4e8903d0432eb26bf7e1d68c8724523b455d6620
[platform/adaptation/renesas_rcar/renesas_kernel.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 #include <linux/bitops.h>
42
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "truncate.h"
47
48 #include <trace/events/ext4.h>
49
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53                               struct ext4_inode_info *ei)
54 {
55         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56         __u16 csum_lo;
57         __u16 csum_hi = 0;
58         __u32 csum;
59
60         csum_lo = le16_to_cpu(raw->i_checksum_lo);
61         raw->i_checksum_lo = 0;
62         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
63             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
64                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
65                 raw->i_checksum_hi = 0;
66         }
67
68         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
69                            EXT4_INODE_SIZE(inode->i_sb));
70
71         raw->i_checksum_lo = cpu_to_le16(csum_lo);
72         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
73             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
74                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
75
76         return csum;
77 }
78
79 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
80                                   struct ext4_inode_info *ei)
81 {
82         __u32 provided, calculated;
83
84         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
85             cpu_to_le32(EXT4_OS_LINUX) ||
86             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
87                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
88                 return 1;
89
90         provided = le16_to_cpu(raw->i_checksum_lo);
91         calculated = ext4_inode_csum(inode, raw, ei);
92         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
93             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
94                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
95         else
96                 calculated &= 0xFFFF;
97
98         return provided == calculated;
99 }
100
101 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
102                                 struct ext4_inode_info *ei)
103 {
104         __u32 csum;
105
106         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
107             cpu_to_le32(EXT4_OS_LINUX) ||
108             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
109                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
110                 return;
111
112         csum = ext4_inode_csum(inode, raw, ei);
113         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
114         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
115             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
116                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
117 }
118
119 static inline int ext4_begin_ordered_truncate(struct inode *inode,
120                                               loff_t new_size)
121 {
122         trace_ext4_begin_ordered_truncate(inode, new_size);
123         /*
124          * If jinode is zero, then we never opened the file for
125          * writing, so there's no need to call
126          * jbd2_journal_begin_ordered_truncate() since there's no
127          * outstanding writes we need to flush.
128          */
129         if (!EXT4_I(inode)->jinode)
130                 return 0;
131         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
132                                                    EXT4_I(inode)->jinode,
133                                                    new_size);
134 }
135
136 static void ext4_invalidatepage(struct page *page, unsigned int offset,
137                                 unsigned int length);
138 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
139 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
140 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
141                                   int pextents);
142
143 /*
144  * Test whether an inode is a fast symlink.
145  */
146 static int ext4_inode_is_fast_symlink(struct inode *inode)
147 {
148         int ea_blocks = EXT4_I(inode)->i_file_acl ?
149                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
150
151         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
152 }
153
154 /*
155  * Restart the transaction associated with *handle.  This does a commit,
156  * so before we call here everything must be consistently dirtied against
157  * this transaction.
158  */
159 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
160                                  int nblocks)
161 {
162         int ret;
163
164         /*
165          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
166          * moment, get_block can be called only for blocks inside i_size since
167          * page cache has been already dropped and writes are blocked by
168          * i_mutex. So we can safely drop the i_data_sem here.
169          */
170         BUG_ON(EXT4_JOURNAL(inode) == NULL);
171         jbd_debug(2, "restarting handle %p\n", handle);
172         up_write(&EXT4_I(inode)->i_data_sem);
173         ret = ext4_journal_restart(handle, nblocks);
174         down_write(&EXT4_I(inode)->i_data_sem);
175         ext4_discard_preallocations(inode);
176
177         return ret;
178 }
179
180 /*
181  * Called at the last iput() if i_nlink is zero.
182  */
183 void ext4_evict_inode(struct inode *inode)
184 {
185         handle_t *handle;
186         int err;
187
188         trace_ext4_evict_inode(inode);
189
190         if (inode->i_nlink) {
191                 /*
192                  * When journalling data dirty buffers are tracked only in the
193                  * journal. So although mm thinks everything is clean and
194                  * ready for reaping the inode might still have some pages to
195                  * write in the running transaction or waiting to be
196                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
197                  * (via truncate_inode_pages()) to discard these buffers can
198                  * cause data loss. Also even if we did not discard these
199                  * buffers, we would have no way to find them after the inode
200                  * is reaped and thus user could see stale data if he tries to
201                  * read them before the transaction is checkpointed. So be
202                  * careful and force everything to disk here... We use
203                  * ei->i_datasync_tid to store the newest transaction
204                  * containing inode's data.
205                  *
206                  * Note that directories do not have this problem because they
207                  * don't use page cache.
208                  */
209                 if (ext4_should_journal_data(inode) &&
210                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
211                     inode->i_ino != EXT4_JOURNAL_INO) {
212                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
213                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
214
215                         jbd2_complete_transaction(journal, commit_tid);
216                         filemap_write_and_wait(&inode->i_data);
217                 }
218                 truncate_inode_pages(&inode->i_data, 0);
219
220                 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
221                 goto no_delete;
222         }
223
224         if (!is_bad_inode(inode))
225                 dquot_initialize(inode);
226
227         if (ext4_should_order_data(inode))
228                 ext4_begin_ordered_truncate(inode, 0);
229         truncate_inode_pages(&inode->i_data, 0);
230
231         WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
232         if (is_bad_inode(inode))
233                 goto no_delete;
234
235         /*
236          * Protect us against freezing - iput() caller didn't have to have any
237          * protection against it
238          */
239         sb_start_intwrite(inode->i_sb);
240         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
241                                     ext4_blocks_for_truncate(inode)+3);
242         if (IS_ERR(handle)) {
243                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
244                 /*
245                  * If we're going to skip the normal cleanup, we still need to
246                  * make sure that the in-core orphan linked list is properly
247                  * cleaned up.
248                  */
249                 ext4_orphan_del(NULL, inode);
250                 sb_end_intwrite(inode->i_sb);
251                 goto no_delete;
252         }
253
254         if (IS_SYNC(inode))
255                 ext4_handle_sync(handle);
256         inode->i_size = 0;
257         err = ext4_mark_inode_dirty(handle, inode);
258         if (err) {
259                 ext4_warning(inode->i_sb,
260                              "couldn't mark inode dirty (err %d)", err);
261                 goto stop_handle;
262         }
263         if (inode->i_blocks)
264                 ext4_truncate(inode);
265
266         /*
267          * ext4_ext_truncate() doesn't reserve any slop when it
268          * restarts journal transactions; therefore there may not be
269          * enough credits left in the handle to remove the inode from
270          * the orphan list and set the dtime field.
271          */
272         if (!ext4_handle_has_enough_credits(handle, 3)) {
273                 err = ext4_journal_extend(handle, 3);
274                 if (err > 0)
275                         err = ext4_journal_restart(handle, 3);
276                 if (err != 0) {
277                         ext4_warning(inode->i_sb,
278                                      "couldn't extend journal (err %d)", err);
279                 stop_handle:
280                         ext4_journal_stop(handle);
281                         ext4_orphan_del(NULL, inode);
282                         sb_end_intwrite(inode->i_sb);
283                         goto no_delete;
284                 }
285         }
286
287         /*
288          * Kill off the orphan record which ext4_truncate created.
289          * AKPM: I think this can be inside the above `if'.
290          * Note that ext4_orphan_del() has to be able to cope with the
291          * deletion of a non-existent orphan - this is because we don't
292          * know if ext4_truncate() actually created an orphan record.
293          * (Well, we could do this if we need to, but heck - it works)
294          */
295         ext4_orphan_del(handle, inode);
296         EXT4_I(inode)->i_dtime  = get_seconds();
297
298         /*
299          * One subtle ordering requirement: if anything has gone wrong
300          * (transaction abort, IO errors, whatever), then we can still
301          * do these next steps (the fs will already have been marked as
302          * having errors), but we can't free the inode if the mark_dirty
303          * fails.
304          */
305         if (ext4_mark_inode_dirty(handle, inode))
306                 /* If that failed, just do the required in-core inode clear. */
307                 ext4_clear_inode(inode);
308         else
309                 ext4_free_inode(handle, inode);
310         ext4_journal_stop(handle);
311         sb_end_intwrite(inode->i_sb);
312         return;
313 no_delete:
314         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
315 }
316
317 #ifdef CONFIG_QUOTA
318 qsize_t *ext4_get_reserved_space(struct inode *inode)
319 {
320         return &EXT4_I(inode)->i_reserved_quota;
321 }
322 #endif
323
324 /*
325  * Calculate the number of metadata blocks need to reserve
326  * to allocate a block located at @lblock
327  */
328 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
329 {
330         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
331                 return ext4_ext_calc_metadata_amount(inode, lblock);
332
333         return ext4_ind_calc_metadata_amount(inode, lblock);
334 }
335
336 /*
337  * Called with i_data_sem down, which is important since we can call
338  * ext4_discard_preallocations() from here.
339  */
340 void ext4_da_update_reserve_space(struct inode *inode,
341                                         int used, int quota_claim)
342 {
343         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
344         struct ext4_inode_info *ei = EXT4_I(inode);
345
346         spin_lock(&ei->i_block_reservation_lock);
347         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
348         if (unlikely(used > ei->i_reserved_data_blocks)) {
349                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
350                          "with only %d reserved data blocks",
351                          __func__, inode->i_ino, used,
352                          ei->i_reserved_data_blocks);
353                 WARN_ON(1);
354                 used = ei->i_reserved_data_blocks;
355         }
356
357         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
358                 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
359                         "with only %d reserved metadata blocks "
360                         "(releasing %d blocks with reserved %d data blocks)",
361                         inode->i_ino, ei->i_allocated_meta_blocks,
362                              ei->i_reserved_meta_blocks, used,
363                              ei->i_reserved_data_blocks);
364                 WARN_ON(1);
365                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
366         }
367
368         /* Update per-inode reservations */
369         ei->i_reserved_data_blocks -= used;
370         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
371         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
372                            used + ei->i_allocated_meta_blocks);
373         ei->i_allocated_meta_blocks = 0;
374
375         if (ei->i_reserved_data_blocks == 0) {
376                 /*
377                  * We can release all of the reserved metadata blocks
378                  * only when we have written all of the delayed
379                  * allocation blocks.
380                  */
381                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
382                                    ei->i_reserved_meta_blocks);
383                 ei->i_reserved_meta_blocks = 0;
384                 ei->i_da_metadata_calc_len = 0;
385         }
386         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
387
388         /* Update quota subsystem for data blocks */
389         if (quota_claim)
390                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
391         else {
392                 /*
393                  * We did fallocate with an offset that is already delayed
394                  * allocated. So on delayed allocated writeback we should
395                  * not re-claim the quota for fallocated blocks.
396                  */
397                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
398         }
399
400         /*
401          * If we have done all the pending block allocations and if
402          * there aren't any writers on the inode, we can discard the
403          * inode's preallocations.
404          */
405         if ((ei->i_reserved_data_blocks == 0) &&
406             (atomic_read(&inode->i_writecount) == 0))
407                 ext4_discard_preallocations(inode);
408 }
409
410 static int __check_block_validity(struct inode *inode, const char *func,
411                                 unsigned int line,
412                                 struct ext4_map_blocks *map)
413 {
414         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
415                                    map->m_len)) {
416                 ext4_error_inode(inode, func, line, map->m_pblk,
417                                  "lblock %lu mapped to illegal pblock "
418                                  "(length %d)", (unsigned long) map->m_lblk,
419                                  map->m_len);
420                 return -EIO;
421         }
422         return 0;
423 }
424
425 #define check_block_validity(inode, map)        \
426         __check_block_validity((inode), __func__, __LINE__, (map))
427
428 #ifdef ES_AGGRESSIVE_TEST
429 static void ext4_map_blocks_es_recheck(handle_t *handle,
430                                        struct inode *inode,
431                                        struct ext4_map_blocks *es_map,
432                                        struct ext4_map_blocks *map,
433                                        int flags)
434 {
435         int retval;
436
437         map->m_flags = 0;
438         /*
439          * There is a race window that the result is not the same.
440          * e.g. xfstests #223 when dioread_nolock enables.  The reason
441          * is that we lookup a block mapping in extent status tree with
442          * out taking i_data_sem.  So at the time the unwritten extent
443          * could be converted.
444          */
445         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
446                 down_read((&EXT4_I(inode)->i_data_sem));
447         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
448                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
449                                              EXT4_GET_BLOCKS_KEEP_SIZE);
450         } else {
451                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
452                                              EXT4_GET_BLOCKS_KEEP_SIZE);
453         }
454         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
455                 up_read((&EXT4_I(inode)->i_data_sem));
456         /*
457          * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
458          * because it shouldn't be marked in es_map->m_flags.
459          */
460         map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
461
462         /*
463          * We don't check m_len because extent will be collpased in status
464          * tree.  So the m_len might not equal.
465          */
466         if (es_map->m_lblk != map->m_lblk ||
467             es_map->m_flags != map->m_flags ||
468             es_map->m_pblk != map->m_pblk) {
469                 printk("ES cache assertion failed for inode: %lu "
470                        "es_cached ex [%d/%d/%llu/%x] != "
471                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
472                        inode->i_ino, es_map->m_lblk, es_map->m_len,
473                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
474                        map->m_len, map->m_pblk, map->m_flags,
475                        retval, flags);
476         }
477 }
478 #endif /* ES_AGGRESSIVE_TEST */
479
480 /*
481  * The ext4_map_blocks() function tries to look up the requested blocks,
482  * and returns if the blocks are already mapped.
483  *
484  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
485  * and store the allocated blocks in the result buffer head and mark it
486  * mapped.
487  *
488  * If file type is extents based, it will call ext4_ext_map_blocks(),
489  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
490  * based files
491  *
492  * On success, it returns the number of blocks being mapped or allocate.
493  * if create==0 and the blocks are pre-allocated and uninitialized block,
494  * the result buffer head is unmapped. If the create ==1, it will make sure
495  * the buffer head is mapped.
496  *
497  * It returns 0 if plain look up failed (blocks have not been allocated), in
498  * that case, buffer head is unmapped
499  *
500  * It returns the error in case of allocation failure.
501  */
502 int ext4_map_blocks(handle_t *handle, struct inode *inode,
503                     struct ext4_map_blocks *map, int flags)
504 {
505         struct extent_status es;
506         int retval;
507 #ifdef ES_AGGRESSIVE_TEST
508         struct ext4_map_blocks orig_map;
509
510         memcpy(&orig_map, map, sizeof(*map));
511 #endif
512
513         map->m_flags = 0;
514         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
515                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
516                   (unsigned long) map->m_lblk);
517
518         /* We can handle the block number less than EXT_MAX_BLOCKS */
519         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
520                 return -EIO;
521
522         /* Lookup extent status tree firstly */
523         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
524                 ext4_es_lru_add(inode);
525                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
526                         map->m_pblk = ext4_es_pblock(&es) +
527                                         map->m_lblk - es.es_lblk;
528                         map->m_flags |= ext4_es_is_written(&es) ?
529                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
530                         retval = es.es_len - (map->m_lblk - es.es_lblk);
531                         if (retval > map->m_len)
532                                 retval = map->m_len;
533                         map->m_len = retval;
534                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
535                         retval = 0;
536                 } else {
537                         BUG_ON(1);
538                 }
539 #ifdef ES_AGGRESSIVE_TEST
540                 ext4_map_blocks_es_recheck(handle, inode, map,
541                                            &orig_map, flags);
542 #endif
543                 goto found;
544         }
545
546         /*
547          * Try to see if we can get the block without requesting a new
548          * file system block.
549          */
550         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
551                 down_read((&EXT4_I(inode)->i_data_sem));
552         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
553                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
554                                              EXT4_GET_BLOCKS_KEEP_SIZE);
555         } else {
556                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
557                                              EXT4_GET_BLOCKS_KEEP_SIZE);
558         }
559         if (retval > 0) {
560                 int ret;
561                 unsigned int status;
562
563                 if (unlikely(retval != map->m_len)) {
564                         ext4_warning(inode->i_sb,
565                                      "ES len assertion failed for inode "
566                                      "%lu: retval %d != map->m_len %d",
567                                      inode->i_ino, retval, map->m_len);
568                         WARN_ON(1);
569                 }
570
571                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
572                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
573                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
574                     ext4_find_delalloc_range(inode, map->m_lblk,
575                                              map->m_lblk + map->m_len - 1))
576                         status |= EXTENT_STATUS_DELAYED;
577                 ret = ext4_es_insert_extent(inode, map->m_lblk,
578                                             map->m_len, map->m_pblk, status);
579                 if (ret < 0)
580                         retval = ret;
581         }
582         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
583                 up_read((&EXT4_I(inode)->i_data_sem));
584
585 found:
586         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
587                 int ret = check_block_validity(inode, map);
588                 if (ret != 0)
589                         return ret;
590         }
591
592         /* If it is only a block(s) look up */
593         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
594                 return retval;
595
596         /*
597          * Returns if the blocks have already allocated
598          *
599          * Note that if blocks have been preallocated
600          * ext4_ext_get_block() returns the create = 0
601          * with buffer head unmapped.
602          */
603         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
604                 return retval;
605
606         /*
607          * Here we clear m_flags because after allocating an new extent,
608          * it will be set again.
609          */
610         map->m_flags &= ~EXT4_MAP_FLAGS;
611
612         /*
613          * New blocks allocate and/or writing to uninitialized extent
614          * will possibly result in updating i_data, so we take
615          * the write lock of i_data_sem, and call get_blocks()
616          * with create == 1 flag.
617          */
618         down_write((&EXT4_I(inode)->i_data_sem));
619
620         /*
621          * if the caller is from delayed allocation writeout path
622          * we have already reserved fs blocks for allocation
623          * let the underlying get_block() function know to
624          * avoid double accounting
625          */
626         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
627                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
628         /*
629          * We need to check for EXT4 here because migrate
630          * could have changed the inode type in between
631          */
632         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
633                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
634         } else {
635                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
636
637                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
638                         /*
639                          * We allocated new blocks which will result in
640                          * i_data's format changing.  Force the migrate
641                          * to fail by clearing migrate flags
642                          */
643                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
644                 }
645
646                 /*
647                  * Update reserved blocks/metadata blocks after successful
648                  * block allocation which had been deferred till now. We don't
649                  * support fallocate for non extent files. So we can update
650                  * reserve space here.
651                  */
652                 if ((retval > 0) &&
653                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
654                         ext4_da_update_reserve_space(inode, retval, 1);
655         }
656         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
657                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
658
659         if (retval > 0) {
660                 int ret;
661                 unsigned int status;
662
663                 if (unlikely(retval != map->m_len)) {
664                         ext4_warning(inode->i_sb,
665                                      "ES len assertion failed for inode "
666                                      "%lu: retval %d != map->m_len %d",
667                                      inode->i_ino, retval, map->m_len);
668                         WARN_ON(1);
669                 }
670
671                 /*
672                  * If the extent has been zeroed out, we don't need to update
673                  * extent status tree.
674                  */
675                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
676                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
677                         if (ext4_es_is_written(&es))
678                                 goto has_zeroout;
679                 }
680                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
681                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
682                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
683                     ext4_find_delalloc_range(inode, map->m_lblk,
684                                              map->m_lblk + map->m_len - 1))
685                         status |= EXTENT_STATUS_DELAYED;
686                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
687                                             map->m_pblk, status);
688                 if (ret < 0)
689                         retval = ret;
690         }
691
692 has_zeroout:
693         up_write((&EXT4_I(inode)->i_data_sem));
694         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
695                 int ret = check_block_validity(inode, map);
696                 if (ret != 0)
697                         return ret;
698         }
699         return retval;
700 }
701
702 /* Maximum number of blocks we map for direct IO at once. */
703 #define DIO_MAX_BLOCKS 4096
704
705 static int _ext4_get_block(struct inode *inode, sector_t iblock,
706                            struct buffer_head *bh, int flags)
707 {
708         handle_t *handle = ext4_journal_current_handle();
709         struct ext4_map_blocks map;
710         int ret = 0, started = 0;
711         int dio_credits;
712
713         if (ext4_has_inline_data(inode))
714                 return -ERANGE;
715
716         map.m_lblk = iblock;
717         map.m_len = bh->b_size >> inode->i_blkbits;
718
719         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
720                 /* Direct IO write... */
721                 if (map.m_len > DIO_MAX_BLOCKS)
722                         map.m_len = DIO_MAX_BLOCKS;
723                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
724                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
725                                             dio_credits);
726                 if (IS_ERR(handle)) {
727                         ret = PTR_ERR(handle);
728                         return ret;
729                 }
730                 started = 1;
731         }
732
733         ret = ext4_map_blocks(handle, inode, &map, flags);
734         if (ret > 0) {
735                 ext4_io_end_t *io_end = ext4_inode_aio(inode);
736
737                 map_bh(bh, inode->i_sb, map.m_pblk);
738                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
739                 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
740                         set_buffer_defer_completion(bh);
741                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
742                 ret = 0;
743         }
744         if (started)
745                 ext4_journal_stop(handle);
746         return ret;
747 }
748
749 int ext4_get_block(struct inode *inode, sector_t iblock,
750                    struct buffer_head *bh, int create)
751 {
752         return _ext4_get_block(inode, iblock, bh,
753                                create ? EXT4_GET_BLOCKS_CREATE : 0);
754 }
755
756 /*
757  * `handle' can be NULL if create is zero
758  */
759 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
760                                 ext4_lblk_t block, int create, int *errp)
761 {
762         struct ext4_map_blocks map;
763         struct buffer_head *bh;
764         int fatal = 0, err;
765
766         J_ASSERT(handle != NULL || create == 0);
767
768         map.m_lblk = block;
769         map.m_len = 1;
770         err = ext4_map_blocks(handle, inode, &map,
771                               create ? EXT4_GET_BLOCKS_CREATE : 0);
772
773         /* ensure we send some value back into *errp */
774         *errp = 0;
775
776         if (create && err == 0)
777                 err = -ENOSPC;  /* should never happen */
778         if (err < 0)
779                 *errp = err;
780         if (err <= 0)
781                 return NULL;
782
783         bh = sb_getblk(inode->i_sb, map.m_pblk);
784         if (unlikely(!bh)) {
785                 *errp = -ENOMEM;
786                 return NULL;
787         }
788         if (map.m_flags & EXT4_MAP_NEW) {
789                 J_ASSERT(create != 0);
790                 J_ASSERT(handle != NULL);
791
792                 /*
793                  * Now that we do not always journal data, we should
794                  * keep in mind whether this should always journal the
795                  * new buffer as metadata.  For now, regular file
796                  * writes use ext4_get_block instead, so it's not a
797                  * problem.
798                  */
799                 lock_buffer(bh);
800                 BUFFER_TRACE(bh, "call get_create_access");
801                 fatal = ext4_journal_get_create_access(handle, bh);
802                 if (!fatal && !buffer_uptodate(bh)) {
803                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
804                         set_buffer_uptodate(bh);
805                 }
806                 unlock_buffer(bh);
807                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
808                 err = ext4_handle_dirty_metadata(handle, inode, bh);
809                 if (!fatal)
810                         fatal = err;
811         } else {
812                 BUFFER_TRACE(bh, "not a new buffer");
813         }
814         if (fatal) {
815                 *errp = fatal;
816                 brelse(bh);
817                 bh = NULL;
818         }
819         return bh;
820 }
821
822 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
823                                ext4_lblk_t block, int create, int *err)
824 {
825         struct buffer_head *bh;
826
827         bh = ext4_getblk(handle, inode, block, create, err);
828         if (!bh)
829                 return bh;
830         if (buffer_uptodate(bh))
831                 return bh;
832         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
833         wait_on_buffer(bh);
834         if (buffer_uptodate(bh))
835                 return bh;
836         put_bh(bh);
837         *err = -EIO;
838         return NULL;
839 }
840
841 int ext4_walk_page_buffers(handle_t *handle,
842                            struct buffer_head *head,
843                            unsigned from,
844                            unsigned to,
845                            int *partial,
846                            int (*fn)(handle_t *handle,
847                                      struct buffer_head *bh))
848 {
849         struct buffer_head *bh;
850         unsigned block_start, block_end;
851         unsigned blocksize = head->b_size;
852         int err, ret = 0;
853         struct buffer_head *next;
854
855         for (bh = head, block_start = 0;
856              ret == 0 && (bh != head || !block_start);
857              block_start = block_end, bh = next) {
858                 next = bh->b_this_page;
859                 block_end = block_start + blocksize;
860                 if (block_end <= from || block_start >= to) {
861                         if (partial && !buffer_uptodate(bh))
862                                 *partial = 1;
863                         continue;
864                 }
865                 err = (*fn)(handle, bh);
866                 if (!ret)
867                         ret = err;
868         }
869         return ret;
870 }
871
872 /*
873  * To preserve ordering, it is essential that the hole instantiation and
874  * the data write be encapsulated in a single transaction.  We cannot
875  * close off a transaction and start a new one between the ext4_get_block()
876  * and the commit_write().  So doing the jbd2_journal_start at the start of
877  * prepare_write() is the right place.
878  *
879  * Also, this function can nest inside ext4_writepage().  In that case, we
880  * *know* that ext4_writepage() has generated enough buffer credits to do the
881  * whole page.  So we won't block on the journal in that case, which is good,
882  * because the caller may be PF_MEMALLOC.
883  *
884  * By accident, ext4 can be reentered when a transaction is open via
885  * quota file writes.  If we were to commit the transaction while thus
886  * reentered, there can be a deadlock - we would be holding a quota
887  * lock, and the commit would never complete if another thread had a
888  * transaction open and was blocking on the quota lock - a ranking
889  * violation.
890  *
891  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
892  * will _not_ run commit under these circumstances because handle->h_ref
893  * is elevated.  We'll still have enough credits for the tiny quotafile
894  * write.
895  */
896 int do_journal_get_write_access(handle_t *handle,
897                                 struct buffer_head *bh)
898 {
899         int dirty = buffer_dirty(bh);
900         int ret;
901
902         if (!buffer_mapped(bh) || buffer_freed(bh))
903                 return 0;
904         /*
905          * __block_write_begin() could have dirtied some buffers. Clean
906          * the dirty bit as jbd2_journal_get_write_access() could complain
907          * otherwise about fs integrity issues. Setting of the dirty bit
908          * by __block_write_begin() isn't a real problem here as we clear
909          * the bit before releasing a page lock and thus writeback cannot
910          * ever write the buffer.
911          */
912         if (dirty)
913                 clear_buffer_dirty(bh);
914         ret = ext4_journal_get_write_access(handle, bh);
915         if (!ret && dirty)
916                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
917         return ret;
918 }
919
920 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
921                    struct buffer_head *bh_result, int create);
922 static int ext4_write_begin(struct file *file, struct address_space *mapping,
923                             loff_t pos, unsigned len, unsigned flags,
924                             struct page **pagep, void **fsdata)
925 {
926         struct inode *inode = mapping->host;
927         int ret, needed_blocks;
928         handle_t *handle;
929         int retries = 0;
930         struct page *page;
931         pgoff_t index;
932         unsigned from, to;
933
934         trace_ext4_write_begin(inode, pos, len, flags);
935         /*
936          * Reserve one block more for addition to orphan list in case
937          * we allocate blocks but write fails for some reason
938          */
939         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
940         index = pos >> PAGE_CACHE_SHIFT;
941         from = pos & (PAGE_CACHE_SIZE - 1);
942         to = from + len;
943
944         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
945                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
946                                                     flags, pagep);
947                 if (ret < 0)
948                         return ret;
949                 if (ret == 1)
950                         return 0;
951         }
952
953         /*
954          * grab_cache_page_write_begin() can take a long time if the
955          * system is thrashing due to memory pressure, or if the page
956          * is being written back.  So grab it first before we start
957          * the transaction handle.  This also allows us to allocate
958          * the page (if needed) without using GFP_NOFS.
959          */
960 retry_grab:
961         page = grab_cache_page_write_begin(mapping, index, flags);
962         if (!page)
963                 return -ENOMEM;
964         unlock_page(page);
965
966 retry_journal:
967         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
968         if (IS_ERR(handle)) {
969                 page_cache_release(page);
970                 return PTR_ERR(handle);
971         }
972
973         lock_page(page);
974         if (page->mapping != mapping) {
975                 /* The page got truncated from under us */
976                 unlock_page(page);
977                 page_cache_release(page);
978                 ext4_journal_stop(handle);
979                 goto retry_grab;
980         }
981         /* In case writeback began while the page was unlocked */
982         wait_for_stable_page(page);
983
984         if (ext4_should_dioread_nolock(inode))
985                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
986         else
987                 ret = __block_write_begin(page, pos, len, ext4_get_block);
988
989         if (!ret && ext4_should_journal_data(inode)) {
990                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
991                                              from, to, NULL,
992                                              do_journal_get_write_access);
993         }
994
995         if (ret) {
996                 unlock_page(page);
997                 /*
998                  * __block_write_begin may have instantiated a few blocks
999                  * outside i_size.  Trim these off again. Don't need
1000                  * i_size_read because we hold i_mutex.
1001                  *
1002                  * Add inode to orphan list in case we crash before
1003                  * truncate finishes
1004                  */
1005                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1006                         ext4_orphan_add(handle, inode);
1007
1008                 ext4_journal_stop(handle);
1009                 if (pos + len > inode->i_size) {
1010                         ext4_truncate_failed_write(inode);
1011                         /*
1012                          * If truncate failed early the inode might
1013                          * still be on the orphan list; we need to
1014                          * make sure the inode is removed from the
1015                          * orphan list in that case.
1016                          */
1017                         if (inode->i_nlink)
1018                                 ext4_orphan_del(NULL, inode);
1019                 }
1020
1021                 if (ret == -ENOSPC &&
1022                     ext4_should_retry_alloc(inode->i_sb, &retries))
1023                         goto retry_journal;
1024                 page_cache_release(page);
1025                 return ret;
1026         }
1027         *pagep = page;
1028         return ret;
1029 }
1030
1031 /* For write_end() in data=journal mode */
1032 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1033 {
1034         int ret;
1035         if (!buffer_mapped(bh) || buffer_freed(bh))
1036                 return 0;
1037         set_buffer_uptodate(bh);
1038         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1039         clear_buffer_meta(bh);
1040         clear_buffer_prio(bh);
1041         return ret;
1042 }
1043
1044 /*
1045  * We need to pick up the new inode size which generic_commit_write gave us
1046  * `file' can be NULL - eg, when called from page_symlink().
1047  *
1048  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1049  * buffers are managed internally.
1050  */
1051 static int ext4_write_end(struct file *file,
1052                           struct address_space *mapping,
1053                           loff_t pos, unsigned len, unsigned copied,
1054                           struct page *page, void *fsdata)
1055 {
1056         handle_t *handle = ext4_journal_current_handle();
1057         struct inode *inode = mapping->host;
1058         int ret = 0, ret2;
1059         int i_size_changed = 0;
1060
1061         trace_ext4_write_end(inode, pos, len, copied);
1062         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1063                 ret = ext4_jbd2_file_inode(handle, inode);
1064                 if (ret) {
1065                         unlock_page(page);
1066                         page_cache_release(page);
1067                         goto errout;
1068                 }
1069         }
1070
1071         if (ext4_has_inline_data(inode)) {
1072                 ret = ext4_write_inline_data_end(inode, pos, len,
1073                                                  copied, page);
1074                 if (ret < 0)
1075                         goto errout;
1076                 copied = ret;
1077         } else
1078                 copied = block_write_end(file, mapping, pos,
1079                                          len, copied, page, fsdata);
1080
1081         /*
1082          * No need to use i_size_read() here, the i_size
1083          * cannot change under us because we hole i_mutex.
1084          *
1085          * But it's important to update i_size while still holding page lock:
1086          * page writeout could otherwise come in and zero beyond i_size.
1087          */
1088         if (pos + copied > inode->i_size) {
1089                 i_size_write(inode, pos + copied);
1090                 i_size_changed = 1;
1091         }
1092
1093         if (pos + copied > EXT4_I(inode)->i_disksize) {
1094                 /* We need to mark inode dirty even if
1095                  * new_i_size is less that inode->i_size
1096                  * but greater than i_disksize. (hint delalloc)
1097                  */
1098                 ext4_update_i_disksize(inode, (pos + copied));
1099                 i_size_changed = 1;
1100         }
1101         unlock_page(page);
1102         page_cache_release(page);
1103
1104         /*
1105          * Don't mark the inode dirty under page lock. First, it unnecessarily
1106          * makes the holding time of page lock longer. Second, it forces lock
1107          * ordering of page lock and transaction start for journaling
1108          * filesystems.
1109          */
1110         if (i_size_changed)
1111                 ext4_mark_inode_dirty(handle, inode);
1112
1113         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1114                 /* if we have allocated more blocks and copied
1115                  * less. We will have blocks allocated outside
1116                  * inode->i_size. So truncate them
1117                  */
1118                 ext4_orphan_add(handle, inode);
1119 errout:
1120         ret2 = ext4_journal_stop(handle);
1121         if (!ret)
1122                 ret = ret2;
1123
1124         if (pos + len > inode->i_size) {
1125                 ext4_truncate_failed_write(inode);
1126                 /*
1127                  * If truncate failed early the inode might still be
1128                  * on the orphan list; we need to make sure the inode
1129                  * is removed from the orphan list in that case.
1130                  */
1131                 if (inode->i_nlink)
1132                         ext4_orphan_del(NULL, inode);
1133         }
1134
1135         return ret ? ret : copied;
1136 }
1137
1138 static int ext4_journalled_write_end(struct file *file,
1139                                      struct address_space *mapping,
1140                                      loff_t pos, unsigned len, unsigned copied,
1141                                      struct page *page, void *fsdata)
1142 {
1143         handle_t *handle = ext4_journal_current_handle();
1144         struct inode *inode = mapping->host;
1145         int ret = 0, ret2;
1146         int partial = 0;
1147         unsigned from, to;
1148         loff_t new_i_size;
1149
1150         trace_ext4_journalled_write_end(inode, pos, len, copied);
1151         from = pos & (PAGE_CACHE_SIZE - 1);
1152         to = from + len;
1153
1154         BUG_ON(!ext4_handle_valid(handle));
1155
1156         if (ext4_has_inline_data(inode))
1157                 copied = ext4_write_inline_data_end(inode, pos, len,
1158                                                     copied, page);
1159         else {
1160                 if (copied < len) {
1161                         if (!PageUptodate(page))
1162                                 copied = 0;
1163                         page_zero_new_buffers(page, from+copied, to);
1164                 }
1165
1166                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1167                                              to, &partial, write_end_fn);
1168                 if (!partial)
1169                         SetPageUptodate(page);
1170         }
1171         new_i_size = pos + copied;
1172         if (new_i_size > inode->i_size)
1173                 i_size_write(inode, pos+copied);
1174         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1175         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1176         if (new_i_size > EXT4_I(inode)->i_disksize) {
1177                 ext4_update_i_disksize(inode, new_i_size);
1178                 ret2 = ext4_mark_inode_dirty(handle, inode);
1179                 if (!ret)
1180                         ret = ret2;
1181         }
1182
1183         unlock_page(page);
1184         page_cache_release(page);
1185         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1186                 /* if we have allocated more blocks and copied
1187                  * less. We will have blocks allocated outside
1188                  * inode->i_size. So truncate them
1189                  */
1190                 ext4_orphan_add(handle, inode);
1191
1192         ret2 = ext4_journal_stop(handle);
1193         if (!ret)
1194                 ret = ret2;
1195         if (pos + len > inode->i_size) {
1196                 ext4_truncate_failed_write(inode);
1197                 /*
1198                  * If truncate failed early the inode might still be
1199                  * on the orphan list; we need to make sure the inode
1200                  * is removed from the orphan list in that case.
1201                  */
1202                 if (inode->i_nlink)
1203                         ext4_orphan_del(NULL, inode);
1204         }
1205
1206         return ret ? ret : copied;
1207 }
1208
1209 /*
1210  * Reserve a metadata for a single block located at lblock
1211  */
1212 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1213 {
1214         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1215         struct ext4_inode_info *ei = EXT4_I(inode);
1216         unsigned int md_needed;
1217         ext4_lblk_t save_last_lblock;
1218         int save_len;
1219
1220         /*
1221          * recalculate the amount of metadata blocks to reserve
1222          * in order to allocate nrblocks
1223          * worse case is one extent per block
1224          */
1225         spin_lock(&ei->i_block_reservation_lock);
1226         /*
1227          * ext4_calc_metadata_amount() has side effects, which we have
1228          * to be prepared undo if we fail to claim space.
1229          */
1230         save_len = ei->i_da_metadata_calc_len;
1231         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1232         md_needed = EXT4_NUM_B2C(sbi,
1233                                  ext4_calc_metadata_amount(inode, lblock));
1234         trace_ext4_da_reserve_space(inode, md_needed);
1235
1236         /*
1237          * We do still charge estimated metadata to the sb though;
1238          * we cannot afford to run out of free blocks.
1239          */
1240         if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1241                 ei->i_da_metadata_calc_len = save_len;
1242                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1243                 spin_unlock(&ei->i_block_reservation_lock);
1244                 return -ENOSPC;
1245         }
1246         ei->i_reserved_meta_blocks += md_needed;
1247         spin_unlock(&ei->i_block_reservation_lock);
1248
1249         return 0;       /* success */
1250 }
1251
1252 /*
1253  * Reserve a single cluster located at lblock
1254  */
1255 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1256 {
1257         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1258         struct ext4_inode_info *ei = EXT4_I(inode);
1259         unsigned int md_needed;
1260         int ret;
1261         ext4_lblk_t save_last_lblock;
1262         int save_len;
1263
1264         /*
1265          * We will charge metadata quota at writeout time; this saves
1266          * us from metadata over-estimation, though we may go over by
1267          * a small amount in the end.  Here we just reserve for data.
1268          */
1269         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1270         if (ret)
1271                 return ret;
1272
1273         /*
1274          * recalculate the amount of metadata blocks to reserve
1275          * in order to allocate nrblocks
1276          * worse case is one extent per block
1277          */
1278         spin_lock(&ei->i_block_reservation_lock);
1279         /*
1280          * ext4_calc_metadata_amount() has side effects, which we have
1281          * to be prepared undo if we fail to claim space.
1282          */
1283         save_len = ei->i_da_metadata_calc_len;
1284         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1285         md_needed = EXT4_NUM_B2C(sbi,
1286                                  ext4_calc_metadata_amount(inode, lblock));
1287         trace_ext4_da_reserve_space(inode, md_needed);
1288
1289         /*
1290          * We do still charge estimated metadata to the sb though;
1291          * we cannot afford to run out of free blocks.
1292          */
1293         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1294                 ei->i_da_metadata_calc_len = save_len;
1295                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1296                 spin_unlock(&ei->i_block_reservation_lock);
1297                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1298                 return -ENOSPC;
1299         }
1300         ei->i_reserved_data_blocks++;
1301         ei->i_reserved_meta_blocks += md_needed;
1302         spin_unlock(&ei->i_block_reservation_lock);
1303
1304         return 0;       /* success */
1305 }
1306
1307 static void ext4_da_release_space(struct inode *inode, int to_free)
1308 {
1309         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1310         struct ext4_inode_info *ei = EXT4_I(inode);
1311
1312         if (!to_free)
1313                 return;         /* Nothing to release, exit */
1314
1315         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1316
1317         trace_ext4_da_release_space(inode, to_free);
1318         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1319                 /*
1320                  * if there aren't enough reserved blocks, then the
1321                  * counter is messed up somewhere.  Since this
1322                  * function is called from invalidate page, it's
1323                  * harmless to return without any action.
1324                  */
1325                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1326                          "ino %lu, to_free %d with only %d reserved "
1327                          "data blocks", inode->i_ino, to_free,
1328                          ei->i_reserved_data_blocks);
1329                 WARN_ON(1);
1330                 to_free = ei->i_reserved_data_blocks;
1331         }
1332         ei->i_reserved_data_blocks -= to_free;
1333
1334         if (ei->i_reserved_data_blocks == 0) {
1335                 /*
1336                  * We can release all of the reserved metadata blocks
1337                  * only when we have written all of the delayed
1338                  * allocation blocks.
1339                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1340                  * i_reserved_data_blocks, etc. refer to number of clusters.
1341                  */
1342                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1343                                    ei->i_reserved_meta_blocks);
1344                 ei->i_reserved_meta_blocks = 0;
1345                 ei->i_da_metadata_calc_len = 0;
1346         }
1347
1348         /* update fs dirty data blocks counter */
1349         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1350
1351         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1352
1353         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1354 }
1355
1356 static void ext4_da_page_release_reservation(struct page *page,
1357                                              unsigned int offset,
1358                                              unsigned int length)
1359 {
1360         int to_release = 0;
1361         struct buffer_head *head, *bh;
1362         unsigned int curr_off = 0;
1363         struct inode *inode = page->mapping->host;
1364         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1365         unsigned int stop = offset + length;
1366         int num_clusters;
1367         ext4_fsblk_t lblk;
1368
1369         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1370
1371         head = page_buffers(page);
1372         bh = head;
1373         do {
1374                 unsigned int next_off = curr_off + bh->b_size;
1375
1376                 if (next_off > stop)
1377                         break;
1378
1379                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1380                         to_release++;
1381                         clear_buffer_delay(bh);
1382                 }
1383                 curr_off = next_off;
1384         } while ((bh = bh->b_this_page) != head);
1385
1386         if (to_release) {
1387                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1388                 ext4_es_remove_extent(inode, lblk, to_release);
1389         }
1390
1391         /* If we have released all the blocks belonging to a cluster, then we
1392          * need to release the reserved space for that cluster. */
1393         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1394         while (num_clusters > 0) {
1395                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1396                         ((num_clusters - 1) << sbi->s_cluster_bits);
1397                 if (sbi->s_cluster_ratio == 1 ||
1398                     !ext4_find_delalloc_cluster(inode, lblk))
1399                         ext4_da_release_space(inode, 1);
1400
1401                 num_clusters--;
1402         }
1403 }
1404
1405 /*
1406  * Delayed allocation stuff
1407  */
1408
1409 struct mpage_da_data {
1410         struct inode *inode;
1411         struct writeback_control *wbc;
1412
1413         pgoff_t first_page;     /* The first page to write */
1414         pgoff_t next_page;      /* Current page to examine */
1415         pgoff_t last_page;      /* Last page to examine */
1416         /*
1417          * Extent to map - this can be after first_page because that can be
1418          * fully mapped. We somewhat abuse m_flags to store whether the extent
1419          * is delalloc or unwritten.
1420          */
1421         struct ext4_map_blocks map;
1422         struct ext4_io_submit io_submit;        /* IO submission data */
1423 };
1424
1425 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1426                                        bool invalidate)
1427 {
1428         int nr_pages, i;
1429         pgoff_t index, end;
1430         struct pagevec pvec;
1431         struct inode *inode = mpd->inode;
1432         struct address_space *mapping = inode->i_mapping;
1433
1434         /* This is necessary when next_page == 0. */
1435         if (mpd->first_page >= mpd->next_page)
1436                 return;
1437
1438         index = mpd->first_page;
1439         end   = mpd->next_page - 1;
1440         if (invalidate) {
1441                 ext4_lblk_t start, last;
1442                 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1443                 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1444                 ext4_es_remove_extent(inode, start, last - start + 1);
1445         }
1446
1447         pagevec_init(&pvec, 0);
1448         while (index <= end) {
1449                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1450                 if (nr_pages == 0)
1451                         break;
1452                 for (i = 0; i < nr_pages; i++) {
1453                         struct page *page = pvec.pages[i];
1454                         if (page->index > end)
1455                                 break;
1456                         BUG_ON(!PageLocked(page));
1457                         BUG_ON(PageWriteback(page));
1458                         if (invalidate) {
1459                                 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1460                                 ClearPageUptodate(page);
1461                         }
1462                         unlock_page(page);
1463                 }
1464                 index = pvec.pages[nr_pages - 1]->index + 1;
1465                 pagevec_release(&pvec);
1466         }
1467 }
1468
1469 static void ext4_print_free_blocks(struct inode *inode)
1470 {
1471         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1472         struct super_block *sb = inode->i_sb;
1473         struct ext4_inode_info *ei = EXT4_I(inode);
1474
1475         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1476                EXT4_C2B(EXT4_SB(inode->i_sb),
1477                         ext4_count_free_clusters(sb)));
1478         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1479         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1480                (long long) EXT4_C2B(EXT4_SB(sb),
1481                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1482         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1483                (long long) EXT4_C2B(EXT4_SB(sb),
1484                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1485         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1486         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1487                  ei->i_reserved_data_blocks);
1488         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1489                ei->i_reserved_meta_blocks);
1490         ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1491                ei->i_allocated_meta_blocks);
1492         return;
1493 }
1494
1495 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1496 {
1497         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1498 }
1499
1500 /*
1501  * This function is grabs code from the very beginning of
1502  * ext4_map_blocks, but assumes that the caller is from delayed write
1503  * time. This function looks up the requested blocks and sets the
1504  * buffer delay bit under the protection of i_data_sem.
1505  */
1506 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1507                               struct ext4_map_blocks *map,
1508                               struct buffer_head *bh)
1509 {
1510         struct extent_status es;
1511         int retval;
1512         sector_t invalid_block = ~((sector_t) 0xffff);
1513 #ifdef ES_AGGRESSIVE_TEST
1514         struct ext4_map_blocks orig_map;
1515
1516         memcpy(&orig_map, map, sizeof(*map));
1517 #endif
1518
1519         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1520                 invalid_block = ~0;
1521
1522         map->m_flags = 0;
1523         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1524                   "logical block %lu\n", inode->i_ino, map->m_len,
1525                   (unsigned long) map->m_lblk);
1526
1527         /* Lookup extent status tree firstly */
1528         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1529                 ext4_es_lru_add(inode);
1530                 if (ext4_es_is_hole(&es)) {
1531                         retval = 0;
1532                         down_read((&EXT4_I(inode)->i_data_sem));
1533                         goto add_delayed;
1534                 }
1535
1536                 /*
1537                  * Delayed extent could be allocated by fallocate.
1538                  * So we need to check it.
1539                  */
1540                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1541                         map_bh(bh, inode->i_sb, invalid_block);
1542                         set_buffer_new(bh);
1543                         set_buffer_delay(bh);
1544                         return 0;
1545                 }
1546
1547                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1548                 retval = es.es_len - (iblock - es.es_lblk);
1549                 if (retval > map->m_len)
1550                         retval = map->m_len;
1551                 map->m_len = retval;
1552                 if (ext4_es_is_written(&es))
1553                         map->m_flags |= EXT4_MAP_MAPPED;
1554                 else if (ext4_es_is_unwritten(&es))
1555                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1556                 else
1557                         BUG_ON(1);
1558
1559 #ifdef ES_AGGRESSIVE_TEST
1560                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1561 #endif
1562                 return retval;
1563         }
1564
1565         /*
1566          * Try to see if we can get the block without requesting a new
1567          * file system block.
1568          */
1569         down_read((&EXT4_I(inode)->i_data_sem));
1570         if (ext4_has_inline_data(inode)) {
1571                 /*
1572                  * We will soon create blocks for this page, and let
1573                  * us pretend as if the blocks aren't allocated yet.
1574                  * In case of clusters, we have to handle the work
1575                  * of mapping from cluster so that the reserved space
1576                  * is calculated properly.
1577                  */
1578                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1579                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1580                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1581                 retval = 0;
1582         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1583                 retval = ext4_ext_map_blocks(NULL, inode, map,
1584                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1585         else
1586                 retval = ext4_ind_map_blocks(NULL, inode, map,
1587                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1588
1589 add_delayed:
1590         if (retval == 0) {
1591                 int ret;
1592                 /*
1593                  * XXX: __block_prepare_write() unmaps passed block,
1594                  * is it OK?
1595                  */
1596                 /*
1597                  * If the block was allocated from previously allocated cluster,
1598                  * then we don't need to reserve it again. However we still need
1599                  * to reserve metadata for every block we're going to write.
1600                  */
1601                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1602                         ret = ext4_da_reserve_space(inode, iblock);
1603                         if (ret) {
1604                                 /* not enough space to reserve */
1605                                 retval = ret;
1606                                 goto out_unlock;
1607                         }
1608                 } else {
1609                         ret = ext4_da_reserve_metadata(inode, iblock);
1610                         if (ret) {
1611                                 /* not enough space to reserve */
1612                                 retval = ret;
1613                                 goto out_unlock;
1614                         }
1615                 }
1616
1617                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1618                                             ~0, EXTENT_STATUS_DELAYED);
1619                 if (ret) {
1620                         retval = ret;
1621                         goto out_unlock;
1622                 }
1623
1624                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1625                  * and it should not appear on the bh->b_state.
1626                  */
1627                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1628
1629                 map_bh(bh, inode->i_sb, invalid_block);
1630                 set_buffer_new(bh);
1631                 set_buffer_delay(bh);
1632         } else if (retval > 0) {
1633                 int ret;
1634                 unsigned int status;
1635
1636                 if (unlikely(retval != map->m_len)) {
1637                         ext4_warning(inode->i_sb,
1638                                      "ES len assertion failed for inode "
1639                                      "%lu: retval %d != map->m_len %d",
1640                                      inode->i_ino, retval, map->m_len);
1641                         WARN_ON(1);
1642                 }
1643
1644                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1645                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1646                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1647                                             map->m_pblk, status);
1648                 if (ret != 0)
1649                         retval = ret;
1650         }
1651
1652 out_unlock:
1653         up_read((&EXT4_I(inode)->i_data_sem));
1654
1655         return retval;
1656 }
1657
1658 /*
1659  * This is a special get_blocks_t callback which is used by
1660  * ext4_da_write_begin().  It will either return mapped block or
1661  * reserve space for a single block.
1662  *
1663  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1664  * We also have b_blocknr = -1 and b_bdev initialized properly
1665  *
1666  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1667  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1668  * initialized properly.
1669  */
1670 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1671                            struct buffer_head *bh, int create)
1672 {
1673         struct ext4_map_blocks map;
1674         int ret = 0;
1675
1676         BUG_ON(create == 0);
1677         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1678
1679         map.m_lblk = iblock;
1680         map.m_len = 1;
1681
1682         /*
1683          * first, we need to know whether the block is allocated already
1684          * preallocated blocks are unmapped but should treated
1685          * the same as allocated blocks.
1686          */
1687         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1688         if (ret <= 0)
1689                 return ret;
1690
1691         map_bh(bh, inode->i_sb, map.m_pblk);
1692         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1693
1694         if (buffer_unwritten(bh)) {
1695                 /* A delayed write to unwritten bh should be marked
1696                  * new and mapped.  Mapped ensures that we don't do
1697                  * get_block multiple times when we write to the same
1698                  * offset and new ensures that we do proper zero out
1699                  * for partial write.
1700                  */
1701                 set_buffer_new(bh);
1702                 set_buffer_mapped(bh);
1703         }
1704         return 0;
1705 }
1706
1707 static int bget_one(handle_t *handle, struct buffer_head *bh)
1708 {
1709         get_bh(bh);
1710         return 0;
1711 }
1712
1713 static int bput_one(handle_t *handle, struct buffer_head *bh)
1714 {
1715         put_bh(bh);
1716         return 0;
1717 }
1718
1719 static int __ext4_journalled_writepage(struct page *page,
1720                                        unsigned int len)
1721 {
1722         struct address_space *mapping = page->mapping;
1723         struct inode *inode = mapping->host;
1724         struct buffer_head *page_bufs = NULL;
1725         handle_t *handle = NULL;
1726         int ret = 0, err = 0;
1727         int inline_data = ext4_has_inline_data(inode);
1728         struct buffer_head *inode_bh = NULL;
1729
1730         ClearPageChecked(page);
1731
1732         if (inline_data) {
1733                 BUG_ON(page->index != 0);
1734                 BUG_ON(len > ext4_get_max_inline_size(inode));
1735                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1736                 if (inode_bh == NULL)
1737                         goto out;
1738         } else {
1739                 page_bufs = page_buffers(page);
1740                 if (!page_bufs) {
1741                         BUG();
1742                         goto out;
1743                 }
1744                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1745                                        NULL, bget_one);
1746         }
1747         /* As soon as we unlock the page, it can go away, but we have
1748          * references to buffers so we are safe */
1749         unlock_page(page);
1750
1751         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1752                                     ext4_writepage_trans_blocks(inode));
1753         if (IS_ERR(handle)) {
1754                 ret = PTR_ERR(handle);
1755                 goto out;
1756         }
1757
1758         BUG_ON(!ext4_handle_valid(handle));
1759
1760         if (inline_data) {
1761                 ret = ext4_journal_get_write_access(handle, inode_bh);
1762
1763                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1764
1765         } else {
1766                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1767                                              do_journal_get_write_access);
1768
1769                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1770                                              write_end_fn);
1771         }
1772         if (ret == 0)
1773                 ret = err;
1774         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1775         err = ext4_journal_stop(handle);
1776         if (!ret)
1777                 ret = err;
1778
1779         if (!ext4_has_inline_data(inode))
1780                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1781                                        NULL, bput_one);
1782         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1783 out:
1784         brelse(inode_bh);
1785         return ret;
1786 }
1787
1788 /*
1789  * Note that we don't need to start a transaction unless we're journaling data
1790  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1791  * need to file the inode to the transaction's list in ordered mode because if
1792  * we are writing back data added by write(), the inode is already there and if
1793  * we are writing back data modified via mmap(), no one guarantees in which
1794  * transaction the data will hit the disk. In case we are journaling data, we
1795  * cannot start transaction directly because transaction start ranks above page
1796  * lock so we have to do some magic.
1797  *
1798  * This function can get called via...
1799  *   - ext4_writepages after taking page lock (have journal handle)
1800  *   - journal_submit_inode_data_buffers (no journal handle)
1801  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1802  *   - grab_page_cache when doing write_begin (have journal handle)
1803  *
1804  * We don't do any block allocation in this function. If we have page with
1805  * multiple blocks we need to write those buffer_heads that are mapped. This
1806  * is important for mmaped based write. So if we do with blocksize 1K
1807  * truncate(f, 1024);
1808  * a = mmap(f, 0, 4096);
1809  * a[0] = 'a';
1810  * truncate(f, 4096);
1811  * we have in the page first buffer_head mapped via page_mkwrite call back
1812  * but other buffer_heads would be unmapped but dirty (dirty done via the
1813  * do_wp_page). So writepage should write the first block. If we modify
1814  * the mmap area beyond 1024 we will again get a page_fault and the
1815  * page_mkwrite callback will do the block allocation and mark the
1816  * buffer_heads mapped.
1817  *
1818  * We redirty the page if we have any buffer_heads that is either delay or
1819  * unwritten in the page.
1820  *
1821  * We can get recursively called as show below.
1822  *
1823  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1824  *              ext4_writepage()
1825  *
1826  * But since we don't do any block allocation we should not deadlock.
1827  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1828  */
1829 static int ext4_writepage(struct page *page,
1830                           struct writeback_control *wbc)
1831 {
1832         int ret = 0;
1833         loff_t size;
1834         unsigned int len;
1835         struct buffer_head *page_bufs = NULL;
1836         struct inode *inode = page->mapping->host;
1837         struct ext4_io_submit io_submit;
1838
1839         trace_ext4_writepage(page);
1840         size = i_size_read(inode);
1841         if (page->index == size >> PAGE_CACHE_SHIFT)
1842                 len = size & ~PAGE_CACHE_MASK;
1843         else
1844                 len = PAGE_CACHE_SIZE;
1845
1846         page_bufs = page_buffers(page);
1847         /*
1848          * We cannot do block allocation or other extent handling in this
1849          * function. If there are buffers needing that, we have to redirty
1850          * the page. But we may reach here when we do a journal commit via
1851          * journal_submit_inode_data_buffers() and in that case we must write
1852          * allocated buffers to achieve data=ordered mode guarantees.
1853          */
1854         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1855                                    ext4_bh_delay_or_unwritten)) {
1856                 redirty_page_for_writepage(wbc, page);
1857                 if (current->flags & PF_MEMALLOC) {
1858                         /*
1859                          * For memory cleaning there's no point in writing only
1860                          * some buffers. So just bail out. Warn if we came here
1861                          * from direct reclaim.
1862                          */
1863                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1864                                                         == PF_MEMALLOC);
1865                         unlock_page(page);
1866                         return 0;
1867                 }
1868         }
1869
1870         if (PageChecked(page) && ext4_should_journal_data(inode))
1871                 /*
1872                  * It's mmapped pagecache.  Add buffers and journal it.  There
1873                  * doesn't seem much point in redirtying the page here.
1874                  */
1875                 return __ext4_journalled_writepage(page, len);
1876
1877         ext4_io_submit_init(&io_submit, wbc);
1878         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1879         if (!io_submit.io_end) {
1880                 redirty_page_for_writepage(wbc, page);
1881                 unlock_page(page);
1882                 return -ENOMEM;
1883         }
1884         ret = ext4_bio_write_page(&io_submit, page, len, wbc);
1885         ext4_io_submit(&io_submit);
1886         /* Drop io_end reference we got from init */
1887         ext4_put_io_end_defer(io_submit.io_end);
1888         return ret;
1889 }
1890
1891 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1892 {
1893         int len;
1894         loff_t size = i_size_read(mpd->inode);
1895         int err;
1896
1897         BUG_ON(page->index != mpd->first_page);
1898         if (page->index == size >> PAGE_CACHE_SHIFT)
1899                 len = size & ~PAGE_CACHE_MASK;
1900         else
1901                 len = PAGE_CACHE_SIZE;
1902         clear_page_dirty_for_io(page);
1903         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc);
1904         if (!err)
1905                 mpd->wbc->nr_to_write--;
1906         mpd->first_page++;
1907
1908         return err;
1909 }
1910
1911 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1912
1913 /*
1914  * mballoc gives us at most this number of blocks...
1915  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1916  * The rest of mballoc seems to handle chunks up to full group size.
1917  */
1918 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1919
1920 /*
1921  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1922  *
1923  * @mpd - extent of blocks
1924  * @lblk - logical number of the block in the file
1925  * @bh - buffer head we want to add to the extent
1926  *
1927  * The function is used to collect contig. blocks in the same state. If the
1928  * buffer doesn't require mapping for writeback and we haven't started the
1929  * extent of buffers to map yet, the function returns 'true' immediately - the
1930  * caller can write the buffer right away. Otherwise the function returns true
1931  * if the block has been added to the extent, false if the block couldn't be
1932  * added.
1933  */
1934 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1935                                    struct buffer_head *bh)
1936 {
1937         struct ext4_map_blocks *map = &mpd->map;
1938
1939         /* Buffer that doesn't need mapping for writeback? */
1940         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1941             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1942                 /* So far no extent to map => we write the buffer right away */
1943                 if (map->m_len == 0)
1944                         return true;
1945                 return false;
1946         }
1947
1948         /* First block in the extent? */
1949         if (map->m_len == 0) {
1950                 map->m_lblk = lblk;
1951                 map->m_len = 1;
1952                 map->m_flags = bh->b_state & BH_FLAGS;
1953                 return true;
1954         }
1955
1956         /* Don't go larger than mballoc is willing to allocate */
1957         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1958                 return false;
1959
1960         /* Can we merge the block to our big extent? */
1961         if (lblk == map->m_lblk + map->m_len &&
1962             (bh->b_state & BH_FLAGS) == map->m_flags) {
1963                 map->m_len++;
1964                 return true;
1965         }
1966         return false;
1967 }
1968
1969 /*
1970  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1971  *
1972  * @mpd - extent of blocks for mapping
1973  * @head - the first buffer in the page
1974  * @bh - buffer we should start processing from
1975  * @lblk - logical number of the block in the file corresponding to @bh
1976  *
1977  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1978  * the page for IO if all buffers in this page were mapped and there's no
1979  * accumulated extent of buffers to map or add buffers in the page to the
1980  * extent of buffers to map. The function returns 1 if the caller can continue
1981  * by processing the next page, 0 if it should stop adding buffers to the
1982  * extent to map because we cannot extend it anymore. It can also return value
1983  * < 0 in case of error during IO submission.
1984  */
1985 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1986                                    struct buffer_head *head,
1987                                    struct buffer_head *bh,
1988                                    ext4_lblk_t lblk)
1989 {
1990         struct inode *inode = mpd->inode;
1991         int err;
1992         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1993                                                         >> inode->i_blkbits;
1994
1995         do {
1996                 BUG_ON(buffer_locked(bh));
1997
1998                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1999                         /* Found extent to map? */
2000                         if (mpd->map.m_len)
2001                                 return 0;
2002                         /* Everything mapped so far and we hit EOF */
2003                         break;
2004                 }
2005         } while (lblk++, (bh = bh->b_this_page) != head);
2006         /* So far everything mapped? Submit the page for IO. */
2007         if (mpd->map.m_len == 0) {
2008                 err = mpage_submit_page(mpd, head->b_page);
2009                 if (err < 0)
2010                         return err;
2011         }
2012         return lblk < blocks;
2013 }
2014
2015 /*
2016  * mpage_map_buffers - update buffers corresponding to changed extent and
2017  *                     submit fully mapped pages for IO
2018  *
2019  * @mpd - description of extent to map, on return next extent to map
2020  *
2021  * Scan buffers corresponding to changed extent (we expect corresponding pages
2022  * to be already locked) and update buffer state according to new extent state.
2023  * We map delalloc buffers to their physical location, clear unwritten bits,
2024  * and mark buffers as uninit when we perform writes to uninitialized extents
2025  * and do extent conversion after IO is finished. If the last page is not fully
2026  * mapped, we update @map to the next extent in the last page that needs
2027  * mapping. Otherwise we submit the page for IO.
2028  */
2029 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2030 {
2031         struct pagevec pvec;
2032         int nr_pages, i;
2033         struct inode *inode = mpd->inode;
2034         struct buffer_head *head, *bh;
2035         int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2036         pgoff_t start, end;
2037         ext4_lblk_t lblk;
2038         sector_t pblock;
2039         int err;
2040
2041         start = mpd->map.m_lblk >> bpp_bits;
2042         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2043         lblk = start << bpp_bits;
2044         pblock = mpd->map.m_pblk;
2045
2046         pagevec_init(&pvec, 0);
2047         while (start <= end) {
2048                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2049                                           PAGEVEC_SIZE);
2050                 if (nr_pages == 0)
2051                         break;
2052                 for (i = 0; i < nr_pages; i++) {
2053                         struct page *page = pvec.pages[i];
2054
2055                         if (page->index > end)
2056                                 break;
2057                         /* Up to 'end' pages must be contiguous */
2058                         BUG_ON(page->index != start);
2059                         bh = head = page_buffers(page);
2060                         do {
2061                                 if (lblk < mpd->map.m_lblk)
2062                                         continue;
2063                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2064                                         /*
2065                                          * Buffer after end of mapped extent.
2066                                          * Find next buffer in the page to map.
2067                                          */
2068                                         mpd->map.m_len = 0;
2069                                         mpd->map.m_flags = 0;
2070                                         /*
2071                                          * FIXME: If dioread_nolock supports
2072                                          * blocksize < pagesize, we need to make
2073                                          * sure we add size mapped so far to
2074                                          * io_end->size as the following call
2075                                          * can submit the page for IO.
2076                                          */
2077                                         err = mpage_process_page_bufs(mpd, head,
2078                                                                       bh, lblk);
2079                                         pagevec_release(&pvec);
2080                                         if (err > 0)
2081                                                 err = 0;
2082                                         return err;
2083                                 }
2084                                 if (buffer_delay(bh)) {
2085                                         clear_buffer_delay(bh);
2086                                         bh->b_blocknr = pblock++;
2087                                 }
2088                                 clear_buffer_unwritten(bh);
2089                         } while (lblk++, (bh = bh->b_this_page) != head);
2090
2091                         /*
2092                          * FIXME: This is going to break if dioread_nolock
2093                          * supports blocksize < pagesize as we will try to
2094                          * convert potentially unmapped parts of inode.
2095                          */
2096                         mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2097                         /* Page fully mapped - let IO run! */
2098                         err = mpage_submit_page(mpd, page);
2099                         if (err < 0) {
2100                                 pagevec_release(&pvec);
2101                                 return err;
2102                         }
2103                         start++;
2104                 }
2105                 pagevec_release(&pvec);
2106         }
2107         /* Extent fully mapped and matches with page boundary. We are done. */
2108         mpd->map.m_len = 0;
2109         mpd->map.m_flags = 0;
2110         return 0;
2111 }
2112
2113 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2114 {
2115         struct inode *inode = mpd->inode;
2116         struct ext4_map_blocks *map = &mpd->map;
2117         int get_blocks_flags;
2118         int err;
2119
2120         trace_ext4_da_write_pages_extent(inode, map);
2121         /*
2122          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2123          * to convert an uninitialized extent to be initialized (in the case
2124          * where we have written into one or more preallocated blocks).  It is
2125          * possible that we're going to need more metadata blocks than
2126          * previously reserved. However we must not fail because we're in
2127          * writeback and there is nothing we can do about it so it might result
2128          * in data loss.  So use reserved blocks to allocate metadata if
2129          * possible.
2130          *
2131          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2132          * in question are delalloc blocks.  This affects functions in many
2133          * different parts of the allocation call path.  This flag exists
2134          * primarily because we don't want to change *many* call functions, so
2135          * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2136          * once the inode's allocation semaphore is taken.
2137          */
2138         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2139                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
2140         if (ext4_should_dioread_nolock(inode))
2141                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2142         if (map->m_flags & (1 << BH_Delay))
2143                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2144
2145         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2146         if (err < 0)
2147                 return err;
2148         if (map->m_flags & EXT4_MAP_UNINIT) {
2149                 if (!mpd->io_submit.io_end->handle &&
2150                     ext4_handle_valid(handle)) {
2151                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2152                         handle->h_rsv_handle = NULL;
2153                 }
2154                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2155         }
2156
2157         BUG_ON(map->m_len == 0);
2158         if (map->m_flags & EXT4_MAP_NEW) {
2159                 struct block_device *bdev = inode->i_sb->s_bdev;
2160                 int i;
2161
2162                 for (i = 0; i < map->m_len; i++)
2163                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2164         }
2165         return 0;
2166 }
2167
2168 /*
2169  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2170  *                               mpd->len and submit pages underlying it for IO
2171  *
2172  * @handle - handle for journal operations
2173  * @mpd - extent to map
2174  * @give_up_on_write - we set this to true iff there is a fatal error and there
2175  *                     is no hope of writing the data. The caller should discard
2176  *                     dirty pages to avoid infinite loops.
2177  *
2178  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2179  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2180  * them to initialized or split the described range from larger unwritten
2181  * extent. Note that we need not map all the described range since allocation
2182  * can return less blocks or the range is covered by more unwritten extents. We
2183  * cannot map more because we are limited by reserved transaction credits. On
2184  * the other hand we always make sure that the last touched page is fully
2185  * mapped so that it can be written out (and thus forward progress is
2186  * guaranteed). After mapping we submit all mapped pages for IO.
2187  */
2188 static int mpage_map_and_submit_extent(handle_t *handle,
2189                                        struct mpage_da_data *mpd,
2190                                        bool *give_up_on_write)
2191 {
2192         struct inode *inode = mpd->inode;
2193         struct ext4_map_blocks *map = &mpd->map;
2194         int err;
2195         loff_t disksize;
2196
2197         mpd->io_submit.io_end->offset =
2198                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2199         do {
2200                 err = mpage_map_one_extent(handle, mpd);
2201                 if (err < 0) {
2202                         struct super_block *sb = inode->i_sb;
2203
2204                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2205                                 goto invalidate_dirty_pages;
2206                         /*
2207                          * Let the uper layers retry transient errors.
2208                          * In the case of ENOSPC, if ext4_count_free_blocks()
2209                          * is non-zero, a commit should free up blocks.
2210                          */
2211                         if ((err == -ENOMEM) ||
2212                             (err == -ENOSPC && ext4_count_free_clusters(sb)))
2213                                 return err;
2214                         ext4_msg(sb, KERN_CRIT,
2215                                  "Delayed block allocation failed for "
2216                                  "inode %lu at logical offset %llu with"
2217                                  " max blocks %u with error %d",
2218                                  inode->i_ino,
2219                                  (unsigned long long)map->m_lblk,
2220                                  (unsigned)map->m_len, -err);
2221                         ext4_msg(sb, KERN_CRIT,
2222                                  "This should not happen!! Data will "
2223                                  "be lost\n");
2224                         if (err == -ENOSPC)
2225                                 ext4_print_free_blocks(inode);
2226                 invalidate_dirty_pages:
2227                         *give_up_on_write = true;
2228                         return err;
2229                 }
2230                 /*
2231                  * Update buffer state, submit mapped pages, and get us new
2232                  * extent to map
2233                  */
2234                 err = mpage_map_and_submit_buffers(mpd);
2235                 if (err < 0)
2236                         return err;
2237         } while (map->m_len);
2238
2239         /*
2240          * Update on-disk size after IO is submitted.  Races with
2241          * truncate are avoided by checking i_size under i_data_sem.
2242          */
2243         disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2244         if (disksize > EXT4_I(inode)->i_disksize) {
2245                 int err2;
2246                 loff_t i_size;
2247
2248                 down_write(&EXT4_I(inode)->i_data_sem);
2249                 i_size = i_size_read(inode);
2250                 if (disksize > i_size)
2251                         disksize = i_size;
2252                 if (disksize > EXT4_I(inode)->i_disksize)
2253                         EXT4_I(inode)->i_disksize = disksize;
2254                 err2 = ext4_mark_inode_dirty(handle, inode);
2255                 up_write(&EXT4_I(inode)->i_data_sem);
2256                 if (err2)
2257                         ext4_error(inode->i_sb,
2258                                    "Failed to mark inode %lu dirty",
2259                                    inode->i_ino);
2260                 if (!err)
2261                         err = err2;
2262         }
2263         return err;
2264 }
2265
2266 /*
2267  * Calculate the total number of credits to reserve for one writepages
2268  * iteration. This is called from ext4_writepages(). We map an extent of
2269  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2270  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2271  * bpp - 1 blocks in bpp different extents.
2272  */
2273 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2274 {
2275         int bpp = ext4_journal_blocks_per_page(inode);
2276
2277         return ext4_meta_trans_blocks(inode,
2278                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2279 }
2280
2281 /*
2282  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2283  *                               and underlying extent to map
2284  *
2285  * @mpd - where to look for pages
2286  *
2287  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2288  * IO immediately. When we find a page which isn't mapped we start accumulating
2289  * extent of buffers underlying these pages that needs mapping (formed by
2290  * either delayed or unwritten buffers). We also lock the pages containing
2291  * these buffers. The extent found is returned in @mpd structure (starting at
2292  * mpd->lblk with length mpd->len blocks).
2293  *
2294  * Note that this function can attach bios to one io_end structure which are
2295  * neither logically nor physically contiguous. Although it may seem as an
2296  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2297  * case as we need to track IO to all buffers underlying a page in one io_end.
2298  */
2299 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2300 {
2301         struct address_space *mapping = mpd->inode->i_mapping;
2302         struct pagevec pvec;
2303         unsigned int nr_pages;
2304         long left = mpd->wbc->nr_to_write;
2305         pgoff_t index = mpd->first_page;
2306         pgoff_t end = mpd->last_page;
2307         int tag;
2308         int i, err = 0;
2309         int blkbits = mpd->inode->i_blkbits;
2310         ext4_lblk_t lblk;
2311         struct buffer_head *head;
2312
2313         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2314                 tag = PAGECACHE_TAG_TOWRITE;
2315         else
2316                 tag = PAGECACHE_TAG_DIRTY;
2317
2318         pagevec_init(&pvec, 0);
2319         mpd->map.m_len = 0;
2320         mpd->next_page = index;
2321         while (index <= end) {
2322                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2323                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2324                 if (nr_pages == 0)
2325                         goto out;
2326
2327                 for (i = 0; i < nr_pages; i++) {
2328                         struct page *page = pvec.pages[i];
2329
2330                         /*
2331                          * At this point, the page may be truncated or
2332                          * invalidated (changing page->mapping to NULL), or
2333                          * even swizzled back from swapper_space to tmpfs file
2334                          * mapping. However, page->index will not change
2335                          * because we have a reference on the page.
2336                          */
2337                         if (page->index > end)
2338                                 goto out;
2339
2340                         /*
2341                          * Accumulated enough dirty pages? This doesn't apply
2342                          * to WB_SYNC_ALL mode. For integrity sync we have to
2343                          * keep going because someone may be concurrently
2344                          * dirtying pages, and we might have synced a lot of
2345                          * newly appeared dirty pages, but have not synced all
2346                          * of the old dirty pages.
2347                          */
2348                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2349                                 goto out;
2350
2351                         /* If we can't merge this page, we are done. */
2352                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2353                                 goto out;
2354
2355                         lock_page(page);
2356                         /*
2357                          * If the page is no longer dirty, or its mapping no
2358                          * longer corresponds to inode we are writing (which
2359                          * means it has been truncated or invalidated), or the
2360                          * page is already under writeback and we are not doing
2361                          * a data integrity writeback, skip the page
2362                          */
2363                         if (!PageDirty(page) ||
2364                             (PageWriteback(page) &&
2365                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2366                             unlikely(page->mapping != mapping)) {
2367                                 unlock_page(page);
2368                                 continue;
2369                         }
2370
2371                         wait_on_page_writeback(page);
2372                         BUG_ON(PageWriteback(page));
2373
2374                         if (mpd->map.m_len == 0)
2375                                 mpd->first_page = page->index;
2376                         mpd->next_page = page->index + 1;
2377                         /* Add all dirty buffers to mpd */
2378                         lblk = ((ext4_lblk_t)page->index) <<
2379                                 (PAGE_CACHE_SHIFT - blkbits);
2380                         head = page_buffers(page);
2381                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2382                         if (err <= 0)
2383                                 goto out;
2384                         err = 0;
2385                         left--;
2386                 }
2387                 pagevec_release(&pvec);
2388                 cond_resched();
2389         }
2390         return 0;
2391 out:
2392         pagevec_release(&pvec);
2393         return err;
2394 }
2395
2396 static int __writepage(struct page *page, struct writeback_control *wbc,
2397                        void *data)
2398 {
2399         struct address_space *mapping = data;
2400         int ret = ext4_writepage(page, wbc);
2401         mapping_set_error(mapping, ret);
2402         return ret;
2403 }
2404
2405 static int ext4_writepages(struct address_space *mapping,
2406                            struct writeback_control *wbc)
2407 {
2408         pgoff_t writeback_index = 0;
2409         long nr_to_write = wbc->nr_to_write;
2410         int range_whole = 0;
2411         int cycled = 1;
2412         handle_t *handle = NULL;
2413         struct mpage_da_data mpd;
2414         struct inode *inode = mapping->host;
2415         int needed_blocks, rsv_blocks = 0, ret = 0;
2416         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2417         bool done;
2418         struct blk_plug plug;
2419         bool give_up_on_write = false;
2420
2421         trace_ext4_writepages(inode, wbc);
2422
2423         /*
2424          * No pages to write? This is mainly a kludge to avoid starting
2425          * a transaction for special inodes like journal inode on last iput()
2426          * because that could violate lock ordering on umount
2427          */
2428         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2429                 goto out_writepages;
2430
2431         if (ext4_should_journal_data(inode)) {
2432                 struct blk_plug plug;
2433
2434                 blk_start_plug(&plug);
2435                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2436                 blk_finish_plug(&plug);
2437                 goto out_writepages;
2438         }
2439
2440         /*
2441          * If the filesystem has aborted, it is read-only, so return
2442          * right away instead of dumping stack traces later on that
2443          * will obscure the real source of the problem.  We test
2444          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2445          * the latter could be true if the filesystem is mounted
2446          * read-only, and in that case, ext4_writepages should
2447          * *never* be called, so if that ever happens, we would want
2448          * the stack trace.
2449          */
2450         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2451                 ret = -EROFS;
2452                 goto out_writepages;
2453         }
2454
2455         if (ext4_should_dioread_nolock(inode)) {
2456                 /*
2457                  * We may need to convert up to one extent per block in
2458                  * the page and we may dirty the inode.
2459                  */
2460                 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2461         }
2462
2463         /*
2464          * If we have inline data and arrive here, it means that
2465          * we will soon create the block for the 1st page, so
2466          * we'd better clear the inline data here.
2467          */
2468         if (ext4_has_inline_data(inode)) {
2469                 /* Just inode will be modified... */
2470                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2471                 if (IS_ERR(handle)) {
2472                         ret = PTR_ERR(handle);
2473                         goto out_writepages;
2474                 }
2475                 BUG_ON(ext4_test_inode_state(inode,
2476                                 EXT4_STATE_MAY_INLINE_DATA));
2477                 ext4_destroy_inline_data(handle, inode);
2478                 ext4_journal_stop(handle);
2479         }
2480
2481         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2482                 range_whole = 1;
2483
2484         if (wbc->range_cyclic) {
2485                 writeback_index = mapping->writeback_index;
2486                 if (writeback_index)
2487                         cycled = 0;
2488                 mpd.first_page = writeback_index;
2489                 mpd.last_page = -1;
2490         } else {
2491                 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2492                 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2493         }
2494
2495         mpd.inode = inode;
2496         mpd.wbc = wbc;
2497         ext4_io_submit_init(&mpd.io_submit, wbc);
2498 retry:
2499         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2500                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2501         done = false;
2502         blk_start_plug(&plug);
2503         while (!done && mpd.first_page <= mpd.last_page) {
2504                 /* For each extent of pages we use new io_end */
2505                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2506                 if (!mpd.io_submit.io_end) {
2507                         ret = -ENOMEM;
2508                         break;
2509                 }
2510
2511                 /*
2512                  * We have two constraints: We find one extent to map and we
2513                  * must always write out whole page (makes a difference when
2514                  * blocksize < pagesize) so that we don't block on IO when we
2515                  * try to write out the rest of the page. Journalled mode is
2516                  * not supported by delalloc.
2517                  */
2518                 BUG_ON(ext4_should_journal_data(inode));
2519                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2520
2521                 /* start a new transaction */
2522                 handle = ext4_journal_start_with_reserve(inode,
2523                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2524                 if (IS_ERR(handle)) {
2525                         ret = PTR_ERR(handle);
2526                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2527                                "%ld pages, ino %lu; err %d", __func__,
2528                                 wbc->nr_to_write, inode->i_ino, ret);
2529                         /* Release allocated io_end */
2530                         ext4_put_io_end(mpd.io_submit.io_end);
2531                         break;
2532                 }
2533
2534                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2535                 ret = mpage_prepare_extent_to_map(&mpd);
2536                 if (!ret) {
2537                         if (mpd.map.m_len)
2538                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2539                                         &give_up_on_write);
2540                         else {
2541                                 /*
2542                                  * We scanned the whole range (or exhausted
2543                                  * nr_to_write), submitted what was mapped and
2544                                  * didn't find anything needing mapping. We are
2545                                  * done.
2546                                  */
2547                                 done = true;
2548                         }
2549                 }
2550                 ext4_journal_stop(handle);
2551                 /* Submit prepared bio */
2552                 ext4_io_submit(&mpd.io_submit);
2553                 /* Unlock pages we didn't use */
2554                 mpage_release_unused_pages(&mpd, give_up_on_write);
2555                 /* Drop our io_end reference we got from init */
2556                 ext4_put_io_end(mpd.io_submit.io_end);
2557
2558                 if (ret == -ENOSPC && sbi->s_journal) {
2559                         /*
2560                          * Commit the transaction which would
2561                          * free blocks released in the transaction
2562                          * and try again
2563                          */
2564                         jbd2_journal_force_commit_nested(sbi->s_journal);
2565                         ret = 0;
2566                         continue;
2567                 }
2568                 /* Fatal error - ENOMEM, EIO... */
2569                 if (ret)
2570                         break;
2571         }
2572         blk_finish_plug(&plug);
2573         if (!ret && !cycled && wbc->nr_to_write > 0) {
2574                 cycled = 1;
2575                 mpd.last_page = writeback_index - 1;
2576                 mpd.first_page = 0;
2577                 goto retry;
2578         }
2579
2580         /* Update index */
2581         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2582                 /*
2583                  * Set the writeback_index so that range_cyclic
2584                  * mode will write it back later
2585                  */
2586                 mapping->writeback_index = mpd.first_page;
2587
2588 out_writepages:
2589         trace_ext4_writepages_result(inode, wbc, ret,
2590                                      nr_to_write - wbc->nr_to_write);
2591         return ret;
2592 }
2593
2594 static int ext4_nonda_switch(struct super_block *sb)
2595 {
2596         s64 free_clusters, dirty_clusters;
2597         struct ext4_sb_info *sbi = EXT4_SB(sb);
2598
2599         /*
2600          * switch to non delalloc mode if we are running low
2601          * on free block. The free block accounting via percpu
2602          * counters can get slightly wrong with percpu_counter_batch getting
2603          * accumulated on each CPU without updating global counters
2604          * Delalloc need an accurate free block accounting. So switch
2605          * to non delalloc when we are near to error range.
2606          */
2607         free_clusters =
2608                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2609         dirty_clusters =
2610                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2611         /*
2612          * Start pushing delalloc when 1/2 of free blocks are dirty.
2613          */
2614         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2615                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2616
2617         if (2 * free_clusters < 3 * dirty_clusters ||
2618             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2619                 /*
2620                  * free block count is less than 150% of dirty blocks
2621                  * or free blocks is less than watermark
2622                  */
2623                 return 1;
2624         }
2625         return 0;
2626 }
2627
2628 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2629                                loff_t pos, unsigned len, unsigned flags,
2630                                struct page **pagep, void **fsdata)
2631 {
2632         int ret, retries = 0;
2633         struct page *page;
2634         pgoff_t index;
2635         struct inode *inode = mapping->host;
2636         handle_t *handle;
2637
2638         index = pos >> PAGE_CACHE_SHIFT;
2639
2640         if (ext4_nonda_switch(inode->i_sb)) {
2641                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2642                 return ext4_write_begin(file, mapping, pos,
2643                                         len, flags, pagep, fsdata);
2644         }
2645         *fsdata = (void *)0;
2646         trace_ext4_da_write_begin(inode, pos, len, flags);
2647
2648         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2649                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2650                                                       pos, len, flags,
2651                                                       pagep, fsdata);
2652                 if (ret < 0)
2653                         return ret;
2654                 if (ret == 1)
2655                         return 0;
2656         }
2657
2658         /*
2659          * grab_cache_page_write_begin() can take a long time if the
2660          * system is thrashing due to memory pressure, or if the page
2661          * is being written back.  So grab it first before we start
2662          * the transaction handle.  This also allows us to allocate
2663          * the page (if needed) without using GFP_NOFS.
2664          */
2665 retry_grab:
2666         page = grab_cache_page_write_begin(mapping, index, flags);
2667         if (!page)
2668                 return -ENOMEM;
2669         unlock_page(page);
2670
2671         /*
2672          * With delayed allocation, we don't log the i_disksize update
2673          * if there is delayed block allocation. But we still need
2674          * to journalling the i_disksize update if writes to the end
2675          * of file which has an already mapped buffer.
2676          */
2677 retry_journal:
2678         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2679         if (IS_ERR(handle)) {
2680                 page_cache_release(page);
2681                 return PTR_ERR(handle);
2682         }
2683
2684         lock_page(page);
2685         if (page->mapping != mapping) {
2686                 /* The page got truncated from under us */
2687                 unlock_page(page);
2688                 page_cache_release(page);
2689                 ext4_journal_stop(handle);
2690                 goto retry_grab;
2691         }
2692         /* In case writeback began while the page was unlocked */
2693         wait_for_stable_page(page);
2694
2695         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2696         if (ret < 0) {
2697                 unlock_page(page);
2698                 ext4_journal_stop(handle);
2699                 /*
2700                  * block_write_begin may have instantiated a few blocks
2701                  * outside i_size.  Trim these off again. Don't need
2702                  * i_size_read because we hold i_mutex.
2703                  */
2704                 if (pos + len > inode->i_size)
2705                         ext4_truncate_failed_write(inode);
2706
2707                 if (ret == -ENOSPC &&
2708                     ext4_should_retry_alloc(inode->i_sb, &retries))
2709                         goto retry_journal;
2710
2711                 page_cache_release(page);
2712                 return ret;
2713         }
2714
2715         *pagep = page;
2716         return ret;
2717 }
2718
2719 /*
2720  * Check if we should update i_disksize
2721  * when write to the end of file but not require block allocation
2722  */
2723 static int ext4_da_should_update_i_disksize(struct page *page,
2724                                             unsigned long offset)
2725 {
2726         struct buffer_head *bh;
2727         struct inode *inode = page->mapping->host;
2728         unsigned int idx;
2729         int i;
2730
2731         bh = page_buffers(page);
2732         idx = offset >> inode->i_blkbits;
2733
2734         for (i = 0; i < idx; i++)
2735                 bh = bh->b_this_page;
2736
2737         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2738                 return 0;
2739         return 1;
2740 }
2741
2742 static int ext4_da_write_end(struct file *file,
2743                              struct address_space *mapping,
2744                              loff_t pos, unsigned len, unsigned copied,
2745                              struct page *page, void *fsdata)
2746 {
2747         struct inode *inode = mapping->host;
2748         int ret = 0, ret2;
2749         handle_t *handle = ext4_journal_current_handle();
2750         loff_t new_i_size;
2751         unsigned long start, end;
2752         int write_mode = (int)(unsigned long)fsdata;
2753
2754         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2755                 return ext4_write_end(file, mapping, pos,
2756                                       len, copied, page, fsdata);
2757
2758         trace_ext4_da_write_end(inode, pos, len, copied);
2759         start = pos & (PAGE_CACHE_SIZE - 1);
2760         end = start + copied - 1;
2761
2762         /*
2763          * generic_write_end() will run mark_inode_dirty() if i_size
2764          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2765          * into that.
2766          */
2767         new_i_size = pos + copied;
2768         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2769                 if (ext4_has_inline_data(inode) ||
2770                     ext4_da_should_update_i_disksize(page, end)) {
2771                         down_write(&EXT4_I(inode)->i_data_sem);
2772                         if (new_i_size > EXT4_I(inode)->i_disksize)
2773                                 EXT4_I(inode)->i_disksize = new_i_size;
2774                         up_write(&EXT4_I(inode)->i_data_sem);
2775                         /* We need to mark inode dirty even if
2776                          * new_i_size is less that inode->i_size
2777                          * bu greater than i_disksize.(hint delalloc)
2778                          */
2779                         ext4_mark_inode_dirty(handle, inode);
2780                 }
2781         }
2782
2783         if (write_mode != CONVERT_INLINE_DATA &&
2784             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2785             ext4_has_inline_data(inode))
2786                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2787                                                      page);
2788         else
2789                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2790                                                         page, fsdata);
2791
2792         copied = ret2;
2793         if (ret2 < 0)
2794                 ret = ret2;
2795         ret2 = ext4_journal_stop(handle);
2796         if (!ret)
2797                 ret = ret2;
2798
2799         return ret ? ret : copied;
2800 }
2801
2802 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2803                                    unsigned int length)
2804 {
2805         /*
2806          * Drop reserved blocks
2807          */
2808         BUG_ON(!PageLocked(page));
2809         if (!page_has_buffers(page))
2810                 goto out;
2811
2812         ext4_da_page_release_reservation(page, offset, length);
2813
2814 out:
2815         ext4_invalidatepage(page, offset, length);
2816
2817         return;
2818 }
2819
2820 /*
2821  * Force all delayed allocation blocks to be allocated for a given inode.
2822  */
2823 int ext4_alloc_da_blocks(struct inode *inode)
2824 {
2825         trace_ext4_alloc_da_blocks(inode);
2826
2827         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2828             !EXT4_I(inode)->i_reserved_meta_blocks)
2829                 return 0;
2830
2831         /*
2832          * We do something simple for now.  The filemap_flush() will
2833          * also start triggering a write of the data blocks, which is
2834          * not strictly speaking necessary (and for users of
2835          * laptop_mode, not even desirable).  However, to do otherwise
2836          * would require replicating code paths in:
2837          *
2838          * ext4_writepages() ->
2839          *    write_cache_pages() ---> (via passed in callback function)
2840          *        __mpage_da_writepage() -->
2841          *           mpage_add_bh_to_extent()
2842          *           mpage_da_map_blocks()
2843          *
2844          * The problem is that write_cache_pages(), located in
2845          * mm/page-writeback.c, marks pages clean in preparation for
2846          * doing I/O, which is not desirable if we're not planning on
2847          * doing I/O at all.
2848          *
2849          * We could call write_cache_pages(), and then redirty all of
2850          * the pages by calling redirty_page_for_writepage() but that
2851          * would be ugly in the extreme.  So instead we would need to
2852          * replicate parts of the code in the above functions,
2853          * simplifying them because we wouldn't actually intend to
2854          * write out the pages, but rather only collect contiguous
2855          * logical block extents, call the multi-block allocator, and
2856          * then update the buffer heads with the block allocations.
2857          *
2858          * For now, though, we'll cheat by calling filemap_flush(),
2859          * which will map the blocks, and start the I/O, but not
2860          * actually wait for the I/O to complete.
2861          */
2862         return filemap_flush(inode->i_mapping);
2863 }
2864
2865 /*
2866  * bmap() is special.  It gets used by applications such as lilo and by
2867  * the swapper to find the on-disk block of a specific piece of data.
2868  *
2869  * Naturally, this is dangerous if the block concerned is still in the
2870  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2871  * filesystem and enables swap, then they may get a nasty shock when the
2872  * data getting swapped to that swapfile suddenly gets overwritten by
2873  * the original zero's written out previously to the journal and
2874  * awaiting writeback in the kernel's buffer cache.
2875  *
2876  * So, if we see any bmap calls here on a modified, data-journaled file,
2877  * take extra steps to flush any blocks which might be in the cache.
2878  */
2879 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2880 {
2881         struct inode *inode = mapping->host;
2882         journal_t *journal;
2883         int err;
2884
2885         /*
2886          * We can get here for an inline file via the FIBMAP ioctl
2887          */
2888         if (ext4_has_inline_data(inode))
2889                 return 0;
2890
2891         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2892                         test_opt(inode->i_sb, DELALLOC)) {
2893                 /*
2894                  * With delalloc we want to sync the file
2895                  * so that we can make sure we allocate
2896                  * blocks for file
2897                  */
2898                 filemap_write_and_wait(mapping);
2899         }
2900
2901         if (EXT4_JOURNAL(inode) &&
2902             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2903                 /*
2904                  * This is a REALLY heavyweight approach, but the use of
2905                  * bmap on dirty files is expected to be extremely rare:
2906                  * only if we run lilo or swapon on a freshly made file
2907                  * do we expect this to happen.
2908                  *
2909                  * (bmap requires CAP_SYS_RAWIO so this does not
2910                  * represent an unprivileged user DOS attack --- we'd be
2911                  * in trouble if mortal users could trigger this path at
2912                  * will.)
2913                  *
2914                  * NB. EXT4_STATE_JDATA is not set on files other than
2915                  * regular files.  If somebody wants to bmap a directory
2916                  * or symlink and gets confused because the buffer
2917                  * hasn't yet been flushed to disk, they deserve
2918                  * everything they get.
2919                  */
2920
2921                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2922                 journal = EXT4_JOURNAL(inode);
2923                 jbd2_journal_lock_updates(journal);
2924                 err = jbd2_journal_flush(journal);
2925                 jbd2_journal_unlock_updates(journal);
2926
2927                 if (err)
2928                         return 0;
2929         }
2930
2931         return generic_block_bmap(mapping, block, ext4_get_block);
2932 }
2933
2934 static int ext4_readpage(struct file *file, struct page *page)
2935 {
2936         int ret = -EAGAIN;
2937         struct inode *inode = page->mapping->host;
2938
2939         trace_ext4_readpage(page);
2940
2941         if (ext4_has_inline_data(inode))
2942                 ret = ext4_readpage_inline(inode, page);
2943
2944         if (ret == -EAGAIN)
2945                 return mpage_readpage(page, ext4_get_block);
2946
2947         return ret;
2948 }
2949
2950 static int
2951 ext4_readpages(struct file *file, struct address_space *mapping,
2952                 struct list_head *pages, unsigned nr_pages)
2953 {
2954         struct inode *inode = mapping->host;
2955
2956         /* If the file has inline data, no need to do readpages. */
2957         if (ext4_has_inline_data(inode))
2958                 return 0;
2959
2960         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2961 }
2962
2963 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2964                                 unsigned int length)
2965 {
2966         trace_ext4_invalidatepage(page, offset, length);
2967
2968         /* No journalling happens on data buffers when this function is used */
2969         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2970
2971         block_invalidatepage(page, offset, length);
2972 }
2973
2974 static int __ext4_journalled_invalidatepage(struct page *page,
2975                                             unsigned int offset,
2976                                             unsigned int length)
2977 {
2978         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2979
2980         trace_ext4_journalled_invalidatepage(page, offset, length);
2981
2982         /*
2983          * If it's a full truncate we just forget about the pending dirtying
2984          */
2985         if (offset == 0 && length == PAGE_CACHE_SIZE)
2986                 ClearPageChecked(page);
2987
2988         return jbd2_journal_invalidatepage(journal, page, offset, length);
2989 }
2990
2991 /* Wrapper for aops... */
2992 static void ext4_journalled_invalidatepage(struct page *page,
2993                                            unsigned int offset,
2994                                            unsigned int length)
2995 {
2996         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2997 }
2998
2999 static int ext4_releasepage(struct page *page, gfp_t wait)
3000 {
3001         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3002
3003         trace_ext4_releasepage(page);
3004
3005         /* Page has dirty journalled data -> cannot release */
3006         if (PageChecked(page))
3007                 return 0;
3008         if (journal)
3009                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3010         else
3011                 return try_to_free_buffers(page);
3012 }
3013
3014 /*
3015  * ext4_get_block used when preparing for a DIO write or buffer write.
3016  * We allocate an uinitialized extent if blocks haven't been allocated.
3017  * The extent will be converted to initialized after the IO is complete.
3018  */
3019 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3020                    struct buffer_head *bh_result, int create)
3021 {
3022         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3023                    inode->i_ino, create);
3024         return _ext4_get_block(inode, iblock, bh_result,
3025                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3026 }
3027
3028 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3029                    struct buffer_head *bh_result, int create)
3030 {
3031         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3032                    inode->i_ino, create);
3033         return _ext4_get_block(inode, iblock, bh_result,
3034                                EXT4_GET_BLOCKS_NO_LOCK);
3035 }
3036
3037 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3038                             ssize_t size, void *private)
3039 {
3040         ext4_io_end_t *io_end = iocb->private;
3041
3042         /* if not async direct IO just return */
3043         if (!io_end)
3044                 return;
3045
3046         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3047                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3048                   iocb->private, io_end->inode->i_ino, iocb, offset,
3049                   size);
3050
3051         iocb->private = NULL;
3052         io_end->offset = offset;
3053         io_end->size = size;
3054         ext4_put_io_end(io_end);
3055 }
3056
3057 /*
3058  * For ext4 extent files, ext4 will do direct-io write to holes,
3059  * preallocated extents, and those write extend the file, no need to
3060  * fall back to buffered IO.
3061  *
3062  * For holes, we fallocate those blocks, mark them as uninitialized
3063  * If those blocks were preallocated, we mark sure they are split, but
3064  * still keep the range to write as uninitialized.
3065  *
3066  * The unwritten extents will be converted to written when DIO is completed.
3067  * For async direct IO, since the IO may still pending when return, we
3068  * set up an end_io call back function, which will do the conversion
3069  * when async direct IO completed.
3070  *
3071  * If the O_DIRECT write will extend the file then add this inode to the
3072  * orphan list.  So recovery will truncate it back to the original size
3073  * if the machine crashes during the write.
3074  *
3075  */
3076 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3077                               const struct iovec *iov, loff_t offset,
3078                               unsigned long nr_segs)
3079 {
3080         struct file *file = iocb->ki_filp;
3081         struct inode *inode = file->f_mapping->host;
3082         ssize_t ret;
3083         size_t count = iov_length(iov, nr_segs);
3084         int overwrite = 0;
3085         get_block_t *get_block_func = NULL;
3086         int dio_flags = 0;
3087         loff_t final_size = offset + count;
3088         ext4_io_end_t *io_end = NULL;
3089
3090         /* Use the old path for reads and writes beyond i_size. */
3091         if (rw != WRITE || final_size > inode->i_size)
3092                 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3093
3094         BUG_ON(iocb->private == NULL);
3095
3096         /*
3097          * Make all waiters for direct IO properly wait also for extent
3098          * conversion. This also disallows race between truncate() and
3099          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3100          */
3101         if (rw == WRITE)
3102                 atomic_inc(&inode->i_dio_count);
3103
3104         /* If we do a overwrite dio, i_mutex locking can be released */
3105         overwrite = *((int *)iocb->private);
3106
3107         if (overwrite) {
3108                 down_read(&EXT4_I(inode)->i_data_sem);
3109                 mutex_unlock(&inode->i_mutex);
3110         }
3111
3112         /*
3113          * We could direct write to holes and fallocate.
3114          *
3115          * Allocated blocks to fill the hole are marked as
3116          * uninitialized to prevent parallel buffered read to expose
3117          * the stale data before DIO complete the data IO.
3118          *
3119          * As to previously fallocated extents, ext4 get_block will
3120          * just simply mark the buffer mapped but still keep the
3121          * extents uninitialized.
3122          *
3123          * For non AIO case, we will convert those unwritten extents
3124          * to written after return back from blockdev_direct_IO.
3125          *
3126          * For async DIO, the conversion needs to be deferred when the
3127          * IO is completed. The ext4 end_io callback function will be
3128          * called to take care of the conversion work.  Here for async
3129          * case, we allocate an io_end structure to hook to the iocb.
3130          */
3131         iocb->private = NULL;
3132         ext4_inode_aio_set(inode, NULL);
3133         if (!is_sync_kiocb(iocb)) {
3134                 io_end = ext4_init_io_end(inode, GFP_NOFS);
3135                 if (!io_end) {
3136                         ret = -ENOMEM;
3137                         goto retake_lock;
3138                 }
3139                 /*
3140                  * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3141                  */
3142                 iocb->private = ext4_get_io_end(io_end);
3143                 /*
3144                  * we save the io structure for current async direct
3145                  * IO, so that later ext4_map_blocks() could flag the
3146                  * io structure whether there is a unwritten extents
3147                  * needs to be converted when IO is completed.
3148                  */
3149                 ext4_inode_aio_set(inode, io_end);
3150         }
3151
3152         if (overwrite) {
3153                 get_block_func = ext4_get_block_write_nolock;
3154         } else {
3155                 get_block_func = ext4_get_block_write;
3156                 dio_flags = DIO_LOCKING;
3157         }
3158         ret = __blockdev_direct_IO(rw, iocb, inode,
3159                                    inode->i_sb->s_bdev, iov,
3160                                    offset, nr_segs,
3161                                    get_block_func,
3162                                    ext4_end_io_dio,
3163                                    NULL,
3164                                    dio_flags);
3165
3166         /*
3167          * Put our reference to io_end. This can free the io_end structure e.g.
3168          * in sync IO case or in case of error. It can even perform extent
3169          * conversion if all bios we submitted finished before we got here.
3170          * Note that in that case iocb->private can be already set to NULL
3171          * here.
3172          */
3173         if (io_end) {
3174                 ext4_inode_aio_set(inode, NULL);
3175                 ext4_put_io_end(io_end);
3176                 /*
3177                  * When no IO was submitted ext4_end_io_dio() was not
3178                  * called so we have to put iocb's reference.
3179                  */
3180                 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3181                         WARN_ON(iocb->private != io_end);
3182                         WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3183                         ext4_put_io_end(io_end);
3184                         iocb->private = NULL;
3185                 }
3186         }
3187         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3188                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3189                 int err;
3190                 /*
3191                  * for non AIO case, since the IO is already
3192                  * completed, we could do the conversion right here
3193                  */
3194                 err = ext4_convert_unwritten_extents(NULL, inode,
3195                                                      offset, ret);
3196                 if (err < 0)
3197                         ret = err;
3198                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3199         }
3200
3201 retake_lock:
3202         if (rw == WRITE)
3203                 inode_dio_done(inode);
3204         /* take i_mutex locking again if we do a ovewrite dio */
3205         if (overwrite) {
3206                 up_read(&EXT4_I(inode)->i_data_sem);
3207                 mutex_lock(&inode->i_mutex);
3208         }
3209
3210         return ret;
3211 }
3212
3213 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3214                               const struct iovec *iov, loff_t offset,
3215                               unsigned long nr_segs)
3216 {
3217         struct file *file = iocb->ki_filp;
3218         struct inode *inode = file->f_mapping->host;
3219         ssize_t ret;
3220
3221         /*
3222          * If we are doing data journalling we don't support O_DIRECT
3223          */
3224         if (ext4_should_journal_data(inode))
3225                 return 0;
3226
3227         /* Let buffer I/O handle the inline data case. */
3228         if (ext4_has_inline_data(inode))
3229                 return 0;
3230
3231         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3232         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3233                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3234         else
3235                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3236         trace_ext4_direct_IO_exit(inode, offset,
3237                                 iov_length(iov, nr_segs), rw, ret);
3238         return ret;
3239 }
3240
3241 /*
3242  * Pages can be marked dirty completely asynchronously from ext4's journalling
3243  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3244  * much here because ->set_page_dirty is called under VFS locks.  The page is
3245  * not necessarily locked.
3246  *
3247  * We cannot just dirty the page and leave attached buffers clean, because the
3248  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3249  * or jbddirty because all the journalling code will explode.
3250  *
3251  * So what we do is to mark the page "pending dirty" and next time writepage
3252  * is called, propagate that into the buffers appropriately.
3253  */
3254 static int ext4_journalled_set_page_dirty(struct page *page)
3255 {
3256         SetPageChecked(page);
3257         return __set_page_dirty_nobuffers(page);
3258 }
3259
3260 static const struct address_space_operations ext4_aops = {
3261         .readpage               = ext4_readpage,
3262         .readpages              = ext4_readpages,
3263         .writepage              = ext4_writepage,
3264         .writepages             = ext4_writepages,
3265         .write_begin            = ext4_write_begin,
3266         .write_end              = ext4_write_end,
3267         .bmap                   = ext4_bmap,
3268         .invalidatepage         = ext4_invalidatepage,
3269         .releasepage            = ext4_releasepage,
3270         .direct_IO              = ext4_direct_IO,
3271         .migratepage            = buffer_migrate_page,
3272         .is_partially_uptodate  = block_is_partially_uptodate,
3273         .error_remove_page      = generic_error_remove_page,
3274 };
3275
3276 static const struct address_space_operations ext4_journalled_aops = {
3277         .readpage               = ext4_readpage,
3278         .readpages              = ext4_readpages,
3279         .writepage              = ext4_writepage,
3280         .writepages             = ext4_writepages,
3281         .write_begin            = ext4_write_begin,
3282         .write_end              = ext4_journalled_write_end,
3283         .set_page_dirty         = ext4_journalled_set_page_dirty,
3284         .bmap                   = ext4_bmap,
3285         .invalidatepage         = ext4_journalled_invalidatepage,
3286         .releasepage            = ext4_releasepage,
3287         .direct_IO              = ext4_direct_IO,
3288         .is_partially_uptodate  = block_is_partially_uptodate,
3289         .error_remove_page      = generic_error_remove_page,
3290 };
3291
3292 static const struct address_space_operations ext4_da_aops = {
3293         .readpage               = ext4_readpage,
3294         .readpages              = ext4_readpages,
3295         .writepage              = ext4_writepage,
3296         .writepages             = ext4_writepages,
3297         .write_begin            = ext4_da_write_begin,
3298         .write_end              = ext4_da_write_end,
3299         .bmap                   = ext4_bmap,
3300         .invalidatepage         = ext4_da_invalidatepage,
3301         .releasepage            = ext4_releasepage,
3302         .direct_IO              = ext4_direct_IO,
3303         .migratepage            = buffer_migrate_page,
3304         .is_partially_uptodate  = block_is_partially_uptodate,
3305         .error_remove_page      = generic_error_remove_page,
3306 };
3307
3308 void ext4_set_aops(struct inode *inode)
3309 {
3310         switch (ext4_inode_journal_mode(inode)) {
3311         case EXT4_INODE_ORDERED_DATA_MODE:
3312                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3313                 break;
3314         case EXT4_INODE_WRITEBACK_DATA_MODE:
3315                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3316                 break;
3317         case EXT4_INODE_JOURNAL_DATA_MODE:
3318                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3319                 return;
3320         default:
3321                 BUG();
3322         }
3323         if (test_opt(inode->i_sb, DELALLOC))
3324                 inode->i_mapping->a_ops = &ext4_da_aops;
3325         else
3326                 inode->i_mapping->a_ops = &ext4_aops;
3327 }
3328
3329 /*
3330  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3331  * up to the end of the block which corresponds to `from'.
3332  * This required during truncate. We need to physically zero the tail end
3333  * of that block so it doesn't yield old data if the file is later grown.
3334  */
3335 int ext4_block_truncate_page(handle_t *handle,
3336                 struct address_space *mapping, loff_t from)
3337 {
3338         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3339         unsigned length;
3340         unsigned blocksize;
3341         struct inode *inode = mapping->host;
3342
3343         blocksize = inode->i_sb->s_blocksize;
3344         length = blocksize - (offset & (blocksize - 1));
3345
3346         return ext4_block_zero_page_range(handle, mapping, from, length);
3347 }
3348
3349 /*
3350  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3351  * starting from file offset 'from'.  The range to be zero'd must
3352  * be contained with in one block.  If the specified range exceeds
3353  * the end of the block it will be shortened to end of the block
3354  * that cooresponds to 'from'
3355  */
3356 int ext4_block_zero_page_range(handle_t *handle,
3357                 struct address_space *mapping, loff_t from, loff_t length)
3358 {
3359         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3360         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3361         unsigned blocksize, max, pos;
3362         ext4_lblk_t iblock;
3363         struct inode *inode = mapping->host;
3364         struct buffer_head *bh;
3365         struct page *page;
3366         int err = 0;
3367
3368         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3369                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3370         if (!page)
3371                 return -ENOMEM;
3372
3373         blocksize = inode->i_sb->s_blocksize;
3374         max = blocksize - (offset & (blocksize - 1));
3375
3376         /*
3377          * correct length if it does not fall between
3378          * 'from' and the end of the block
3379          */
3380         if (length > max || length < 0)
3381                 length = max;
3382
3383         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3384
3385         if (!page_has_buffers(page))
3386                 create_empty_buffers(page, blocksize, 0);
3387
3388         /* Find the buffer that contains "offset" */
3389         bh = page_buffers(page);
3390         pos = blocksize;
3391         while (offset >= pos) {
3392                 bh = bh->b_this_page;
3393                 iblock++;
3394                 pos += blocksize;
3395         }
3396         if (buffer_freed(bh)) {
3397                 BUFFER_TRACE(bh, "freed: skip");
3398                 goto unlock;
3399         }
3400         if (!buffer_mapped(bh)) {
3401                 BUFFER_TRACE(bh, "unmapped");
3402                 ext4_get_block(inode, iblock, bh, 0);
3403                 /* unmapped? It's a hole - nothing to do */
3404                 if (!buffer_mapped(bh)) {
3405                         BUFFER_TRACE(bh, "still unmapped");
3406                         goto unlock;
3407                 }
3408         }
3409
3410         /* Ok, it's mapped. Make sure it's up-to-date */
3411         if (PageUptodate(page))
3412                 set_buffer_uptodate(bh);
3413
3414         if (!buffer_uptodate(bh)) {
3415                 err = -EIO;
3416                 ll_rw_block(READ, 1, &bh);
3417                 wait_on_buffer(bh);
3418                 /* Uhhuh. Read error. Complain and punt. */
3419                 if (!buffer_uptodate(bh))
3420                         goto unlock;
3421         }
3422         if (ext4_should_journal_data(inode)) {
3423                 BUFFER_TRACE(bh, "get write access");
3424                 err = ext4_journal_get_write_access(handle, bh);
3425                 if (err)
3426                         goto unlock;
3427         }
3428         zero_user(page, offset, length);
3429         BUFFER_TRACE(bh, "zeroed end of block");
3430
3431         if (ext4_should_journal_data(inode)) {
3432                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3433         } else {
3434                 err = 0;
3435                 mark_buffer_dirty(bh);
3436                 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3437                         err = ext4_jbd2_file_inode(handle, inode);
3438         }
3439
3440 unlock:
3441         unlock_page(page);
3442         page_cache_release(page);
3443         return err;
3444 }
3445
3446 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3447                              loff_t lstart, loff_t length)
3448 {
3449         struct super_block *sb = inode->i_sb;
3450         struct address_space *mapping = inode->i_mapping;
3451         unsigned partial_start, partial_end;
3452         ext4_fsblk_t start, end;
3453         loff_t byte_end = (lstart + length - 1);
3454         int err = 0;
3455
3456         partial_start = lstart & (sb->s_blocksize - 1);
3457         partial_end = byte_end & (sb->s_blocksize - 1);
3458
3459         start = lstart >> sb->s_blocksize_bits;
3460         end = byte_end >> sb->s_blocksize_bits;
3461
3462         /* Handle partial zero within the single block */
3463         if (start == end &&
3464             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3465                 err = ext4_block_zero_page_range(handle, mapping,
3466                                                  lstart, length);
3467                 return err;
3468         }
3469         /* Handle partial zero out on the start of the range */
3470         if (partial_start) {
3471                 err = ext4_block_zero_page_range(handle, mapping,
3472                                                  lstart, sb->s_blocksize);
3473                 if (err)
3474                         return err;
3475         }
3476         /* Handle partial zero out on the end of the range */
3477         if (partial_end != sb->s_blocksize - 1)
3478                 err = ext4_block_zero_page_range(handle, mapping,
3479                                                  byte_end - partial_end,
3480                                                  partial_end + 1);
3481         return err;
3482 }
3483
3484 int ext4_can_truncate(struct inode *inode)
3485 {
3486         if (S_ISREG(inode->i_mode))
3487                 return 1;
3488         if (S_ISDIR(inode->i_mode))
3489                 return 1;
3490         if (S_ISLNK(inode->i_mode))
3491                 return !ext4_inode_is_fast_symlink(inode);
3492         return 0;
3493 }
3494
3495 /*
3496  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3497  * associated with the given offset and length
3498  *
3499  * @inode:  File inode
3500  * @offset: The offset where the hole will begin
3501  * @len:    The length of the hole
3502  *
3503  * Returns: 0 on success or negative on failure
3504  */
3505
3506 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3507 {
3508         struct super_block *sb = inode->i_sb;
3509         ext4_lblk_t first_block, stop_block;
3510         struct address_space *mapping = inode->i_mapping;
3511         loff_t first_block_offset, last_block_offset;
3512         handle_t *handle;
3513         unsigned int credits;
3514         int ret = 0;
3515
3516         if (!S_ISREG(inode->i_mode))
3517                 return -EOPNOTSUPP;
3518
3519         trace_ext4_punch_hole(inode, offset, length);
3520
3521         /*
3522          * Write out all dirty pages to avoid race conditions
3523          * Then release them.
3524          */
3525         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3526                 ret = filemap_write_and_wait_range(mapping, offset,
3527                                                    offset + length - 1);
3528                 if (ret)
3529                         return ret;
3530         }
3531
3532         mutex_lock(&inode->i_mutex);
3533         /* It's not possible punch hole on append only file */
3534         if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3535                 ret = -EPERM;
3536                 goto out_mutex;
3537         }
3538         if (IS_SWAPFILE(inode)) {
3539                 ret = -ETXTBSY;
3540                 goto out_mutex;
3541         }
3542
3543         /* No need to punch hole beyond i_size */
3544         if (offset >= inode->i_size)
3545                 goto out_mutex;
3546
3547         /*
3548          * If the hole extends beyond i_size, set the hole
3549          * to end after the page that contains i_size
3550          */
3551         if (offset + length > inode->i_size) {
3552                 length = inode->i_size +
3553                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3554                    offset;
3555         }
3556
3557         if (offset & (sb->s_blocksize - 1) ||
3558             (offset + length) & (sb->s_blocksize - 1)) {
3559                 /*
3560                  * Attach jinode to inode for jbd2 if we do any zeroing of
3561                  * partial block
3562                  */
3563                 ret = ext4_inode_attach_jinode(inode);
3564                 if (ret < 0)
3565                         goto out_mutex;
3566
3567         }
3568
3569         first_block_offset = round_up(offset, sb->s_blocksize);
3570         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3571
3572         /* Now release the pages and zero block aligned part of pages*/
3573         if (last_block_offset > first_block_offset)
3574                 truncate_pagecache_range(inode, first_block_offset,
3575                                          last_block_offset);
3576
3577         /* Wait all existing dio workers, newcomers will block on i_mutex */
3578         ext4_inode_block_unlocked_dio(inode);
3579         inode_dio_wait(inode);
3580
3581         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3582                 credits = ext4_writepage_trans_blocks(inode);
3583         else
3584                 credits = ext4_blocks_for_truncate(inode);
3585         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3586         if (IS_ERR(handle)) {
3587                 ret = PTR_ERR(handle);
3588                 ext4_std_error(sb, ret);
3589                 goto out_dio;
3590         }
3591
3592         ret = ext4_zero_partial_blocks(handle, inode, offset,
3593                                        length);
3594         if (ret)
3595                 goto out_stop;
3596
3597         first_block = (offset + sb->s_blocksize - 1) >>
3598                 EXT4_BLOCK_SIZE_BITS(sb);
3599         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3600
3601         /* If there are no blocks to remove, return now */
3602         if (first_block >= stop_block)
3603                 goto out_stop;
3604
3605         down_write(&EXT4_I(inode)->i_data_sem);
3606         ext4_discard_preallocations(inode);
3607
3608         ret = ext4_es_remove_extent(inode, first_block,
3609                                     stop_block - first_block);
3610         if (ret) {
3611                 up_write(&EXT4_I(inode)->i_data_sem);
3612                 goto out_stop;
3613         }
3614
3615         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3616                 ret = ext4_ext_remove_space(inode, first_block,
3617                                             stop_block - 1);
3618         else
3619                 ret = ext4_free_hole_blocks(handle, inode, first_block,
3620                                             stop_block);
3621
3622         ext4_discard_preallocations(inode);
3623         up_write(&EXT4_I(inode)->i_data_sem);
3624         if (IS_SYNC(inode))
3625                 ext4_handle_sync(handle);
3626         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3627         ext4_mark_inode_dirty(handle, inode);
3628 out_stop:
3629         ext4_journal_stop(handle);
3630 out_dio:
3631         ext4_inode_resume_unlocked_dio(inode);
3632 out_mutex:
3633         mutex_unlock(&inode->i_mutex);
3634         return ret;
3635 }
3636
3637 int ext4_inode_attach_jinode(struct inode *inode)
3638 {
3639         struct ext4_inode_info *ei = EXT4_I(inode);
3640         struct jbd2_inode *jinode;
3641
3642         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3643                 return 0;
3644
3645         jinode = jbd2_alloc_inode(GFP_KERNEL);
3646         spin_lock(&inode->i_lock);
3647         if (!ei->jinode) {
3648                 if (!jinode) {
3649                         spin_unlock(&inode->i_lock);
3650                         return -ENOMEM;
3651                 }
3652                 ei->jinode = jinode;
3653                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3654                 jinode = NULL;
3655         }
3656         spin_unlock(&inode->i_lock);
3657         if (unlikely(jinode != NULL))
3658                 jbd2_free_inode(jinode);
3659         return 0;
3660 }
3661
3662 /*
3663  * ext4_truncate()
3664  *
3665  * We block out ext4_get_block() block instantiations across the entire
3666  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3667  * simultaneously on behalf of the same inode.
3668  *
3669  * As we work through the truncate and commit bits of it to the journal there
3670  * is one core, guiding principle: the file's tree must always be consistent on
3671  * disk.  We must be able to restart the truncate after a crash.
3672  *
3673  * The file's tree may be transiently inconsistent in memory (although it
3674  * probably isn't), but whenever we close off and commit a journal transaction,
3675  * the contents of (the filesystem + the journal) must be consistent and
3676  * restartable.  It's pretty simple, really: bottom up, right to left (although
3677  * left-to-right works OK too).
3678  *
3679  * Note that at recovery time, journal replay occurs *before* the restart of
3680  * truncate against the orphan inode list.
3681  *
3682  * The committed inode has the new, desired i_size (which is the same as
3683  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3684  * that this inode's truncate did not complete and it will again call
3685  * ext4_truncate() to have another go.  So there will be instantiated blocks
3686  * to the right of the truncation point in a crashed ext4 filesystem.  But
3687  * that's fine - as long as they are linked from the inode, the post-crash
3688  * ext4_truncate() run will find them and release them.
3689  */
3690 void ext4_truncate(struct inode *inode)
3691 {
3692         struct ext4_inode_info *ei = EXT4_I(inode);
3693         unsigned int credits;
3694         handle_t *handle;
3695         struct address_space *mapping = inode->i_mapping;
3696
3697         /*
3698          * There is a possibility that we're either freeing the inode
3699          * or it completely new indode. In those cases we might not
3700          * have i_mutex locked because it's not necessary.
3701          */
3702         if (!(inode->i_state & (I_NEW|I_FREEING)))
3703                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3704         trace_ext4_truncate_enter(inode);
3705
3706         if (!ext4_can_truncate(inode))
3707                 return;
3708
3709         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3710
3711         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3712                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3713
3714         if (ext4_has_inline_data(inode)) {
3715                 int has_inline = 1;
3716
3717                 ext4_inline_data_truncate(inode, &has_inline);
3718                 if (has_inline)
3719                         return;
3720         }
3721
3722         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3723         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3724                 if (ext4_inode_attach_jinode(inode) < 0)
3725                         return;
3726         }
3727
3728         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3729                 credits = ext4_writepage_trans_blocks(inode);
3730         else
3731                 credits = ext4_blocks_for_truncate(inode);
3732
3733         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3734         if (IS_ERR(handle)) {
3735                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3736                 return;
3737         }
3738
3739         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3740                 ext4_block_truncate_page(handle, mapping, inode->i_size);
3741
3742         /*
3743          * We add the inode to the orphan list, so that if this
3744          * truncate spans multiple transactions, and we crash, we will
3745          * resume the truncate when the filesystem recovers.  It also
3746          * marks the inode dirty, to catch the new size.
3747          *
3748          * Implication: the file must always be in a sane, consistent
3749          * truncatable state while each transaction commits.
3750          */
3751         if (ext4_orphan_add(handle, inode))
3752                 goto out_stop;
3753
3754         down_write(&EXT4_I(inode)->i_data_sem);
3755
3756         ext4_discard_preallocations(inode);
3757
3758         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3759                 ext4_ext_truncate(handle, inode);
3760         else
3761                 ext4_ind_truncate(handle, inode);
3762
3763         up_write(&ei->i_data_sem);
3764
3765         if (IS_SYNC(inode))
3766                 ext4_handle_sync(handle);
3767
3768 out_stop:
3769         /*
3770          * If this was a simple ftruncate() and the file will remain alive,
3771          * then we need to clear up the orphan record which we created above.
3772          * However, if this was a real unlink then we were called by
3773          * ext4_delete_inode(), and we allow that function to clean up the
3774          * orphan info for us.
3775          */
3776         if (inode->i_nlink)
3777                 ext4_orphan_del(handle, inode);
3778
3779         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3780         ext4_mark_inode_dirty(handle, inode);
3781         ext4_journal_stop(handle);
3782
3783         trace_ext4_truncate_exit(inode);
3784 }
3785
3786 /*
3787  * ext4_get_inode_loc returns with an extra refcount against the inode's
3788  * underlying buffer_head on success. If 'in_mem' is true, we have all
3789  * data in memory that is needed to recreate the on-disk version of this
3790  * inode.
3791  */
3792 static int __ext4_get_inode_loc(struct inode *inode,
3793                                 struct ext4_iloc *iloc, int in_mem)
3794 {
3795         struct ext4_group_desc  *gdp;
3796         struct buffer_head      *bh;
3797         struct super_block      *sb = inode->i_sb;
3798         ext4_fsblk_t            block;
3799         int                     inodes_per_block, inode_offset;
3800
3801         iloc->bh = NULL;
3802         if (!ext4_valid_inum(sb, inode->i_ino))
3803                 return -EIO;
3804
3805         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3806         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3807         if (!gdp)
3808                 return -EIO;
3809
3810         /*
3811          * Figure out the offset within the block group inode table
3812          */
3813         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3814         inode_offset = ((inode->i_ino - 1) %
3815                         EXT4_INODES_PER_GROUP(sb));
3816         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3817         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3818
3819         bh = sb_getblk(sb, block);
3820         if (unlikely(!bh))
3821                 return -ENOMEM;
3822         if (!buffer_uptodate(bh)) {
3823                 lock_buffer(bh);
3824
3825                 /*
3826                  * If the buffer has the write error flag, we have failed
3827                  * to write out another inode in the same block.  In this
3828                  * case, we don't have to read the block because we may
3829                  * read the old inode data successfully.
3830                  */
3831                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3832                         set_buffer_uptodate(bh);
3833
3834                 if (buffer_uptodate(bh)) {
3835                         /* someone brought it uptodate while we waited */
3836                         unlock_buffer(bh);
3837                         goto has_buffer;
3838                 }
3839
3840                 /*
3841                  * If we have all information of the inode in memory and this
3842                  * is the only valid inode in the block, we need not read the
3843                  * block.
3844                  */
3845                 if (in_mem) {
3846                         struct buffer_head *bitmap_bh;
3847                         int i, start;
3848
3849                         start = inode_offset & ~(inodes_per_block - 1);
3850
3851                         /* Is the inode bitmap in cache? */
3852                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3853                         if (unlikely(!bitmap_bh))
3854                                 goto make_io;
3855
3856                         /*
3857                          * If the inode bitmap isn't in cache then the
3858                          * optimisation may end up performing two reads instead
3859                          * of one, so skip it.
3860                          */
3861                         if (!buffer_uptodate(bitmap_bh)) {
3862                                 brelse(bitmap_bh);
3863                                 goto make_io;
3864                         }
3865                         for (i = start; i < start + inodes_per_block; i++) {
3866                                 if (i == inode_offset)
3867                                         continue;
3868                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3869                                         break;
3870                         }
3871                         brelse(bitmap_bh);
3872                         if (i == start + inodes_per_block) {
3873                                 /* all other inodes are free, so skip I/O */
3874                                 memset(bh->b_data, 0, bh->b_size);
3875                                 set_buffer_uptodate(bh);
3876                                 unlock_buffer(bh);
3877                                 goto has_buffer;
3878                         }
3879                 }
3880
3881 make_io:
3882                 /*
3883                  * If we need to do any I/O, try to pre-readahead extra
3884                  * blocks from the inode table.
3885                  */
3886                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3887                         ext4_fsblk_t b, end, table;
3888                         unsigned num;
3889                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3890
3891                         table = ext4_inode_table(sb, gdp);
3892                         /* s_inode_readahead_blks is always a power of 2 */
3893                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
3894                         if (table > b)
3895                                 b = table;
3896                         end = b + ra_blks;
3897                         num = EXT4_INODES_PER_GROUP(sb);
3898                         if (ext4_has_group_desc_csum(sb))
3899                                 num -= ext4_itable_unused_count(sb, gdp);
3900                         table += num / inodes_per_block;
3901                         if (end > table)
3902                                 end = table;
3903                         while (b <= end)
3904                                 sb_breadahead(sb, b++);
3905                 }
3906
3907                 /*
3908                  * There are other valid inodes in the buffer, this inode
3909                  * has in-inode xattrs, or we don't have this inode in memory.
3910                  * Read the block from disk.
3911                  */
3912                 trace_ext4_load_inode(inode);
3913                 get_bh(bh);
3914                 bh->b_end_io = end_buffer_read_sync;
3915                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3916                 wait_on_buffer(bh);
3917                 if (!buffer_uptodate(bh)) {
3918                         EXT4_ERROR_INODE_BLOCK(inode, block,
3919                                                "unable to read itable block");
3920                         brelse(bh);
3921                         return -EIO;
3922                 }
3923         }
3924 has_buffer:
3925         iloc->bh = bh;
3926         return 0;
3927 }
3928
3929 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3930 {
3931         /* We have all inode data except xattrs in memory here. */
3932         return __ext4_get_inode_loc(inode, iloc,
3933                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3934 }
3935
3936 void ext4_set_inode_flags(struct inode *inode)
3937 {
3938         unsigned int flags = EXT4_I(inode)->i_flags;
3939         unsigned int new_fl = 0;
3940
3941         if (flags & EXT4_SYNC_FL)
3942                 new_fl |= S_SYNC;
3943         if (flags & EXT4_APPEND_FL)
3944                 new_fl |= S_APPEND;
3945         if (flags & EXT4_IMMUTABLE_FL)
3946                 new_fl |= S_IMMUTABLE;
3947         if (flags & EXT4_NOATIME_FL)
3948                 new_fl |= S_NOATIME;
3949         if (flags & EXT4_DIRSYNC_FL)
3950                 new_fl |= S_DIRSYNC;
3951         set_mask_bits(&inode->i_flags,
3952                       S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC, new_fl);
3953 }
3954
3955 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3956 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3957 {
3958         unsigned int vfs_fl;
3959         unsigned long old_fl, new_fl;
3960
3961         do {
3962                 vfs_fl = ei->vfs_inode.i_flags;
3963                 old_fl = ei->i_flags;
3964                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3965                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3966                                 EXT4_DIRSYNC_FL);
3967                 if (vfs_fl & S_SYNC)
3968                         new_fl |= EXT4_SYNC_FL;
3969                 if (vfs_fl & S_APPEND)
3970                         new_fl |= EXT4_APPEND_FL;
3971                 if (vfs_fl & S_IMMUTABLE)
3972                         new_fl |= EXT4_IMMUTABLE_FL;
3973                 if (vfs_fl & S_NOATIME)
3974                         new_fl |= EXT4_NOATIME_FL;
3975                 if (vfs_fl & S_DIRSYNC)
3976                         new_fl |= EXT4_DIRSYNC_FL;
3977         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3978 }
3979
3980 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3981                                   struct ext4_inode_info *ei)
3982 {
3983         blkcnt_t i_blocks ;
3984         struct inode *inode = &(ei->vfs_inode);
3985         struct super_block *sb = inode->i_sb;
3986
3987         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3988                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3989                 /* we are using combined 48 bit field */
3990                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3991                                         le32_to_cpu(raw_inode->i_blocks_lo);
3992                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3993                         /* i_blocks represent file system block size */
3994                         return i_blocks  << (inode->i_blkbits - 9);
3995                 } else {
3996                         return i_blocks;
3997                 }
3998         } else {
3999                 return le32_to_cpu(raw_inode->i_blocks_lo);
4000         }
4001 }
4002
4003 static inline void ext4_iget_extra_inode(struct inode *inode,
4004                                          struct ext4_inode *raw_inode,
4005                                          struct ext4_inode_info *ei)
4006 {
4007         __le32 *magic = (void *)raw_inode +
4008                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4009         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4010                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4011                 ext4_find_inline_data_nolock(inode);
4012         } else
4013                 EXT4_I(inode)->i_inline_off = 0;
4014 }
4015
4016 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4017 {
4018         struct ext4_iloc iloc;
4019         struct ext4_inode *raw_inode;
4020         struct ext4_inode_info *ei;
4021         struct inode *inode;
4022         journal_t *journal = EXT4_SB(sb)->s_journal;
4023         long ret;
4024         int block;
4025         uid_t i_uid;
4026         gid_t i_gid;
4027
4028         inode = iget_locked(sb, ino);
4029         if (!inode)
4030                 return ERR_PTR(-ENOMEM);
4031         if (!(inode->i_state & I_NEW))
4032                 return inode;
4033
4034         ei = EXT4_I(inode);
4035         iloc.bh = NULL;
4036
4037         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4038         if (ret < 0)
4039                 goto bad_inode;
4040         raw_inode = ext4_raw_inode(&iloc);
4041
4042         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4043                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4044                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4045                     EXT4_INODE_SIZE(inode->i_sb)) {
4046                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4047                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4048                                 EXT4_INODE_SIZE(inode->i_sb));
4049                         ret = -EIO;
4050                         goto bad_inode;
4051                 }
4052         } else
4053                 ei->i_extra_isize = 0;
4054
4055         /* Precompute checksum seed for inode metadata */
4056         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4057                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4058                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4059                 __u32 csum;
4060                 __le32 inum = cpu_to_le32(inode->i_ino);
4061                 __le32 gen = raw_inode->i_generation;
4062                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4063                                    sizeof(inum));
4064                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4065                                               sizeof(gen));
4066         }
4067
4068         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4069                 EXT4_ERROR_INODE(inode, "checksum invalid");
4070                 ret = -EIO;
4071                 goto bad_inode;
4072         }
4073
4074         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4075         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4076         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4077         if (!(test_opt(inode->i_sb, NO_UID32))) {
4078                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4079                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4080         }
4081         i_uid_write(inode, i_uid);
4082         i_gid_write(inode, i_gid);
4083         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4084
4085         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4086         ei->i_inline_off = 0;
4087         ei->i_dir_start_lookup = 0;
4088         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4089         /* We now have enough fields to check if the inode was active or not.
4090          * This is needed because nfsd might try to access dead inodes
4091          * the test is that same one that e2fsck uses
4092          * NeilBrown 1999oct15
4093          */
4094         if (inode->i_nlink == 0) {
4095                 if ((inode->i_mode == 0 ||
4096                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4097                     ino != EXT4_BOOT_LOADER_INO) {
4098                         /* this inode is deleted */
4099                         ret = -ESTALE;
4100                         goto bad_inode;
4101                 }
4102                 /* The only unlinked inodes we let through here have
4103                  * valid i_mode and are being read by the orphan
4104                  * recovery code: that's fine, we're about to complete
4105                  * the process of deleting those.
4106                  * OR it is the EXT4_BOOT_LOADER_INO which is
4107                  * not initialized on a new filesystem. */
4108         }
4109         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4110         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4111         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4112         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4113                 ei->i_file_acl |=
4114                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4115         inode->i_size = ext4_isize(raw_inode);
4116         ei->i_disksize = inode->i_size;
4117 #ifdef CONFIG_QUOTA
4118         ei->i_reserved_quota = 0;
4119 #endif
4120         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4121         ei->i_block_group = iloc.block_group;
4122         ei->i_last_alloc_group = ~0;
4123         /*
4124          * NOTE! The in-memory inode i_data array is in little-endian order
4125          * even on big-endian machines: we do NOT byteswap the block numbers!
4126          */
4127         for (block = 0; block < EXT4_N_BLOCKS; block++)
4128                 ei->i_data[block] = raw_inode->i_block[block];
4129         INIT_LIST_HEAD(&ei->i_orphan);
4130
4131         /*
4132          * Set transaction id's of transactions that have to be committed
4133          * to finish f[data]sync. We set them to currently running transaction
4134          * as we cannot be sure that the inode or some of its metadata isn't
4135          * part of the transaction - the inode could have been reclaimed and
4136          * now it is reread from disk.
4137          */
4138         if (journal) {
4139                 transaction_t *transaction;
4140                 tid_t tid;
4141
4142                 read_lock(&journal->j_state_lock);
4143                 if (journal->j_running_transaction)
4144                         transaction = journal->j_running_transaction;
4145                 else
4146                         transaction = journal->j_committing_transaction;
4147                 if (transaction)
4148                         tid = transaction->t_tid;
4149                 else
4150                         tid = journal->j_commit_sequence;
4151                 read_unlock(&journal->j_state_lock);
4152                 ei->i_sync_tid = tid;
4153                 ei->i_datasync_tid = tid;
4154         }
4155
4156         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4157                 if (ei->i_extra_isize == 0) {
4158                         /* The extra space is currently unused. Use it. */
4159                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4160                                             EXT4_GOOD_OLD_INODE_SIZE;
4161                 } else {
4162                         ext4_iget_extra_inode(inode, raw_inode, ei);
4163                 }
4164         }
4165
4166         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4167         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4168         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4169         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4170
4171         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4172         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4173                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4174                         inode->i_version |=
4175                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4176         }
4177
4178         ret = 0;
4179         if (ei->i_file_acl &&
4180             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4181                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4182                                  ei->i_file_acl);
4183                 ret = -EIO;
4184                 goto bad_inode;
4185         } else if (!ext4_has_inline_data(inode)) {
4186                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4187                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4188                             (S_ISLNK(inode->i_mode) &&
4189                              !ext4_inode_is_fast_symlink(inode))))
4190                                 /* Validate extent which is part of inode */
4191                                 ret = ext4_ext_check_inode(inode);
4192                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4193                            (S_ISLNK(inode->i_mode) &&
4194                             !ext4_inode_is_fast_symlink(inode))) {
4195                         /* Validate block references which are part of inode */
4196                         ret = ext4_ind_check_inode(inode);
4197                 }
4198         }
4199         if (ret)
4200                 goto bad_inode;
4201
4202         if (S_ISREG(inode->i_mode)) {
4203                 inode->i_op = &ext4_file_inode_operations;
4204                 inode->i_fop = &ext4_file_operations;
4205                 ext4_set_aops(inode);
4206         } else if (S_ISDIR(inode->i_mode)) {
4207                 inode->i_op = &ext4_dir_inode_operations;
4208                 inode->i_fop = &ext4_dir_operations;
4209         } else if (S_ISLNK(inode->i_mode)) {
4210                 if (ext4_inode_is_fast_symlink(inode)) {
4211                         inode->i_op = &ext4_fast_symlink_inode_operations;
4212                         nd_terminate_link(ei->i_data, inode->i_size,
4213                                 sizeof(ei->i_data) - 1);
4214                 } else {
4215                         inode->i_op = &ext4_symlink_inode_operations;
4216                         ext4_set_aops(inode);
4217                 }
4218         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4219               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4220                 inode->i_op = &ext4_special_inode_operations;
4221                 if (raw_inode->i_block[0])
4222                         init_special_inode(inode, inode->i_mode,
4223                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4224                 else
4225                         init_special_inode(inode, inode->i_mode,
4226                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4227         } else if (ino == EXT4_BOOT_LOADER_INO) {
4228                 make_bad_inode(inode);
4229         } else {
4230                 ret = -EIO;
4231                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4232                 goto bad_inode;
4233         }
4234         brelse(iloc.bh);
4235         ext4_set_inode_flags(inode);
4236         unlock_new_inode(inode);
4237         return inode;
4238
4239 bad_inode:
4240         brelse(iloc.bh);
4241         iget_failed(inode);
4242         return ERR_PTR(ret);
4243 }
4244
4245 static int ext4_inode_blocks_set(handle_t *handle,
4246                                 struct ext4_inode *raw_inode,
4247                                 struct ext4_inode_info *ei)
4248 {
4249         struct inode *inode = &(ei->vfs_inode);
4250         u64 i_blocks = inode->i_blocks;
4251         struct super_block *sb = inode->i_sb;
4252
4253         if (i_blocks <= ~0U) {
4254                 /*
4255                  * i_blocks can be represented in a 32 bit variable
4256                  * as multiple of 512 bytes
4257                  */
4258                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4259                 raw_inode->i_blocks_high = 0;
4260                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4261                 return 0;
4262         }
4263         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4264                 return -EFBIG;
4265
4266         if (i_blocks <= 0xffffffffffffULL) {
4267                 /*
4268                  * i_blocks can be represented in a 48 bit variable
4269                  * as multiple of 512 bytes
4270                  */
4271                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4272                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4273                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4274         } else {
4275                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4276                 /* i_block is stored in file system block size */
4277                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4278                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4279                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4280         }
4281         return 0;
4282 }
4283
4284 /*
4285  * Post the struct inode info into an on-disk inode location in the
4286  * buffer-cache.  This gobbles the caller's reference to the
4287  * buffer_head in the inode location struct.
4288  *
4289  * The caller must have write access to iloc->bh.
4290  */
4291 static int ext4_do_update_inode(handle_t *handle,
4292                                 struct inode *inode,
4293                                 struct ext4_iloc *iloc)
4294 {
4295         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4296         struct ext4_inode_info *ei = EXT4_I(inode);
4297         struct buffer_head *bh = iloc->bh;
4298         int err = 0, rc, block;
4299         int need_datasync = 0;
4300         uid_t i_uid;
4301         gid_t i_gid;
4302
4303         /* For fields not not tracking in the in-memory inode,
4304          * initialise them to zero for new inodes. */
4305         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4306                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4307
4308         ext4_get_inode_flags(ei);
4309         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4310         i_uid = i_uid_read(inode);
4311         i_gid = i_gid_read(inode);
4312         if (!(test_opt(inode->i_sb, NO_UID32))) {
4313                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4314                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4315 /*
4316  * Fix up interoperability with old kernels. Otherwise, old inodes get
4317  * re-used with the upper 16 bits of the uid/gid intact
4318  */
4319                 if (!ei->i_dtime) {
4320                         raw_inode->i_uid_high =
4321                                 cpu_to_le16(high_16_bits(i_uid));
4322                         raw_inode->i_gid_high =
4323                                 cpu_to_le16(high_16_bits(i_gid));
4324                 } else {
4325                         raw_inode->i_uid_high = 0;
4326                         raw_inode->i_gid_high = 0;
4327                 }
4328         } else {
4329                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4330                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4331                 raw_inode->i_uid_high = 0;
4332                 raw_inode->i_gid_high = 0;
4333         }
4334         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4335
4336         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4337         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4338         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4339         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4340
4341         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4342                 goto out_brelse;
4343         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4344         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4345         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4346             cpu_to_le32(EXT4_OS_HURD))
4347                 raw_inode->i_file_acl_high =
4348                         cpu_to_le16(ei->i_file_acl >> 32);
4349         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4350         if (ei->i_disksize != ext4_isize(raw_inode)) {
4351                 ext4_isize_set(raw_inode, ei->i_disksize);
4352                 need_datasync = 1;
4353         }
4354         if (ei->i_disksize > 0x7fffffffULL) {
4355                 struct super_block *sb = inode->i_sb;
4356                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4357                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4358                                 EXT4_SB(sb)->s_es->s_rev_level ==
4359                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4360                         /* If this is the first large file
4361                          * created, add a flag to the superblock.
4362                          */
4363                         err = ext4_journal_get_write_access(handle,
4364                                         EXT4_SB(sb)->s_sbh);
4365                         if (err)
4366                                 goto out_brelse;
4367                         ext4_update_dynamic_rev(sb);
4368                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4369                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4370                         ext4_handle_sync(handle);
4371                         err = ext4_handle_dirty_super(handle, sb);
4372                 }
4373         }
4374         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4375         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4376                 if (old_valid_dev(inode->i_rdev)) {
4377                         raw_inode->i_block[0] =
4378                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4379                         raw_inode->i_block[1] = 0;
4380                 } else {
4381                         raw_inode->i_block[0] = 0;
4382                         raw_inode->i_block[1] =
4383                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4384                         raw_inode->i_block[2] = 0;
4385                 }
4386         } else if (!ext4_has_inline_data(inode)) {
4387                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4388                         raw_inode->i_block[block] = ei->i_data[block];
4389         }
4390
4391         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4392         if (ei->i_extra_isize) {
4393                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4394                         raw_inode->i_version_hi =
4395                         cpu_to_le32(inode->i_version >> 32);
4396                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4397         }
4398
4399         ext4_inode_csum_set(inode, raw_inode, ei);
4400
4401         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4402         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4403         if (!err)
4404                 err = rc;
4405         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4406
4407         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4408 out_brelse:
4409         brelse(bh);
4410         ext4_std_error(inode->i_sb, err);
4411         return err;
4412 }
4413
4414 /*
4415  * ext4_write_inode()
4416  *
4417  * We are called from a few places:
4418  *
4419  * - Within generic_file_write() for O_SYNC files.
4420  *   Here, there will be no transaction running. We wait for any running
4421  *   transaction to commit.
4422  *
4423  * - Within sys_sync(), kupdate and such.
4424  *   We wait on commit, if tol to.
4425  *
4426  * - Within prune_icache() (PF_MEMALLOC == true)
4427  *   Here we simply return.  We can't afford to block kswapd on the
4428  *   journal commit.
4429  *
4430  * In all cases it is actually safe for us to return without doing anything,
4431  * because the inode has been copied into a raw inode buffer in
4432  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4433  * knfsd.
4434  *
4435  * Note that we are absolutely dependent upon all inode dirtiers doing the
4436  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4437  * which we are interested.
4438  *
4439  * It would be a bug for them to not do this.  The code:
4440  *
4441  *      mark_inode_dirty(inode)
4442  *      stuff();
4443  *      inode->i_size = expr;
4444  *
4445  * is in error because a kswapd-driven write_inode() could occur while
4446  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4447  * will no longer be on the superblock's dirty inode list.
4448  */
4449 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4450 {
4451         int err;
4452
4453         if (current->flags & PF_MEMALLOC)
4454                 return 0;
4455
4456         if (EXT4_SB(inode->i_sb)->s_journal) {
4457                 if (ext4_journal_current_handle()) {
4458                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4459                         dump_stack();
4460                         return -EIO;
4461                 }
4462
4463                 if (wbc->sync_mode != WB_SYNC_ALL)
4464                         return 0;
4465
4466                 err = ext4_force_commit(inode->i_sb);
4467         } else {
4468                 struct ext4_iloc iloc;
4469
4470                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4471                 if (err)
4472                         return err;
4473                 if (wbc->sync_mode == WB_SYNC_ALL)
4474                         sync_dirty_buffer(iloc.bh);
4475                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4476                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4477                                          "IO error syncing inode");
4478                         err = -EIO;
4479                 }
4480                 brelse(iloc.bh);
4481         }
4482         return err;
4483 }
4484
4485 /*
4486  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4487  * buffers that are attached to a page stradding i_size and are undergoing
4488  * commit. In that case we have to wait for commit to finish and try again.
4489  */
4490 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4491 {
4492         struct page *page;
4493         unsigned offset;
4494         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4495         tid_t commit_tid = 0;
4496         int ret;
4497
4498         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4499         /*
4500          * All buffers in the last page remain valid? Then there's nothing to
4501          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4502          * blocksize case
4503          */
4504         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4505                 return;
4506         while (1) {
4507                 page = find_lock_page(inode->i_mapping,
4508                                       inode->i_size >> PAGE_CACHE_SHIFT);
4509                 if (!page)
4510                         return;
4511                 ret = __ext4_journalled_invalidatepage(page, offset,
4512                                                 PAGE_CACHE_SIZE - offset);
4513                 unlock_page(page);
4514                 page_cache_release(page);
4515                 if (ret != -EBUSY)
4516                         return;
4517                 commit_tid = 0;
4518                 read_lock(&journal->j_state_lock);
4519                 if (journal->j_committing_transaction)
4520                         commit_tid = journal->j_committing_transaction->t_tid;
4521                 read_unlock(&journal->j_state_lock);
4522                 if (commit_tid)
4523                         jbd2_log_wait_commit(journal, commit_tid);
4524         }
4525 }
4526
4527 /*
4528  * ext4_setattr()
4529  *
4530  * Called from notify_change.
4531  *
4532  * We want to trap VFS attempts to truncate the file as soon as
4533  * possible.  In particular, we want to make sure that when the VFS
4534  * shrinks i_size, we put the inode on the orphan list and modify
4535  * i_disksize immediately, so that during the subsequent flushing of
4536  * dirty pages and freeing of disk blocks, we can guarantee that any
4537  * commit will leave the blocks being flushed in an unused state on
4538  * disk.  (On recovery, the inode will get truncated and the blocks will
4539  * be freed, so we have a strong guarantee that no future commit will
4540  * leave these blocks visible to the user.)
4541  *
4542  * Another thing we have to assure is that if we are in ordered mode
4543  * and inode is still attached to the committing transaction, we must
4544  * we start writeout of all the dirty pages which are being truncated.
4545  * This way we are sure that all the data written in the previous
4546  * transaction are already on disk (truncate waits for pages under
4547  * writeback).
4548  *
4549  * Called with inode->i_mutex down.
4550  */
4551 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4552 {
4553         struct inode *inode = dentry->d_inode;
4554         int error, rc = 0;
4555         int orphan = 0;
4556         const unsigned int ia_valid = attr->ia_valid;
4557
4558         error = inode_change_ok(inode, attr);
4559         if (error)
4560                 return error;
4561
4562         if (is_quota_modification(inode, attr))
4563                 dquot_initialize(inode);
4564         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4565             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4566                 handle_t *handle;
4567
4568                 /* (user+group)*(old+new) structure, inode write (sb,
4569                  * inode block, ? - but truncate inode update has it) */
4570                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4571                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4572                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4573                 if (IS_ERR(handle)) {
4574                         error = PTR_ERR(handle);
4575                         goto err_out;
4576                 }
4577                 error = dquot_transfer(inode, attr);
4578                 if (error) {
4579                         ext4_journal_stop(handle);
4580                         return error;
4581                 }
4582                 /* Update corresponding info in inode so that everything is in
4583                  * one transaction */
4584                 if (attr->ia_valid & ATTR_UID)
4585                         inode->i_uid = attr->ia_uid;
4586                 if (attr->ia_valid & ATTR_GID)
4587                         inode->i_gid = attr->ia_gid;
4588                 error = ext4_mark_inode_dirty(handle, inode);
4589                 ext4_journal_stop(handle);
4590         }
4591
4592         if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4593                 handle_t *handle;
4594
4595                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4596                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4597
4598                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4599                                 return -EFBIG;
4600                 }
4601
4602                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4603                         inode_inc_iversion(inode);
4604
4605                 if (S_ISREG(inode->i_mode) &&
4606                     (attr->ia_size < inode->i_size)) {
4607                         if (ext4_should_order_data(inode)) {
4608                                 error = ext4_begin_ordered_truncate(inode,
4609                                                             attr->ia_size);
4610                                 if (error)
4611                                         goto err_out;
4612                         }
4613                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4614                         if (IS_ERR(handle)) {
4615                                 error = PTR_ERR(handle);
4616                                 goto err_out;
4617                         }
4618                         if (ext4_handle_valid(handle)) {
4619                                 error = ext4_orphan_add(handle, inode);
4620                                 orphan = 1;
4621                         }
4622                         down_write(&EXT4_I(inode)->i_data_sem);
4623                         EXT4_I(inode)->i_disksize = attr->ia_size;
4624                         rc = ext4_mark_inode_dirty(handle, inode);
4625                         if (!error)
4626                                 error = rc;
4627                         /*
4628                          * We have to update i_size under i_data_sem together
4629                          * with i_disksize to avoid races with writeback code
4630                          * running ext4_wb_update_i_disksize().
4631                          */
4632                         if (!error)
4633                                 i_size_write(inode, attr->ia_size);
4634                         up_write(&EXT4_I(inode)->i_data_sem);
4635                         ext4_journal_stop(handle);
4636                         if (error) {
4637                                 ext4_orphan_del(NULL, inode);
4638                                 goto err_out;
4639                         }
4640                 } else
4641                         i_size_write(inode, attr->ia_size);
4642
4643                 /*
4644                  * Blocks are going to be removed from the inode. Wait
4645                  * for dio in flight.  Temporarily disable
4646                  * dioread_nolock to prevent livelock.
4647                  */
4648                 if (orphan) {
4649                         if (!ext4_should_journal_data(inode)) {
4650                                 ext4_inode_block_unlocked_dio(inode);
4651                                 inode_dio_wait(inode);
4652                                 ext4_inode_resume_unlocked_dio(inode);
4653                         } else
4654                                 ext4_wait_for_tail_page_commit(inode);
4655                 }
4656                 /*
4657                  * Truncate pagecache after we've waited for commit
4658                  * in data=journal mode to make pages freeable.
4659                  */
4660                         truncate_pagecache(inode, inode->i_size);
4661         }
4662         /*
4663          * We want to call ext4_truncate() even if attr->ia_size ==
4664          * inode->i_size for cases like truncation of fallocated space
4665          */
4666         if (attr->ia_valid & ATTR_SIZE)
4667                 ext4_truncate(inode);
4668
4669         if (!rc) {
4670                 setattr_copy(inode, attr);
4671                 mark_inode_dirty(inode);
4672         }
4673
4674         /*
4675          * If the call to ext4_truncate failed to get a transaction handle at
4676          * all, we need to clean up the in-core orphan list manually.
4677          */
4678         if (orphan && inode->i_nlink)
4679                 ext4_orphan_del(NULL, inode);
4680
4681         if (!rc && (ia_valid & ATTR_MODE))
4682                 rc = posix_acl_chmod(inode, inode->i_mode);
4683
4684 err_out:
4685         ext4_std_error(inode->i_sb, error);
4686         if (!error)
4687                 error = rc;
4688         return error;
4689 }
4690
4691 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4692                  struct kstat *stat)
4693 {
4694         struct inode *inode;
4695         unsigned long long delalloc_blocks;
4696
4697         inode = dentry->d_inode;
4698         generic_fillattr(inode, stat);
4699
4700         /*
4701          * If there is inline data in the inode, the inode will normally not
4702          * have data blocks allocated (it may have an external xattr block).
4703          * Report at least one sector for such files, so tools like tar, rsync,
4704          * others doen't incorrectly think the file is completely sparse.
4705          */
4706         if (unlikely(ext4_has_inline_data(inode)))
4707                 stat->blocks += (stat->size + 511) >> 9;
4708
4709         /*
4710          * We can't update i_blocks if the block allocation is delayed
4711          * otherwise in the case of system crash before the real block
4712          * allocation is done, we will have i_blocks inconsistent with
4713          * on-disk file blocks.
4714          * We always keep i_blocks updated together with real
4715          * allocation. But to not confuse with user, stat
4716          * will return the blocks that include the delayed allocation
4717          * blocks for this file.
4718          */
4719         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4720                                    EXT4_I(inode)->i_reserved_data_blocks);
4721         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4722         return 0;
4723 }
4724
4725 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4726                                    int pextents)
4727 {
4728         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4729                 return ext4_ind_trans_blocks(inode, lblocks);
4730         return ext4_ext_index_trans_blocks(inode, pextents);
4731 }
4732
4733 /*
4734  * Account for index blocks, block groups bitmaps and block group
4735  * descriptor blocks if modify datablocks and index blocks
4736  * worse case, the indexs blocks spread over different block groups
4737  *
4738  * If datablocks are discontiguous, they are possible to spread over
4739  * different block groups too. If they are contiguous, with flexbg,
4740  * they could still across block group boundary.
4741  *
4742  * Also account for superblock, inode, quota and xattr blocks
4743  */
4744 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4745                                   int pextents)
4746 {
4747         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4748         int gdpblocks;
4749         int idxblocks;
4750         int ret = 0;
4751
4752         /*
4753          * How many index blocks need to touch to map @lblocks logical blocks
4754          * to @pextents physical extents?
4755          */
4756         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4757
4758         ret = idxblocks;
4759
4760         /*
4761          * Now let's see how many group bitmaps and group descriptors need
4762          * to account
4763          */
4764         groups = idxblocks + pextents;
4765         gdpblocks = groups;
4766         if (groups > ngroups)
4767                 groups = ngroups;
4768         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4769                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4770
4771         /* bitmaps and block group descriptor blocks */
4772         ret += groups + gdpblocks;
4773
4774         /* Blocks for super block, inode, quota and xattr blocks */
4775         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4776
4777         return ret;
4778 }
4779
4780 /*
4781  * Calculate the total number of credits to reserve to fit
4782  * the modification of a single pages into a single transaction,
4783  * which may include multiple chunks of block allocations.
4784  *
4785  * This could be called via ext4_write_begin()
4786  *
4787  * We need to consider the worse case, when
4788  * one new block per extent.
4789  */
4790 int ext4_writepage_trans_blocks(struct inode *inode)
4791 {
4792         int bpp = ext4_journal_blocks_per_page(inode);
4793         int ret;
4794
4795         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4796
4797         /* Account for data blocks for journalled mode */
4798         if (ext4_should_journal_data(inode))
4799                 ret += bpp;
4800         return ret;
4801 }
4802
4803 /*
4804  * Calculate the journal credits for a chunk of data modification.
4805  *
4806  * This is called from DIO, fallocate or whoever calling
4807  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4808  *
4809  * journal buffers for data blocks are not included here, as DIO
4810  * and fallocate do no need to journal data buffers.
4811  */
4812 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4813 {
4814         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4815 }
4816
4817 /*
4818  * The caller must have previously called ext4_reserve_inode_write().
4819  * Give this, we know that the caller already has write access to iloc->bh.
4820  */
4821 int ext4_mark_iloc_dirty(handle_t *handle,
4822                          struct inode *inode, struct ext4_iloc *iloc)
4823 {
4824         int err = 0;
4825
4826         if (IS_I_VERSION(inode))
4827                 inode_inc_iversion(inode);
4828
4829         /* the do_update_inode consumes one bh->b_count */
4830         get_bh(iloc->bh);
4831
4832         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4833         err = ext4_do_update_inode(handle, inode, iloc);
4834         put_bh(iloc->bh);
4835         return err;
4836 }
4837
4838 /*
4839  * On success, We end up with an outstanding reference count against
4840  * iloc->bh.  This _must_ be cleaned up later.
4841  */
4842
4843 int
4844 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4845                          struct ext4_iloc *iloc)
4846 {
4847         int err;
4848
4849         err = ext4_get_inode_loc(inode, iloc);
4850         if (!err) {
4851                 BUFFER_TRACE(iloc->bh, "get_write_access");
4852                 err = ext4_journal_get_write_access(handle, iloc->bh);
4853                 if (err) {
4854                         brelse(iloc->bh);
4855                         iloc->bh = NULL;
4856                 }
4857         }
4858         ext4_std_error(inode->i_sb, err);
4859         return err;
4860 }
4861
4862 /*
4863  * Expand an inode by new_extra_isize bytes.
4864  * Returns 0 on success or negative error number on failure.
4865  */
4866 static int ext4_expand_extra_isize(struct inode *inode,
4867                                    unsigned int new_extra_isize,
4868                                    struct ext4_iloc iloc,
4869                                    handle_t *handle)
4870 {
4871         struct ext4_inode *raw_inode;
4872         struct ext4_xattr_ibody_header *header;
4873
4874         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4875                 return 0;
4876
4877         raw_inode = ext4_raw_inode(&iloc);
4878
4879         header = IHDR(inode, raw_inode);
4880
4881         /* No extended attributes present */
4882         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4883             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4884                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4885                         new_extra_isize);
4886                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4887                 return 0;
4888         }
4889
4890         /* try to expand with EAs present */
4891         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4892                                           raw_inode, handle);
4893 }
4894
4895 /*
4896  * What we do here is to mark the in-core inode as clean with respect to inode
4897  * dirtiness (it may still be data-dirty).
4898  * This means that the in-core inode may be reaped by prune_icache
4899  * without having to perform any I/O.  This is a very good thing,
4900  * because *any* task may call prune_icache - even ones which
4901  * have a transaction open against a different journal.
4902  *
4903  * Is this cheating?  Not really.  Sure, we haven't written the
4904  * inode out, but prune_icache isn't a user-visible syncing function.
4905  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4906  * we start and wait on commits.
4907  */
4908 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4909 {
4910         struct ext4_iloc iloc;
4911         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4912         static unsigned int mnt_count;
4913         int err, ret;
4914
4915         might_sleep();
4916         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4917         err = ext4_reserve_inode_write(handle, inode, &iloc);
4918         if (ext4_handle_valid(handle) &&
4919             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4920             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4921                 /*
4922                  * We need extra buffer credits since we may write into EA block
4923                  * with this same handle. If journal_extend fails, then it will
4924                  * only result in a minor loss of functionality for that inode.
4925                  * If this is felt to be critical, then e2fsck should be run to
4926                  * force a large enough s_min_extra_isize.
4927                  */
4928                 if ((jbd2_journal_extend(handle,
4929                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4930                         ret = ext4_expand_extra_isize(inode,
4931                                                       sbi->s_want_extra_isize,
4932                                                       iloc, handle);
4933                         if (ret) {
4934                                 ext4_set_inode_state(inode,
4935                                                      EXT4_STATE_NO_EXPAND);
4936                                 if (mnt_count !=
4937                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4938                                         ext4_warning(inode->i_sb,
4939                                         "Unable to expand inode %lu. Delete"
4940                                         " some EAs or run e2fsck.",
4941                                         inode->i_ino);
4942                                         mnt_count =
4943                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4944                                 }
4945                         }
4946                 }
4947         }
4948         if (!err)
4949                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4950         return err;
4951 }
4952
4953 /*
4954  * ext4_dirty_inode() is called from __mark_inode_dirty()
4955  *
4956  * We're really interested in the case where a file is being extended.
4957  * i_size has been changed by generic_commit_write() and we thus need
4958  * to include the updated inode in the current transaction.
4959  *
4960  * Also, dquot_alloc_block() will always dirty the inode when blocks
4961  * are allocated to the file.
4962  *
4963  * If the inode is marked synchronous, we don't honour that here - doing
4964  * so would cause a commit on atime updates, which we don't bother doing.
4965  * We handle synchronous inodes at the highest possible level.
4966  */
4967 void ext4_dirty_inode(struct inode *inode, int flags)
4968 {
4969         handle_t *handle;
4970
4971         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4972         if (IS_ERR(handle))
4973                 goto out;
4974
4975         ext4_mark_inode_dirty(handle, inode);
4976
4977         ext4_journal_stop(handle);
4978 out:
4979         return;
4980 }
4981
4982 #if 0
4983 /*
4984  * Bind an inode's backing buffer_head into this transaction, to prevent
4985  * it from being flushed to disk early.  Unlike
4986  * ext4_reserve_inode_write, this leaves behind no bh reference and
4987  * returns no iloc structure, so the caller needs to repeat the iloc
4988  * lookup to mark the inode dirty later.
4989  */
4990 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4991 {
4992         struct ext4_iloc iloc;
4993
4994         int err = 0;
4995         if (handle) {
4996                 err = ext4_get_inode_loc(inode, &iloc);
4997                 if (!err) {
4998                         BUFFER_TRACE(iloc.bh, "get_write_access");
4999                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5000                         if (!err)
5001                                 err = ext4_handle_dirty_metadata(handle,
5002                                                                  NULL,
5003                                                                  iloc.bh);
5004                         brelse(iloc.bh);
5005                 }
5006         }
5007         ext4_std_error(inode->i_sb, err);
5008         return err;
5009 }
5010 #endif
5011
5012 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5013 {
5014         journal_t *journal;
5015         handle_t *handle;
5016         int err;
5017
5018         /*
5019          * We have to be very careful here: changing a data block's
5020          * journaling status dynamically is dangerous.  If we write a
5021          * data block to the journal, change the status and then delete
5022          * that block, we risk forgetting to revoke the old log record
5023          * from the journal and so a subsequent replay can corrupt data.
5024          * So, first we make sure that the journal is empty and that
5025          * nobody is changing anything.
5026          */
5027
5028         journal = EXT4_JOURNAL(inode);
5029         if (!journal)
5030                 return 0;
5031         if (is_journal_aborted(journal))
5032                 return -EROFS;
5033         /* We have to allocate physical blocks for delalloc blocks
5034          * before flushing journal. otherwise delalloc blocks can not
5035          * be allocated any more. even more truncate on delalloc blocks
5036          * could trigger BUG by flushing delalloc blocks in journal.
5037          * There is no delalloc block in non-journal data mode.
5038          */
5039         if (val && test_opt(inode->i_sb, DELALLOC)) {
5040                 err = ext4_alloc_da_blocks(inode);
5041                 if (err < 0)
5042                         return err;
5043         }
5044
5045         /* Wait for all existing dio workers */
5046         ext4_inode_block_unlocked_dio(inode);
5047         inode_dio_wait(inode);
5048
5049         jbd2_journal_lock_updates(journal);
5050
5051         /*
5052          * OK, there are no updates running now, and all cached data is
5053          * synced to disk.  We are now in a completely consistent state
5054          * which doesn't have anything in the journal, and we know that
5055          * no filesystem updates are running, so it is safe to modify
5056          * the inode's in-core data-journaling state flag now.
5057          */
5058
5059         if (val)
5060                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5061         else {
5062                 jbd2_journal_flush(journal);
5063                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5064         }
5065         ext4_set_aops(inode);
5066
5067         jbd2_journal_unlock_updates(journal);
5068         ext4_inode_resume_unlocked_dio(inode);
5069
5070         /* Finally we can mark the inode as dirty. */
5071
5072         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5073         if (IS_ERR(handle))
5074                 return PTR_ERR(handle);
5075
5076         err = ext4_mark_inode_dirty(handle, inode);
5077         ext4_handle_sync(handle);
5078         ext4_journal_stop(handle);
5079         ext4_std_error(inode->i_sb, err);
5080
5081         return err;
5082 }
5083
5084 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5085 {
5086         return !buffer_mapped(bh);
5087 }
5088
5089 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5090 {
5091         struct page *page = vmf->page;
5092         loff_t size;
5093         unsigned long len;
5094         int ret;
5095         struct file *file = vma->vm_file;
5096         struct inode *inode = file_inode(file);
5097         struct address_space *mapping = inode->i_mapping;
5098         handle_t *handle;
5099         get_block_t *get_block;
5100         int retries = 0;
5101
5102         sb_start_pagefault(inode->i_sb);
5103         file_update_time(vma->vm_file);
5104         /* Delalloc case is easy... */
5105         if (test_opt(inode->i_sb, DELALLOC) &&
5106             !ext4_should_journal_data(inode) &&
5107             !ext4_nonda_switch(inode->i_sb)) {
5108                 do {
5109                         ret = __block_page_mkwrite(vma, vmf,
5110                                                    ext4_da_get_block_prep);
5111                 } while (ret == -ENOSPC &&
5112                        ext4_should_retry_alloc(inode->i_sb, &retries));
5113                 goto out_ret;
5114         }
5115
5116         lock_page(page);
5117         size = i_size_read(inode);
5118         /* Page got truncated from under us? */
5119         if (page->mapping != mapping || page_offset(page) > size) {
5120                 unlock_page(page);
5121                 ret = VM_FAULT_NOPAGE;
5122                 goto out;
5123         }
5124
5125         if (page->index == size >> PAGE_CACHE_SHIFT)
5126                 len = size & ~PAGE_CACHE_MASK;
5127         else
5128                 len = PAGE_CACHE_SIZE;
5129         /*
5130          * Return if we have all the buffers mapped. This avoids the need to do
5131          * journal_start/journal_stop which can block and take a long time
5132          */
5133         if (page_has_buffers(page)) {
5134                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5135                                             0, len, NULL,
5136                                             ext4_bh_unmapped)) {
5137                         /* Wait so that we don't change page under IO */
5138                         wait_for_stable_page(page);
5139                         ret = VM_FAULT_LOCKED;
5140                         goto out;
5141                 }
5142         }
5143         unlock_page(page);
5144         /* OK, we need to fill the hole... */
5145         if (ext4_should_dioread_nolock(inode))
5146                 get_block = ext4_get_block_write;
5147         else
5148                 get_block = ext4_get_block;
5149 retry_alloc:
5150         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5151                                     ext4_writepage_trans_blocks(inode));
5152         if (IS_ERR(handle)) {
5153                 ret = VM_FAULT_SIGBUS;
5154                 goto out;
5155         }
5156         ret = __block_page_mkwrite(vma, vmf, get_block);
5157         if (!ret && ext4_should_journal_data(inode)) {
5158                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5159                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5160                         unlock_page(page);
5161                         ret = VM_FAULT_SIGBUS;
5162                         ext4_journal_stop(handle);
5163                         goto out;
5164                 }
5165                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5166         }
5167         ext4_journal_stop(handle);
5168         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5169                 goto retry_alloc;
5170 out_ret:
5171         ret = block_page_mkwrite_return(ret);
5172 out:
5173         sb_end_pagefault(inode->i_sb);
5174         return ret;
5175 }