1 // SPDX-License-Identifier: GPL-2.0
3 * linux/fs/ext4/inode.c
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
12 * linux/fs/minix/inode.c
14 * Copyright (C) 1991, 1992 Linus Torvalds
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
45 #include "ext4_jbd2.h"
50 #include <trace/events/ext4.h>
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 struct ext4_inode_info *ei)
55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
58 int offset = offsetof(struct ext4_inode, i_checksum_lo);
59 unsigned int csum_size = sizeof(dummy_csum);
61 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65 EXT4_GOOD_OLD_INODE_SIZE - offset);
67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68 offset = offsetof(struct ext4_inode, i_checksum_hi);
69 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70 EXT4_GOOD_OLD_INODE_SIZE,
71 offset - EXT4_GOOD_OLD_INODE_SIZE);
72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
77 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78 EXT4_INODE_SIZE(inode->i_sb) - offset);
84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85 struct ext4_inode_info *ei)
87 __u32 provided, calculated;
89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90 cpu_to_le32(EXT4_OS_LINUX) ||
91 !ext4_has_metadata_csum(inode->i_sb))
94 provided = le16_to_cpu(raw->i_checksum_lo);
95 calculated = ext4_inode_csum(inode, raw, ei);
96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100 calculated &= 0xFFFF;
102 return provided == calculated;
105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106 struct ext4_inode_info *ei)
110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111 cpu_to_le32(EXT4_OS_LINUX) ||
112 !ext4_has_metadata_csum(inode->i_sb))
115 csum = ext4_inode_csum(inode, raw, ei);
116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
125 trace_ext4_begin_ordered_truncate(inode, new_size);
127 * If jinode is zero, then we never opened the file for
128 * writing, so there's no need to call
129 * jbd2_journal_begin_ordered_truncate() since there's no
130 * outstanding writes we need to flush.
132 if (!EXT4_I(inode)->jinode)
134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135 EXT4_I(inode)->jinode,
139 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
144 * Test whether an inode is a fast symlink.
145 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
147 int ext4_inode_is_fast_symlink(struct inode *inode)
149 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
150 int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
153 if (ext4_has_inline_data(inode))
156 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
158 return S_ISLNK(inode->i_mode) && inode->i_size &&
159 (inode->i_size < EXT4_N_BLOCKS * 4);
163 * Called at the last iput() if i_nlink is zero.
165 void ext4_evict_inode(struct inode *inode)
170 * Credits for final inode cleanup and freeing:
171 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
172 * (xattr block freeing), bitmap, group descriptor (inode freeing)
174 int extra_credits = 6;
175 struct ext4_xattr_inode_array *ea_inode_array = NULL;
176 bool freeze_protected = false;
178 trace_ext4_evict_inode(inode);
180 if (inode->i_nlink) {
182 * When journalling data dirty buffers are tracked only in the
183 * journal. So although mm thinks everything is clean and
184 * ready for reaping the inode might still have some pages to
185 * write in the running transaction or waiting to be
186 * checkpointed. Thus calling jbd2_journal_invalidate_folio()
187 * (via truncate_inode_pages()) to discard these buffers can
188 * cause data loss. Also even if we did not discard these
189 * buffers, we would have no way to find them after the inode
190 * is reaped and thus user could see stale data if he tries to
191 * read them before the transaction is checkpointed. So be
192 * careful and force everything to disk here... We use
193 * ei->i_datasync_tid to store the newest transaction
194 * containing inode's data.
196 * Note that directories do not have this problem because they
197 * don't use page cache.
199 if (inode->i_ino != EXT4_JOURNAL_INO &&
200 ext4_should_journal_data(inode) &&
201 S_ISREG(inode->i_mode) && inode->i_data.nrpages) {
202 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
203 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
205 jbd2_complete_transaction(journal, commit_tid);
206 filemap_write_and_wait(&inode->i_data);
208 truncate_inode_pages_final(&inode->i_data);
213 if (is_bad_inode(inode))
215 dquot_initialize(inode);
217 if (ext4_should_order_data(inode))
218 ext4_begin_ordered_truncate(inode, 0);
219 truncate_inode_pages_final(&inode->i_data);
222 * For inodes with journalled data, transaction commit could have
223 * dirtied the inode. Flush worker is ignoring it because of I_FREEING
224 * flag but we still need to remove the inode from the writeback lists.
226 if (!list_empty_careful(&inode->i_io_list)) {
227 WARN_ON_ONCE(!ext4_should_journal_data(inode));
228 inode_io_list_del(inode);
232 * Protect us against freezing - iput() caller didn't have to have any
233 * protection against it. When we are in a running transaction though,
234 * we are already protected against freezing and we cannot grab further
235 * protection due to lock ordering constraints.
237 if (!ext4_journal_current_handle()) {
238 sb_start_intwrite(inode->i_sb);
239 freeze_protected = true;
242 if (!IS_NOQUOTA(inode))
243 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
246 * Block bitmap, group descriptor, and inode are accounted in both
247 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
249 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
250 ext4_blocks_for_truncate(inode) + extra_credits - 3);
251 if (IS_ERR(handle)) {
252 ext4_std_error(inode->i_sb, PTR_ERR(handle));
254 * If we're going to skip the normal cleanup, we still need to
255 * make sure that the in-core orphan linked list is properly
258 ext4_orphan_del(NULL, inode);
259 if (freeze_protected)
260 sb_end_intwrite(inode->i_sb);
265 ext4_handle_sync(handle);
268 * Set inode->i_size to 0 before calling ext4_truncate(). We need
269 * special handling of symlinks here because i_size is used to
270 * determine whether ext4_inode_info->i_data contains symlink data or
271 * block mappings. Setting i_size to 0 will remove its fast symlink
272 * status. Erase i_data so that it becomes a valid empty block map.
274 if (ext4_inode_is_fast_symlink(inode))
275 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
277 err = ext4_mark_inode_dirty(handle, inode);
279 ext4_warning(inode->i_sb,
280 "couldn't mark inode dirty (err %d)", err);
283 if (inode->i_blocks) {
284 err = ext4_truncate(inode);
286 ext4_error_err(inode->i_sb, -err,
287 "couldn't truncate inode %lu (err %d)",
293 /* Remove xattr references. */
294 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
297 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
299 ext4_journal_stop(handle);
300 ext4_orphan_del(NULL, inode);
301 if (freeze_protected)
302 sb_end_intwrite(inode->i_sb);
303 ext4_xattr_inode_array_free(ea_inode_array);
308 * Kill off the orphan record which ext4_truncate created.
309 * AKPM: I think this can be inside the above `if'.
310 * Note that ext4_orphan_del() has to be able to cope with the
311 * deletion of a non-existent orphan - this is because we don't
312 * know if ext4_truncate() actually created an orphan record.
313 * (Well, we could do this if we need to, but heck - it works)
315 ext4_orphan_del(handle, inode);
316 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds();
319 * One subtle ordering requirement: if anything has gone wrong
320 * (transaction abort, IO errors, whatever), then we can still
321 * do these next steps (the fs will already have been marked as
322 * having errors), but we can't free the inode if the mark_dirty
325 if (ext4_mark_inode_dirty(handle, inode))
326 /* If that failed, just do the required in-core inode clear. */
327 ext4_clear_inode(inode);
329 ext4_free_inode(handle, inode);
330 ext4_journal_stop(handle);
331 if (freeze_protected)
332 sb_end_intwrite(inode->i_sb);
333 ext4_xattr_inode_array_free(ea_inode_array);
336 if (!list_empty(&EXT4_I(inode)->i_fc_list))
337 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
338 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
342 qsize_t *ext4_get_reserved_space(struct inode *inode)
344 return &EXT4_I(inode)->i_reserved_quota;
349 * Called with i_data_sem down, which is important since we can call
350 * ext4_discard_preallocations() from here.
352 void ext4_da_update_reserve_space(struct inode *inode,
353 int used, int quota_claim)
355 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
356 struct ext4_inode_info *ei = EXT4_I(inode);
358 spin_lock(&ei->i_block_reservation_lock);
359 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
360 if (unlikely(used > ei->i_reserved_data_blocks)) {
361 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
362 "with only %d reserved data blocks",
363 __func__, inode->i_ino, used,
364 ei->i_reserved_data_blocks);
366 used = ei->i_reserved_data_blocks;
369 /* Update per-inode reservations */
370 ei->i_reserved_data_blocks -= used;
371 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
373 spin_unlock(&ei->i_block_reservation_lock);
375 /* Update quota subsystem for data blocks */
377 dquot_claim_block(inode, EXT4_C2B(sbi, used));
380 * We did fallocate with an offset that is already delayed
381 * allocated. So on delayed allocated writeback we should
382 * not re-claim the quota for fallocated blocks.
384 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
388 * If we have done all the pending block allocations and if
389 * there aren't any writers on the inode, we can discard the
390 * inode's preallocations.
392 if ((ei->i_reserved_data_blocks == 0) &&
393 !inode_is_open_for_write(inode))
394 ext4_discard_preallocations(inode, 0);
397 static int __check_block_validity(struct inode *inode, const char *func,
399 struct ext4_map_blocks *map)
401 if (ext4_has_feature_journal(inode->i_sb) &&
403 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
405 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
406 ext4_error_inode(inode, func, line, map->m_pblk,
407 "lblock %lu mapped to illegal pblock %llu "
408 "(length %d)", (unsigned long) map->m_lblk,
409 map->m_pblk, map->m_len);
410 return -EFSCORRUPTED;
415 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
420 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
421 return fscrypt_zeroout_range(inode, lblk, pblk, len);
423 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
430 #define check_block_validity(inode, map) \
431 __check_block_validity((inode), __func__, __LINE__, (map))
433 #ifdef ES_AGGRESSIVE_TEST
434 static void ext4_map_blocks_es_recheck(handle_t *handle,
436 struct ext4_map_blocks *es_map,
437 struct ext4_map_blocks *map,
444 * There is a race window that the result is not the same.
445 * e.g. xfstests #223 when dioread_nolock enables. The reason
446 * is that we lookup a block mapping in extent status tree with
447 * out taking i_data_sem. So at the time the unwritten extent
448 * could be converted.
450 down_read(&EXT4_I(inode)->i_data_sem);
451 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
452 retval = ext4_ext_map_blocks(handle, inode, map, 0);
454 retval = ext4_ind_map_blocks(handle, inode, map, 0);
456 up_read((&EXT4_I(inode)->i_data_sem));
459 * We don't check m_len because extent will be collpased in status
460 * tree. So the m_len might not equal.
462 if (es_map->m_lblk != map->m_lblk ||
463 es_map->m_flags != map->m_flags ||
464 es_map->m_pblk != map->m_pblk) {
465 printk("ES cache assertion failed for inode: %lu "
466 "es_cached ex [%d/%d/%llu/%x] != "
467 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
468 inode->i_ino, es_map->m_lblk, es_map->m_len,
469 es_map->m_pblk, es_map->m_flags, map->m_lblk,
470 map->m_len, map->m_pblk, map->m_flags,
474 #endif /* ES_AGGRESSIVE_TEST */
477 * The ext4_map_blocks() function tries to look up the requested blocks,
478 * and returns if the blocks are already mapped.
480 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
481 * and store the allocated blocks in the result buffer head and mark it
484 * If file type is extents based, it will call ext4_ext_map_blocks(),
485 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
488 * On success, it returns the number of blocks being mapped or allocated. if
489 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
490 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
492 * It returns 0 if plain look up failed (blocks have not been allocated), in
493 * that case, @map is returned as unmapped but we still do fill map->m_len to
494 * indicate the length of a hole starting at map->m_lblk.
496 * It returns the error in case of allocation failure.
498 int ext4_map_blocks(handle_t *handle, struct inode *inode,
499 struct ext4_map_blocks *map, int flags)
501 struct extent_status es;
504 #ifdef ES_AGGRESSIVE_TEST
505 struct ext4_map_blocks orig_map;
507 memcpy(&orig_map, map, sizeof(*map));
511 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
512 flags, map->m_len, (unsigned long) map->m_lblk);
515 * ext4_map_blocks returns an int, and m_len is an unsigned int
517 if (unlikely(map->m_len > INT_MAX))
518 map->m_len = INT_MAX;
520 /* We can handle the block number less than EXT_MAX_BLOCKS */
521 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
522 return -EFSCORRUPTED;
524 /* Lookup extent status tree firstly */
525 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
526 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
527 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
528 map->m_pblk = ext4_es_pblock(&es) +
529 map->m_lblk - es.es_lblk;
530 map->m_flags |= ext4_es_is_written(&es) ?
531 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
532 retval = es.es_len - (map->m_lblk - es.es_lblk);
533 if (retval > map->m_len)
536 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
538 retval = es.es_len - (map->m_lblk - es.es_lblk);
539 if (retval > map->m_len)
547 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
549 #ifdef ES_AGGRESSIVE_TEST
550 ext4_map_blocks_es_recheck(handle, inode, map,
556 * In the query cache no-wait mode, nothing we can do more if we
557 * cannot find extent in the cache.
559 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
563 * Try to see if we can get the block without requesting a new
566 down_read(&EXT4_I(inode)->i_data_sem);
567 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
568 retval = ext4_ext_map_blocks(handle, inode, map, 0);
570 retval = ext4_ind_map_blocks(handle, inode, map, 0);
575 if (unlikely(retval != map->m_len)) {
576 ext4_warning(inode->i_sb,
577 "ES len assertion failed for inode "
578 "%lu: retval %d != map->m_len %d",
579 inode->i_ino, retval, map->m_len);
583 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
584 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
585 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
586 !(status & EXTENT_STATUS_WRITTEN) &&
587 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
588 map->m_lblk + map->m_len - 1))
589 status |= EXTENT_STATUS_DELAYED;
590 ret = ext4_es_insert_extent(inode, map->m_lblk,
591 map->m_len, map->m_pblk, status);
595 up_read((&EXT4_I(inode)->i_data_sem));
598 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
599 ret = check_block_validity(inode, map);
604 /* If it is only a block(s) look up */
605 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
609 * Returns if the blocks have already allocated
611 * Note that if blocks have been preallocated
612 * ext4_ext_get_block() returns the create = 0
613 * with buffer head unmapped.
615 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
617 * If we need to convert extent to unwritten
618 * we continue and do the actual work in
619 * ext4_ext_map_blocks()
621 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
625 * Here we clear m_flags because after allocating an new extent,
626 * it will be set again.
628 map->m_flags &= ~EXT4_MAP_FLAGS;
631 * New blocks allocate and/or writing to unwritten extent
632 * will possibly result in updating i_data, so we take
633 * the write lock of i_data_sem, and call get_block()
634 * with create == 1 flag.
636 down_write(&EXT4_I(inode)->i_data_sem);
639 * We need to check for EXT4 here because migrate
640 * could have changed the inode type in between
642 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
643 retval = ext4_ext_map_blocks(handle, inode, map, flags);
645 retval = ext4_ind_map_blocks(handle, inode, map, flags);
647 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
649 * We allocated new blocks which will result in
650 * i_data's format changing. Force the migrate
651 * to fail by clearing migrate flags
653 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
657 * Update reserved blocks/metadata blocks after successful
658 * block allocation which had been deferred till now. We don't
659 * support fallocate for non extent files. So we can update
660 * reserve space here.
663 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
664 ext4_da_update_reserve_space(inode, retval, 1);
670 if (unlikely(retval != map->m_len)) {
671 ext4_warning(inode->i_sb,
672 "ES len assertion failed for inode "
673 "%lu: retval %d != map->m_len %d",
674 inode->i_ino, retval, map->m_len);
679 * We have to zeroout blocks before inserting them into extent
680 * status tree. Otherwise someone could look them up there and
681 * use them before they are really zeroed. We also have to
682 * unmap metadata before zeroing as otherwise writeback can
683 * overwrite zeros with stale data from block device.
685 if (flags & EXT4_GET_BLOCKS_ZERO &&
686 map->m_flags & EXT4_MAP_MAPPED &&
687 map->m_flags & EXT4_MAP_NEW) {
688 ret = ext4_issue_zeroout(inode, map->m_lblk,
689 map->m_pblk, map->m_len);
697 * If the extent has been zeroed out, we don't need to update
698 * extent status tree.
700 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
701 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
702 if (ext4_es_is_written(&es))
705 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
706 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
707 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
708 !(status & EXTENT_STATUS_WRITTEN) &&
709 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
710 map->m_lblk + map->m_len - 1))
711 status |= EXTENT_STATUS_DELAYED;
712 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
713 map->m_pblk, status);
721 up_write((&EXT4_I(inode)->i_data_sem));
722 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
723 ret = check_block_validity(inode, map);
728 * Inodes with freshly allocated blocks where contents will be
729 * visible after transaction commit must be on transaction's
732 if (map->m_flags & EXT4_MAP_NEW &&
733 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
734 !(flags & EXT4_GET_BLOCKS_ZERO) &&
735 !ext4_is_quota_file(inode) &&
736 ext4_should_order_data(inode)) {
738 (loff_t)map->m_lblk << inode->i_blkbits;
739 loff_t length = (loff_t)map->m_len << inode->i_blkbits;
741 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
742 ret = ext4_jbd2_inode_add_wait(handle, inode,
745 ret = ext4_jbd2_inode_add_write(handle, inode,
751 if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
752 map->m_flags & EXT4_MAP_MAPPED))
753 ext4_fc_track_range(handle, inode, map->m_lblk,
754 map->m_lblk + map->m_len - 1);
756 ext_debug(inode, "failed with err %d\n", retval);
761 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
762 * we have to be careful as someone else may be manipulating b_state as well.
764 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
766 unsigned long old_state;
767 unsigned long new_state;
769 flags &= EXT4_MAP_FLAGS;
771 /* Dummy buffer_head? Set non-atomically. */
773 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
777 * Someone else may be modifying b_state. Be careful! This is ugly but
778 * once we get rid of using bh as a container for mapping information
779 * to pass to / from get_block functions, this can go away.
782 old_state = READ_ONCE(bh->b_state);
783 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
785 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
788 static int _ext4_get_block(struct inode *inode, sector_t iblock,
789 struct buffer_head *bh, int flags)
791 struct ext4_map_blocks map;
794 if (ext4_has_inline_data(inode))
798 map.m_len = bh->b_size >> inode->i_blkbits;
800 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
803 map_bh(bh, inode->i_sb, map.m_pblk);
804 ext4_update_bh_state(bh, map.m_flags);
805 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
807 } else if (ret == 0) {
808 /* hole case, need to fill in bh->b_size */
809 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
814 int ext4_get_block(struct inode *inode, sector_t iblock,
815 struct buffer_head *bh, int create)
817 return _ext4_get_block(inode, iblock, bh,
818 create ? EXT4_GET_BLOCKS_CREATE : 0);
822 * Get block function used when preparing for buffered write if we require
823 * creating an unwritten extent if blocks haven't been allocated. The extent
824 * will be converted to written after the IO is complete.
826 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
827 struct buffer_head *bh_result, int create)
829 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
830 inode->i_ino, create);
831 return _ext4_get_block(inode, iblock, bh_result,
832 EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
835 /* Maximum number of blocks we map for direct IO at once. */
836 #define DIO_MAX_BLOCKS 4096
839 * `handle' can be NULL if create is zero
841 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
842 ext4_lblk_t block, int map_flags)
844 struct ext4_map_blocks map;
845 struct buffer_head *bh;
846 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
847 bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
850 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
851 || handle != NULL || create == 0);
852 ASSERT(create == 0 || !nowait);
856 err = ext4_map_blocks(handle, inode, &map, map_flags);
859 return create ? ERR_PTR(-ENOSPC) : NULL;
864 return sb_find_get_block(inode->i_sb, map.m_pblk);
866 bh = sb_getblk(inode->i_sb, map.m_pblk);
868 return ERR_PTR(-ENOMEM);
869 if (map.m_flags & EXT4_MAP_NEW) {
871 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
872 || (handle != NULL));
875 * Now that we do not always journal data, we should
876 * keep in mind whether this should always journal the
877 * new buffer as metadata. For now, regular file
878 * writes use ext4_get_block instead, so it's not a
882 BUFFER_TRACE(bh, "call get_create_access");
883 err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
889 if (!buffer_uptodate(bh)) {
890 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
891 set_buffer_uptodate(bh);
894 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
895 err = ext4_handle_dirty_metadata(handle, inode, bh);
899 BUFFER_TRACE(bh, "not a new buffer");
906 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
907 ext4_lblk_t block, int map_flags)
909 struct buffer_head *bh;
912 bh = ext4_getblk(handle, inode, block, map_flags);
915 if (!bh || ext4_buffer_uptodate(bh))
918 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
926 /* Read a contiguous batch of blocks. */
927 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
928 bool wait, struct buffer_head **bhs)
932 for (i = 0; i < bh_count; i++) {
933 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
934 if (IS_ERR(bhs[i])) {
935 err = PTR_ERR(bhs[i]);
941 for (i = 0; i < bh_count; i++)
942 /* Note that NULL bhs[i] is valid because of holes. */
943 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
944 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
949 for (i = 0; i < bh_count; i++)
951 wait_on_buffer(bhs[i]);
953 for (i = 0; i < bh_count; i++) {
954 if (bhs[i] && !buffer_uptodate(bhs[i])) {
962 for (i = 0; i < bh_count; i++) {
969 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
970 struct buffer_head *head,
974 int (*fn)(handle_t *handle, struct inode *inode,
975 struct buffer_head *bh))
977 struct buffer_head *bh;
978 unsigned block_start, block_end;
979 unsigned blocksize = head->b_size;
981 struct buffer_head *next;
983 for (bh = head, block_start = 0;
984 ret == 0 && (bh != head || !block_start);
985 block_start = block_end, bh = next) {
986 next = bh->b_this_page;
987 block_end = block_start + blocksize;
988 if (block_end <= from || block_start >= to) {
989 if (partial && !buffer_uptodate(bh))
993 err = (*fn)(handle, inode, bh);
1001 * To preserve ordering, it is essential that the hole instantiation and
1002 * the data write be encapsulated in a single transaction. We cannot
1003 * close off a transaction and start a new one between the ext4_get_block()
1004 * and the commit_write(). So doing the jbd2_journal_start at the start of
1005 * prepare_write() is the right place.
1007 * Also, this function can nest inside ext4_writepage(). In that case, we
1008 * *know* that ext4_writepage() has generated enough buffer credits to do the
1009 * whole page. So we won't block on the journal in that case, which is good,
1010 * because the caller may be PF_MEMALLOC.
1012 * By accident, ext4 can be reentered when a transaction is open via
1013 * quota file writes. If we were to commit the transaction while thus
1014 * reentered, there can be a deadlock - we would be holding a quota
1015 * lock, and the commit would never complete if another thread had a
1016 * transaction open and was blocking on the quota lock - a ranking
1019 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1020 * will _not_ run commit under these circumstances because handle->h_ref
1021 * is elevated. We'll still have enough credits for the tiny quotafile
1024 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1025 struct buffer_head *bh)
1027 int dirty = buffer_dirty(bh);
1030 if (!buffer_mapped(bh) || buffer_freed(bh))
1033 * __block_write_begin() could have dirtied some buffers. Clean
1034 * the dirty bit as jbd2_journal_get_write_access() could complain
1035 * otherwise about fs integrity issues. Setting of the dirty bit
1036 * by __block_write_begin() isn't a real problem here as we clear
1037 * the bit before releasing a page lock and thus writeback cannot
1038 * ever write the buffer.
1041 clear_buffer_dirty(bh);
1042 BUFFER_TRACE(bh, "get write access");
1043 ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1046 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1050 #ifdef CONFIG_FS_ENCRYPTION
1051 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1052 get_block_t *get_block)
1054 unsigned from = pos & (PAGE_SIZE - 1);
1055 unsigned to = from + len;
1056 struct inode *inode = page->mapping->host;
1057 unsigned block_start, block_end;
1060 unsigned blocksize = inode->i_sb->s_blocksize;
1062 struct buffer_head *bh, *head, *wait[2];
1066 BUG_ON(!PageLocked(page));
1067 BUG_ON(from > PAGE_SIZE);
1068 BUG_ON(to > PAGE_SIZE);
1071 if (!page_has_buffers(page))
1072 create_empty_buffers(page, blocksize, 0);
1073 head = page_buffers(page);
1074 bbits = ilog2(blocksize);
1075 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1077 for (bh = head, block_start = 0; bh != head || !block_start;
1078 block++, block_start = block_end, bh = bh->b_this_page) {
1079 block_end = block_start + blocksize;
1080 if (block_end <= from || block_start >= to) {
1081 if (PageUptodate(page)) {
1082 set_buffer_uptodate(bh);
1087 clear_buffer_new(bh);
1088 if (!buffer_mapped(bh)) {
1089 WARN_ON(bh->b_size != blocksize);
1090 err = get_block(inode, block, bh, 1);
1093 if (buffer_new(bh)) {
1094 if (PageUptodate(page)) {
1095 clear_buffer_new(bh);
1096 set_buffer_uptodate(bh);
1097 mark_buffer_dirty(bh);
1100 if (block_end > to || block_start < from)
1101 zero_user_segments(page, to, block_end,
1106 if (PageUptodate(page)) {
1107 set_buffer_uptodate(bh);
1110 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1111 !buffer_unwritten(bh) &&
1112 (block_start < from || block_end > to)) {
1113 ext4_read_bh_lock(bh, 0, false);
1114 wait[nr_wait++] = bh;
1118 * If we issued read requests, let them complete.
1120 for (i = 0; i < nr_wait; i++) {
1121 wait_on_buffer(wait[i]);
1122 if (!buffer_uptodate(wait[i]))
1125 if (unlikely(err)) {
1126 page_zero_new_buffers(page, from, to);
1127 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1128 for (i = 0; i < nr_wait; i++) {
1131 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1132 bh_offset(wait[i]));
1134 clear_buffer_uptodate(wait[i]);
1144 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1145 loff_t pos, unsigned len,
1146 struct page **pagep, void **fsdata)
1148 struct inode *inode = mapping->host;
1149 int ret, needed_blocks;
1156 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1159 trace_ext4_write_begin(inode, pos, len);
1161 * Reserve one block more for addition to orphan list in case
1162 * we allocate blocks but write fails for some reason
1164 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1165 index = pos >> PAGE_SHIFT;
1166 from = pos & (PAGE_SIZE - 1);
1169 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1170 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1179 * grab_cache_page_write_begin() can take a long time if the
1180 * system is thrashing due to memory pressure, or if the page
1181 * is being written back. So grab it first before we start
1182 * the transaction handle. This also allows us to allocate
1183 * the page (if needed) without using GFP_NOFS.
1186 page = grab_cache_page_write_begin(mapping, index);
1192 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1193 if (IS_ERR(handle)) {
1195 return PTR_ERR(handle);
1199 if (page->mapping != mapping) {
1200 /* The page got truncated from under us */
1203 ext4_journal_stop(handle);
1206 /* In case writeback began while the page was unlocked */
1207 wait_for_stable_page(page);
1209 #ifdef CONFIG_FS_ENCRYPTION
1210 if (ext4_should_dioread_nolock(inode))
1211 ret = ext4_block_write_begin(page, pos, len,
1212 ext4_get_block_unwritten);
1214 ret = ext4_block_write_begin(page, pos, len,
1217 if (ext4_should_dioread_nolock(inode))
1218 ret = __block_write_begin(page, pos, len,
1219 ext4_get_block_unwritten);
1221 ret = __block_write_begin(page, pos, len, ext4_get_block);
1223 if (!ret && ext4_should_journal_data(inode)) {
1224 ret = ext4_walk_page_buffers(handle, inode,
1225 page_buffers(page), from, to, NULL,
1226 do_journal_get_write_access);
1230 bool extended = (pos + len > inode->i_size) &&
1231 !ext4_verity_in_progress(inode);
1235 * __block_write_begin may have instantiated a few blocks
1236 * outside i_size. Trim these off again. Don't need
1237 * i_size_read because we hold i_rwsem.
1239 * Add inode to orphan list in case we crash before
1242 if (extended && ext4_can_truncate(inode))
1243 ext4_orphan_add(handle, inode);
1245 ext4_journal_stop(handle);
1247 ext4_truncate_failed_write(inode);
1249 * If truncate failed early the inode might
1250 * still be on the orphan list; we need to
1251 * make sure the inode is removed from the
1252 * orphan list in that case.
1255 ext4_orphan_del(NULL, inode);
1258 if (ret == -ENOSPC &&
1259 ext4_should_retry_alloc(inode->i_sb, &retries))
1268 /* For write_end() in data=journal mode */
1269 static int write_end_fn(handle_t *handle, struct inode *inode,
1270 struct buffer_head *bh)
1273 if (!buffer_mapped(bh) || buffer_freed(bh))
1275 set_buffer_uptodate(bh);
1276 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1277 clear_buffer_meta(bh);
1278 clear_buffer_prio(bh);
1283 * We need to pick up the new inode size which generic_commit_write gave us
1284 * `file' can be NULL - eg, when called from page_symlink().
1286 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1287 * buffers are managed internally.
1289 static int ext4_write_end(struct file *file,
1290 struct address_space *mapping,
1291 loff_t pos, unsigned len, unsigned copied,
1292 struct page *page, void *fsdata)
1294 handle_t *handle = ext4_journal_current_handle();
1295 struct inode *inode = mapping->host;
1296 loff_t old_size = inode->i_size;
1298 int i_size_changed = 0;
1299 bool verity = ext4_verity_in_progress(inode);
1301 trace_ext4_write_end(inode, pos, len, copied);
1303 if (ext4_has_inline_data(inode))
1304 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1306 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1308 * it's important to update i_size while still holding page lock:
1309 * page writeout could otherwise come in and zero beyond i_size.
1311 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1312 * blocks are being written past EOF, so skip the i_size update.
1315 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1319 if (old_size < pos && !verity)
1320 pagecache_isize_extended(inode, old_size, pos);
1322 * Don't mark the inode dirty under page lock. First, it unnecessarily
1323 * makes the holding time of page lock longer. Second, it forces lock
1324 * ordering of page lock and transaction start for journaling
1328 ret = ext4_mark_inode_dirty(handle, inode);
1330 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1331 /* if we have allocated more blocks and copied
1332 * less. We will have blocks allocated outside
1333 * inode->i_size. So truncate them
1335 ext4_orphan_add(handle, inode);
1337 ret2 = ext4_journal_stop(handle);
1341 if (pos + len > inode->i_size && !verity) {
1342 ext4_truncate_failed_write(inode);
1344 * If truncate failed early the inode might still be
1345 * on the orphan list; we need to make sure the inode
1346 * is removed from the orphan list in that case.
1349 ext4_orphan_del(NULL, inode);
1352 return ret ? ret : copied;
1356 * This is a private version of page_zero_new_buffers() which doesn't
1357 * set the buffer to be dirty, since in data=journalled mode we need
1358 * to call ext4_handle_dirty_metadata() instead.
1360 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1361 struct inode *inode,
1363 unsigned from, unsigned to)
1365 unsigned int block_start = 0, block_end;
1366 struct buffer_head *head, *bh;
1368 bh = head = page_buffers(page);
1370 block_end = block_start + bh->b_size;
1371 if (buffer_new(bh)) {
1372 if (block_end > from && block_start < to) {
1373 if (!PageUptodate(page)) {
1374 unsigned start, size;
1376 start = max(from, block_start);
1377 size = min(to, block_end) - start;
1379 zero_user(page, start, size);
1380 write_end_fn(handle, inode, bh);
1382 clear_buffer_new(bh);
1385 block_start = block_end;
1386 bh = bh->b_this_page;
1387 } while (bh != head);
1390 static int ext4_journalled_write_end(struct file *file,
1391 struct address_space *mapping,
1392 loff_t pos, unsigned len, unsigned copied,
1393 struct page *page, void *fsdata)
1395 handle_t *handle = ext4_journal_current_handle();
1396 struct inode *inode = mapping->host;
1397 loff_t old_size = inode->i_size;
1401 int size_changed = 0;
1402 bool verity = ext4_verity_in_progress(inode);
1404 trace_ext4_journalled_write_end(inode, pos, len, copied);
1405 from = pos & (PAGE_SIZE - 1);
1408 BUG_ON(!ext4_handle_valid(handle));
1410 if (ext4_has_inline_data(inode))
1411 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1413 if (unlikely(copied < len) && !PageUptodate(page)) {
1415 ext4_journalled_zero_new_buffers(handle, inode, page, from, to);
1417 if (unlikely(copied < len))
1418 ext4_journalled_zero_new_buffers(handle, inode, page,
1420 ret = ext4_walk_page_buffers(handle, inode, page_buffers(page),
1421 from, from + copied, &partial,
1424 SetPageUptodate(page);
1427 size_changed = ext4_update_inode_size(inode, pos + copied);
1428 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1429 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1433 if (old_size < pos && !verity)
1434 pagecache_isize_extended(inode, old_size, pos);
1437 ret2 = ext4_mark_inode_dirty(handle, inode);
1442 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1443 /* if we have allocated more blocks and copied
1444 * less. We will have blocks allocated outside
1445 * inode->i_size. So truncate them
1447 ext4_orphan_add(handle, inode);
1449 ret2 = ext4_journal_stop(handle);
1452 if (pos + len > inode->i_size && !verity) {
1453 ext4_truncate_failed_write(inode);
1455 * If truncate failed early the inode might still be
1456 * on the orphan list; we need to make sure the inode
1457 * is removed from the orphan list in that case.
1460 ext4_orphan_del(NULL, inode);
1463 return ret ? ret : copied;
1467 * Reserve space for a single cluster
1469 static int ext4_da_reserve_space(struct inode *inode)
1471 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1472 struct ext4_inode_info *ei = EXT4_I(inode);
1476 * We will charge metadata quota at writeout time; this saves
1477 * us from metadata over-estimation, though we may go over by
1478 * a small amount in the end. Here we just reserve for data.
1480 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1484 spin_lock(&ei->i_block_reservation_lock);
1485 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1486 spin_unlock(&ei->i_block_reservation_lock);
1487 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1490 ei->i_reserved_data_blocks++;
1491 trace_ext4_da_reserve_space(inode);
1492 spin_unlock(&ei->i_block_reservation_lock);
1494 return 0; /* success */
1497 void ext4_da_release_space(struct inode *inode, int to_free)
1499 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1500 struct ext4_inode_info *ei = EXT4_I(inode);
1503 return; /* Nothing to release, exit */
1505 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1507 trace_ext4_da_release_space(inode, to_free);
1508 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1510 * if there aren't enough reserved blocks, then the
1511 * counter is messed up somewhere. Since this
1512 * function is called from invalidate page, it's
1513 * harmless to return without any action.
1515 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1516 "ino %lu, to_free %d with only %d reserved "
1517 "data blocks", inode->i_ino, to_free,
1518 ei->i_reserved_data_blocks);
1520 to_free = ei->i_reserved_data_blocks;
1522 ei->i_reserved_data_blocks -= to_free;
1524 /* update fs dirty data blocks counter */
1525 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1527 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1529 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1533 * Delayed allocation stuff
1536 struct mpage_da_data {
1537 struct inode *inode;
1538 struct writeback_control *wbc;
1540 pgoff_t first_page; /* The first page to write */
1541 pgoff_t next_page; /* Current page to examine */
1542 pgoff_t last_page; /* Last page to examine */
1544 * Extent to map - this can be after first_page because that can be
1545 * fully mapped. We somewhat abuse m_flags to store whether the extent
1546 * is delalloc or unwritten.
1548 struct ext4_map_blocks map;
1549 struct ext4_io_submit io_submit; /* IO submission data */
1550 unsigned int do_map:1;
1551 unsigned int scanned_until_end:1;
1554 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1559 struct pagevec pvec;
1560 struct inode *inode = mpd->inode;
1561 struct address_space *mapping = inode->i_mapping;
1563 /* This is necessary when next_page == 0. */
1564 if (mpd->first_page >= mpd->next_page)
1567 mpd->scanned_until_end = 0;
1568 index = mpd->first_page;
1569 end = mpd->next_page - 1;
1571 ext4_lblk_t start, last;
1572 start = index << (PAGE_SHIFT - inode->i_blkbits);
1573 last = end << (PAGE_SHIFT - inode->i_blkbits);
1574 ext4_es_remove_extent(inode, start, last - start + 1);
1577 pagevec_init(&pvec);
1578 while (index <= end) {
1579 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1582 for (i = 0; i < nr_pages; i++) {
1583 struct page *page = pvec.pages[i];
1584 struct folio *folio = page_folio(page);
1586 BUG_ON(!folio_test_locked(folio));
1587 BUG_ON(folio_test_writeback(folio));
1589 if (folio_mapped(folio))
1590 folio_clear_dirty_for_io(folio);
1591 block_invalidate_folio(folio, 0,
1593 folio_clear_uptodate(folio);
1595 folio_unlock(folio);
1597 pagevec_release(&pvec);
1601 static void ext4_print_free_blocks(struct inode *inode)
1603 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1604 struct super_block *sb = inode->i_sb;
1605 struct ext4_inode_info *ei = EXT4_I(inode);
1607 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1608 EXT4_C2B(EXT4_SB(inode->i_sb),
1609 ext4_count_free_clusters(sb)));
1610 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1611 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1612 (long long) EXT4_C2B(EXT4_SB(sb),
1613 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1614 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1615 (long long) EXT4_C2B(EXT4_SB(sb),
1616 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1617 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1618 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1619 ei->i_reserved_data_blocks);
1623 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode,
1624 struct buffer_head *bh)
1626 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1630 * ext4_insert_delayed_block - adds a delayed block to the extents status
1631 * tree, incrementing the reserved cluster/block
1632 * count or making a pending reservation
1635 * @inode - file containing the newly added block
1636 * @lblk - logical block to be added
1638 * Returns 0 on success, negative error code on failure.
1640 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1642 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1644 bool allocated = false;
1645 bool reserved = false;
1648 * If the cluster containing lblk is shared with a delayed,
1649 * written, or unwritten extent in a bigalloc file system, it's
1650 * already been accounted for and does not need to be reserved.
1651 * A pending reservation must be made for the cluster if it's
1652 * shared with a written or unwritten extent and doesn't already
1653 * have one. Written and unwritten extents can be purged from the
1654 * extents status tree if the system is under memory pressure, so
1655 * it's necessary to examine the extent tree if a search of the
1656 * extents status tree doesn't get a match.
1658 if (sbi->s_cluster_ratio == 1) {
1659 ret = ext4_da_reserve_space(inode);
1660 if (ret != 0) /* ENOSPC */
1663 } else { /* bigalloc */
1664 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1665 if (!ext4_es_scan_clu(inode,
1666 &ext4_es_is_mapped, lblk)) {
1667 ret = ext4_clu_mapped(inode,
1668 EXT4_B2C(sbi, lblk));
1672 ret = ext4_da_reserve_space(inode);
1673 if (ret != 0) /* ENOSPC */
1685 ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1686 if (ret && reserved)
1687 ext4_da_release_space(inode, 1);
1694 * This function is grabs code from the very beginning of
1695 * ext4_map_blocks, but assumes that the caller is from delayed write
1696 * time. This function looks up the requested blocks and sets the
1697 * buffer delay bit under the protection of i_data_sem.
1699 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1700 struct ext4_map_blocks *map,
1701 struct buffer_head *bh)
1703 struct extent_status es;
1705 sector_t invalid_block = ~((sector_t) 0xffff);
1706 #ifdef ES_AGGRESSIVE_TEST
1707 struct ext4_map_blocks orig_map;
1709 memcpy(&orig_map, map, sizeof(*map));
1712 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1716 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1717 (unsigned long) map->m_lblk);
1719 /* Lookup extent status tree firstly */
1720 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1721 if (ext4_es_is_hole(&es)) {
1723 down_read(&EXT4_I(inode)->i_data_sem);
1728 * Delayed extent could be allocated by fallocate.
1729 * So we need to check it.
1731 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1732 map_bh(bh, inode->i_sb, invalid_block);
1734 set_buffer_delay(bh);
1738 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1739 retval = es.es_len - (iblock - es.es_lblk);
1740 if (retval > map->m_len)
1741 retval = map->m_len;
1742 map->m_len = retval;
1743 if (ext4_es_is_written(&es))
1744 map->m_flags |= EXT4_MAP_MAPPED;
1745 else if (ext4_es_is_unwritten(&es))
1746 map->m_flags |= EXT4_MAP_UNWRITTEN;
1750 #ifdef ES_AGGRESSIVE_TEST
1751 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1757 * Try to see if we can get the block without requesting a new
1758 * file system block.
1760 down_read(&EXT4_I(inode)->i_data_sem);
1761 if (ext4_has_inline_data(inode))
1763 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1764 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1766 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1773 * XXX: __block_prepare_write() unmaps passed block,
1777 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1783 map_bh(bh, inode->i_sb, invalid_block);
1785 set_buffer_delay(bh);
1786 } else if (retval > 0) {
1788 unsigned int status;
1790 if (unlikely(retval != map->m_len)) {
1791 ext4_warning(inode->i_sb,
1792 "ES len assertion failed for inode "
1793 "%lu: retval %d != map->m_len %d",
1794 inode->i_ino, retval, map->m_len);
1798 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1799 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1800 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1801 map->m_pblk, status);
1807 up_read((&EXT4_I(inode)->i_data_sem));
1813 * This is a special get_block_t callback which is used by
1814 * ext4_da_write_begin(). It will either return mapped block or
1815 * reserve space for a single block.
1817 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1818 * We also have b_blocknr = -1 and b_bdev initialized properly
1820 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1821 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1822 * initialized properly.
1824 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1825 struct buffer_head *bh, int create)
1827 struct ext4_map_blocks map;
1830 BUG_ON(create == 0);
1831 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1833 map.m_lblk = iblock;
1837 * first, we need to know whether the block is allocated already
1838 * preallocated blocks are unmapped but should treated
1839 * the same as allocated blocks.
1841 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1845 map_bh(bh, inode->i_sb, map.m_pblk);
1846 ext4_update_bh_state(bh, map.m_flags);
1848 if (buffer_unwritten(bh)) {
1849 /* A delayed write to unwritten bh should be marked
1850 * new and mapped. Mapped ensures that we don't do
1851 * get_block multiple times when we write to the same
1852 * offset and new ensures that we do proper zero out
1853 * for partial write.
1856 set_buffer_mapped(bh);
1861 static int __ext4_journalled_writepage(struct page *page,
1864 struct address_space *mapping = page->mapping;
1865 struct inode *inode = mapping->host;
1866 handle_t *handle = NULL;
1867 int ret = 0, err = 0;
1868 int inline_data = ext4_has_inline_data(inode);
1869 struct buffer_head *inode_bh = NULL;
1872 ClearPageChecked(page);
1875 BUG_ON(page->index != 0);
1876 BUG_ON(len > ext4_get_max_inline_size(inode));
1877 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1878 if (inode_bh == NULL)
1882 * We need to release the page lock before we start the
1883 * journal, so grab a reference so the page won't disappear
1884 * out from under us.
1889 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1890 ext4_writepage_trans_blocks(inode));
1891 if (IS_ERR(handle)) {
1892 ret = PTR_ERR(handle);
1894 goto out_no_pagelock;
1896 BUG_ON(!ext4_handle_valid(handle));
1900 size = i_size_read(inode);
1901 if (page->mapping != mapping || page_offset(page) > size) {
1902 /* The page got truncated from under us */
1903 ext4_journal_stop(handle);
1909 ret = ext4_mark_inode_dirty(handle, inode);
1911 struct buffer_head *page_bufs = page_buffers(page);
1913 if (page->index == size >> PAGE_SHIFT)
1914 len = size & ~PAGE_MASK;
1918 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1919 NULL, do_journal_get_write_access);
1921 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1922 NULL, write_end_fn);
1926 err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1929 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1930 err = ext4_journal_stop(handle);
1934 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1943 * Note that we don't need to start a transaction unless we're journaling data
1944 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1945 * need to file the inode to the transaction's list in ordered mode because if
1946 * we are writing back data added by write(), the inode is already there and if
1947 * we are writing back data modified via mmap(), no one guarantees in which
1948 * transaction the data will hit the disk. In case we are journaling data, we
1949 * cannot start transaction directly because transaction start ranks above page
1950 * lock so we have to do some magic.
1952 * This function can get called via...
1953 * - ext4_writepages after taking page lock (have journal handle)
1954 * - journal_submit_inode_data_buffers (no journal handle)
1955 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1956 * - grab_page_cache when doing write_begin (have journal handle)
1958 * We don't do any block allocation in this function. If we have page with
1959 * multiple blocks we need to write those buffer_heads that are mapped. This
1960 * is important for mmaped based write. So if we do with blocksize 1K
1961 * truncate(f, 1024);
1962 * a = mmap(f, 0, 4096);
1964 * truncate(f, 4096);
1965 * we have in the page first buffer_head mapped via page_mkwrite call back
1966 * but other buffer_heads would be unmapped but dirty (dirty done via the
1967 * do_wp_page). So writepage should write the first block. If we modify
1968 * the mmap area beyond 1024 we will again get a page_fault and the
1969 * page_mkwrite callback will do the block allocation and mark the
1970 * buffer_heads mapped.
1972 * We redirty the page if we have any buffer_heads that is either delay or
1973 * unwritten in the page.
1975 * We can get recursively called as show below.
1977 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1980 * But since we don't do any block allocation we should not deadlock.
1981 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1983 static int ext4_writepage(struct page *page,
1984 struct writeback_control *wbc)
1986 struct folio *folio = page_folio(page);
1990 struct buffer_head *page_bufs = NULL;
1991 struct inode *inode = page->mapping->host;
1992 struct ext4_io_submit io_submit;
1993 bool keep_towrite = false;
1995 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
1996 folio_invalidate(folio, 0, folio_size(folio));
1997 folio_unlock(folio);
2001 trace_ext4_writepage(page);
2002 size = i_size_read(inode);
2003 if (page->index == size >> PAGE_SHIFT &&
2004 !ext4_verity_in_progress(inode))
2005 len = size & ~PAGE_MASK;
2009 /* Should never happen but for bugs in other kernel subsystems */
2010 if (!page_has_buffers(page)) {
2011 ext4_warning_inode(inode,
2012 "page %lu does not have buffers attached", page->index);
2013 ClearPageDirty(page);
2018 page_bufs = page_buffers(page);
2020 * We cannot do block allocation or other extent handling in this
2021 * function. If there are buffers needing that, we have to redirty
2022 * the page. But we may reach here when we do a journal commit via
2023 * journal_submit_inode_data_buffers() and in that case we must write
2024 * allocated buffers to achieve data=ordered mode guarantees.
2026 * Also, if there is only one buffer per page (the fs block
2027 * size == the page size), if one buffer needs block
2028 * allocation or needs to modify the extent tree to clear the
2029 * unwritten flag, we know that the page can't be written at
2030 * all, so we might as well refuse the write immediately.
2031 * Unfortunately if the block size != page size, we can't as
2032 * easily detect this case using ext4_walk_page_buffers(), but
2033 * for the extremely common case, this is an optimization that
2034 * skips a useless round trip through ext4_bio_write_page().
2036 if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL,
2037 ext4_bh_delay_or_unwritten)) {
2038 redirty_page_for_writepage(wbc, page);
2039 if ((current->flags & PF_MEMALLOC) ||
2040 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2042 * For memory cleaning there's no point in writing only
2043 * some buffers. So just bail out. Warn if we came here
2044 * from direct reclaim.
2046 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2051 keep_towrite = true;
2054 if (PageChecked(page) && ext4_should_journal_data(inode))
2056 * It's mmapped pagecache. Add buffers and journal it. There
2057 * doesn't seem much point in redirtying the page here.
2059 return __ext4_journalled_writepage(page, len);
2061 ext4_io_submit_init(&io_submit, wbc);
2062 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2063 if (!io_submit.io_end) {
2064 redirty_page_for_writepage(wbc, page);
2068 ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite);
2069 ext4_io_submit(&io_submit);
2070 /* Drop io_end reference we got from init */
2071 ext4_put_io_end_defer(io_submit.io_end);
2075 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2081 BUG_ON(page->index != mpd->first_page);
2082 clear_page_dirty_for_io(page);
2084 * We have to be very careful here! Nothing protects writeback path
2085 * against i_size changes and the page can be writeably mapped into
2086 * page tables. So an application can be growing i_size and writing
2087 * data through mmap while writeback runs. clear_page_dirty_for_io()
2088 * write-protects our page in page tables and the page cannot get
2089 * written to again until we release page lock. So only after
2090 * clear_page_dirty_for_io() we are safe to sample i_size for
2091 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2092 * on the barrier provided by TestClearPageDirty in
2093 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2094 * after page tables are updated.
2096 size = i_size_read(mpd->inode);
2097 if (page->index == size >> PAGE_SHIFT &&
2098 !ext4_verity_in_progress(mpd->inode))
2099 len = size & ~PAGE_MASK;
2102 err = ext4_bio_write_page(&mpd->io_submit, page, len, false);
2104 mpd->wbc->nr_to_write--;
2110 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2113 * mballoc gives us at most this number of blocks...
2114 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2115 * The rest of mballoc seems to handle chunks up to full group size.
2117 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2120 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2122 * @mpd - extent of blocks
2123 * @lblk - logical number of the block in the file
2124 * @bh - buffer head we want to add to the extent
2126 * The function is used to collect contig. blocks in the same state. If the
2127 * buffer doesn't require mapping for writeback and we haven't started the
2128 * extent of buffers to map yet, the function returns 'true' immediately - the
2129 * caller can write the buffer right away. Otherwise the function returns true
2130 * if the block has been added to the extent, false if the block couldn't be
2133 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2134 struct buffer_head *bh)
2136 struct ext4_map_blocks *map = &mpd->map;
2138 /* Buffer that doesn't need mapping for writeback? */
2139 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2140 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2141 /* So far no extent to map => we write the buffer right away */
2142 if (map->m_len == 0)
2147 /* First block in the extent? */
2148 if (map->m_len == 0) {
2149 /* We cannot map unless handle is started... */
2154 map->m_flags = bh->b_state & BH_FLAGS;
2158 /* Don't go larger than mballoc is willing to allocate */
2159 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2162 /* Can we merge the block to our big extent? */
2163 if (lblk == map->m_lblk + map->m_len &&
2164 (bh->b_state & BH_FLAGS) == map->m_flags) {
2172 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2174 * @mpd - extent of blocks for mapping
2175 * @head - the first buffer in the page
2176 * @bh - buffer we should start processing from
2177 * @lblk - logical number of the block in the file corresponding to @bh
2179 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2180 * the page for IO if all buffers in this page were mapped and there's no
2181 * accumulated extent of buffers to map or add buffers in the page to the
2182 * extent of buffers to map. The function returns 1 if the caller can continue
2183 * by processing the next page, 0 if it should stop adding buffers to the
2184 * extent to map because we cannot extend it anymore. It can also return value
2185 * < 0 in case of error during IO submission.
2187 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2188 struct buffer_head *head,
2189 struct buffer_head *bh,
2192 struct inode *inode = mpd->inode;
2194 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2195 >> inode->i_blkbits;
2197 if (ext4_verity_in_progress(inode))
2198 blocks = EXT_MAX_BLOCKS;
2201 BUG_ON(buffer_locked(bh));
2203 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2204 /* Found extent to map? */
2207 /* Buffer needs mapping and handle is not started? */
2210 /* Everything mapped so far and we hit EOF */
2213 } while (lblk++, (bh = bh->b_this_page) != head);
2214 /* So far everything mapped? Submit the page for IO. */
2215 if (mpd->map.m_len == 0) {
2216 err = mpage_submit_page(mpd, head->b_page);
2220 if (lblk >= blocks) {
2221 mpd->scanned_until_end = 1;
2228 * mpage_process_page - update page buffers corresponding to changed extent and
2229 * may submit fully mapped page for IO
2231 * @mpd - description of extent to map, on return next extent to map
2232 * @m_lblk - logical block mapping.
2233 * @m_pblk - corresponding physical mapping.
2234 * @map_bh - determines on return whether this page requires any further
2236 * Scan given page buffers corresponding to changed extent and update buffer
2237 * state according to new extent state.
2238 * We map delalloc buffers to their physical location, clear unwritten bits.
2239 * If the given page is not fully mapped, we update @map to the next extent in
2240 * the given page that needs mapping & return @map_bh as true.
2242 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2243 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2246 struct buffer_head *head, *bh;
2247 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2248 ext4_lblk_t lblk = *m_lblk;
2249 ext4_fsblk_t pblock = *m_pblk;
2251 int blkbits = mpd->inode->i_blkbits;
2252 ssize_t io_end_size = 0;
2253 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2255 bh = head = page_buffers(page);
2257 if (lblk < mpd->map.m_lblk)
2259 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2261 * Buffer after end of mapped extent.
2262 * Find next buffer in the page to map.
2265 mpd->map.m_flags = 0;
2266 io_end_vec->size += io_end_size;
2268 err = mpage_process_page_bufs(mpd, head, bh, lblk);
2271 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2272 io_end_vec = ext4_alloc_io_end_vec(io_end);
2273 if (IS_ERR(io_end_vec)) {
2274 err = PTR_ERR(io_end_vec);
2277 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2282 if (buffer_delay(bh)) {
2283 clear_buffer_delay(bh);
2284 bh->b_blocknr = pblock++;
2286 clear_buffer_unwritten(bh);
2287 io_end_size += (1 << blkbits);
2288 } while (lblk++, (bh = bh->b_this_page) != head);
2290 io_end_vec->size += io_end_size;
2299 * mpage_map_buffers - update buffers corresponding to changed extent and
2300 * submit fully mapped pages for IO
2302 * @mpd - description of extent to map, on return next extent to map
2304 * Scan buffers corresponding to changed extent (we expect corresponding pages
2305 * to be already locked) and update buffer state according to new extent state.
2306 * We map delalloc buffers to their physical location, clear unwritten bits,
2307 * and mark buffers as uninit when we perform writes to unwritten extents
2308 * and do extent conversion after IO is finished. If the last page is not fully
2309 * mapped, we update @map to the next extent in the last page that needs
2310 * mapping. Otherwise we submit the page for IO.
2312 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2314 struct pagevec pvec;
2316 struct inode *inode = mpd->inode;
2317 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2320 ext4_fsblk_t pblock;
2322 bool map_bh = false;
2324 start = mpd->map.m_lblk >> bpp_bits;
2325 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2326 lblk = start << bpp_bits;
2327 pblock = mpd->map.m_pblk;
2329 pagevec_init(&pvec);
2330 while (start <= end) {
2331 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2335 for (i = 0; i < nr_pages; i++) {
2336 struct page *page = pvec.pages[i];
2338 err = mpage_process_page(mpd, page, &lblk, &pblock,
2341 * If map_bh is true, means page may require further bh
2342 * mapping, or maybe the page was submitted for IO.
2343 * So we return to call further extent mapping.
2345 if (err < 0 || map_bh)
2347 /* Page fully mapped - let IO run! */
2348 err = mpage_submit_page(mpd, page);
2352 pagevec_release(&pvec);
2354 /* Extent fully mapped and matches with page boundary. We are done. */
2356 mpd->map.m_flags = 0;
2359 pagevec_release(&pvec);
2363 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2365 struct inode *inode = mpd->inode;
2366 struct ext4_map_blocks *map = &mpd->map;
2367 int get_blocks_flags;
2368 int err, dioread_nolock;
2370 trace_ext4_da_write_pages_extent(inode, map);
2372 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2373 * to convert an unwritten extent to be initialized (in the case
2374 * where we have written into one or more preallocated blocks). It is
2375 * possible that we're going to need more metadata blocks than
2376 * previously reserved. However we must not fail because we're in
2377 * writeback and there is nothing we can do about it so it might result
2378 * in data loss. So use reserved blocks to allocate metadata if
2381 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2382 * the blocks in question are delalloc blocks. This indicates
2383 * that the blocks and quotas has already been checked when
2384 * the data was copied into the page cache.
2386 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2387 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2388 EXT4_GET_BLOCKS_IO_SUBMIT;
2389 dioread_nolock = ext4_should_dioread_nolock(inode);
2391 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2392 if (map->m_flags & BIT(BH_Delay))
2393 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2395 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2398 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2399 if (!mpd->io_submit.io_end->handle &&
2400 ext4_handle_valid(handle)) {
2401 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2402 handle->h_rsv_handle = NULL;
2404 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2407 BUG_ON(map->m_len == 0);
2412 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2413 * mpd->len and submit pages underlying it for IO
2415 * @handle - handle for journal operations
2416 * @mpd - extent to map
2417 * @give_up_on_write - we set this to true iff there is a fatal error and there
2418 * is no hope of writing the data. The caller should discard
2419 * dirty pages to avoid infinite loops.
2421 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2422 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2423 * them to initialized or split the described range from larger unwritten
2424 * extent. Note that we need not map all the described range since allocation
2425 * can return less blocks or the range is covered by more unwritten extents. We
2426 * cannot map more because we are limited by reserved transaction credits. On
2427 * the other hand we always make sure that the last touched page is fully
2428 * mapped so that it can be written out (and thus forward progress is
2429 * guaranteed). After mapping we submit all mapped pages for IO.
2431 static int mpage_map_and_submit_extent(handle_t *handle,
2432 struct mpage_da_data *mpd,
2433 bool *give_up_on_write)
2435 struct inode *inode = mpd->inode;
2436 struct ext4_map_blocks *map = &mpd->map;
2440 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2441 struct ext4_io_end_vec *io_end_vec;
2443 io_end_vec = ext4_alloc_io_end_vec(io_end);
2444 if (IS_ERR(io_end_vec))
2445 return PTR_ERR(io_end_vec);
2446 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2448 err = mpage_map_one_extent(handle, mpd);
2450 struct super_block *sb = inode->i_sb;
2452 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2453 ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2454 goto invalidate_dirty_pages;
2456 * Let the uper layers retry transient errors.
2457 * In the case of ENOSPC, if ext4_count_free_blocks()
2458 * is non-zero, a commit should free up blocks.
2460 if ((err == -ENOMEM) ||
2461 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2463 goto update_disksize;
2466 ext4_msg(sb, KERN_CRIT,
2467 "Delayed block allocation failed for "
2468 "inode %lu at logical offset %llu with"
2469 " max blocks %u with error %d",
2471 (unsigned long long)map->m_lblk,
2472 (unsigned)map->m_len, -err);
2473 ext4_msg(sb, KERN_CRIT,
2474 "This should not happen!! Data will "
2477 ext4_print_free_blocks(inode);
2478 invalidate_dirty_pages:
2479 *give_up_on_write = true;
2484 * Update buffer state, submit mapped pages, and get us new
2487 err = mpage_map_and_submit_buffers(mpd);
2489 goto update_disksize;
2490 } while (map->m_len);
2494 * Update on-disk size after IO is submitted. Races with
2495 * truncate are avoided by checking i_size under i_data_sem.
2497 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2498 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2502 down_write(&EXT4_I(inode)->i_data_sem);
2503 i_size = i_size_read(inode);
2504 if (disksize > i_size)
2506 if (disksize > EXT4_I(inode)->i_disksize)
2507 EXT4_I(inode)->i_disksize = disksize;
2508 up_write(&EXT4_I(inode)->i_data_sem);
2509 err2 = ext4_mark_inode_dirty(handle, inode);
2511 ext4_error_err(inode->i_sb, -err2,
2512 "Failed to mark inode %lu dirty",
2522 * Calculate the total number of credits to reserve for one writepages
2523 * iteration. This is called from ext4_writepages(). We map an extent of
2524 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2525 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2526 * bpp - 1 blocks in bpp different extents.
2528 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2530 int bpp = ext4_journal_blocks_per_page(inode);
2532 return ext4_meta_trans_blocks(inode,
2533 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2537 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2538 * and underlying extent to map
2540 * @mpd - where to look for pages
2542 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2543 * IO immediately. When we find a page which isn't mapped we start accumulating
2544 * extent of buffers underlying these pages that needs mapping (formed by
2545 * either delayed or unwritten buffers). We also lock the pages containing
2546 * these buffers. The extent found is returned in @mpd structure (starting at
2547 * mpd->lblk with length mpd->len blocks).
2549 * Note that this function can attach bios to one io_end structure which are
2550 * neither logically nor physically contiguous. Although it may seem as an
2551 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2552 * case as we need to track IO to all buffers underlying a page in one io_end.
2554 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2556 struct address_space *mapping = mpd->inode->i_mapping;
2557 struct pagevec pvec;
2558 unsigned int nr_pages;
2559 long left = mpd->wbc->nr_to_write;
2560 pgoff_t index = mpd->first_page;
2561 pgoff_t end = mpd->last_page;
2564 int blkbits = mpd->inode->i_blkbits;
2566 struct buffer_head *head;
2568 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2569 tag = PAGECACHE_TAG_TOWRITE;
2571 tag = PAGECACHE_TAG_DIRTY;
2573 pagevec_init(&pvec);
2575 mpd->next_page = index;
2576 while (index <= end) {
2577 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2582 for (i = 0; i < nr_pages; i++) {
2583 struct page *page = pvec.pages[i];
2586 * Accumulated enough dirty pages? This doesn't apply
2587 * to WB_SYNC_ALL mode. For integrity sync we have to
2588 * keep going because someone may be concurrently
2589 * dirtying pages, and we might have synced a lot of
2590 * newly appeared dirty pages, but have not synced all
2591 * of the old dirty pages.
2593 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2596 /* If we can't merge this page, we are done. */
2597 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2602 * If the page is no longer dirty, or its mapping no
2603 * longer corresponds to inode we are writing (which
2604 * means it has been truncated or invalidated), or the
2605 * page is already under writeback and we are not doing
2606 * a data integrity writeback, skip the page
2608 if (!PageDirty(page) ||
2609 (PageWriteback(page) &&
2610 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2611 unlikely(page->mapping != mapping)) {
2616 wait_on_page_writeback(page);
2617 BUG_ON(PageWriteback(page));
2620 * Should never happen but for buggy code in
2621 * other subsystems that call
2622 * set_page_dirty() without properly warning
2623 * the file system first. See [1] for more
2626 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2628 if (!page_has_buffers(page)) {
2629 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", page->index);
2630 ClearPageDirty(page);
2635 if (mpd->map.m_len == 0)
2636 mpd->first_page = page->index;
2637 mpd->next_page = page->index + 1;
2638 /* Add all dirty buffers to mpd */
2639 lblk = ((ext4_lblk_t)page->index) <<
2640 (PAGE_SHIFT - blkbits);
2641 head = page_buffers(page);
2642 err = mpage_process_page_bufs(mpd, head, head, lblk);
2648 pagevec_release(&pvec);
2651 mpd->scanned_until_end = 1;
2654 pagevec_release(&pvec);
2658 static int ext4_writepages(struct address_space *mapping,
2659 struct writeback_control *wbc)
2661 pgoff_t writeback_index = 0;
2662 long nr_to_write = wbc->nr_to_write;
2663 int range_whole = 0;
2665 handle_t *handle = NULL;
2666 struct mpage_da_data mpd;
2667 struct inode *inode = mapping->host;
2668 int needed_blocks, rsv_blocks = 0, ret = 0;
2669 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2670 struct blk_plug plug;
2671 bool give_up_on_write = false;
2673 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2676 percpu_down_read(&sbi->s_writepages_rwsem);
2677 trace_ext4_writepages(inode, wbc);
2680 * No pages to write? This is mainly a kludge to avoid starting
2681 * a transaction for special inodes like journal inode on last iput()
2682 * because that could violate lock ordering on umount
2684 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2685 goto out_writepages;
2687 if (ext4_should_journal_data(inode)) {
2688 ret = generic_writepages(mapping, wbc);
2689 goto out_writepages;
2693 * If the filesystem has aborted, it is read-only, so return
2694 * right away instead of dumping stack traces later on that
2695 * will obscure the real source of the problem. We test
2696 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2697 * the latter could be true if the filesystem is mounted
2698 * read-only, and in that case, ext4_writepages should
2699 * *never* be called, so if that ever happens, we would want
2702 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2703 ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2705 goto out_writepages;
2709 * If we have inline data and arrive here, it means that
2710 * we will soon create the block for the 1st page, so
2711 * we'd better clear the inline data here.
2713 if (ext4_has_inline_data(inode)) {
2714 /* Just inode will be modified... */
2715 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2716 if (IS_ERR(handle)) {
2717 ret = PTR_ERR(handle);
2718 goto out_writepages;
2720 BUG_ON(ext4_test_inode_state(inode,
2721 EXT4_STATE_MAY_INLINE_DATA));
2722 ext4_destroy_inline_data(handle, inode);
2723 ext4_journal_stop(handle);
2726 if (ext4_should_dioread_nolock(inode)) {
2728 * We may need to convert up to one extent per block in
2729 * the page and we may dirty the inode.
2731 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2732 PAGE_SIZE >> inode->i_blkbits);
2735 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2738 if (wbc->range_cyclic) {
2739 writeback_index = mapping->writeback_index;
2740 if (writeback_index)
2742 mpd.first_page = writeback_index;
2745 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2746 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2751 ext4_io_submit_init(&mpd.io_submit, wbc);
2753 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2754 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2755 blk_start_plug(&plug);
2758 * First writeback pages that don't need mapping - we can avoid
2759 * starting a transaction unnecessarily and also avoid being blocked
2760 * in the block layer on device congestion while having transaction
2764 mpd.scanned_until_end = 0;
2765 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2766 if (!mpd.io_submit.io_end) {
2770 ret = mpage_prepare_extent_to_map(&mpd);
2771 /* Unlock pages we didn't use */
2772 mpage_release_unused_pages(&mpd, false);
2773 /* Submit prepared bio */
2774 ext4_io_submit(&mpd.io_submit);
2775 ext4_put_io_end_defer(mpd.io_submit.io_end);
2776 mpd.io_submit.io_end = NULL;
2780 while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2781 /* For each extent of pages we use new io_end */
2782 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2783 if (!mpd.io_submit.io_end) {
2789 * We have two constraints: We find one extent to map and we
2790 * must always write out whole page (makes a difference when
2791 * blocksize < pagesize) so that we don't block on IO when we
2792 * try to write out the rest of the page. Journalled mode is
2793 * not supported by delalloc.
2795 BUG_ON(ext4_should_journal_data(inode));
2796 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2798 /* start a new transaction */
2799 handle = ext4_journal_start_with_reserve(inode,
2800 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2801 if (IS_ERR(handle)) {
2802 ret = PTR_ERR(handle);
2803 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2804 "%ld pages, ino %lu; err %d", __func__,
2805 wbc->nr_to_write, inode->i_ino, ret);
2806 /* Release allocated io_end */
2807 ext4_put_io_end(mpd.io_submit.io_end);
2808 mpd.io_submit.io_end = NULL;
2813 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2814 ret = mpage_prepare_extent_to_map(&mpd);
2815 if (!ret && mpd.map.m_len)
2816 ret = mpage_map_and_submit_extent(handle, &mpd,
2819 * Caution: If the handle is synchronous,
2820 * ext4_journal_stop() can wait for transaction commit
2821 * to finish which may depend on writeback of pages to
2822 * complete or on page lock to be released. In that
2823 * case, we have to wait until after we have
2824 * submitted all the IO, released page locks we hold,
2825 * and dropped io_end reference (for extent conversion
2826 * to be able to complete) before stopping the handle.
2828 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2829 ext4_journal_stop(handle);
2833 /* Unlock pages we didn't use */
2834 mpage_release_unused_pages(&mpd, give_up_on_write);
2835 /* Submit prepared bio */
2836 ext4_io_submit(&mpd.io_submit);
2839 * Drop our io_end reference we got from init. We have
2840 * to be careful and use deferred io_end finishing if
2841 * we are still holding the transaction as we can
2842 * release the last reference to io_end which may end
2843 * up doing unwritten extent conversion.
2846 ext4_put_io_end_defer(mpd.io_submit.io_end);
2847 ext4_journal_stop(handle);
2849 ext4_put_io_end(mpd.io_submit.io_end);
2850 mpd.io_submit.io_end = NULL;
2852 if (ret == -ENOSPC && sbi->s_journal) {
2854 * Commit the transaction which would
2855 * free blocks released in the transaction
2858 jbd2_journal_force_commit_nested(sbi->s_journal);
2862 /* Fatal error - ENOMEM, EIO... */
2867 blk_finish_plug(&plug);
2868 if (!ret && !cycled && wbc->nr_to_write > 0) {
2870 mpd.last_page = writeback_index - 1;
2876 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2878 * Set the writeback_index so that range_cyclic
2879 * mode will write it back later
2881 mapping->writeback_index = mpd.first_page;
2884 trace_ext4_writepages_result(inode, wbc, ret,
2885 nr_to_write - wbc->nr_to_write);
2886 percpu_up_read(&sbi->s_writepages_rwsem);
2890 static int ext4_dax_writepages(struct address_space *mapping,
2891 struct writeback_control *wbc)
2894 long nr_to_write = wbc->nr_to_write;
2895 struct inode *inode = mapping->host;
2896 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2898 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2901 percpu_down_read(&sbi->s_writepages_rwsem);
2902 trace_ext4_writepages(inode, wbc);
2904 ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2905 trace_ext4_writepages_result(inode, wbc, ret,
2906 nr_to_write - wbc->nr_to_write);
2907 percpu_up_read(&sbi->s_writepages_rwsem);
2911 static int ext4_nonda_switch(struct super_block *sb)
2913 s64 free_clusters, dirty_clusters;
2914 struct ext4_sb_info *sbi = EXT4_SB(sb);
2917 * switch to non delalloc mode if we are running low
2918 * on free block. The free block accounting via percpu
2919 * counters can get slightly wrong with percpu_counter_batch getting
2920 * accumulated on each CPU without updating global counters
2921 * Delalloc need an accurate free block accounting. So switch
2922 * to non delalloc when we are near to error range.
2925 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2927 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2929 * Start pushing delalloc when 1/2 of free blocks are dirty.
2931 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2932 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2934 if (2 * free_clusters < 3 * dirty_clusters ||
2935 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2937 * free block count is less than 150% of dirty blocks
2938 * or free blocks is less than watermark
2945 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2946 loff_t pos, unsigned len,
2947 struct page **pagep, void **fsdata)
2949 int ret, retries = 0;
2952 struct inode *inode = mapping->host;
2954 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2957 index = pos >> PAGE_SHIFT;
2959 if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
2960 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2961 return ext4_write_begin(file, mapping, pos,
2962 len, pagep, fsdata);
2964 *fsdata = (void *)0;
2965 trace_ext4_da_write_begin(inode, pos, len);
2967 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2968 ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
2977 page = grab_cache_page_write_begin(mapping, index);
2981 /* In case writeback began while the page was unlocked */
2982 wait_for_stable_page(page);
2984 #ifdef CONFIG_FS_ENCRYPTION
2985 ret = ext4_block_write_begin(page, pos, len,
2986 ext4_da_get_block_prep);
2988 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2994 * block_write_begin may have instantiated a few blocks
2995 * outside i_size. Trim these off again. Don't need
2996 * i_size_read because we hold inode lock.
2998 if (pos + len > inode->i_size)
2999 ext4_truncate_failed_write(inode);
3001 if (ret == -ENOSPC &&
3002 ext4_should_retry_alloc(inode->i_sb, &retries))
3012 * Check if we should update i_disksize
3013 * when write to the end of file but not require block allocation
3015 static int ext4_da_should_update_i_disksize(struct page *page,
3016 unsigned long offset)
3018 struct buffer_head *bh;
3019 struct inode *inode = page->mapping->host;
3023 bh = page_buffers(page);
3024 idx = offset >> inode->i_blkbits;
3026 for (i = 0; i < idx; i++)
3027 bh = bh->b_this_page;
3029 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3034 static int ext4_da_write_end(struct file *file,
3035 struct address_space *mapping,
3036 loff_t pos, unsigned len, unsigned copied,
3037 struct page *page, void *fsdata)
3039 struct inode *inode = mapping->host;
3041 unsigned long start, end;
3042 int write_mode = (int)(unsigned long)fsdata;
3044 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3045 return ext4_write_end(file, mapping, pos,
3046 len, copied, page, fsdata);
3048 trace_ext4_da_write_end(inode, pos, len, copied);
3050 if (write_mode != CONVERT_INLINE_DATA &&
3051 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3052 ext4_has_inline_data(inode))
3053 return ext4_write_inline_data_end(inode, pos, len, copied, page);
3055 start = pos & (PAGE_SIZE - 1);
3056 end = start + copied - 1;
3059 * Since we are holding inode lock, we are sure i_disksize <=
3060 * i_size. We also know that if i_disksize < i_size, there are
3061 * delalloc writes pending in the range upto i_size. If the end of
3062 * the current write is <= i_size, there's no need to touch
3063 * i_disksize since writeback will push i_disksize upto i_size
3064 * eventually. If the end of the current write is > i_size and
3065 * inside an allocated block (ext4_da_should_update_i_disksize()
3066 * check), we need to update i_disksize here as neither
3067 * ext4_writepage() nor certain ext4_writepages() paths not
3068 * allocating blocks update i_disksize.
3070 * Note that we defer inode dirtying to generic_write_end() /
3071 * ext4_da_write_inline_data_end().
3073 new_i_size = pos + copied;
3074 if (copied && new_i_size > inode->i_size &&
3075 ext4_da_should_update_i_disksize(page, end))
3076 ext4_update_i_disksize(inode, new_i_size);
3078 return generic_write_end(file, mapping, pos, len, copied, page, fsdata);
3082 * Force all delayed allocation blocks to be allocated for a given inode.
3084 int ext4_alloc_da_blocks(struct inode *inode)
3086 trace_ext4_alloc_da_blocks(inode);
3088 if (!EXT4_I(inode)->i_reserved_data_blocks)
3092 * We do something simple for now. The filemap_flush() will
3093 * also start triggering a write of the data blocks, which is
3094 * not strictly speaking necessary (and for users of
3095 * laptop_mode, not even desirable). However, to do otherwise
3096 * would require replicating code paths in:
3098 * ext4_writepages() ->
3099 * write_cache_pages() ---> (via passed in callback function)
3100 * __mpage_da_writepage() -->
3101 * mpage_add_bh_to_extent()
3102 * mpage_da_map_blocks()
3104 * The problem is that write_cache_pages(), located in
3105 * mm/page-writeback.c, marks pages clean in preparation for
3106 * doing I/O, which is not desirable if we're not planning on
3109 * We could call write_cache_pages(), and then redirty all of
3110 * the pages by calling redirty_page_for_writepage() but that
3111 * would be ugly in the extreme. So instead we would need to
3112 * replicate parts of the code in the above functions,
3113 * simplifying them because we wouldn't actually intend to
3114 * write out the pages, but rather only collect contiguous
3115 * logical block extents, call the multi-block allocator, and
3116 * then update the buffer heads with the block allocations.
3118 * For now, though, we'll cheat by calling filemap_flush(),
3119 * which will map the blocks, and start the I/O, but not
3120 * actually wait for the I/O to complete.
3122 return filemap_flush(inode->i_mapping);
3126 * bmap() is special. It gets used by applications such as lilo and by
3127 * the swapper to find the on-disk block of a specific piece of data.
3129 * Naturally, this is dangerous if the block concerned is still in the
3130 * journal. If somebody makes a swapfile on an ext4 data-journaling
3131 * filesystem and enables swap, then they may get a nasty shock when the
3132 * data getting swapped to that swapfile suddenly gets overwritten by
3133 * the original zero's written out previously to the journal and
3134 * awaiting writeback in the kernel's buffer cache.
3136 * So, if we see any bmap calls here on a modified, data-journaled file,
3137 * take extra steps to flush any blocks which might be in the cache.
3139 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3141 struct inode *inode = mapping->host;
3146 * We can get here for an inline file via the FIBMAP ioctl
3148 if (ext4_has_inline_data(inode))
3151 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3152 test_opt(inode->i_sb, DELALLOC)) {
3154 * With delalloc we want to sync the file
3155 * so that we can make sure we allocate
3158 filemap_write_and_wait(mapping);
3161 if (EXT4_JOURNAL(inode) &&
3162 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3164 * This is a REALLY heavyweight approach, but the use of
3165 * bmap on dirty files is expected to be extremely rare:
3166 * only if we run lilo or swapon on a freshly made file
3167 * do we expect this to happen.
3169 * (bmap requires CAP_SYS_RAWIO so this does not
3170 * represent an unprivileged user DOS attack --- we'd be
3171 * in trouble if mortal users could trigger this path at
3174 * NB. EXT4_STATE_JDATA is not set on files other than
3175 * regular files. If somebody wants to bmap a directory
3176 * or symlink and gets confused because the buffer
3177 * hasn't yet been flushed to disk, they deserve
3178 * everything they get.
3181 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3182 journal = EXT4_JOURNAL(inode);
3183 jbd2_journal_lock_updates(journal);
3184 err = jbd2_journal_flush(journal, 0);
3185 jbd2_journal_unlock_updates(journal);
3191 return iomap_bmap(mapping, block, &ext4_iomap_ops);
3194 static int ext4_read_folio(struct file *file, struct folio *folio)
3196 struct page *page = &folio->page;
3198 struct inode *inode = page->mapping->host;
3200 trace_ext4_readpage(page);
3202 if (ext4_has_inline_data(inode))
3203 ret = ext4_readpage_inline(inode, page);
3206 return ext4_mpage_readpages(inode, NULL, page);
3211 static void ext4_readahead(struct readahead_control *rac)
3213 struct inode *inode = rac->mapping->host;
3215 /* If the file has inline data, no need to do readahead. */
3216 if (ext4_has_inline_data(inode))
3219 ext4_mpage_readpages(inode, rac, NULL);
3222 static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3225 trace_ext4_invalidate_folio(folio, offset, length);
3227 /* No journalling happens on data buffers when this function is used */
3228 WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3230 block_invalidate_folio(folio, offset, length);
3233 static int __ext4_journalled_invalidate_folio(struct folio *folio,
3234 size_t offset, size_t length)
3236 journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3238 trace_ext4_journalled_invalidate_folio(folio, offset, length);
3241 * If it's a full truncate we just forget about the pending dirtying
3243 if (offset == 0 && length == folio_size(folio))
3244 folio_clear_checked(folio);
3246 return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3249 /* Wrapper for aops... */
3250 static void ext4_journalled_invalidate_folio(struct folio *folio,
3254 WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3257 static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3259 journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3261 trace_ext4_releasepage(&folio->page);
3263 /* Page has dirty journalled data -> cannot release */
3264 if (folio_test_checked(folio))
3267 return jbd2_journal_try_to_free_buffers(journal, folio);
3269 return try_to_free_buffers(folio);
3272 static bool ext4_inode_datasync_dirty(struct inode *inode)
3274 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3277 if (jbd2_transaction_committed(journal,
3278 EXT4_I(inode)->i_datasync_tid))
3280 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3281 return !list_empty(&EXT4_I(inode)->i_fc_list);
3285 /* Any metadata buffers to write? */
3286 if (!list_empty(&inode->i_mapping->private_list))
3288 return inode->i_state & I_DIRTY_DATASYNC;
3291 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3292 struct ext4_map_blocks *map, loff_t offset,
3293 loff_t length, unsigned int flags)
3295 u8 blkbits = inode->i_blkbits;
3298 * Writes that span EOF might trigger an I/O size update on completion,
3299 * so consider them to be dirty for the purpose of O_DSYNC, even if
3300 * there is no other metadata changes being made or are pending.
3303 if (ext4_inode_datasync_dirty(inode) ||
3304 offset + length > i_size_read(inode))
3305 iomap->flags |= IOMAP_F_DIRTY;
3307 if (map->m_flags & EXT4_MAP_NEW)
3308 iomap->flags |= IOMAP_F_NEW;
3310 if (flags & IOMAP_DAX)
3311 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3313 iomap->bdev = inode->i_sb->s_bdev;
3314 iomap->offset = (u64) map->m_lblk << blkbits;
3315 iomap->length = (u64) map->m_len << blkbits;
3317 if ((map->m_flags & EXT4_MAP_MAPPED) &&
3318 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3319 iomap->flags |= IOMAP_F_MERGED;
3322 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3323 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3324 * set. In order for any allocated unwritten extents to be converted
3325 * into written extents correctly within the ->end_io() handler, we
3326 * need to ensure that the iomap->type is set appropriately. Hence, the
3327 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3330 if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3331 iomap->type = IOMAP_UNWRITTEN;
3332 iomap->addr = (u64) map->m_pblk << blkbits;
3333 if (flags & IOMAP_DAX)
3334 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3335 } else if (map->m_flags & EXT4_MAP_MAPPED) {
3336 iomap->type = IOMAP_MAPPED;
3337 iomap->addr = (u64) map->m_pblk << blkbits;
3338 if (flags & IOMAP_DAX)
3339 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3341 iomap->type = IOMAP_HOLE;
3342 iomap->addr = IOMAP_NULL_ADDR;
3346 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3350 u8 blkbits = inode->i_blkbits;
3351 int ret, dio_credits, m_flags = 0, retries = 0;
3354 * Trim the mapping request to the maximum value that we can map at
3355 * once for direct I/O.
3357 if (map->m_len > DIO_MAX_BLOCKS)
3358 map->m_len = DIO_MAX_BLOCKS;
3359 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3363 * Either we allocate blocks and then don't get an unwritten extent, so
3364 * in that case we have reserved enough credits. Or, the blocks are
3365 * already allocated and unwritten. In that case, the extent conversion
3366 * fits into the credits as well.
3368 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3370 return PTR_ERR(handle);
3373 * DAX and direct I/O are the only two operations that are currently
3374 * supported with IOMAP_WRITE.
3376 WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3377 if (flags & IOMAP_DAX)
3378 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3380 * We use i_size instead of i_disksize here because delalloc writeback
3381 * can complete at any point during the I/O and subsequently push the
3382 * i_disksize out to i_size. This could be beyond where direct I/O is
3383 * happening and thus expose allocated blocks to direct I/O reads.
3385 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3386 m_flags = EXT4_GET_BLOCKS_CREATE;
3387 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3388 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3390 ret = ext4_map_blocks(handle, inode, map, m_flags);
3393 * We cannot fill holes in indirect tree based inodes as that could
3394 * expose stale data in the case of a crash. Use the magic error code
3395 * to fallback to buffered I/O.
3397 if (!m_flags && !ret)
3400 ext4_journal_stop(handle);
3401 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3408 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3409 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3412 struct ext4_map_blocks map;
3413 u8 blkbits = inode->i_blkbits;
3415 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3418 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3422 * Calculate the first and last logical blocks respectively.
3424 map.m_lblk = offset >> blkbits;
3425 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3426 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3428 if (flags & IOMAP_WRITE) {
3430 * We check here if the blocks are already allocated, then we
3431 * don't need to start a journal txn and we can directly return
3432 * the mapping information. This could boost performance
3433 * especially in multi-threaded overwrite requests.
3435 if (offset + length <= i_size_read(inode)) {
3436 ret = ext4_map_blocks(NULL, inode, &map, 0);
3437 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3440 ret = ext4_iomap_alloc(inode, &map, flags);
3442 ret = ext4_map_blocks(NULL, inode, &map, 0);
3449 * When inline encryption is enabled, sometimes I/O to an encrypted file
3450 * has to be broken up to guarantee DUN contiguity. Handle this by
3451 * limiting the length of the mapping returned.
3453 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3455 ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3460 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3461 loff_t length, unsigned flags, struct iomap *iomap,
3462 struct iomap *srcmap)
3467 * Even for writes we don't need to allocate blocks, so just pretend
3468 * we are reading to save overhead of starting a transaction.
3470 flags &= ~IOMAP_WRITE;
3471 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3472 WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3476 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3477 ssize_t written, unsigned flags, struct iomap *iomap)
3480 * Check to see whether an error occurred while writing out the data to
3481 * the allocated blocks. If so, return the magic error code so that we
3482 * fallback to buffered I/O and attempt to complete the remainder of
3483 * the I/O. Any blocks that may have been allocated in preparation for
3484 * the direct I/O will be reused during buffered I/O.
3486 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3492 const struct iomap_ops ext4_iomap_ops = {
3493 .iomap_begin = ext4_iomap_begin,
3494 .iomap_end = ext4_iomap_end,
3497 const struct iomap_ops ext4_iomap_overwrite_ops = {
3498 .iomap_begin = ext4_iomap_overwrite_begin,
3499 .iomap_end = ext4_iomap_end,
3502 static bool ext4_iomap_is_delalloc(struct inode *inode,
3503 struct ext4_map_blocks *map)
3505 struct extent_status es;
3506 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3508 ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3509 map->m_lblk, end, &es);
3511 if (!es.es_len || es.es_lblk > end)
3514 if (es.es_lblk > map->m_lblk) {
3515 map->m_len = es.es_lblk - map->m_lblk;
3519 offset = map->m_lblk - es.es_lblk;
3520 map->m_len = es.es_len - offset;
3525 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3526 loff_t length, unsigned int flags,
3527 struct iomap *iomap, struct iomap *srcmap)
3530 bool delalloc = false;
3531 struct ext4_map_blocks map;
3532 u8 blkbits = inode->i_blkbits;
3534 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3537 if (ext4_has_inline_data(inode)) {
3538 ret = ext4_inline_data_iomap(inode, iomap);
3539 if (ret != -EAGAIN) {
3540 if (ret == 0 && offset >= iomap->length)
3547 * Calculate the first and last logical block respectively.
3549 map.m_lblk = offset >> blkbits;
3550 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3551 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3554 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3555 * So handle it here itself instead of querying ext4_map_blocks().
3556 * Since ext4_map_blocks() will warn about it and will return
3559 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3560 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3562 if (offset >= sbi->s_bitmap_maxbytes) {
3568 ret = ext4_map_blocks(NULL, inode, &map, 0);
3572 delalloc = ext4_iomap_is_delalloc(inode, &map);
3575 ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3576 if (delalloc && iomap->type == IOMAP_HOLE)
3577 iomap->type = IOMAP_DELALLOC;
3582 const struct iomap_ops ext4_iomap_report_ops = {
3583 .iomap_begin = ext4_iomap_begin_report,
3587 * Whenever the folio is being dirtied, corresponding buffers should already
3588 * be attached to the transaction (we take care of this in ext4_page_mkwrite()
3589 * and ext4_write_begin()). However we cannot move buffers to dirty transaction
3590 * lists here because ->dirty_folio is called under VFS locks and the folio
3591 * is not necessarily locked.
3593 * We cannot just dirty the folio and leave attached buffers clean, because the
3594 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3595 * or jbddirty because all the journalling code will explode.
3597 * So what we do is to mark the folio "pending dirty" and next time writepage
3598 * is called, propagate that into the buffers appropriately.
3600 static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3601 struct folio *folio)
3603 WARN_ON_ONCE(!folio_buffers(folio));
3604 folio_set_checked(folio);
3605 return filemap_dirty_folio(mapping, folio);
3608 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3610 WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3611 WARN_ON_ONCE(!folio_buffers(folio));
3612 return block_dirty_folio(mapping, folio);
3615 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3616 struct file *file, sector_t *span)
3618 return iomap_swapfile_activate(sis, file, span,
3619 &ext4_iomap_report_ops);
3622 static const struct address_space_operations ext4_aops = {
3623 .read_folio = ext4_read_folio,
3624 .readahead = ext4_readahead,
3625 .writepage = ext4_writepage,
3626 .writepages = ext4_writepages,
3627 .write_begin = ext4_write_begin,
3628 .write_end = ext4_write_end,
3629 .dirty_folio = ext4_dirty_folio,
3631 .invalidate_folio = ext4_invalidate_folio,
3632 .release_folio = ext4_release_folio,
3633 .direct_IO = noop_direct_IO,
3634 .migratepage = buffer_migrate_page,
3635 .is_partially_uptodate = block_is_partially_uptodate,
3636 .error_remove_page = generic_error_remove_page,
3637 .swap_activate = ext4_iomap_swap_activate,
3640 static const struct address_space_operations ext4_journalled_aops = {
3641 .read_folio = ext4_read_folio,
3642 .readahead = ext4_readahead,
3643 .writepage = ext4_writepage,
3644 .writepages = ext4_writepages,
3645 .write_begin = ext4_write_begin,
3646 .write_end = ext4_journalled_write_end,
3647 .dirty_folio = ext4_journalled_dirty_folio,
3649 .invalidate_folio = ext4_journalled_invalidate_folio,
3650 .release_folio = ext4_release_folio,
3651 .direct_IO = noop_direct_IO,
3652 .is_partially_uptodate = block_is_partially_uptodate,
3653 .error_remove_page = generic_error_remove_page,
3654 .swap_activate = ext4_iomap_swap_activate,
3657 static const struct address_space_operations ext4_da_aops = {
3658 .read_folio = ext4_read_folio,
3659 .readahead = ext4_readahead,
3660 .writepage = ext4_writepage,
3661 .writepages = ext4_writepages,
3662 .write_begin = ext4_da_write_begin,
3663 .write_end = ext4_da_write_end,
3664 .dirty_folio = ext4_dirty_folio,
3666 .invalidate_folio = ext4_invalidate_folio,
3667 .release_folio = ext4_release_folio,
3668 .direct_IO = noop_direct_IO,
3669 .migratepage = buffer_migrate_page,
3670 .is_partially_uptodate = block_is_partially_uptodate,
3671 .error_remove_page = generic_error_remove_page,
3672 .swap_activate = ext4_iomap_swap_activate,
3675 static const struct address_space_operations ext4_dax_aops = {
3676 .writepages = ext4_dax_writepages,
3677 .direct_IO = noop_direct_IO,
3678 .dirty_folio = noop_dirty_folio,
3680 .swap_activate = ext4_iomap_swap_activate,
3683 void ext4_set_aops(struct inode *inode)
3685 switch (ext4_inode_journal_mode(inode)) {
3686 case EXT4_INODE_ORDERED_DATA_MODE:
3687 case EXT4_INODE_WRITEBACK_DATA_MODE:
3689 case EXT4_INODE_JOURNAL_DATA_MODE:
3690 inode->i_mapping->a_ops = &ext4_journalled_aops;
3696 inode->i_mapping->a_ops = &ext4_dax_aops;
3697 else if (test_opt(inode->i_sb, DELALLOC))
3698 inode->i_mapping->a_ops = &ext4_da_aops;
3700 inode->i_mapping->a_ops = &ext4_aops;
3703 static int __ext4_block_zero_page_range(handle_t *handle,
3704 struct address_space *mapping, loff_t from, loff_t length)
3706 ext4_fsblk_t index = from >> PAGE_SHIFT;
3707 unsigned offset = from & (PAGE_SIZE-1);
3708 unsigned blocksize, pos;
3710 struct inode *inode = mapping->host;
3711 struct buffer_head *bh;
3715 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3716 mapping_gfp_constraint(mapping, ~__GFP_FS));
3720 blocksize = inode->i_sb->s_blocksize;
3722 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3724 if (!page_has_buffers(page))
3725 create_empty_buffers(page, blocksize, 0);
3727 /* Find the buffer that contains "offset" */
3728 bh = page_buffers(page);
3730 while (offset >= pos) {
3731 bh = bh->b_this_page;
3735 if (buffer_freed(bh)) {
3736 BUFFER_TRACE(bh, "freed: skip");
3739 if (!buffer_mapped(bh)) {
3740 BUFFER_TRACE(bh, "unmapped");
3741 ext4_get_block(inode, iblock, bh, 0);
3742 /* unmapped? It's a hole - nothing to do */
3743 if (!buffer_mapped(bh)) {
3744 BUFFER_TRACE(bh, "still unmapped");
3749 /* Ok, it's mapped. Make sure it's up-to-date */
3750 if (PageUptodate(page))
3751 set_buffer_uptodate(bh);
3753 if (!buffer_uptodate(bh)) {
3754 err = ext4_read_bh_lock(bh, 0, true);
3757 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3758 /* We expect the key to be set. */
3759 BUG_ON(!fscrypt_has_encryption_key(inode));
3760 err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3763 clear_buffer_uptodate(bh);
3768 if (ext4_should_journal_data(inode)) {
3769 BUFFER_TRACE(bh, "get write access");
3770 err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3775 zero_user(page, offset, length);
3776 BUFFER_TRACE(bh, "zeroed end of block");
3778 if (ext4_should_journal_data(inode)) {
3779 err = ext4_handle_dirty_metadata(handle, inode, bh);
3782 mark_buffer_dirty(bh);
3783 if (ext4_should_order_data(inode))
3784 err = ext4_jbd2_inode_add_write(handle, inode, from,
3795 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3796 * starting from file offset 'from'. The range to be zero'd must
3797 * be contained with in one block. If the specified range exceeds
3798 * the end of the block it will be shortened to end of the block
3799 * that corresponds to 'from'
3801 static int ext4_block_zero_page_range(handle_t *handle,
3802 struct address_space *mapping, loff_t from, loff_t length)
3804 struct inode *inode = mapping->host;
3805 unsigned offset = from & (PAGE_SIZE-1);
3806 unsigned blocksize = inode->i_sb->s_blocksize;
3807 unsigned max = blocksize - (offset & (blocksize - 1));
3810 * correct length if it does not fall between
3811 * 'from' and the end of the block
3813 if (length > max || length < 0)
3816 if (IS_DAX(inode)) {
3817 return dax_zero_range(inode, from, length, NULL,
3820 return __ext4_block_zero_page_range(handle, mapping, from, length);
3824 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3825 * up to the end of the block which corresponds to `from'.
3826 * This required during truncate. We need to physically zero the tail end
3827 * of that block so it doesn't yield old data if the file is later grown.
3829 static int ext4_block_truncate_page(handle_t *handle,
3830 struct address_space *mapping, loff_t from)
3832 unsigned offset = from & (PAGE_SIZE-1);
3835 struct inode *inode = mapping->host;
3837 /* If we are processing an encrypted inode during orphan list handling */
3838 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3841 blocksize = inode->i_sb->s_blocksize;
3842 length = blocksize - (offset & (blocksize - 1));
3844 return ext4_block_zero_page_range(handle, mapping, from, length);
3847 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3848 loff_t lstart, loff_t length)
3850 struct super_block *sb = inode->i_sb;
3851 struct address_space *mapping = inode->i_mapping;
3852 unsigned partial_start, partial_end;
3853 ext4_fsblk_t start, end;
3854 loff_t byte_end = (lstart + length - 1);
3857 partial_start = lstart & (sb->s_blocksize - 1);
3858 partial_end = byte_end & (sb->s_blocksize - 1);
3860 start = lstart >> sb->s_blocksize_bits;
3861 end = byte_end >> sb->s_blocksize_bits;
3863 /* Handle partial zero within the single block */
3865 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3866 err = ext4_block_zero_page_range(handle, mapping,
3870 /* Handle partial zero out on the start of the range */
3871 if (partial_start) {
3872 err = ext4_block_zero_page_range(handle, mapping,
3873 lstart, sb->s_blocksize);
3877 /* Handle partial zero out on the end of the range */
3878 if (partial_end != sb->s_blocksize - 1)
3879 err = ext4_block_zero_page_range(handle, mapping,
3880 byte_end - partial_end,
3885 int ext4_can_truncate(struct inode *inode)
3887 if (S_ISREG(inode->i_mode))
3889 if (S_ISDIR(inode->i_mode))
3891 if (S_ISLNK(inode->i_mode))
3892 return !ext4_inode_is_fast_symlink(inode);
3897 * We have to make sure i_disksize gets properly updated before we truncate
3898 * page cache due to hole punching or zero range. Otherwise i_disksize update
3899 * can get lost as it may have been postponed to submission of writeback but
3900 * that will never happen after we truncate page cache.
3902 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3908 loff_t size = i_size_read(inode);
3910 WARN_ON(!inode_is_locked(inode));
3911 if (offset > size || offset + len < size)
3914 if (EXT4_I(inode)->i_disksize >= size)
3917 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3919 return PTR_ERR(handle);
3920 ext4_update_i_disksize(inode, size);
3921 ret = ext4_mark_inode_dirty(handle, inode);
3922 ext4_journal_stop(handle);
3927 static void ext4_wait_dax_page(struct inode *inode)
3929 filemap_invalidate_unlock(inode->i_mapping);
3931 filemap_invalidate_lock(inode->i_mapping);
3934 int ext4_break_layouts(struct inode *inode)
3939 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3943 page = dax_layout_busy_page(inode->i_mapping);
3947 error = ___wait_var_event(&page->_refcount,
3948 atomic_read(&page->_refcount) == 1,
3949 TASK_INTERRUPTIBLE, 0, 0,
3950 ext4_wait_dax_page(inode));
3951 } while (error == 0);
3957 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3958 * associated with the given offset and length
3960 * @inode: File inode
3961 * @offset: The offset where the hole will begin
3962 * @len: The length of the hole
3964 * Returns: 0 on success or negative on failure
3967 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3969 struct inode *inode = file_inode(file);
3970 struct super_block *sb = inode->i_sb;
3971 ext4_lblk_t first_block, stop_block;
3972 struct address_space *mapping = inode->i_mapping;
3973 loff_t first_block_offset, last_block_offset, max_length;
3974 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3976 unsigned int credits;
3977 int ret = 0, ret2 = 0;
3979 trace_ext4_punch_hole(inode, offset, length, 0);
3982 * Write out all dirty pages to avoid race conditions
3983 * Then release them.
3985 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3986 ret = filemap_write_and_wait_range(mapping, offset,
3987 offset + length - 1);
3994 /* No need to punch hole beyond i_size */
3995 if (offset >= inode->i_size)
3999 * If the hole extends beyond i_size, set the hole
4000 * to end after the page that contains i_size
4002 if (offset + length > inode->i_size) {
4003 length = inode->i_size +
4004 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4009 * For punch hole the length + offset needs to be within one block
4010 * before last range. Adjust the length if it goes beyond that limit.
4012 max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
4013 if (offset + length > max_length)
4014 length = max_length - offset;
4016 if (offset & (sb->s_blocksize - 1) ||
4017 (offset + length) & (sb->s_blocksize - 1)) {
4019 * Attach jinode to inode for jbd2 if we do any zeroing of
4022 ret = ext4_inode_attach_jinode(inode);
4028 /* Wait all existing dio workers, newcomers will block on i_rwsem */
4029 inode_dio_wait(inode);
4031 ret = file_modified(file);
4036 * Prevent page faults from reinstantiating pages we have released from
4039 filemap_invalidate_lock(mapping);
4041 ret = ext4_break_layouts(inode);
4045 first_block_offset = round_up(offset, sb->s_blocksize);
4046 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4048 /* Now release the pages and zero block aligned part of pages*/
4049 if (last_block_offset > first_block_offset) {
4050 ret = ext4_update_disksize_before_punch(inode, offset, length);
4053 truncate_pagecache_range(inode, first_block_offset,
4057 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4058 credits = ext4_writepage_trans_blocks(inode);
4060 credits = ext4_blocks_for_truncate(inode);
4061 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4062 if (IS_ERR(handle)) {
4063 ret = PTR_ERR(handle);
4064 ext4_std_error(sb, ret);
4068 ret = ext4_zero_partial_blocks(handle, inode, offset,
4073 first_block = (offset + sb->s_blocksize - 1) >>
4074 EXT4_BLOCK_SIZE_BITS(sb);
4075 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4077 /* If there are blocks to remove, do it */
4078 if (stop_block > first_block) {
4080 down_write(&EXT4_I(inode)->i_data_sem);
4081 ext4_discard_preallocations(inode, 0);
4083 ret = ext4_es_remove_extent(inode, first_block,
4084 stop_block - first_block);
4086 up_write(&EXT4_I(inode)->i_data_sem);
4090 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4091 ret = ext4_ext_remove_space(inode, first_block,
4094 ret = ext4_ind_remove_space(handle, inode, first_block,
4097 up_write(&EXT4_I(inode)->i_data_sem);
4099 ext4_fc_track_range(handle, inode, first_block, stop_block);
4101 ext4_handle_sync(handle);
4103 inode->i_mtime = inode->i_ctime = current_time(inode);
4104 ret2 = ext4_mark_inode_dirty(handle, inode);
4108 ext4_update_inode_fsync_trans(handle, inode, 1);
4110 ext4_journal_stop(handle);
4112 filemap_invalidate_unlock(mapping);
4114 inode_unlock(inode);
4118 int ext4_inode_attach_jinode(struct inode *inode)
4120 struct ext4_inode_info *ei = EXT4_I(inode);
4121 struct jbd2_inode *jinode;
4123 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4126 jinode = jbd2_alloc_inode(GFP_KERNEL);
4127 spin_lock(&inode->i_lock);
4130 spin_unlock(&inode->i_lock);
4133 ei->jinode = jinode;
4134 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4137 spin_unlock(&inode->i_lock);
4138 if (unlikely(jinode != NULL))
4139 jbd2_free_inode(jinode);
4146 * We block out ext4_get_block() block instantiations across the entire
4147 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4148 * simultaneously on behalf of the same inode.
4150 * As we work through the truncate and commit bits of it to the journal there
4151 * is one core, guiding principle: the file's tree must always be consistent on
4152 * disk. We must be able to restart the truncate after a crash.
4154 * The file's tree may be transiently inconsistent in memory (although it
4155 * probably isn't), but whenever we close off and commit a journal transaction,
4156 * the contents of (the filesystem + the journal) must be consistent and
4157 * restartable. It's pretty simple, really: bottom up, right to left (although
4158 * left-to-right works OK too).
4160 * Note that at recovery time, journal replay occurs *before* the restart of
4161 * truncate against the orphan inode list.
4163 * The committed inode has the new, desired i_size (which is the same as
4164 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4165 * that this inode's truncate did not complete and it will again call
4166 * ext4_truncate() to have another go. So there will be instantiated blocks
4167 * to the right of the truncation point in a crashed ext4 filesystem. But
4168 * that's fine - as long as they are linked from the inode, the post-crash
4169 * ext4_truncate() run will find them and release them.
4171 int ext4_truncate(struct inode *inode)
4173 struct ext4_inode_info *ei = EXT4_I(inode);
4174 unsigned int credits;
4177 struct address_space *mapping = inode->i_mapping;
4180 * There is a possibility that we're either freeing the inode
4181 * or it's a completely new inode. In those cases we might not
4182 * have i_rwsem locked because it's not necessary.
4184 if (!(inode->i_state & (I_NEW|I_FREEING)))
4185 WARN_ON(!inode_is_locked(inode));
4186 trace_ext4_truncate_enter(inode);
4188 if (!ext4_can_truncate(inode))
4191 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4192 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4194 if (ext4_has_inline_data(inode)) {
4197 err = ext4_inline_data_truncate(inode, &has_inline);
4198 if (err || has_inline)
4202 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4203 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4204 if (ext4_inode_attach_jinode(inode) < 0)
4208 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4209 credits = ext4_writepage_trans_blocks(inode);
4211 credits = ext4_blocks_for_truncate(inode);
4213 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4214 if (IS_ERR(handle)) {
4215 err = PTR_ERR(handle);
4219 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4220 ext4_block_truncate_page(handle, mapping, inode->i_size);
4223 * We add the inode to the orphan list, so that if this
4224 * truncate spans multiple transactions, and we crash, we will
4225 * resume the truncate when the filesystem recovers. It also
4226 * marks the inode dirty, to catch the new size.
4228 * Implication: the file must always be in a sane, consistent
4229 * truncatable state while each transaction commits.
4231 err = ext4_orphan_add(handle, inode);
4235 down_write(&EXT4_I(inode)->i_data_sem);
4237 ext4_discard_preallocations(inode, 0);
4239 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4240 err = ext4_ext_truncate(handle, inode);
4242 ext4_ind_truncate(handle, inode);
4244 up_write(&ei->i_data_sem);
4249 ext4_handle_sync(handle);
4253 * If this was a simple ftruncate() and the file will remain alive,
4254 * then we need to clear up the orphan record which we created above.
4255 * However, if this was a real unlink then we were called by
4256 * ext4_evict_inode(), and we allow that function to clean up the
4257 * orphan info for us.
4260 ext4_orphan_del(handle, inode);
4262 inode->i_mtime = inode->i_ctime = current_time(inode);
4263 err2 = ext4_mark_inode_dirty(handle, inode);
4264 if (unlikely(err2 && !err))
4266 ext4_journal_stop(handle);
4269 trace_ext4_truncate_exit(inode);
4273 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4275 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4276 return inode_peek_iversion_raw(inode);
4278 return inode_peek_iversion(inode);
4281 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4282 struct ext4_inode_info *ei)
4284 struct inode *inode = &(ei->vfs_inode);
4285 u64 i_blocks = READ_ONCE(inode->i_blocks);
4286 struct super_block *sb = inode->i_sb;
4288 if (i_blocks <= ~0U) {
4290 * i_blocks can be represented in a 32 bit variable
4291 * as multiple of 512 bytes
4293 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4294 raw_inode->i_blocks_high = 0;
4295 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4300 * This should never happen since sb->s_maxbytes should not have
4301 * allowed this, sb->s_maxbytes was set according to the huge_file
4302 * feature in ext4_fill_super().
4304 if (!ext4_has_feature_huge_file(sb))
4305 return -EFSCORRUPTED;
4307 if (i_blocks <= 0xffffffffffffULL) {
4309 * i_blocks can be represented in a 48 bit variable
4310 * as multiple of 512 bytes
4312 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4313 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4314 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4316 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4317 /* i_block is stored in file system block size */
4318 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4319 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4320 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4325 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4327 struct ext4_inode_info *ei = EXT4_I(inode);
4334 err = ext4_inode_blocks_set(raw_inode, ei);
4336 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4337 i_uid = i_uid_read(inode);
4338 i_gid = i_gid_read(inode);
4339 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4340 if (!(test_opt(inode->i_sb, NO_UID32))) {
4341 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4342 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4344 * Fix up interoperability with old kernels. Otherwise,
4345 * old inodes get re-used with the upper 16 bits of the
4348 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4349 raw_inode->i_uid_high = 0;
4350 raw_inode->i_gid_high = 0;
4352 raw_inode->i_uid_high =
4353 cpu_to_le16(high_16_bits(i_uid));
4354 raw_inode->i_gid_high =
4355 cpu_to_le16(high_16_bits(i_gid));
4358 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4359 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4360 raw_inode->i_uid_high = 0;
4361 raw_inode->i_gid_high = 0;
4363 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4365 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4366 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4367 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4368 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4370 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4371 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4372 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4373 raw_inode->i_file_acl_high =
4374 cpu_to_le16(ei->i_file_acl >> 32);
4375 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4376 ext4_isize_set(raw_inode, ei->i_disksize);
4378 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4379 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4380 if (old_valid_dev(inode->i_rdev)) {
4381 raw_inode->i_block[0] =
4382 cpu_to_le32(old_encode_dev(inode->i_rdev));
4383 raw_inode->i_block[1] = 0;
4385 raw_inode->i_block[0] = 0;
4386 raw_inode->i_block[1] =
4387 cpu_to_le32(new_encode_dev(inode->i_rdev));
4388 raw_inode->i_block[2] = 0;
4390 } else if (!ext4_has_inline_data(inode)) {
4391 for (block = 0; block < EXT4_N_BLOCKS; block++)
4392 raw_inode->i_block[block] = ei->i_data[block];
4395 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4396 u64 ivers = ext4_inode_peek_iversion(inode);
4398 raw_inode->i_disk_version = cpu_to_le32(ivers);
4399 if (ei->i_extra_isize) {
4400 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4401 raw_inode->i_version_hi =
4402 cpu_to_le32(ivers >> 32);
4403 raw_inode->i_extra_isize =
4404 cpu_to_le16(ei->i_extra_isize);
4408 if (i_projid != EXT4_DEF_PROJID &&
4409 !ext4_has_feature_project(inode->i_sb))
4410 err = err ?: -EFSCORRUPTED;
4412 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4413 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4414 raw_inode->i_projid = cpu_to_le32(i_projid);
4416 ext4_inode_csum_set(inode, raw_inode, ei);
4421 * ext4_get_inode_loc returns with an extra refcount against the inode's
4422 * underlying buffer_head on success. If we pass 'inode' and it does not
4423 * have in-inode xattr, we have all inode data in memory that is needed
4424 * to recreate the on-disk version of this inode.
4426 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4427 struct inode *inode, struct ext4_iloc *iloc,
4428 ext4_fsblk_t *ret_block)
4430 struct ext4_group_desc *gdp;
4431 struct buffer_head *bh;
4433 struct blk_plug plug;
4434 int inodes_per_block, inode_offset;
4437 if (ino < EXT4_ROOT_INO ||
4438 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4439 return -EFSCORRUPTED;
4441 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4442 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4447 * Figure out the offset within the block group inode table
4449 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4450 inode_offset = ((ino - 1) %
4451 EXT4_INODES_PER_GROUP(sb));
4452 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4453 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4455 bh = sb_getblk(sb, block);
4458 if (ext4_buffer_uptodate(bh))
4462 if (ext4_buffer_uptodate(bh)) {
4463 /* Someone brought it uptodate while we waited */
4469 * If we have all information of the inode in memory and this
4470 * is the only valid inode in the block, we need not read the
4473 if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4474 struct buffer_head *bitmap_bh;
4477 start = inode_offset & ~(inodes_per_block - 1);
4479 /* Is the inode bitmap in cache? */
4480 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4481 if (unlikely(!bitmap_bh))
4485 * If the inode bitmap isn't in cache then the
4486 * optimisation may end up performing two reads instead
4487 * of one, so skip it.
4489 if (!buffer_uptodate(bitmap_bh)) {
4493 for (i = start; i < start + inodes_per_block; i++) {
4494 if (i == inode_offset)
4496 if (ext4_test_bit(i, bitmap_bh->b_data))
4500 if (i == start + inodes_per_block) {
4501 struct ext4_inode *raw_inode =
4502 (struct ext4_inode *) (bh->b_data + iloc->offset);
4504 /* all other inodes are free, so skip I/O */
4505 memset(bh->b_data, 0, bh->b_size);
4506 if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4507 ext4_fill_raw_inode(inode, raw_inode);
4508 set_buffer_uptodate(bh);
4516 * If we need to do any I/O, try to pre-readahead extra
4517 * blocks from the inode table.
4519 blk_start_plug(&plug);
4520 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4521 ext4_fsblk_t b, end, table;
4523 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4525 table = ext4_inode_table(sb, gdp);
4526 /* s_inode_readahead_blks is always a power of 2 */
4527 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4531 num = EXT4_INODES_PER_GROUP(sb);
4532 if (ext4_has_group_desc_csum(sb))
4533 num -= ext4_itable_unused_count(sb, gdp);
4534 table += num / inodes_per_block;
4538 ext4_sb_breadahead_unmovable(sb, b++);
4542 * There are other valid inodes in the buffer, this inode
4543 * has in-inode xattrs, or we don't have this inode in memory.
4544 * Read the block from disk.
4546 trace_ext4_load_inode(sb, ino);
4547 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4548 blk_finish_plug(&plug);
4550 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4551 if (!buffer_uptodate(bh)) {
4562 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4563 struct ext4_iloc *iloc)
4565 ext4_fsblk_t err_blk = 0;
4568 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4572 ext4_error_inode_block(inode, err_blk, EIO,
4573 "unable to read itable block");
4578 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4580 ext4_fsblk_t err_blk = 0;
4583 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4587 ext4_error_inode_block(inode, err_blk, EIO,
4588 "unable to read itable block");
4594 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4595 struct ext4_iloc *iloc)
4597 return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4600 static bool ext4_should_enable_dax(struct inode *inode)
4602 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4604 if (test_opt2(inode->i_sb, DAX_NEVER))
4606 if (!S_ISREG(inode->i_mode))
4608 if (ext4_should_journal_data(inode))
4610 if (ext4_has_inline_data(inode))
4612 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4614 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4616 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4618 if (test_opt(inode->i_sb, DAX_ALWAYS))
4621 return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4624 void ext4_set_inode_flags(struct inode *inode, bool init)
4626 unsigned int flags = EXT4_I(inode)->i_flags;
4627 unsigned int new_fl = 0;
4629 WARN_ON_ONCE(IS_DAX(inode) && init);
4631 if (flags & EXT4_SYNC_FL)
4633 if (flags & EXT4_APPEND_FL)
4635 if (flags & EXT4_IMMUTABLE_FL)
4636 new_fl |= S_IMMUTABLE;
4637 if (flags & EXT4_NOATIME_FL)
4638 new_fl |= S_NOATIME;
4639 if (flags & EXT4_DIRSYNC_FL)
4640 new_fl |= S_DIRSYNC;
4642 /* Because of the way inode_set_flags() works we must preserve S_DAX
4643 * here if already set. */
4644 new_fl |= (inode->i_flags & S_DAX);
4645 if (init && ext4_should_enable_dax(inode))
4648 if (flags & EXT4_ENCRYPT_FL)
4649 new_fl |= S_ENCRYPTED;
4650 if (flags & EXT4_CASEFOLD_FL)
4651 new_fl |= S_CASEFOLD;
4652 if (flags & EXT4_VERITY_FL)
4654 inode_set_flags(inode, new_fl,
4655 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4656 S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4659 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4660 struct ext4_inode_info *ei)
4663 struct inode *inode = &(ei->vfs_inode);
4664 struct super_block *sb = inode->i_sb;
4666 if (ext4_has_feature_huge_file(sb)) {
4667 /* we are using combined 48 bit field */
4668 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4669 le32_to_cpu(raw_inode->i_blocks_lo);
4670 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4671 /* i_blocks represent file system block size */
4672 return i_blocks << (inode->i_blkbits - 9);
4677 return le32_to_cpu(raw_inode->i_blocks_lo);
4681 static inline int ext4_iget_extra_inode(struct inode *inode,
4682 struct ext4_inode *raw_inode,
4683 struct ext4_inode_info *ei)
4685 __le32 *magic = (void *)raw_inode +
4686 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4688 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4689 EXT4_INODE_SIZE(inode->i_sb) &&
4690 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4691 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4692 return ext4_find_inline_data_nolock(inode);
4694 EXT4_I(inode)->i_inline_off = 0;
4698 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4700 if (!ext4_has_feature_project(inode->i_sb))
4702 *projid = EXT4_I(inode)->i_projid;
4707 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4708 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4711 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4713 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4714 inode_set_iversion_raw(inode, val);
4716 inode_set_iversion_queried(inode, val);
4719 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4720 ext4_iget_flags flags, const char *function,
4723 struct ext4_iloc iloc;
4724 struct ext4_inode *raw_inode;
4725 struct ext4_inode_info *ei;
4726 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4727 struct inode *inode;
4728 journal_t *journal = EXT4_SB(sb)->s_journal;
4736 if ((!(flags & EXT4_IGET_SPECIAL) &&
4737 ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4738 ino == le32_to_cpu(es->s_usr_quota_inum) ||
4739 ino == le32_to_cpu(es->s_grp_quota_inum) ||
4740 ino == le32_to_cpu(es->s_prj_quota_inum) ||
4741 ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4742 (ino < EXT4_ROOT_INO) ||
4743 (ino > le32_to_cpu(es->s_inodes_count))) {
4744 if (flags & EXT4_IGET_HANDLE)
4745 return ERR_PTR(-ESTALE);
4746 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4747 "inode #%lu: comm %s: iget: illegal inode #",
4748 ino, current->comm);
4749 return ERR_PTR(-EFSCORRUPTED);
4752 inode = iget_locked(sb, ino);
4754 return ERR_PTR(-ENOMEM);
4755 if (!(inode->i_state & I_NEW))
4761 ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4764 raw_inode = ext4_raw_inode(&iloc);
4766 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4767 ext4_error_inode(inode, function, line, 0,
4768 "iget: root inode unallocated");
4769 ret = -EFSCORRUPTED;
4773 if ((flags & EXT4_IGET_HANDLE) &&
4774 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4779 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4780 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4781 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4782 EXT4_INODE_SIZE(inode->i_sb) ||
4783 (ei->i_extra_isize & 3)) {
4784 ext4_error_inode(inode, function, line, 0,
4785 "iget: bad extra_isize %u "
4788 EXT4_INODE_SIZE(inode->i_sb));
4789 ret = -EFSCORRUPTED;
4793 ei->i_extra_isize = 0;
4795 /* Precompute checksum seed for inode metadata */
4796 if (ext4_has_metadata_csum(sb)) {
4797 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4799 __le32 inum = cpu_to_le32(inode->i_ino);
4800 __le32 gen = raw_inode->i_generation;
4801 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4803 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4807 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4808 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4809 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4810 ext4_error_inode_err(inode, function, line, 0,
4811 EFSBADCRC, "iget: checksum invalid");
4816 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4817 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4818 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4819 if (ext4_has_feature_project(sb) &&
4820 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4821 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4822 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4824 i_projid = EXT4_DEF_PROJID;
4826 if (!(test_opt(inode->i_sb, NO_UID32))) {
4827 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4828 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4830 i_uid_write(inode, i_uid);
4831 i_gid_write(inode, i_gid);
4832 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4833 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4835 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4836 ei->i_inline_off = 0;
4837 ei->i_dir_start_lookup = 0;
4838 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4839 /* We now have enough fields to check if the inode was active or not.
4840 * This is needed because nfsd might try to access dead inodes
4841 * the test is that same one that e2fsck uses
4842 * NeilBrown 1999oct15
4844 if (inode->i_nlink == 0) {
4845 if ((inode->i_mode == 0 ||
4846 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4847 ino != EXT4_BOOT_LOADER_INO) {
4848 /* this inode is deleted */
4852 /* The only unlinked inodes we let through here have
4853 * valid i_mode and are being read by the orphan
4854 * recovery code: that's fine, we're about to complete
4855 * the process of deleting those.
4856 * OR it is the EXT4_BOOT_LOADER_INO which is
4857 * not initialized on a new filesystem. */
4859 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4860 ext4_set_inode_flags(inode, true);
4861 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4862 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4863 if (ext4_has_feature_64bit(sb))
4865 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4866 inode->i_size = ext4_isize(sb, raw_inode);
4867 if ((size = i_size_read(inode)) < 0) {
4868 ext4_error_inode(inode, function, line, 0,
4869 "iget: bad i_size value: %lld", size);
4870 ret = -EFSCORRUPTED;
4874 * If dir_index is not enabled but there's dir with INDEX flag set,
4875 * we'd normally treat htree data as empty space. But with metadata
4876 * checksumming that corrupts checksums so forbid that.
4878 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4879 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4880 ext4_error_inode(inode, function, line, 0,
4881 "iget: Dir with htree data on filesystem without dir_index feature.");
4882 ret = -EFSCORRUPTED;
4885 ei->i_disksize = inode->i_size;
4887 ei->i_reserved_quota = 0;
4889 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4890 ei->i_block_group = iloc.block_group;
4891 ei->i_last_alloc_group = ~0;
4893 * NOTE! The in-memory inode i_data array is in little-endian order
4894 * even on big-endian machines: we do NOT byteswap the block numbers!
4896 for (block = 0; block < EXT4_N_BLOCKS; block++)
4897 ei->i_data[block] = raw_inode->i_block[block];
4898 INIT_LIST_HEAD(&ei->i_orphan);
4899 ext4_fc_init_inode(&ei->vfs_inode);
4902 * Set transaction id's of transactions that have to be committed
4903 * to finish f[data]sync. We set them to currently running transaction
4904 * as we cannot be sure that the inode or some of its metadata isn't
4905 * part of the transaction - the inode could have been reclaimed and
4906 * now it is reread from disk.
4909 transaction_t *transaction;
4912 read_lock(&journal->j_state_lock);
4913 if (journal->j_running_transaction)
4914 transaction = journal->j_running_transaction;
4916 transaction = journal->j_committing_transaction;
4918 tid = transaction->t_tid;
4920 tid = journal->j_commit_sequence;
4921 read_unlock(&journal->j_state_lock);
4922 ei->i_sync_tid = tid;
4923 ei->i_datasync_tid = tid;
4926 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4927 if (ei->i_extra_isize == 0) {
4928 /* The extra space is currently unused. Use it. */
4929 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4930 ei->i_extra_isize = sizeof(struct ext4_inode) -
4931 EXT4_GOOD_OLD_INODE_SIZE;
4933 ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4939 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4940 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4941 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4942 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4944 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4945 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4947 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4948 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4950 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4952 ext4_inode_set_iversion_queried(inode, ivers);
4956 if (ei->i_file_acl &&
4957 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4958 ext4_error_inode(inode, function, line, 0,
4959 "iget: bad extended attribute block %llu",
4961 ret = -EFSCORRUPTED;
4963 } else if (!ext4_has_inline_data(inode)) {
4964 /* validate the block references in the inode */
4965 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4966 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4967 (S_ISLNK(inode->i_mode) &&
4968 !ext4_inode_is_fast_symlink(inode)))) {
4969 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4970 ret = ext4_ext_check_inode(inode);
4972 ret = ext4_ind_check_inode(inode);
4978 if (S_ISREG(inode->i_mode)) {
4979 inode->i_op = &ext4_file_inode_operations;
4980 inode->i_fop = &ext4_file_operations;
4981 ext4_set_aops(inode);
4982 } else if (S_ISDIR(inode->i_mode)) {
4983 inode->i_op = &ext4_dir_inode_operations;
4984 inode->i_fop = &ext4_dir_operations;
4985 } else if (S_ISLNK(inode->i_mode)) {
4986 /* VFS does not allow setting these so must be corruption */
4987 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4988 ext4_error_inode(inode, function, line, 0,
4989 "iget: immutable or append flags "
4990 "not allowed on symlinks");
4991 ret = -EFSCORRUPTED;
4994 if (IS_ENCRYPTED(inode)) {
4995 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4996 } else if (ext4_inode_is_fast_symlink(inode)) {
4997 inode->i_link = (char *)ei->i_data;
4998 inode->i_op = &ext4_fast_symlink_inode_operations;
4999 nd_terminate_link(ei->i_data, inode->i_size,
5000 sizeof(ei->i_data) - 1);
5002 inode->i_op = &ext4_symlink_inode_operations;
5004 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5005 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5006 inode->i_op = &ext4_special_inode_operations;
5007 if (raw_inode->i_block[0])
5008 init_special_inode(inode, inode->i_mode,
5009 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5011 init_special_inode(inode, inode->i_mode,
5012 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5013 } else if (ino == EXT4_BOOT_LOADER_INO) {
5014 make_bad_inode(inode);
5016 ret = -EFSCORRUPTED;
5017 ext4_error_inode(inode, function, line, 0,
5018 "iget: bogus i_mode (%o)", inode->i_mode);
5021 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
5022 ext4_error_inode(inode, function, line, 0,
5023 "casefold flag without casefold feature");
5026 unlock_new_inode(inode);
5032 return ERR_PTR(ret);
5035 static void __ext4_update_other_inode_time(struct super_block *sb,
5036 unsigned long orig_ino,
5038 struct ext4_inode *raw_inode)
5040 struct inode *inode;
5042 inode = find_inode_by_ino_rcu(sb, ino);
5046 if (!inode_is_dirtytime_only(inode))
5049 spin_lock(&inode->i_lock);
5050 if (inode_is_dirtytime_only(inode)) {
5051 struct ext4_inode_info *ei = EXT4_I(inode);
5053 inode->i_state &= ~I_DIRTY_TIME;
5054 spin_unlock(&inode->i_lock);
5056 spin_lock(&ei->i_raw_lock);
5057 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5058 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5059 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5060 ext4_inode_csum_set(inode, raw_inode, ei);
5061 spin_unlock(&ei->i_raw_lock);
5062 trace_ext4_other_inode_update_time(inode, orig_ino);
5065 spin_unlock(&inode->i_lock);
5069 * Opportunistically update the other time fields for other inodes in
5070 * the same inode table block.
5072 static void ext4_update_other_inodes_time(struct super_block *sb,
5073 unsigned long orig_ino, char *buf)
5076 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5077 int inode_size = EXT4_INODE_SIZE(sb);
5080 * Calculate the first inode in the inode table block. Inode
5081 * numbers are one-based. That is, the first inode in a block
5082 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5084 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5086 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5087 if (ino == orig_ino)
5089 __ext4_update_other_inode_time(sb, orig_ino, ino,
5090 (struct ext4_inode *)buf);
5096 * Post the struct inode info into an on-disk inode location in the
5097 * buffer-cache. This gobbles the caller's reference to the
5098 * buffer_head in the inode location struct.
5100 * The caller must have write access to iloc->bh.
5102 static int ext4_do_update_inode(handle_t *handle,
5103 struct inode *inode,
5104 struct ext4_iloc *iloc)
5106 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5107 struct ext4_inode_info *ei = EXT4_I(inode);
5108 struct buffer_head *bh = iloc->bh;
5109 struct super_block *sb = inode->i_sb;
5111 int need_datasync = 0, set_large_file = 0;
5113 spin_lock(&ei->i_raw_lock);
5116 * For fields not tracked in the in-memory inode, initialise them
5117 * to zero for new inodes.
5119 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5120 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5122 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5124 if (ei->i_disksize > 0x7fffffffULL) {
5125 if (!ext4_has_feature_large_file(sb) ||
5126 EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5130 err = ext4_fill_raw_inode(inode, raw_inode);
5131 spin_unlock(&ei->i_raw_lock);
5133 EXT4_ERROR_INODE(inode, "corrupted inode contents");
5137 if (inode->i_sb->s_flags & SB_LAZYTIME)
5138 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5141 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5142 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5145 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5146 if (set_large_file) {
5147 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5148 err = ext4_journal_get_write_access(handle, sb,
5153 lock_buffer(EXT4_SB(sb)->s_sbh);
5154 ext4_set_feature_large_file(sb);
5155 ext4_superblock_csum_set(sb);
5156 unlock_buffer(EXT4_SB(sb)->s_sbh);
5157 ext4_handle_sync(handle);
5158 err = ext4_handle_dirty_metadata(handle, NULL,
5159 EXT4_SB(sb)->s_sbh);
5161 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5163 ext4_std_error(inode->i_sb, err);
5170 * ext4_write_inode()
5172 * We are called from a few places:
5174 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5175 * Here, there will be no transaction running. We wait for any running
5176 * transaction to commit.
5178 * - Within flush work (sys_sync(), kupdate and such).
5179 * We wait on commit, if told to.
5181 * - Within iput_final() -> write_inode_now()
5182 * We wait on commit, if told to.
5184 * In all cases it is actually safe for us to return without doing anything,
5185 * because the inode has been copied into a raw inode buffer in
5186 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5189 * Note that we are absolutely dependent upon all inode dirtiers doing the
5190 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5191 * which we are interested.
5193 * It would be a bug for them to not do this. The code:
5195 * mark_inode_dirty(inode)
5197 * inode->i_size = expr;
5199 * is in error because write_inode() could occur while `stuff()' is running,
5200 * and the new i_size will be lost. Plus the inode will no longer be on the
5201 * superblock's dirty inode list.
5203 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5207 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5208 sb_rdonly(inode->i_sb))
5211 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5214 if (EXT4_SB(inode->i_sb)->s_journal) {
5215 if (ext4_journal_current_handle()) {
5216 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5222 * No need to force transaction in WB_SYNC_NONE mode. Also
5223 * ext4_sync_fs() will force the commit after everything is
5226 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5229 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5230 EXT4_I(inode)->i_sync_tid);
5232 struct ext4_iloc iloc;
5234 err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5238 * sync(2) will flush the whole buffer cache. No need to do
5239 * it here separately for each inode.
5241 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5242 sync_dirty_buffer(iloc.bh);
5243 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5244 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5245 "IO error syncing inode");
5254 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5255 * buffers that are attached to a folio straddling i_size and are undergoing
5256 * commit. In that case we have to wait for commit to finish and try again.
5258 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5261 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5262 tid_t commit_tid = 0;
5265 offset = inode->i_size & (PAGE_SIZE - 1);
5267 * If the folio is fully truncated, we don't need to wait for any commit
5268 * (and we even should not as __ext4_journalled_invalidate_folio() may
5269 * strip all buffers from the folio but keep the folio dirty which can then
5270 * confuse e.g. concurrent ext4_writepage() seeing dirty folio without
5271 * buffers). Also we don't need to wait for any commit if all buffers in
5272 * the folio remain valid. This is most beneficial for the common case of
5273 * blocksize == PAGESIZE.
5275 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5278 struct folio *folio = filemap_lock_folio(inode->i_mapping,
5279 inode->i_size >> PAGE_SHIFT);
5282 ret = __ext4_journalled_invalidate_folio(folio, offset,
5283 folio_size(folio) - offset);
5284 folio_unlock(folio);
5289 read_lock(&journal->j_state_lock);
5290 if (journal->j_committing_transaction)
5291 commit_tid = journal->j_committing_transaction->t_tid;
5292 read_unlock(&journal->j_state_lock);
5294 jbd2_log_wait_commit(journal, commit_tid);
5301 * Called from notify_change.
5303 * We want to trap VFS attempts to truncate the file as soon as
5304 * possible. In particular, we want to make sure that when the VFS
5305 * shrinks i_size, we put the inode on the orphan list and modify
5306 * i_disksize immediately, so that during the subsequent flushing of
5307 * dirty pages and freeing of disk blocks, we can guarantee that any
5308 * commit will leave the blocks being flushed in an unused state on
5309 * disk. (On recovery, the inode will get truncated and the blocks will
5310 * be freed, so we have a strong guarantee that no future commit will
5311 * leave these blocks visible to the user.)
5313 * Another thing we have to assure is that if we are in ordered mode
5314 * and inode is still attached to the committing transaction, we must
5315 * we start writeout of all the dirty pages which are being truncated.
5316 * This way we are sure that all the data written in the previous
5317 * transaction are already on disk (truncate waits for pages under
5320 * Called with inode->i_rwsem down.
5322 int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5325 struct inode *inode = d_inode(dentry);
5328 const unsigned int ia_valid = attr->ia_valid;
5330 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5333 if (unlikely(IS_IMMUTABLE(inode)))
5336 if (unlikely(IS_APPEND(inode) &&
5337 (ia_valid & (ATTR_MODE | ATTR_UID |
5338 ATTR_GID | ATTR_TIMES_SET))))
5341 error = setattr_prepare(mnt_userns, dentry, attr);
5345 error = fscrypt_prepare_setattr(dentry, attr);
5349 error = fsverity_prepare_setattr(dentry, attr);
5353 if (is_quota_modification(inode, attr)) {
5354 error = dquot_initialize(inode);
5359 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5360 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5363 /* (user+group)*(old+new) structure, inode write (sb,
5364 * inode block, ? - but truncate inode update has it) */
5365 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5366 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5367 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5368 if (IS_ERR(handle)) {
5369 error = PTR_ERR(handle);
5373 /* dquot_transfer() calls back ext4_get_inode_usage() which
5374 * counts xattr inode references.
5376 down_read(&EXT4_I(inode)->xattr_sem);
5377 error = dquot_transfer(inode, attr);
5378 up_read(&EXT4_I(inode)->xattr_sem);
5381 ext4_journal_stop(handle);
5384 /* Update corresponding info in inode so that everything is in
5385 * one transaction */
5386 if (attr->ia_valid & ATTR_UID)
5387 inode->i_uid = attr->ia_uid;
5388 if (attr->ia_valid & ATTR_GID)
5389 inode->i_gid = attr->ia_gid;
5390 error = ext4_mark_inode_dirty(handle, inode);
5391 ext4_journal_stop(handle);
5392 if (unlikely(error)) {
5397 if (attr->ia_valid & ATTR_SIZE) {
5399 loff_t oldsize = inode->i_size;
5400 loff_t old_disksize;
5401 int shrink = (attr->ia_size < inode->i_size);
5403 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5404 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5406 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5410 if (!S_ISREG(inode->i_mode)) {
5414 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5415 inode_inc_iversion(inode);
5418 if (ext4_should_order_data(inode)) {
5419 error = ext4_begin_ordered_truncate(inode,
5425 * Blocks are going to be removed from the inode. Wait
5426 * for dio in flight.
5428 inode_dio_wait(inode);
5431 filemap_invalidate_lock(inode->i_mapping);
5433 rc = ext4_break_layouts(inode);
5435 filemap_invalidate_unlock(inode->i_mapping);
5439 if (attr->ia_size != inode->i_size) {
5440 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5441 if (IS_ERR(handle)) {
5442 error = PTR_ERR(handle);
5445 if (ext4_handle_valid(handle) && shrink) {
5446 error = ext4_orphan_add(handle, inode);
5450 * Update c/mtime on truncate up, ext4_truncate() will
5451 * update c/mtime in shrink case below
5454 inode->i_mtime = current_time(inode);
5455 inode->i_ctime = inode->i_mtime;
5459 ext4_fc_track_range(handle, inode,
5460 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5461 inode->i_sb->s_blocksize_bits,
5462 EXT_MAX_BLOCKS - 1);
5464 ext4_fc_track_range(
5466 (oldsize > 0 ? oldsize - 1 : oldsize) >>
5467 inode->i_sb->s_blocksize_bits,
5468 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5469 inode->i_sb->s_blocksize_bits);
5471 down_write(&EXT4_I(inode)->i_data_sem);
5472 old_disksize = EXT4_I(inode)->i_disksize;
5473 EXT4_I(inode)->i_disksize = attr->ia_size;
5474 rc = ext4_mark_inode_dirty(handle, inode);
5478 * We have to update i_size under i_data_sem together
5479 * with i_disksize to avoid races with writeback code
5480 * running ext4_wb_update_i_disksize().
5483 i_size_write(inode, attr->ia_size);
5485 EXT4_I(inode)->i_disksize = old_disksize;
5486 up_write(&EXT4_I(inode)->i_data_sem);
5487 ext4_journal_stop(handle);
5491 pagecache_isize_extended(inode, oldsize,
5493 } else if (ext4_should_journal_data(inode)) {
5494 ext4_wait_for_tail_page_commit(inode);
5499 * Truncate pagecache after we've waited for commit
5500 * in data=journal mode to make pages freeable.
5502 truncate_pagecache(inode, inode->i_size);
5504 * Call ext4_truncate() even if i_size didn't change to
5505 * truncate possible preallocated blocks.
5507 if (attr->ia_size <= oldsize) {
5508 rc = ext4_truncate(inode);
5513 filemap_invalidate_unlock(inode->i_mapping);
5517 setattr_copy(mnt_userns, inode, attr);
5518 mark_inode_dirty(inode);
5522 * If the call to ext4_truncate failed to get a transaction handle at
5523 * all, we need to clean up the in-core orphan list manually.
5525 if (orphan && inode->i_nlink)
5526 ext4_orphan_del(NULL, inode);
5528 if (!error && (ia_valid & ATTR_MODE))
5529 rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5533 ext4_std_error(inode->i_sb, error);
5539 int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path,
5540 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5542 struct inode *inode = d_inode(path->dentry);
5543 struct ext4_inode *raw_inode;
5544 struct ext4_inode_info *ei = EXT4_I(inode);
5547 if ((request_mask & STATX_BTIME) &&
5548 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5549 stat->result_mask |= STATX_BTIME;
5550 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5551 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5554 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5555 if (flags & EXT4_APPEND_FL)
5556 stat->attributes |= STATX_ATTR_APPEND;
5557 if (flags & EXT4_COMPR_FL)
5558 stat->attributes |= STATX_ATTR_COMPRESSED;
5559 if (flags & EXT4_ENCRYPT_FL)
5560 stat->attributes |= STATX_ATTR_ENCRYPTED;
5561 if (flags & EXT4_IMMUTABLE_FL)
5562 stat->attributes |= STATX_ATTR_IMMUTABLE;
5563 if (flags & EXT4_NODUMP_FL)
5564 stat->attributes |= STATX_ATTR_NODUMP;
5565 if (flags & EXT4_VERITY_FL)
5566 stat->attributes |= STATX_ATTR_VERITY;
5568 stat->attributes_mask |= (STATX_ATTR_APPEND |
5569 STATX_ATTR_COMPRESSED |
5570 STATX_ATTR_ENCRYPTED |
5571 STATX_ATTR_IMMUTABLE |
5575 generic_fillattr(mnt_userns, inode, stat);
5579 int ext4_file_getattr(struct user_namespace *mnt_userns,
5580 const struct path *path, struct kstat *stat,
5581 u32 request_mask, unsigned int query_flags)
5583 struct inode *inode = d_inode(path->dentry);
5584 u64 delalloc_blocks;
5586 ext4_getattr(mnt_userns, path, stat, request_mask, query_flags);
5589 * If there is inline data in the inode, the inode will normally not
5590 * have data blocks allocated (it may have an external xattr block).
5591 * Report at least one sector for such files, so tools like tar, rsync,
5592 * others don't incorrectly think the file is completely sparse.
5594 if (unlikely(ext4_has_inline_data(inode)))
5595 stat->blocks += (stat->size + 511) >> 9;
5598 * We can't update i_blocks if the block allocation is delayed
5599 * otherwise in the case of system crash before the real block
5600 * allocation is done, we will have i_blocks inconsistent with
5601 * on-disk file blocks.
5602 * We always keep i_blocks updated together with real
5603 * allocation. But to not confuse with user, stat
5604 * will return the blocks that include the delayed allocation
5605 * blocks for this file.
5607 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5608 EXT4_I(inode)->i_reserved_data_blocks);
5609 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5613 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5616 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5617 return ext4_ind_trans_blocks(inode, lblocks);
5618 return ext4_ext_index_trans_blocks(inode, pextents);
5622 * Account for index blocks, block groups bitmaps and block group
5623 * descriptor blocks if modify datablocks and index blocks
5624 * worse case, the indexs blocks spread over different block groups
5626 * If datablocks are discontiguous, they are possible to spread over
5627 * different block groups too. If they are contiguous, with flexbg,
5628 * they could still across block group boundary.
5630 * Also account for superblock, inode, quota and xattr blocks
5632 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5635 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5641 * How many index blocks need to touch to map @lblocks logical blocks
5642 * to @pextents physical extents?
5644 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5649 * Now let's see how many group bitmaps and group descriptors need
5652 groups = idxblocks + pextents;
5654 if (groups > ngroups)
5656 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5657 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5659 /* bitmaps and block group descriptor blocks */
5660 ret += groups + gdpblocks;
5662 /* Blocks for super block, inode, quota and xattr blocks */
5663 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5669 * Calculate the total number of credits to reserve to fit
5670 * the modification of a single pages into a single transaction,
5671 * which may include multiple chunks of block allocations.
5673 * This could be called via ext4_write_begin()
5675 * We need to consider the worse case, when
5676 * one new block per extent.
5678 int ext4_writepage_trans_blocks(struct inode *inode)
5680 int bpp = ext4_journal_blocks_per_page(inode);
5683 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5685 /* Account for data blocks for journalled mode */
5686 if (ext4_should_journal_data(inode))
5692 * Calculate the journal credits for a chunk of data modification.
5694 * This is called from DIO, fallocate or whoever calling
5695 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5697 * journal buffers for data blocks are not included here, as DIO
5698 * and fallocate do no need to journal data buffers.
5700 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5702 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5706 * The caller must have previously called ext4_reserve_inode_write().
5707 * Give this, we know that the caller already has write access to iloc->bh.
5709 int ext4_mark_iloc_dirty(handle_t *handle,
5710 struct inode *inode, struct ext4_iloc *iloc)
5714 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5718 ext4_fc_track_inode(handle, inode);
5720 if (IS_I_VERSION(inode))
5721 inode_inc_iversion(inode);
5723 /* the do_update_inode consumes one bh->b_count */
5726 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5727 err = ext4_do_update_inode(handle, inode, iloc);
5733 * On success, We end up with an outstanding reference count against
5734 * iloc->bh. This _must_ be cleaned up later.
5738 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5739 struct ext4_iloc *iloc)
5743 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5746 err = ext4_get_inode_loc(inode, iloc);
5748 BUFFER_TRACE(iloc->bh, "get_write_access");
5749 err = ext4_journal_get_write_access(handle, inode->i_sb,
5750 iloc->bh, EXT4_JTR_NONE);
5756 ext4_std_error(inode->i_sb, err);
5760 static int __ext4_expand_extra_isize(struct inode *inode,
5761 unsigned int new_extra_isize,
5762 struct ext4_iloc *iloc,
5763 handle_t *handle, int *no_expand)
5765 struct ext4_inode *raw_inode;
5766 struct ext4_xattr_ibody_header *header;
5767 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5768 struct ext4_inode_info *ei = EXT4_I(inode);
5771 /* this was checked at iget time, but double check for good measure */
5772 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5773 (ei->i_extra_isize & 3)) {
5774 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5776 EXT4_INODE_SIZE(inode->i_sb));
5777 return -EFSCORRUPTED;
5779 if ((new_extra_isize < ei->i_extra_isize) ||
5780 (new_extra_isize < 4) ||
5781 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5782 return -EINVAL; /* Should never happen */
5784 raw_inode = ext4_raw_inode(iloc);
5786 header = IHDR(inode, raw_inode);
5788 /* No extended attributes present */
5789 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5790 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5791 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5792 EXT4_I(inode)->i_extra_isize, 0,
5793 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5794 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5798 /* try to expand with EAs present */
5799 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5803 * Inode size expansion failed; don't try again
5812 * Expand an inode by new_extra_isize bytes.
5813 * Returns 0 on success or negative error number on failure.
5815 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5816 unsigned int new_extra_isize,
5817 struct ext4_iloc iloc,
5823 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5827 * In nojournal mode, we can immediately attempt to expand
5828 * the inode. When journaled, we first need to obtain extra
5829 * buffer credits since we may write into the EA block
5830 * with this same handle. If journal_extend fails, then it will
5831 * only result in a minor loss of functionality for that inode.
5832 * If this is felt to be critical, then e2fsck should be run to
5833 * force a large enough s_min_extra_isize.
5835 if (ext4_journal_extend(handle,
5836 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5839 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5842 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5843 handle, &no_expand);
5844 ext4_write_unlock_xattr(inode, &no_expand);
5849 int ext4_expand_extra_isize(struct inode *inode,
5850 unsigned int new_extra_isize,
5851 struct ext4_iloc *iloc)
5857 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5862 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5863 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5864 if (IS_ERR(handle)) {
5865 error = PTR_ERR(handle);
5870 ext4_write_lock_xattr(inode, &no_expand);
5872 BUFFER_TRACE(iloc->bh, "get_write_access");
5873 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5880 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5881 handle, &no_expand);
5883 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5888 ext4_write_unlock_xattr(inode, &no_expand);
5889 ext4_journal_stop(handle);
5894 * What we do here is to mark the in-core inode as clean with respect to inode
5895 * dirtiness (it may still be data-dirty).
5896 * This means that the in-core inode may be reaped by prune_icache
5897 * without having to perform any I/O. This is a very good thing,
5898 * because *any* task may call prune_icache - even ones which
5899 * have a transaction open against a different journal.
5901 * Is this cheating? Not really. Sure, we haven't written the
5902 * inode out, but prune_icache isn't a user-visible syncing function.
5903 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5904 * we start and wait on commits.
5906 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5907 const char *func, unsigned int line)
5909 struct ext4_iloc iloc;
5910 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5914 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5915 err = ext4_reserve_inode_write(handle, inode, &iloc);
5919 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5920 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5923 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5926 ext4_error_inode_err(inode, func, line, 0, err,
5927 "mark_inode_dirty error");
5932 * ext4_dirty_inode() is called from __mark_inode_dirty()
5934 * We're really interested in the case where a file is being extended.
5935 * i_size has been changed by generic_commit_write() and we thus need
5936 * to include the updated inode in the current transaction.
5938 * Also, dquot_alloc_block() will always dirty the inode when blocks
5939 * are allocated to the file.
5941 * If the inode is marked synchronous, we don't honour that here - doing
5942 * so would cause a commit on atime updates, which we don't bother doing.
5943 * We handle synchronous inodes at the highest possible level.
5945 void ext4_dirty_inode(struct inode *inode, int flags)
5949 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5952 ext4_mark_inode_dirty(handle, inode);
5953 ext4_journal_stop(handle);
5956 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5961 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5964 * We have to be very careful here: changing a data block's
5965 * journaling status dynamically is dangerous. If we write a
5966 * data block to the journal, change the status and then delete
5967 * that block, we risk forgetting to revoke the old log record
5968 * from the journal and so a subsequent replay can corrupt data.
5969 * So, first we make sure that the journal is empty and that
5970 * nobody is changing anything.
5973 journal = EXT4_JOURNAL(inode);
5976 if (is_journal_aborted(journal))
5979 /* Wait for all existing dio workers */
5980 inode_dio_wait(inode);
5983 * Before flushing the journal and switching inode's aops, we have
5984 * to flush all dirty data the inode has. There can be outstanding
5985 * delayed allocations, there can be unwritten extents created by
5986 * fallocate or buffered writes in dioread_nolock mode covered by
5987 * dirty data which can be converted only after flushing the dirty
5988 * data (and journalled aops don't know how to handle these cases).
5991 filemap_invalidate_lock(inode->i_mapping);
5992 err = filemap_write_and_wait(inode->i_mapping);
5994 filemap_invalidate_unlock(inode->i_mapping);
5999 percpu_down_write(&sbi->s_writepages_rwsem);
6000 jbd2_journal_lock_updates(journal);
6003 * OK, there are no updates running now, and all cached data is
6004 * synced to disk. We are now in a completely consistent state
6005 * which doesn't have anything in the journal, and we know that
6006 * no filesystem updates are running, so it is safe to modify
6007 * the inode's in-core data-journaling state flag now.
6011 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6013 err = jbd2_journal_flush(journal, 0);
6015 jbd2_journal_unlock_updates(journal);
6016 percpu_up_write(&sbi->s_writepages_rwsem);
6019 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6021 ext4_set_aops(inode);
6023 jbd2_journal_unlock_updates(journal);
6024 percpu_up_write(&sbi->s_writepages_rwsem);
6027 filemap_invalidate_unlock(inode->i_mapping);
6029 /* Finally we can mark the inode as dirty. */
6031 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6033 return PTR_ERR(handle);
6035 ext4_fc_mark_ineligible(inode->i_sb,
6036 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6037 err = ext4_mark_inode_dirty(handle, inode);
6038 ext4_handle_sync(handle);
6039 ext4_journal_stop(handle);
6040 ext4_std_error(inode->i_sb, err);
6045 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6046 struct buffer_head *bh)
6048 return !buffer_mapped(bh);
6051 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6053 struct vm_area_struct *vma = vmf->vma;
6054 struct page *page = vmf->page;
6059 struct file *file = vma->vm_file;
6060 struct inode *inode = file_inode(file);
6061 struct address_space *mapping = inode->i_mapping;
6063 get_block_t *get_block;
6066 if (unlikely(IS_IMMUTABLE(inode)))
6067 return VM_FAULT_SIGBUS;
6069 sb_start_pagefault(inode->i_sb);
6070 file_update_time(vma->vm_file);
6072 filemap_invalidate_lock_shared(mapping);
6074 err = ext4_convert_inline_data(inode);
6079 * On data journalling we skip straight to the transaction handle:
6080 * there's no delalloc; page truncated will be checked later; the
6081 * early return w/ all buffers mapped (calculates size/len) can't
6082 * be used; and there's no dioread_nolock, so only ext4_get_block.
6084 if (ext4_should_journal_data(inode))
6087 /* Delalloc case is easy... */
6088 if (test_opt(inode->i_sb, DELALLOC) &&
6089 !ext4_nonda_switch(inode->i_sb)) {
6091 err = block_page_mkwrite(vma, vmf,
6092 ext4_da_get_block_prep);
6093 } while (err == -ENOSPC &&
6094 ext4_should_retry_alloc(inode->i_sb, &retries));
6099 size = i_size_read(inode);
6100 /* Page got truncated from under us? */
6101 if (page->mapping != mapping || page_offset(page) > size) {
6103 ret = VM_FAULT_NOPAGE;
6107 if (page->index == size >> PAGE_SHIFT)
6108 len = size & ~PAGE_MASK;
6112 * Return if we have all the buffers mapped. This avoids the need to do
6113 * journal_start/journal_stop which can block and take a long time
6115 * This cannot be done for data journalling, as we have to add the
6116 * inode to the transaction's list to writeprotect pages on commit.
6118 if (page_has_buffers(page)) {
6119 if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page),
6121 ext4_bh_unmapped)) {
6122 /* Wait so that we don't change page under IO */
6123 wait_for_stable_page(page);
6124 ret = VM_FAULT_LOCKED;
6129 /* OK, we need to fill the hole... */
6130 if (ext4_should_dioread_nolock(inode))
6131 get_block = ext4_get_block_unwritten;
6133 get_block = ext4_get_block;
6135 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6136 ext4_writepage_trans_blocks(inode));
6137 if (IS_ERR(handle)) {
6138 ret = VM_FAULT_SIGBUS;
6142 * Data journalling can't use block_page_mkwrite() because it
6143 * will set_buffer_dirty() before do_journal_get_write_access()
6144 * thus might hit warning messages for dirty metadata buffers.
6146 if (!ext4_should_journal_data(inode)) {
6147 err = block_page_mkwrite(vma, vmf, get_block);
6150 size = i_size_read(inode);
6151 /* Page got truncated from under us? */
6152 if (page->mapping != mapping || page_offset(page) > size) {
6153 ret = VM_FAULT_NOPAGE;
6157 if (page->index == size >> PAGE_SHIFT)
6158 len = size & ~PAGE_MASK;
6162 err = __block_write_begin(page, 0, len, ext4_get_block);
6164 ret = VM_FAULT_SIGBUS;
6165 if (ext4_walk_page_buffers(handle, inode,
6166 page_buffers(page), 0, len, NULL,
6167 do_journal_get_write_access))
6169 if (ext4_walk_page_buffers(handle, inode,
6170 page_buffers(page), 0, len, NULL,
6173 if (ext4_jbd2_inode_add_write(handle, inode,
6174 page_offset(page), len))
6176 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6181 ext4_journal_stop(handle);
6182 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6185 ret = block_page_mkwrite_return(err);
6187 filemap_invalidate_unlock_shared(mapping);
6188 sb_end_pagefault(inode->i_sb);
6192 ext4_journal_stop(handle);