case of system crash before the real block
5553          * allocation is done, we will have i_blocks inconsistent with
5554          * on-disk file blocks.
5555          * We always keep i_blocks updated together with real
5556          * allocation. But to not confuse with user, stat
5557          * will return the blocks that include the delayed allocation
5558          * blocks for this file.
5559          */
5560         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5561         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5562         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5563
5564         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5565         return 0;
5566 }
5567
5568 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5569                                       int chunk)
5570 {
5571         int indirects;
5572
5573         /* if nrblocks are contiguous */
5574         if (chunk) {
5575                 /*
5576                  * With N contiguous data blocks, it need at most
5577                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5578                  * 2 dindirect blocks
5579                  * 1 tindirect block
5580                  */
5581                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5582                 return indirects + 3;
5583         }
5584         /*
5585          * if nrblocks are not contiguous, worse case, each block touch
5586          * a indirect block, and each indirect block touch a double indirect
5587          * block, plus a triple indirect block
5588          */
5589         indirects = nrblocks * 2 + 1;
5590         return indirects;
5591 }
5592
5593 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5594 {
5595         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5596                 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5597         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5598 }
5599
5600 /*
5601  * Account for index blocks, block groups bitmaps and block group
5602  * descriptor blocks if modify datablocks and index blocks
5603  * worse case, the indexs blocks spread over different block groups
5604  *
5605  * If datablocks are discontiguous, they are possible to spread over
5606  * different block groups too. If they are contiuguous, with flexbg,
5607  * they could still across block group boundary.
5608  *
5609  * Also account for superblock, inode, quota and xattr blocks
5610  */
5611 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5612 {
5613         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5614         int gdpblocks;
5615         int idxblocks;
5616         int ret = 0;
5617
5618         /*
5619          * How many index blocks need to touch to modify nrblocks?
5620          * The "Chunk" flag indicating whether the nrblocks is
5621          * physically contiguous on disk
5622          *
5623          * For Direct IO and fallocate, they calls get_block to allocate
5624          * one single extent at a time, so they could set the "Chunk" flag
5625          */
5626         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5627
5628         ret = idxblocks;
5629
5630         /*
5631          * Now let's see how many group bitmaps and group descriptors need
5632          * to account
5633          */
5634         groups = idxblocks;
5635         if (chunk)
5636                 groups += 1;
5637         else
5638                 groups += nrblocks;
5639
5640         gdpblocks = groups;
5641         if (groups > ngroups)
5642                 groups = ngroups;
5643         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5644                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5645
5646         /* bitmaps and block group descriptor blocks */
5647         ret += groups + gdpblocks;
5648
5649         /* Blocks for super block, inode, quota and xattr blocks */
5650         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5651
5652         return ret;
5653 }
5654
5655 /*
5656  * Calulate the total number of credits to reserve to fit
5657  * the modification of a single pages into a single transaction,
5658  * which may include multiple chunks of block allocations.
5659  *
5660  * This could be called via ext4_write_begin()
5661  *
5662  * We need to consider the worse case, when
5663  * one new block per extent.
5664  */
5665 int ext4_writepage_trans_blocks(struct inode *inode)
5666 {
5667         int bpp = ext4_journal_blocks_per_page(inode);
5668         int ret;
5669
5670         ret = ext4_meta_trans_blocks(inode, bpp, 0);
5671
5672         /* Account for data blocks for journalled mode */
5673         if (ext4_should_journal_data(inode))
5674                 ret += bpp;
5675         return ret;
5676 }
5677
5678 /*
5679  * Calculate the journal credits for a chunk of data modification.
5680  *
5681  * This is called from DIO, fallocate or whoever calling
5682  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5683  *
5684  * journal buffers for data blocks are not included here, as DIO
5685  * and fallocate do no need to journal data buffers.
5686  */
5687 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5688 {
5689         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5690 }
5691
5692 /*
5693  * The caller must have previously called ext4_reserve_inode_write().
5694  * Give this, we know that the caller already has write access to iloc->bh.
5695  */
5696 int ext4_mark_iloc_dirty(handle_t *handle,
5697                          struct inode *inode, struct ext4_iloc *iloc)
5698 {
5699         int err = 0;
5700
5701         if (test_opt(inode->i_sb, I_VERSION))
5702                 inode_inc_iversion(inode);
5703
5704         /* the do_update_inode consumes one bh->b_count */
5705         get_bh(iloc->bh);
5706
5707         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5708         err = ext4_do_update_inode(handle, inode, iloc);
5709         put_bh(iloc->bh);
5710         return err;
5711 }
5712
5713 /*
5714  * On success, We end up with an outstanding reference count against
5715  * iloc->bh.  This _must_ be cleaned up later.
5716  */
5717
5718 int
5719 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5720                          struct ext4_iloc *iloc)
5721 {
5722         int err;
5723
5724         err = ext4_get_inode_loc(inode, iloc);
5725         if (!err) {
5726                 BUFFER_TRACE(iloc->bh, "get_write_access");
5727                 err = ext4_journal_get_write_access(handle, iloc->bh);
5728                 if (err) {
5729                         brelse(iloc->bh);
5730                         iloc->bh = NULL;
5731                 }
5732         }
5733         ext4_std_error(inode->i_sb, err);
5734         return err;
5735 }
5736
5737 /*
5738  * Expand an inode by new_extra_isize bytes.
5739  * Returns 0 on success or negative error number on failure.
5740  */
5741 static int ext4_expand_extra_isize(struct inode *inode,
5742                                    unsigned int new_extra_isize,
5743                                    struct ext4_iloc iloc,
5744                                    handle_t *handle)
5745 {
5746         struct ext4_inode *raw_inode;
5747         struct ext4_xattr_ibody_header *header;
5748
5749         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5750                 return 0;
5751
5752         raw_inode = ext4_raw_inode(&iloc);
5753
5754         header = IHDR(inode, raw_inode);
5755
5756         /* No extended attributes present */
5757         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5758             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5759                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5760                         new_extra_isize);
5761                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5762                 return 0;
5763         }
5764
5765         /* try to expand with EAs present */
5766         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5767                                           raw_inode, handle);
5768 }
5769
5770 /*
5771  * What we do here is to mark the in-core inode as clean with respect to inode
5772  * dirtiness (it may still be data-dirty).
5773  * This means that the in-core inode may be reaped by prune_icache
5774  * without having to perform any I/O.  This is a very good thing,
5775  * because *any* task may call prune_icache - even ones which
5776  * have a transaction open against a different journal.
5777  *
5778  * Is this cheating?  Not really.  Sure, we haven't written the
5779  * inode out, but prune_icache isn't a user-visible syncing function.
5780  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5781  * we start and wait on commits.
5782  *
5783  * Is this efficient/effective?  Well, we're being nice to the system
5784  * by cleaning up our inodes proactively so they can be reaped
5785  * without I/O.  But we are potentially leaving up to five seconds'
5786  * worth of inodes floating about which prune_icache wants us to
5787  * write out.  One way to fix that would be to get prune_icache()
5788  * to do a write_super() to free up some memory.  It has the desired
5789  * effect.
5790  */
5791 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5792 {
5793         struct ext4_iloc iloc;
5794         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5795         static unsigned int mnt_count;
5796         int err, ret;
5797
5798         might_sleep();
5799         err = ext4_reserve_inode_write(handle, inode, &iloc);
5800         if (ext4_handle_valid(handle) &&
5801             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5802             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5803                 /*
5804                  * We need extra buffer credits since we may write into EA block
5805                  * with this same handle. If journal_extend fails, then it will
5806                  * only result in a minor loss of functionality for that inode.
5807                  * If this is felt to be critical, then e2fsck should be run to
5808                  * force a large enough s_min_extra_isize.
5809                  */
5810                 if ((jbd2_journal_extend(handle,
5811                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5812                         ret = ext4_expand_extra_isize(inode,
5813                                                       sbi->s_want_extra_isize,
5814                                                       iloc, handle);
5815                         if (ret) {
5816                                 ext4_set_inode_state(inode,
5817                                                      EXT4_STATE_NO_EXPAND);
5818                                 if (mnt_count !=
5819                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5820                                         ext4_warning(inode->i_sb,
5821                                         "Unable to expand inode %lu. Delete"
5822                                         " some EAs or run e2fsck.",
5823                                         inode->i_ino);
5824                                         mnt_count =
5825                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5826                                 }
5827                         }
5828                 }
5829         }
5830         if (!err)
5831                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5832         return err;
5833 }
5834
5835 /*
5836  * ext4_dirty_inode() is called from __mark_inode_dirty()
5837  *
5838  * We're really interested in the case where a file is being extended.
5839  * i_size has been changed by generic_commit_write() and we thus need
5840  * to include the updated inode in the current transaction.
5841  *
5842  * Also, dquot_alloc_block() will always dirty the inode when blocks
5843  * are allocated to the file.
5844  *
5845  * If the inode is marked synchronous, we don't honour that here - doing
5846  * so would cause a commit on atime updates, which we don't bother doing.
5847  * We handle synchronous inodes at the highest possible level.
5848  */
5849 void ext4_dirty_inode(struct inode *inode)
5850 {
5851         handle_t *handle;
5852
5853         handle = ext4_journal_start(inode, 2);
5854         if (IS_ERR(handle))
5855                 goto out;
5856
5857         ext4_mark_inode_dirty(handle, inode);
5858
5859         ext4_journal_stop(handle);
5860 out:
5861         return;
5862 }
5863
5864 #if 0
5865 /*
5866  * Bind an inode's backing buffer_head into this transaction, to prevent
5867  * it from being flushed to disk early.  Unlike
5868  * ext4_reserve_inode_write, this leaves behind no bh reference and
5869  * returns no iloc structure, so the caller needs to repeat the iloc
5870  * lookup to mark the inode dirty later.
5871  */
5872 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5873 {
5874         struct ext4_iloc iloc;
5875
5876         int err = 0;
5877         if (handle) {
5878                 err = ext4_get_inode_loc(inode, &iloc);
5879                 if (!err) {
5880                         BUFFER_TRACE(iloc.bh, "get_write_access");
5881                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5882                         if (!err)
5883                                 err = ext4_handle_dirty_metadata(handle,
5884                                                                  NULL,
5885                                                                  iloc.bh);
5886                         brelse(iloc.bh);
5887                 }
5888         }
5889         ext4_std_error(inode->i_sb, err);
5890         return err;
5891 }
5892 #endif
5893
5894 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5895 {
5896         journal_t *journal;
5897         handle_t *handle;
5898         int err;
5899
5900         /*
5901          * We have to be very careful here: changing a data block's
5902          * journaling status dynamically is dangerous.  If we write a
5903          * data block to the journal, change the status and then delete
5904          * that block, we risk forgetting to revoke the old log record
5905          * from the journal and so a subsequent replay can corrupt data.
5906          * So, first we make sure that the journal is empty and that
5907          * nobody is changing anything.
5908          */
5909
5910         journal = EXT4_JOURNAL(inode);
5911         if (!journal)
5912                 return 0;
5913         if (is_journal_aborted(journal))
5914                 return -EROFS;
5915
5916         jbd2_journal_lock_updates(journal);
5917         jbd2_journal_flush(journal);
5918
5919         /*
5920          * OK, there are no updates running now, and all cached data is
5921          * synced to disk.  We are now in a completely consistent state
5922          * which doesn't have anything in the journal, and we know that
5923          * no filesystem updates are running, so it is safe to modify
5924          * the inode's in-core data-journaling state flag now.
5925          */
5926
5927         if (val)
5928                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5929         else
5930                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5931         ext4_set_aops(inode);
5932
5933         jbd2_journal_unlock_updates(journal);
5934
5935         /* Finally we can mark the inode as dirty. */
5936
5937         handle = ext4_journal_start(inode, 1);
5938         if (IS_ERR(handle))
5939                 return PTR_ERR(handle);
5940
5941         err = ext4_mark_inode_dirty(handle, inode);
5942         ext4_handle_sync(handle);
5943         ext4_journal_stop(handle);
5944         ext4_std_error(inode->i_sb, err);
5945
5946         return err;
5947 }
5948
5949 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5950 {
5951         return !buffer_mapped(bh);
5952 }
5953
5954 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5955 {
5956         struct page *page = vmf->page;
5957         loff_t size;
5958         unsigned long len;
5959         int ret = -EINVAL;
5960         void *fsdata;
5961         struct file *file = vma->vm_file;
5962         struct inode *inode = file->f_path.dentry->d_inode;
5963         struct address_space *mapping = inode->i_mapping;
5964
5965         /*
5966          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5967          * get i_mutex because we are already holding mmap_sem.
5968          */
5969         down_read(&inode->i_alloc_sem);
5970         size = i_size_read(inode);
5971         if (page->mapping != mapping || size <= page_offset(page)
5972             || !PageUptodate(page)) {
5973                 /* page got truncated from under us? */
5974                 goto out_unlock;
5975         }
5976         ret = 0;
5977         if (PageMappedToDisk(page))
5978                 goto out_unlock;
5979
5980         if (page->index == size >> PAGE_CACHE_SHIFT)
5981                 len = size & ~PAGE_CACHE_MASK;
5982         else
5983                 len = PAGE_CACHE_SIZE;
5984
5985         lock_page(page);
5986         /*
5987          * return if we have all the buffers mapped. This avoid
5988          * the need to call write_begin/write_end which does a
5989          * journal_start/journal_stop which can block and take
5990          * long time
5991          */
5992         if (page_has_buffers(page)) {
5993                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5994                                         ext4_bh_unmapped)) {
5995                         unlock_page(page);
5996                         goto out_unlock;
5997                 }
5998         }
5999         unlock_page(page);
6000         /*
6001          * OK, we need to fill the hole... Do write_begin write_end
6002          * to do block allocation/reservation.We are not holding
6003          * inode.i__mutex here. That allow * parallel write_begin,
6004          * write_end call. lock_page prevent this from happening
6005          * on the same page though
6006          */
6007         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
6008                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
6009         if (ret < 0)
6010                 goto out_unlock;
6011         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
6012                         len, len, page, fsdata);
6013         if (ret < 0)
6014                 goto out_unlock;
6015         ret = 0;
6016 out_unlock:
6017         if (ret)
6018                 ret = VM_FAULT_SIGBUS;
6019         up_read(&inode->i_alloc_sem);
6020         return ret;
6021 }