1 // SPDX-License-Identifier: GPL-2.0
3 * linux/fs/ext4/inode.c
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
12 * linux/fs/minix/inode.c
14 * Copyright (C) 1991, 1992 Linus Torvalds
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
45 #include "ext4_jbd2.h"
50 #include <trace/events/ext4.h>
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 struct ext4_inode_info *ei)
55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
58 int offset = offsetof(struct ext4_inode, i_checksum_lo);
59 unsigned int csum_size = sizeof(dummy_csum);
61 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65 EXT4_GOOD_OLD_INODE_SIZE - offset);
67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68 offset = offsetof(struct ext4_inode, i_checksum_hi);
69 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70 EXT4_GOOD_OLD_INODE_SIZE,
71 offset - EXT4_GOOD_OLD_INODE_SIZE);
72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
77 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78 EXT4_INODE_SIZE(inode->i_sb) - offset);
84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85 struct ext4_inode_info *ei)
87 __u32 provided, calculated;
89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90 cpu_to_le32(EXT4_OS_LINUX) ||
91 !ext4_has_metadata_csum(inode->i_sb))
94 provided = le16_to_cpu(raw->i_checksum_lo);
95 calculated = ext4_inode_csum(inode, raw, ei);
96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100 calculated &= 0xFFFF;
102 return provided == calculated;
105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106 struct ext4_inode_info *ei)
110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111 cpu_to_le32(EXT4_OS_LINUX) ||
112 !ext4_has_metadata_csum(inode->i_sb))
115 csum = ext4_inode_csum(inode, raw, ei);
116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
125 trace_ext4_begin_ordered_truncate(inode, new_size);
127 * If jinode is zero, then we never opened the file for
128 * writing, so there's no need to call
129 * jbd2_journal_begin_ordered_truncate() since there's no
130 * outstanding writes we need to flush.
132 if (!EXT4_I(inode)->jinode)
134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135 EXT4_I(inode)->jinode,
139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 * Test whether an inode is a fast symlink.
144 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
146 int ext4_inode_is_fast_symlink(struct inode *inode)
148 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
149 int ea_blocks = EXT4_I(inode)->i_file_acl ?
150 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152 if (ext4_has_inline_data(inode))
155 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157 return S_ISLNK(inode->i_mode) && inode->i_size &&
158 (inode->i_size < EXT4_N_BLOCKS * 4);
162 * Called at the last iput() if i_nlink is zero.
164 void ext4_evict_inode(struct inode *inode)
169 * Credits for final inode cleanup and freeing:
170 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
171 * (xattr block freeing), bitmap, group descriptor (inode freeing)
173 int extra_credits = 6;
174 struct ext4_xattr_inode_array *ea_inode_array = NULL;
175 bool freeze_protected = false;
177 trace_ext4_evict_inode(inode);
179 if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
180 ext4_evict_ea_inode(inode);
181 if (inode->i_nlink) {
182 truncate_inode_pages_final(&inode->i_data);
187 if (is_bad_inode(inode))
189 dquot_initialize(inode);
191 if (ext4_should_order_data(inode))
192 ext4_begin_ordered_truncate(inode, 0);
193 truncate_inode_pages_final(&inode->i_data);
196 * For inodes with journalled data, transaction commit could have
197 * dirtied the inode. And for inodes with dioread_nolock, unwritten
198 * extents converting worker could merge extents and also have dirtied
199 * the inode. Flush worker is ignoring it because of I_FREEING flag but
200 * we still need to remove the inode from the writeback lists.
202 if (!list_empty_careful(&inode->i_io_list))
203 inode_io_list_del(inode);
206 * Protect us against freezing - iput() caller didn't have to have any
207 * protection against it. When we are in a running transaction though,
208 * we are already protected against freezing and we cannot grab further
209 * protection due to lock ordering constraints.
211 if (!ext4_journal_current_handle()) {
212 sb_start_intwrite(inode->i_sb);
213 freeze_protected = true;
216 if (!IS_NOQUOTA(inode))
217 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
220 * Block bitmap, group descriptor, and inode are accounted in both
221 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
223 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
224 ext4_blocks_for_truncate(inode) + extra_credits - 3);
225 if (IS_ERR(handle)) {
226 ext4_std_error(inode->i_sb, PTR_ERR(handle));
228 * If we're going to skip the normal cleanup, we still need to
229 * make sure that the in-core orphan linked list is properly
232 ext4_orphan_del(NULL, inode);
233 if (freeze_protected)
234 sb_end_intwrite(inode->i_sb);
239 ext4_handle_sync(handle);
242 * Set inode->i_size to 0 before calling ext4_truncate(). We need
243 * special handling of symlinks here because i_size is used to
244 * determine whether ext4_inode_info->i_data contains symlink data or
245 * block mappings. Setting i_size to 0 will remove its fast symlink
246 * status. Erase i_data so that it becomes a valid empty block map.
248 if (ext4_inode_is_fast_symlink(inode))
249 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
251 err = ext4_mark_inode_dirty(handle, inode);
253 ext4_warning(inode->i_sb,
254 "couldn't mark inode dirty (err %d)", err);
257 if (inode->i_blocks) {
258 err = ext4_truncate(inode);
260 ext4_error_err(inode->i_sb, -err,
261 "couldn't truncate inode %lu (err %d)",
267 /* Remove xattr references. */
268 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
271 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
273 ext4_journal_stop(handle);
274 ext4_orphan_del(NULL, inode);
275 if (freeze_protected)
276 sb_end_intwrite(inode->i_sb);
277 ext4_xattr_inode_array_free(ea_inode_array);
282 * Kill off the orphan record which ext4_truncate created.
283 * AKPM: I think this can be inside the above `if'.
284 * Note that ext4_orphan_del() has to be able to cope with the
285 * deletion of a non-existent orphan - this is because we don't
286 * know if ext4_truncate() actually created an orphan record.
287 * (Well, we could do this if we need to, but heck - it works)
289 ext4_orphan_del(handle, inode);
290 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds();
293 * One subtle ordering requirement: if anything has gone wrong
294 * (transaction abort, IO errors, whatever), then we can still
295 * do these next steps (the fs will already have been marked as
296 * having errors), but we can't free the inode if the mark_dirty
299 if (ext4_mark_inode_dirty(handle, inode))
300 /* If that failed, just do the required in-core inode clear. */
301 ext4_clear_inode(inode);
303 ext4_free_inode(handle, inode);
304 ext4_journal_stop(handle);
305 if (freeze_protected)
306 sb_end_intwrite(inode->i_sb);
307 ext4_xattr_inode_array_free(ea_inode_array);
311 * Check out some where else accidentally dirty the evicting inode,
312 * which may probably cause inode use-after-free issues later.
314 WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
316 if (!list_empty(&EXT4_I(inode)->i_fc_list))
317 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
318 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
322 qsize_t *ext4_get_reserved_space(struct inode *inode)
324 return &EXT4_I(inode)->i_reserved_quota;
329 * Called with i_data_sem down, which is important since we can call
330 * ext4_discard_preallocations() from here.
332 void ext4_da_update_reserve_space(struct inode *inode,
333 int used, int quota_claim)
335 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
336 struct ext4_inode_info *ei = EXT4_I(inode);
338 spin_lock(&ei->i_block_reservation_lock);
339 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
340 if (unlikely(used > ei->i_reserved_data_blocks)) {
341 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
342 "with only %d reserved data blocks",
343 __func__, inode->i_ino, used,
344 ei->i_reserved_data_blocks);
346 used = ei->i_reserved_data_blocks;
349 /* Update per-inode reservations */
350 ei->i_reserved_data_blocks -= used;
351 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
353 spin_unlock(&ei->i_block_reservation_lock);
355 /* Update quota subsystem for data blocks */
357 dquot_claim_block(inode, EXT4_C2B(sbi, used));
360 * We did fallocate with an offset that is already delayed
361 * allocated. So on delayed allocated writeback we should
362 * not re-claim the quota for fallocated blocks.
364 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
368 * If we have done all the pending block allocations and if
369 * there aren't any writers on the inode, we can discard the
370 * inode's preallocations.
372 if ((ei->i_reserved_data_blocks == 0) &&
373 !inode_is_open_for_write(inode))
374 ext4_discard_preallocations(inode, 0);
377 static int __check_block_validity(struct inode *inode, const char *func,
379 struct ext4_map_blocks *map)
381 if (ext4_has_feature_journal(inode->i_sb) &&
383 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
385 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
386 ext4_error_inode(inode, func, line, map->m_pblk,
387 "lblock %lu mapped to illegal pblock %llu "
388 "(length %d)", (unsigned long) map->m_lblk,
389 map->m_pblk, map->m_len);
390 return -EFSCORRUPTED;
395 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
400 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
401 return fscrypt_zeroout_range(inode, lblk, pblk, len);
403 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
410 #define check_block_validity(inode, map) \
411 __check_block_validity((inode), __func__, __LINE__, (map))
413 #ifdef ES_AGGRESSIVE_TEST
414 static void ext4_map_blocks_es_recheck(handle_t *handle,
416 struct ext4_map_blocks *es_map,
417 struct ext4_map_blocks *map,
424 * There is a race window that the result is not the same.
425 * e.g. xfstests #223 when dioread_nolock enables. The reason
426 * is that we lookup a block mapping in extent status tree with
427 * out taking i_data_sem. So at the time the unwritten extent
428 * could be converted.
430 down_read(&EXT4_I(inode)->i_data_sem);
431 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
432 retval = ext4_ext_map_blocks(handle, inode, map, 0);
434 retval = ext4_ind_map_blocks(handle, inode, map, 0);
436 up_read((&EXT4_I(inode)->i_data_sem));
439 * We don't check m_len because extent will be collpased in status
440 * tree. So the m_len might not equal.
442 if (es_map->m_lblk != map->m_lblk ||
443 es_map->m_flags != map->m_flags ||
444 es_map->m_pblk != map->m_pblk) {
445 printk("ES cache assertion failed for inode: %lu "
446 "es_cached ex [%d/%d/%llu/%x] != "
447 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
448 inode->i_ino, es_map->m_lblk, es_map->m_len,
449 es_map->m_pblk, es_map->m_flags, map->m_lblk,
450 map->m_len, map->m_pblk, map->m_flags,
454 #endif /* ES_AGGRESSIVE_TEST */
457 * The ext4_map_blocks() function tries to look up the requested blocks,
458 * and returns if the blocks are already mapped.
460 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
461 * and store the allocated blocks in the result buffer head and mark it
464 * If file type is extents based, it will call ext4_ext_map_blocks(),
465 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
468 * On success, it returns the number of blocks being mapped or allocated. if
469 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
470 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
472 * It returns 0 if plain look up failed (blocks have not been allocated), in
473 * that case, @map is returned as unmapped but we still do fill map->m_len to
474 * indicate the length of a hole starting at map->m_lblk.
476 * It returns the error in case of allocation failure.
478 int ext4_map_blocks(handle_t *handle, struct inode *inode,
479 struct ext4_map_blocks *map, int flags)
481 struct extent_status es;
484 #ifdef ES_AGGRESSIVE_TEST
485 struct ext4_map_blocks orig_map;
487 memcpy(&orig_map, map, sizeof(*map));
491 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
492 flags, map->m_len, (unsigned long) map->m_lblk);
495 * ext4_map_blocks returns an int, and m_len is an unsigned int
497 if (unlikely(map->m_len > INT_MAX))
498 map->m_len = INT_MAX;
500 /* We can handle the block number less than EXT_MAX_BLOCKS */
501 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
502 return -EFSCORRUPTED;
504 /* Lookup extent status tree firstly */
505 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
506 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
507 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
508 map->m_pblk = ext4_es_pblock(&es) +
509 map->m_lblk - es.es_lblk;
510 map->m_flags |= ext4_es_is_written(&es) ?
511 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
512 retval = es.es_len - (map->m_lblk - es.es_lblk);
513 if (retval > map->m_len)
516 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
518 retval = es.es_len - (map->m_lblk - es.es_lblk);
519 if (retval > map->m_len)
527 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
529 #ifdef ES_AGGRESSIVE_TEST
530 ext4_map_blocks_es_recheck(handle, inode, map,
536 * In the query cache no-wait mode, nothing we can do more if we
537 * cannot find extent in the cache.
539 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
543 * Try to see if we can get the block without requesting a new
546 down_read(&EXT4_I(inode)->i_data_sem);
547 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
548 retval = ext4_ext_map_blocks(handle, inode, map, 0);
550 retval = ext4_ind_map_blocks(handle, inode, map, 0);
555 if (unlikely(retval != map->m_len)) {
556 ext4_warning(inode->i_sb,
557 "ES len assertion failed for inode "
558 "%lu: retval %d != map->m_len %d",
559 inode->i_ino, retval, map->m_len);
563 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
564 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
565 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
566 !(status & EXTENT_STATUS_WRITTEN) &&
567 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
568 map->m_lblk + map->m_len - 1))
569 status |= EXTENT_STATUS_DELAYED;
570 ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
571 map->m_pblk, status);
573 up_read((&EXT4_I(inode)->i_data_sem));
576 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
577 ret = check_block_validity(inode, map);
582 /* If it is only a block(s) look up */
583 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
587 * Returns if the blocks have already allocated
589 * Note that if blocks have been preallocated
590 * ext4_ext_get_block() returns the create = 0
591 * with buffer head unmapped.
593 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
595 * If we need to convert extent to unwritten
596 * we continue and do the actual work in
597 * ext4_ext_map_blocks()
599 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
603 * Here we clear m_flags because after allocating an new extent,
604 * it will be set again.
606 map->m_flags &= ~EXT4_MAP_FLAGS;
609 * New blocks allocate and/or writing to unwritten extent
610 * will possibly result in updating i_data, so we take
611 * the write lock of i_data_sem, and call get_block()
612 * with create == 1 flag.
614 down_write(&EXT4_I(inode)->i_data_sem);
617 * We need to check for EXT4 here because migrate
618 * could have changed the inode type in between
620 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
621 retval = ext4_ext_map_blocks(handle, inode, map, flags);
623 retval = ext4_ind_map_blocks(handle, inode, map, flags);
625 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
627 * We allocated new blocks which will result in
628 * i_data's format changing. Force the migrate
629 * to fail by clearing migrate flags
631 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
638 if (unlikely(retval != map->m_len)) {
639 ext4_warning(inode->i_sb,
640 "ES len assertion failed for inode "
641 "%lu: retval %d != map->m_len %d",
642 inode->i_ino, retval, map->m_len);
647 * We have to zeroout blocks before inserting them into extent
648 * status tree. Otherwise someone could look them up there and
649 * use them before they are really zeroed. We also have to
650 * unmap metadata before zeroing as otherwise writeback can
651 * overwrite zeros with stale data from block device.
653 if (flags & EXT4_GET_BLOCKS_ZERO &&
654 map->m_flags & EXT4_MAP_MAPPED &&
655 map->m_flags & EXT4_MAP_NEW) {
656 ret = ext4_issue_zeroout(inode, map->m_lblk,
657 map->m_pblk, map->m_len);
665 * If the extent has been zeroed out, we don't need to update
666 * extent status tree.
668 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
669 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
670 if (ext4_es_is_written(&es))
673 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
674 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
675 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
676 !(status & EXTENT_STATUS_WRITTEN) &&
677 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
678 map->m_lblk + map->m_len - 1))
679 status |= EXTENT_STATUS_DELAYED;
680 ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
681 map->m_pblk, status);
685 up_write((&EXT4_I(inode)->i_data_sem));
686 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
687 ret = check_block_validity(inode, map);
692 * Inodes with freshly allocated blocks where contents will be
693 * visible after transaction commit must be on transaction's
696 if (map->m_flags & EXT4_MAP_NEW &&
697 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
698 !(flags & EXT4_GET_BLOCKS_ZERO) &&
699 !ext4_is_quota_file(inode) &&
700 ext4_should_order_data(inode)) {
702 (loff_t)map->m_lblk << inode->i_blkbits;
703 loff_t length = (loff_t)map->m_len << inode->i_blkbits;
705 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
706 ret = ext4_jbd2_inode_add_wait(handle, inode,
709 ret = ext4_jbd2_inode_add_write(handle, inode,
715 if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
716 map->m_flags & EXT4_MAP_MAPPED))
717 ext4_fc_track_range(handle, inode, map->m_lblk,
718 map->m_lblk + map->m_len - 1);
720 ext_debug(inode, "failed with err %d\n", retval);
725 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
726 * we have to be careful as someone else may be manipulating b_state as well.
728 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
730 unsigned long old_state;
731 unsigned long new_state;
733 flags &= EXT4_MAP_FLAGS;
735 /* Dummy buffer_head? Set non-atomically. */
737 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
741 * Someone else may be modifying b_state. Be careful! This is ugly but
742 * once we get rid of using bh as a container for mapping information
743 * to pass to / from get_block functions, this can go away.
745 old_state = READ_ONCE(bh->b_state);
747 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
748 } while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state)));
751 static int _ext4_get_block(struct inode *inode, sector_t iblock,
752 struct buffer_head *bh, int flags)
754 struct ext4_map_blocks map;
757 if (ext4_has_inline_data(inode))
761 map.m_len = bh->b_size >> inode->i_blkbits;
763 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
766 map_bh(bh, inode->i_sb, map.m_pblk);
767 ext4_update_bh_state(bh, map.m_flags);
768 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
770 } else if (ret == 0) {
771 /* hole case, need to fill in bh->b_size */
772 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
777 int ext4_get_block(struct inode *inode, sector_t iblock,
778 struct buffer_head *bh, int create)
780 return _ext4_get_block(inode, iblock, bh,
781 create ? EXT4_GET_BLOCKS_CREATE : 0);
785 * Get block function used when preparing for buffered write if we require
786 * creating an unwritten extent if blocks haven't been allocated. The extent
787 * will be converted to written after the IO is complete.
789 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
790 struct buffer_head *bh_result, int create)
792 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
793 inode->i_ino, create);
794 return _ext4_get_block(inode, iblock, bh_result,
795 EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
798 /* Maximum number of blocks we map for direct IO at once. */
799 #define DIO_MAX_BLOCKS 4096
802 * `handle' can be NULL if create is zero
804 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
805 ext4_lblk_t block, int map_flags)
807 struct ext4_map_blocks map;
808 struct buffer_head *bh;
809 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
810 bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
813 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
814 || handle != NULL || create == 0);
815 ASSERT(create == 0 || !nowait);
819 err = ext4_map_blocks(handle, inode, &map, map_flags);
822 return create ? ERR_PTR(-ENOSPC) : NULL;
827 return sb_find_get_block(inode->i_sb, map.m_pblk);
829 bh = sb_getblk(inode->i_sb, map.m_pblk);
831 return ERR_PTR(-ENOMEM);
832 if (map.m_flags & EXT4_MAP_NEW) {
834 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
835 || (handle != NULL));
838 * Now that we do not always journal data, we should
839 * keep in mind whether this should always journal the
840 * new buffer as metadata. For now, regular file
841 * writes use ext4_get_block instead, so it's not a
845 BUFFER_TRACE(bh, "call get_create_access");
846 err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
852 if (!buffer_uptodate(bh)) {
853 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
854 set_buffer_uptodate(bh);
857 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
858 err = ext4_handle_dirty_metadata(handle, inode, bh);
862 BUFFER_TRACE(bh, "not a new buffer");
869 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
870 ext4_lblk_t block, int map_flags)
872 struct buffer_head *bh;
875 bh = ext4_getblk(handle, inode, block, map_flags);
878 if (!bh || ext4_buffer_uptodate(bh))
881 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
889 /* Read a contiguous batch of blocks. */
890 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
891 bool wait, struct buffer_head **bhs)
895 for (i = 0; i < bh_count; i++) {
896 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
897 if (IS_ERR(bhs[i])) {
898 err = PTR_ERR(bhs[i]);
904 for (i = 0; i < bh_count; i++)
905 /* Note that NULL bhs[i] is valid because of holes. */
906 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
907 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
912 for (i = 0; i < bh_count; i++)
914 wait_on_buffer(bhs[i]);
916 for (i = 0; i < bh_count; i++) {
917 if (bhs[i] && !buffer_uptodate(bhs[i])) {
925 for (i = 0; i < bh_count; i++) {
932 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
933 struct buffer_head *head,
937 int (*fn)(handle_t *handle, struct inode *inode,
938 struct buffer_head *bh))
940 struct buffer_head *bh;
941 unsigned block_start, block_end;
942 unsigned blocksize = head->b_size;
944 struct buffer_head *next;
946 for (bh = head, block_start = 0;
947 ret == 0 && (bh != head || !block_start);
948 block_start = block_end, bh = next) {
949 next = bh->b_this_page;
950 block_end = block_start + blocksize;
951 if (block_end <= from || block_start >= to) {
952 if (partial && !buffer_uptodate(bh))
956 err = (*fn)(handle, inode, bh);
964 * Helper for handling dirtying of journalled data. We also mark the folio as
965 * dirty so that writeback code knows about this page (and inode) contains
966 * dirty data. ext4_writepages() then commits appropriate transaction to
969 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh)
971 folio_mark_dirty(bh->b_folio);
972 return ext4_handle_dirty_metadata(handle, NULL, bh);
975 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
976 struct buffer_head *bh)
978 int dirty = buffer_dirty(bh);
981 if (!buffer_mapped(bh) || buffer_freed(bh))
984 * __block_write_begin() could have dirtied some buffers. Clean
985 * the dirty bit as jbd2_journal_get_write_access() could complain
986 * otherwise about fs integrity issues. Setting of the dirty bit
987 * by __block_write_begin() isn't a real problem here as we clear
988 * the bit before releasing a page lock and thus writeback cannot
989 * ever write the buffer.
992 clear_buffer_dirty(bh);
993 BUFFER_TRACE(bh, "get write access");
994 ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
997 ret = ext4_dirty_journalled_data(handle, bh);
1001 #ifdef CONFIG_FS_ENCRYPTION
1002 static int ext4_block_write_begin(struct folio *folio, loff_t pos, unsigned len,
1003 get_block_t *get_block)
1005 unsigned from = pos & (PAGE_SIZE - 1);
1006 unsigned to = from + len;
1007 struct inode *inode = folio->mapping->host;
1008 unsigned block_start, block_end;
1011 unsigned blocksize = inode->i_sb->s_blocksize;
1013 struct buffer_head *bh, *head, *wait[2];
1017 BUG_ON(!folio_test_locked(folio));
1018 BUG_ON(from > PAGE_SIZE);
1019 BUG_ON(to > PAGE_SIZE);
1022 head = folio_buffers(folio);
1024 create_empty_buffers(&folio->page, blocksize, 0);
1025 head = folio_buffers(folio);
1027 bbits = ilog2(blocksize);
1028 block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1030 for (bh = head, block_start = 0; bh != head || !block_start;
1031 block++, block_start = block_end, bh = bh->b_this_page) {
1032 block_end = block_start + blocksize;
1033 if (block_end <= from || block_start >= to) {
1034 if (folio_test_uptodate(folio)) {
1035 set_buffer_uptodate(bh);
1040 clear_buffer_new(bh);
1041 if (!buffer_mapped(bh)) {
1042 WARN_ON(bh->b_size != blocksize);
1043 err = get_block(inode, block, bh, 1);
1046 if (buffer_new(bh)) {
1047 if (folio_test_uptodate(folio)) {
1048 clear_buffer_new(bh);
1049 set_buffer_uptodate(bh);
1050 mark_buffer_dirty(bh);
1053 if (block_end > to || block_start < from)
1054 folio_zero_segments(folio, to,
1060 if (folio_test_uptodate(folio)) {
1061 set_buffer_uptodate(bh);
1064 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1065 !buffer_unwritten(bh) &&
1066 (block_start < from || block_end > to)) {
1067 ext4_read_bh_lock(bh, 0, false);
1068 wait[nr_wait++] = bh;
1072 * If we issued read requests, let them complete.
1074 for (i = 0; i < nr_wait; i++) {
1075 wait_on_buffer(wait[i]);
1076 if (!buffer_uptodate(wait[i]))
1079 if (unlikely(err)) {
1080 folio_zero_new_buffers(folio, from, to);
1081 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1082 for (i = 0; i < nr_wait; i++) {
1085 err2 = fscrypt_decrypt_pagecache_blocks(folio,
1086 blocksize, bh_offset(wait[i]));
1088 clear_buffer_uptodate(wait[i]);
1099 * To preserve ordering, it is essential that the hole instantiation and
1100 * the data write be encapsulated in a single transaction. We cannot
1101 * close off a transaction and start a new one between the ext4_get_block()
1102 * and the ext4_write_end(). So doing the jbd2_journal_start at the start of
1103 * ext4_write_begin() is the right place.
1105 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1106 loff_t pos, unsigned len,
1107 struct page **pagep, void **fsdata)
1109 struct inode *inode = mapping->host;
1110 int ret, needed_blocks;
1113 struct folio *folio;
1117 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
1120 trace_ext4_write_begin(inode, pos, len);
1122 * Reserve one block more for addition to orphan list in case
1123 * we allocate blocks but write fails for some reason
1125 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1126 index = pos >> PAGE_SHIFT;
1127 from = pos & (PAGE_SIZE - 1);
1130 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1131 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1140 * __filemap_get_folio() can take a long time if the
1141 * system is thrashing due to memory pressure, or if the folio
1142 * is being written back. So grab it first before we start
1143 * the transaction handle. This also allows us to allocate
1144 * the folio (if needed) without using GFP_NOFS.
1147 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
1148 mapping_gfp_mask(mapping));
1150 return PTR_ERR(folio);
1152 * The same as page allocation, we prealloc buffer heads before
1153 * starting the handle.
1155 if (!folio_buffers(folio))
1156 create_empty_buffers(&folio->page, inode->i_sb->s_blocksize, 0);
1158 folio_unlock(folio);
1161 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1162 if (IS_ERR(handle)) {
1164 return PTR_ERR(handle);
1168 if (folio->mapping != mapping) {
1169 /* The folio got truncated from under us */
1170 folio_unlock(folio);
1172 ext4_journal_stop(handle);
1175 /* In case writeback began while the folio was unlocked */
1176 folio_wait_stable(folio);
1178 #ifdef CONFIG_FS_ENCRYPTION
1179 if (ext4_should_dioread_nolock(inode))
1180 ret = ext4_block_write_begin(folio, pos, len,
1181 ext4_get_block_unwritten);
1183 ret = ext4_block_write_begin(folio, pos, len, ext4_get_block);
1185 if (ext4_should_dioread_nolock(inode))
1186 ret = __block_write_begin(&folio->page, pos, len,
1187 ext4_get_block_unwritten);
1189 ret = __block_write_begin(&folio->page, pos, len, ext4_get_block);
1191 if (!ret && ext4_should_journal_data(inode)) {
1192 ret = ext4_walk_page_buffers(handle, inode,
1193 folio_buffers(folio), from, to,
1194 NULL, do_journal_get_write_access);
1198 bool extended = (pos + len > inode->i_size) &&
1199 !ext4_verity_in_progress(inode);
1201 folio_unlock(folio);
1203 * __block_write_begin may have instantiated a few blocks
1204 * outside i_size. Trim these off again. Don't need
1205 * i_size_read because we hold i_rwsem.
1207 * Add inode to orphan list in case we crash before
1210 if (extended && ext4_can_truncate(inode))
1211 ext4_orphan_add(handle, inode);
1213 ext4_journal_stop(handle);
1215 ext4_truncate_failed_write(inode);
1217 * If truncate failed early the inode might
1218 * still be on the orphan list; we need to
1219 * make sure the inode is removed from the
1220 * orphan list in that case.
1223 ext4_orphan_del(NULL, inode);
1226 if (ret == -ENOSPC &&
1227 ext4_should_retry_alloc(inode->i_sb, &retries))
1232 *pagep = &folio->page;
1236 /* For write_end() in data=journal mode */
1237 static int write_end_fn(handle_t *handle, struct inode *inode,
1238 struct buffer_head *bh)
1241 if (!buffer_mapped(bh) || buffer_freed(bh))
1243 set_buffer_uptodate(bh);
1244 ret = ext4_dirty_journalled_data(handle, bh);
1245 clear_buffer_meta(bh);
1246 clear_buffer_prio(bh);
1251 * We need to pick up the new inode size which generic_commit_write gave us
1252 * `file' can be NULL - eg, when called from page_symlink().
1254 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1255 * buffers are managed internally.
1257 static int ext4_write_end(struct file *file,
1258 struct address_space *mapping,
1259 loff_t pos, unsigned len, unsigned copied,
1260 struct page *page, void *fsdata)
1262 struct folio *folio = page_folio(page);
1263 handle_t *handle = ext4_journal_current_handle();
1264 struct inode *inode = mapping->host;
1265 loff_t old_size = inode->i_size;
1267 int i_size_changed = 0;
1268 bool verity = ext4_verity_in_progress(inode);
1270 trace_ext4_write_end(inode, pos, len, copied);
1272 if (ext4_has_inline_data(inode) &&
1273 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1274 return ext4_write_inline_data_end(inode, pos, len, copied,
1277 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1279 * it's important to update i_size while still holding folio lock:
1280 * page writeout could otherwise come in and zero beyond i_size.
1282 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1283 * blocks are being written past EOF, so skip the i_size update.
1286 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1287 folio_unlock(folio);
1290 if (old_size < pos && !verity)
1291 pagecache_isize_extended(inode, old_size, pos);
1293 * Don't mark the inode dirty under folio lock. First, it unnecessarily
1294 * makes the holding time of folio lock longer. Second, it forces lock
1295 * ordering of folio lock and transaction start for journaling
1299 ret = ext4_mark_inode_dirty(handle, inode);
1301 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1302 /* if we have allocated more blocks and copied
1303 * less. We will have blocks allocated outside
1304 * inode->i_size. So truncate them
1306 ext4_orphan_add(handle, inode);
1308 ret2 = ext4_journal_stop(handle);
1312 if (pos + len > inode->i_size && !verity) {
1313 ext4_truncate_failed_write(inode);
1315 * If truncate failed early the inode might still be
1316 * on the orphan list; we need to make sure the inode
1317 * is removed from the orphan list in that case.
1320 ext4_orphan_del(NULL, inode);
1323 return ret ? ret : copied;
1327 * This is a private version of folio_zero_new_buffers() which doesn't
1328 * set the buffer to be dirty, since in data=journalled mode we need
1329 * to call ext4_dirty_journalled_data() instead.
1331 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1332 struct inode *inode,
1333 struct folio *folio,
1334 unsigned from, unsigned to)
1336 unsigned int block_start = 0, block_end;
1337 struct buffer_head *head, *bh;
1339 bh = head = folio_buffers(folio);
1341 block_end = block_start + bh->b_size;
1342 if (buffer_new(bh)) {
1343 if (block_end > from && block_start < to) {
1344 if (!folio_test_uptodate(folio)) {
1345 unsigned start, size;
1347 start = max(from, block_start);
1348 size = min(to, block_end) - start;
1350 folio_zero_range(folio, start, size);
1351 write_end_fn(handle, inode, bh);
1353 clear_buffer_new(bh);
1356 block_start = block_end;
1357 bh = bh->b_this_page;
1358 } while (bh != head);
1361 static int ext4_journalled_write_end(struct file *file,
1362 struct address_space *mapping,
1363 loff_t pos, unsigned len, unsigned copied,
1364 struct page *page, void *fsdata)
1366 struct folio *folio = page_folio(page);
1367 handle_t *handle = ext4_journal_current_handle();
1368 struct inode *inode = mapping->host;
1369 loff_t old_size = inode->i_size;
1373 int size_changed = 0;
1374 bool verity = ext4_verity_in_progress(inode);
1376 trace_ext4_journalled_write_end(inode, pos, len, copied);
1377 from = pos & (PAGE_SIZE - 1);
1380 BUG_ON(!ext4_handle_valid(handle));
1382 if (ext4_has_inline_data(inode))
1383 return ext4_write_inline_data_end(inode, pos, len, copied,
1386 if (unlikely(copied < len) && !folio_test_uptodate(folio)) {
1388 ext4_journalled_zero_new_buffers(handle, inode, folio,
1391 if (unlikely(copied < len))
1392 ext4_journalled_zero_new_buffers(handle, inode, folio,
1394 ret = ext4_walk_page_buffers(handle, inode,
1395 folio_buffers(folio),
1396 from, from + copied, &partial,
1399 folio_mark_uptodate(folio);
1402 size_changed = ext4_update_inode_size(inode, pos + copied);
1403 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1404 folio_unlock(folio);
1407 if (old_size < pos && !verity)
1408 pagecache_isize_extended(inode, old_size, pos);
1411 ret2 = ext4_mark_inode_dirty(handle, inode);
1416 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1417 /* if we have allocated more blocks and copied
1418 * less. We will have blocks allocated outside
1419 * inode->i_size. So truncate them
1421 ext4_orphan_add(handle, inode);
1423 ret2 = ext4_journal_stop(handle);
1426 if (pos + len > inode->i_size && !verity) {
1427 ext4_truncate_failed_write(inode);
1429 * If truncate failed early the inode might still be
1430 * on the orphan list; we need to make sure the inode
1431 * is removed from the orphan list in that case.
1434 ext4_orphan_del(NULL, inode);
1437 return ret ? ret : copied;
1441 * Reserve space for a single cluster
1443 static int ext4_da_reserve_space(struct inode *inode)
1445 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1446 struct ext4_inode_info *ei = EXT4_I(inode);
1450 * We will charge metadata quota at writeout time; this saves
1451 * us from metadata over-estimation, though we may go over by
1452 * a small amount in the end. Here we just reserve for data.
1454 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1458 spin_lock(&ei->i_block_reservation_lock);
1459 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1460 spin_unlock(&ei->i_block_reservation_lock);
1461 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1464 ei->i_reserved_data_blocks++;
1465 trace_ext4_da_reserve_space(inode);
1466 spin_unlock(&ei->i_block_reservation_lock);
1468 return 0; /* success */
1471 void ext4_da_release_space(struct inode *inode, int to_free)
1473 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1474 struct ext4_inode_info *ei = EXT4_I(inode);
1477 return; /* Nothing to release, exit */
1479 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1481 trace_ext4_da_release_space(inode, to_free);
1482 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1484 * if there aren't enough reserved blocks, then the
1485 * counter is messed up somewhere. Since this
1486 * function is called from invalidate page, it's
1487 * harmless to return without any action.
1489 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1490 "ino %lu, to_free %d with only %d reserved "
1491 "data blocks", inode->i_ino, to_free,
1492 ei->i_reserved_data_blocks);
1494 to_free = ei->i_reserved_data_blocks;
1496 ei->i_reserved_data_blocks -= to_free;
1498 /* update fs dirty data blocks counter */
1499 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1501 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1503 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1507 * Delayed allocation stuff
1510 struct mpage_da_data {
1511 /* These are input fields for ext4_do_writepages() */
1512 struct inode *inode;
1513 struct writeback_control *wbc;
1514 unsigned int can_map:1; /* Can writepages call map blocks? */
1516 /* These are internal state of ext4_do_writepages() */
1517 pgoff_t first_page; /* The first page to write */
1518 pgoff_t next_page; /* Current page to examine */
1519 pgoff_t last_page; /* Last page to examine */
1521 * Extent to map - this can be after first_page because that can be
1522 * fully mapped. We somewhat abuse m_flags to store whether the extent
1523 * is delalloc or unwritten.
1525 struct ext4_map_blocks map;
1526 struct ext4_io_submit io_submit; /* IO submission data */
1527 unsigned int do_map:1;
1528 unsigned int scanned_until_end:1;
1529 unsigned int journalled_more_data:1;
1532 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1537 struct folio_batch fbatch;
1538 struct inode *inode = mpd->inode;
1539 struct address_space *mapping = inode->i_mapping;
1541 /* This is necessary when next_page == 0. */
1542 if (mpd->first_page >= mpd->next_page)
1545 mpd->scanned_until_end = 0;
1546 index = mpd->first_page;
1547 end = mpd->next_page - 1;
1549 ext4_lblk_t start, last;
1550 start = index << (PAGE_SHIFT - inode->i_blkbits);
1551 last = end << (PAGE_SHIFT - inode->i_blkbits);
1554 * avoid racing with extent status tree scans made by
1555 * ext4_insert_delayed_block()
1557 down_write(&EXT4_I(inode)->i_data_sem);
1558 ext4_es_remove_extent(inode, start, last - start + 1);
1559 up_write(&EXT4_I(inode)->i_data_sem);
1562 folio_batch_init(&fbatch);
1563 while (index <= end) {
1564 nr = filemap_get_folios(mapping, &index, end, &fbatch);
1567 for (i = 0; i < nr; i++) {
1568 struct folio *folio = fbatch.folios[i];
1570 if (folio->index < mpd->first_page)
1572 if (folio_next_index(folio) - 1 > end)
1574 BUG_ON(!folio_test_locked(folio));
1575 BUG_ON(folio_test_writeback(folio));
1577 if (folio_mapped(folio))
1578 folio_clear_dirty_for_io(folio);
1579 block_invalidate_folio(folio, 0,
1581 folio_clear_uptodate(folio);
1583 folio_unlock(folio);
1585 folio_batch_release(&fbatch);
1589 static void ext4_print_free_blocks(struct inode *inode)
1591 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1592 struct super_block *sb = inode->i_sb;
1593 struct ext4_inode_info *ei = EXT4_I(inode);
1595 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1596 EXT4_C2B(EXT4_SB(inode->i_sb),
1597 ext4_count_free_clusters(sb)));
1598 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1599 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1600 (long long) EXT4_C2B(EXT4_SB(sb),
1601 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1602 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1603 (long long) EXT4_C2B(EXT4_SB(sb),
1604 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1605 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1606 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1607 ei->i_reserved_data_blocks);
1612 * ext4_insert_delayed_block - adds a delayed block to the extents status
1613 * tree, incrementing the reserved cluster/block
1614 * count or making a pending reservation
1617 * @inode - file containing the newly added block
1618 * @lblk - logical block to be added
1620 * Returns 0 on success, negative error code on failure.
1622 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1624 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1626 bool allocated = false;
1629 * If the cluster containing lblk is shared with a delayed,
1630 * written, or unwritten extent in a bigalloc file system, it's
1631 * already been accounted for and does not need to be reserved.
1632 * A pending reservation must be made for the cluster if it's
1633 * shared with a written or unwritten extent and doesn't already
1634 * have one. Written and unwritten extents can be purged from the
1635 * extents status tree if the system is under memory pressure, so
1636 * it's necessary to examine the extent tree if a search of the
1637 * extents status tree doesn't get a match.
1639 if (sbi->s_cluster_ratio == 1) {
1640 ret = ext4_da_reserve_space(inode);
1641 if (ret != 0) /* ENOSPC */
1643 } else { /* bigalloc */
1644 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1645 if (!ext4_es_scan_clu(inode,
1646 &ext4_es_is_mapped, lblk)) {
1647 ret = ext4_clu_mapped(inode,
1648 EXT4_B2C(sbi, lblk));
1652 ret = ext4_da_reserve_space(inode);
1653 if (ret != 0) /* ENOSPC */
1664 ext4_es_insert_delayed_block(inode, lblk, allocated);
1669 * This function is grabs code from the very beginning of
1670 * ext4_map_blocks, but assumes that the caller is from delayed write
1671 * time. This function looks up the requested blocks and sets the
1672 * buffer delay bit under the protection of i_data_sem.
1674 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1675 struct ext4_map_blocks *map,
1676 struct buffer_head *bh)
1678 struct extent_status es;
1680 sector_t invalid_block = ~((sector_t) 0xffff);
1681 #ifdef ES_AGGRESSIVE_TEST
1682 struct ext4_map_blocks orig_map;
1684 memcpy(&orig_map, map, sizeof(*map));
1687 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1691 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1692 (unsigned long) map->m_lblk);
1694 /* Lookup extent status tree firstly */
1695 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1696 if (ext4_es_is_hole(&es)) {
1698 down_read(&EXT4_I(inode)->i_data_sem);
1703 * Delayed extent could be allocated by fallocate.
1704 * So we need to check it.
1706 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1707 map_bh(bh, inode->i_sb, invalid_block);
1709 set_buffer_delay(bh);
1713 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1714 retval = es.es_len - (iblock - es.es_lblk);
1715 if (retval > map->m_len)
1716 retval = map->m_len;
1717 map->m_len = retval;
1718 if (ext4_es_is_written(&es))
1719 map->m_flags |= EXT4_MAP_MAPPED;
1720 else if (ext4_es_is_unwritten(&es))
1721 map->m_flags |= EXT4_MAP_UNWRITTEN;
1725 #ifdef ES_AGGRESSIVE_TEST
1726 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1732 * Try to see if we can get the block without requesting a new
1733 * file system block.
1735 down_read(&EXT4_I(inode)->i_data_sem);
1736 if (ext4_has_inline_data(inode))
1738 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1739 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1741 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1748 * XXX: __block_prepare_write() unmaps passed block,
1752 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1758 map_bh(bh, inode->i_sb, invalid_block);
1760 set_buffer_delay(bh);
1761 } else if (retval > 0) {
1762 unsigned int status;
1764 if (unlikely(retval != map->m_len)) {
1765 ext4_warning(inode->i_sb,
1766 "ES len assertion failed for inode "
1767 "%lu: retval %d != map->m_len %d",
1768 inode->i_ino, retval, map->m_len);
1772 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1773 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1774 ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1775 map->m_pblk, status);
1779 up_read((&EXT4_I(inode)->i_data_sem));
1785 * This is a special get_block_t callback which is used by
1786 * ext4_da_write_begin(). It will either return mapped block or
1787 * reserve space for a single block.
1789 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1790 * We also have b_blocknr = -1 and b_bdev initialized properly
1792 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1793 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1794 * initialized properly.
1796 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1797 struct buffer_head *bh, int create)
1799 struct ext4_map_blocks map;
1802 BUG_ON(create == 0);
1803 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1805 map.m_lblk = iblock;
1809 * first, we need to know whether the block is allocated already
1810 * preallocated blocks are unmapped but should treated
1811 * the same as allocated blocks.
1813 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1817 map_bh(bh, inode->i_sb, map.m_pblk);
1818 ext4_update_bh_state(bh, map.m_flags);
1820 if (buffer_unwritten(bh)) {
1821 /* A delayed write to unwritten bh should be marked
1822 * new and mapped. Mapped ensures that we don't do
1823 * get_block multiple times when we write to the same
1824 * offset and new ensures that we do proper zero out
1825 * for partial write.
1828 set_buffer_mapped(bh);
1833 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio)
1835 mpd->first_page += folio_nr_pages(folio);
1836 folio_unlock(folio);
1839 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio)
1845 BUG_ON(folio->index != mpd->first_page);
1846 folio_clear_dirty_for_io(folio);
1848 * We have to be very careful here! Nothing protects writeback path
1849 * against i_size changes and the page can be writeably mapped into
1850 * page tables. So an application can be growing i_size and writing
1851 * data through mmap while writeback runs. folio_clear_dirty_for_io()
1852 * write-protects our page in page tables and the page cannot get
1853 * written to again until we release folio lock. So only after
1854 * folio_clear_dirty_for_io() we are safe to sample i_size for
1855 * ext4_bio_write_folio() to zero-out tail of the written page. We rely
1856 * on the barrier provided by folio_test_clear_dirty() in
1857 * folio_clear_dirty_for_io() to make sure i_size is really sampled only
1858 * after page tables are updated.
1860 size = i_size_read(mpd->inode);
1861 len = folio_size(folio);
1862 if (folio_pos(folio) + len > size &&
1863 !ext4_verity_in_progress(mpd->inode))
1864 len = size & ~PAGE_MASK;
1865 err = ext4_bio_write_folio(&mpd->io_submit, folio, len);
1867 mpd->wbc->nr_to_write--;
1872 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
1875 * mballoc gives us at most this number of blocks...
1876 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1877 * The rest of mballoc seems to handle chunks up to full group size.
1879 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1882 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1884 * @mpd - extent of blocks
1885 * @lblk - logical number of the block in the file
1886 * @bh - buffer head we want to add to the extent
1888 * The function is used to collect contig. blocks in the same state. If the
1889 * buffer doesn't require mapping for writeback and we haven't started the
1890 * extent of buffers to map yet, the function returns 'true' immediately - the
1891 * caller can write the buffer right away. Otherwise the function returns true
1892 * if the block has been added to the extent, false if the block couldn't be
1895 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1896 struct buffer_head *bh)
1898 struct ext4_map_blocks *map = &mpd->map;
1900 /* Buffer that doesn't need mapping for writeback? */
1901 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1902 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1903 /* So far no extent to map => we write the buffer right away */
1904 if (map->m_len == 0)
1909 /* First block in the extent? */
1910 if (map->m_len == 0) {
1911 /* We cannot map unless handle is started... */
1916 map->m_flags = bh->b_state & BH_FLAGS;
1920 /* Don't go larger than mballoc is willing to allocate */
1921 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1924 /* Can we merge the block to our big extent? */
1925 if (lblk == map->m_lblk + map->m_len &&
1926 (bh->b_state & BH_FLAGS) == map->m_flags) {
1934 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1936 * @mpd - extent of blocks for mapping
1937 * @head - the first buffer in the page
1938 * @bh - buffer we should start processing from
1939 * @lblk - logical number of the block in the file corresponding to @bh
1941 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1942 * the page for IO if all buffers in this page were mapped and there's no
1943 * accumulated extent of buffers to map or add buffers in the page to the
1944 * extent of buffers to map. The function returns 1 if the caller can continue
1945 * by processing the next page, 0 if it should stop adding buffers to the
1946 * extent to map because we cannot extend it anymore. It can also return value
1947 * < 0 in case of error during IO submission.
1949 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1950 struct buffer_head *head,
1951 struct buffer_head *bh,
1954 struct inode *inode = mpd->inode;
1956 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
1957 >> inode->i_blkbits;
1959 if (ext4_verity_in_progress(inode))
1960 blocks = EXT_MAX_BLOCKS;
1963 BUG_ON(buffer_locked(bh));
1965 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1966 /* Found extent to map? */
1969 /* Buffer needs mapping and handle is not started? */
1972 /* Everything mapped so far and we hit EOF */
1975 } while (lblk++, (bh = bh->b_this_page) != head);
1976 /* So far everything mapped? Submit the page for IO. */
1977 if (mpd->map.m_len == 0) {
1978 err = mpage_submit_folio(mpd, head->b_folio);
1981 mpage_folio_done(mpd, head->b_folio);
1983 if (lblk >= blocks) {
1984 mpd->scanned_until_end = 1;
1991 * mpage_process_folio - update folio buffers corresponding to changed extent
1992 * and may submit fully mapped page for IO
1993 * @mpd: description of extent to map, on return next extent to map
1994 * @folio: Contains these buffers.
1995 * @m_lblk: logical block mapping.
1996 * @m_pblk: corresponding physical mapping.
1997 * @map_bh: determines on return whether this page requires any further
2000 * Scan given folio buffers corresponding to changed extent and update buffer
2001 * state according to new extent state.
2002 * We map delalloc buffers to their physical location, clear unwritten bits.
2003 * If the given folio is not fully mapped, we update @mpd to the next extent in
2004 * the given folio that needs mapping & return @map_bh as true.
2006 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio,
2007 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2010 struct buffer_head *head, *bh;
2011 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2012 ext4_lblk_t lblk = *m_lblk;
2013 ext4_fsblk_t pblock = *m_pblk;
2015 int blkbits = mpd->inode->i_blkbits;
2016 ssize_t io_end_size = 0;
2017 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2019 bh = head = folio_buffers(folio);
2021 if (lblk < mpd->map.m_lblk)
2023 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2025 * Buffer after end of mapped extent.
2026 * Find next buffer in the folio to map.
2029 mpd->map.m_flags = 0;
2030 io_end_vec->size += io_end_size;
2032 err = mpage_process_page_bufs(mpd, head, bh, lblk);
2035 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2036 io_end_vec = ext4_alloc_io_end_vec(io_end);
2037 if (IS_ERR(io_end_vec)) {
2038 err = PTR_ERR(io_end_vec);
2041 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2046 if (buffer_delay(bh)) {
2047 clear_buffer_delay(bh);
2048 bh->b_blocknr = pblock++;
2050 clear_buffer_unwritten(bh);
2051 io_end_size += (1 << blkbits);
2052 } while (lblk++, (bh = bh->b_this_page) != head);
2054 io_end_vec->size += io_end_size;
2063 * mpage_map_buffers - update buffers corresponding to changed extent and
2064 * submit fully mapped pages for IO
2066 * @mpd - description of extent to map, on return next extent to map
2068 * Scan buffers corresponding to changed extent (we expect corresponding pages
2069 * to be already locked) and update buffer state according to new extent state.
2070 * We map delalloc buffers to their physical location, clear unwritten bits,
2071 * and mark buffers as uninit when we perform writes to unwritten extents
2072 * and do extent conversion after IO is finished. If the last page is not fully
2073 * mapped, we update @map to the next extent in the last page that needs
2074 * mapping. Otherwise we submit the page for IO.
2076 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2078 struct folio_batch fbatch;
2080 struct inode *inode = mpd->inode;
2081 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2084 ext4_fsblk_t pblock;
2086 bool map_bh = false;
2088 start = mpd->map.m_lblk >> bpp_bits;
2089 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2090 lblk = start << bpp_bits;
2091 pblock = mpd->map.m_pblk;
2093 folio_batch_init(&fbatch);
2094 while (start <= end) {
2095 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2098 for (i = 0; i < nr; i++) {
2099 struct folio *folio = fbatch.folios[i];
2101 err = mpage_process_folio(mpd, folio, &lblk, &pblock,
2104 * If map_bh is true, means page may require further bh
2105 * mapping, or maybe the page was submitted for IO.
2106 * So we return to call further extent mapping.
2108 if (err < 0 || map_bh)
2110 /* Page fully mapped - let IO run! */
2111 err = mpage_submit_folio(mpd, folio);
2114 mpage_folio_done(mpd, folio);
2116 folio_batch_release(&fbatch);
2118 /* Extent fully mapped and matches with page boundary. We are done. */
2120 mpd->map.m_flags = 0;
2123 folio_batch_release(&fbatch);
2127 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2129 struct inode *inode = mpd->inode;
2130 struct ext4_map_blocks *map = &mpd->map;
2131 int get_blocks_flags;
2132 int err, dioread_nolock;
2134 trace_ext4_da_write_pages_extent(inode, map);
2136 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2137 * to convert an unwritten extent to be initialized (in the case
2138 * where we have written into one or more preallocated blocks). It is
2139 * possible that we're going to need more metadata blocks than
2140 * previously reserved. However we must not fail because we're in
2141 * writeback and there is nothing we can do about it so it might result
2142 * in data loss. So use reserved blocks to allocate metadata if
2145 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2146 * the blocks in question are delalloc blocks. This indicates
2147 * that the blocks and quotas has already been checked when
2148 * the data was copied into the page cache.
2150 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2151 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2152 EXT4_GET_BLOCKS_IO_SUBMIT;
2153 dioread_nolock = ext4_should_dioread_nolock(inode);
2155 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2156 if (map->m_flags & BIT(BH_Delay))
2157 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2159 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2162 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2163 if (!mpd->io_submit.io_end->handle &&
2164 ext4_handle_valid(handle)) {
2165 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2166 handle->h_rsv_handle = NULL;
2168 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2171 BUG_ON(map->m_len == 0);
2176 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2177 * mpd->len and submit pages underlying it for IO
2179 * @handle - handle for journal operations
2180 * @mpd - extent to map
2181 * @give_up_on_write - we set this to true iff there is a fatal error and there
2182 * is no hope of writing the data. The caller should discard
2183 * dirty pages to avoid infinite loops.
2185 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2186 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2187 * them to initialized or split the described range from larger unwritten
2188 * extent. Note that we need not map all the described range since allocation
2189 * can return less blocks or the range is covered by more unwritten extents. We
2190 * cannot map more because we are limited by reserved transaction credits. On
2191 * the other hand we always make sure that the last touched page is fully
2192 * mapped so that it can be written out (and thus forward progress is
2193 * guaranteed). After mapping we submit all mapped pages for IO.
2195 static int mpage_map_and_submit_extent(handle_t *handle,
2196 struct mpage_da_data *mpd,
2197 bool *give_up_on_write)
2199 struct inode *inode = mpd->inode;
2200 struct ext4_map_blocks *map = &mpd->map;
2204 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2205 struct ext4_io_end_vec *io_end_vec;
2207 io_end_vec = ext4_alloc_io_end_vec(io_end);
2208 if (IS_ERR(io_end_vec))
2209 return PTR_ERR(io_end_vec);
2210 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2212 err = mpage_map_one_extent(handle, mpd);
2214 struct super_block *sb = inode->i_sb;
2216 if (ext4_forced_shutdown(sb))
2217 goto invalidate_dirty_pages;
2219 * Let the uper layers retry transient errors.
2220 * In the case of ENOSPC, if ext4_count_free_blocks()
2221 * is non-zero, a commit should free up blocks.
2223 if ((err == -ENOMEM) ||
2224 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2226 goto update_disksize;
2229 ext4_msg(sb, KERN_CRIT,
2230 "Delayed block allocation failed for "
2231 "inode %lu at logical offset %llu with"
2232 " max blocks %u with error %d",
2234 (unsigned long long)map->m_lblk,
2235 (unsigned)map->m_len, -err);
2236 ext4_msg(sb, KERN_CRIT,
2237 "This should not happen!! Data will "
2240 ext4_print_free_blocks(inode);
2241 invalidate_dirty_pages:
2242 *give_up_on_write = true;
2247 * Update buffer state, submit mapped pages, and get us new
2250 err = mpage_map_and_submit_buffers(mpd);
2252 goto update_disksize;
2253 } while (map->m_len);
2257 * Update on-disk size after IO is submitted. Races with
2258 * truncate are avoided by checking i_size under i_data_sem.
2260 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2261 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2265 down_write(&EXT4_I(inode)->i_data_sem);
2266 i_size = i_size_read(inode);
2267 if (disksize > i_size)
2269 if (disksize > EXT4_I(inode)->i_disksize)
2270 EXT4_I(inode)->i_disksize = disksize;
2271 up_write(&EXT4_I(inode)->i_data_sem);
2272 err2 = ext4_mark_inode_dirty(handle, inode);
2274 ext4_error_err(inode->i_sb, -err2,
2275 "Failed to mark inode %lu dirty",
2285 * Calculate the total number of credits to reserve for one writepages
2286 * iteration. This is called from ext4_writepages(). We map an extent of
2287 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2288 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2289 * bpp - 1 blocks in bpp different extents.
2291 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2293 int bpp = ext4_journal_blocks_per_page(inode);
2295 return ext4_meta_trans_blocks(inode,
2296 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2299 static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio,
2302 struct buffer_head *page_bufs = folio_buffers(folio);
2303 struct inode *inode = folio->mapping->host;
2306 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2307 NULL, do_journal_get_write_access);
2308 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2309 NULL, write_end_fn);
2312 err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len);
2315 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2320 static int mpage_journal_page_buffers(handle_t *handle,
2321 struct mpage_da_data *mpd,
2322 struct folio *folio)
2324 struct inode *inode = mpd->inode;
2325 loff_t size = i_size_read(inode);
2326 size_t len = folio_size(folio);
2328 folio_clear_checked(folio);
2329 mpd->wbc->nr_to_write--;
2331 if (folio_pos(folio) + len > size &&
2332 !ext4_verity_in_progress(inode))
2333 len = size - folio_pos(folio);
2335 return ext4_journal_folio_buffers(handle, folio, len);
2339 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2340 * needing mapping, submit mapped pages
2342 * @mpd - where to look for pages
2344 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2345 * IO immediately. If we cannot map blocks, we submit just already mapped
2346 * buffers in the page for IO and keep page dirty. When we can map blocks and
2347 * we find a page which isn't mapped we start accumulating extent of buffers
2348 * underlying these pages that needs mapping (formed by either delayed or
2349 * unwritten buffers). We also lock the pages containing these buffers. The
2350 * extent found is returned in @mpd structure (starting at mpd->lblk with
2351 * length mpd->len blocks).
2353 * Note that this function can attach bios to one io_end structure which are
2354 * neither logically nor physically contiguous. Although it may seem as an
2355 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2356 * case as we need to track IO to all buffers underlying a page in one io_end.
2358 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2360 struct address_space *mapping = mpd->inode->i_mapping;
2361 struct folio_batch fbatch;
2362 unsigned int nr_folios;
2363 pgoff_t index = mpd->first_page;
2364 pgoff_t end = mpd->last_page;
2367 int blkbits = mpd->inode->i_blkbits;
2369 struct buffer_head *head;
2370 handle_t *handle = NULL;
2371 int bpp = ext4_journal_blocks_per_page(mpd->inode);
2373 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2374 tag = PAGECACHE_TAG_TOWRITE;
2376 tag = PAGECACHE_TAG_DIRTY;
2379 mpd->next_page = index;
2380 if (ext4_should_journal_data(mpd->inode)) {
2381 handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE,
2384 return PTR_ERR(handle);
2386 folio_batch_init(&fbatch);
2387 while (index <= end) {
2388 nr_folios = filemap_get_folios_tag(mapping, &index, end,
2393 for (i = 0; i < nr_folios; i++) {
2394 struct folio *folio = fbatch.folios[i];
2397 * Accumulated enough dirty pages? This doesn't apply
2398 * to WB_SYNC_ALL mode. For integrity sync we have to
2399 * keep going because someone may be concurrently
2400 * dirtying pages, and we might have synced a lot of
2401 * newly appeared dirty pages, but have not synced all
2402 * of the old dirty pages.
2404 if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2405 mpd->wbc->nr_to_write <=
2406 mpd->map.m_len >> (PAGE_SHIFT - blkbits))
2409 /* If we can't merge this page, we are done. */
2410 if (mpd->map.m_len > 0 && mpd->next_page != folio->index)
2414 err = ext4_journal_ensure_credits(handle, bpp,
2422 * If the page is no longer dirty, or its mapping no
2423 * longer corresponds to inode we are writing (which
2424 * means it has been truncated or invalidated), or the
2425 * page is already under writeback and we are not doing
2426 * a data integrity writeback, skip the page
2428 if (!folio_test_dirty(folio) ||
2429 (folio_test_writeback(folio) &&
2430 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2431 unlikely(folio->mapping != mapping)) {
2432 folio_unlock(folio);
2436 folio_wait_writeback(folio);
2437 BUG_ON(folio_test_writeback(folio));
2440 * Should never happen but for buggy code in
2441 * other subsystems that call
2442 * set_page_dirty() without properly warning
2443 * the file system first. See [1] for more
2446 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2448 if (!folio_buffers(folio)) {
2449 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index);
2450 folio_clear_dirty(folio);
2451 folio_unlock(folio);
2455 if (mpd->map.m_len == 0)
2456 mpd->first_page = folio->index;
2457 mpd->next_page = folio_next_index(folio);
2459 * Writeout when we cannot modify metadata is simple.
2460 * Just submit the page. For data=journal mode we
2461 * first handle writeout of the page for checkpoint and
2462 * only after that handle delayed page dirtying. This
2463 * makes sure current data is checkpointed to the final
2464 * location before possibly journalling it again which
2465 * is desirable when the page is frequently dirtied
2468 if (!mpd->can_map) {
2469 err = mpage_submit_folio(mpd, folio);
2472 /* Pending dirtying of journalled data? */
2473 if (folio_test_checked(folio)) {
2474 err = mpage_journal_page_buffers(handle,
2478 mpd->journalled_more_data = 1;
2480 mpage_folio_done(mpd, folio);
2482 /* Add all dirty buffers to mpd */
2483 lblk = ((ext4_lblk_t)folio->index) <<
2484 (PAGE_SHIFT - blkbits);
2485 head = folio_buffers(folio);
2486 err = mpage_process_page_bufs(mpd, head, head,
2493 folio_batch_release(&fbatch);
2496 mpd->scanned_until_end = 1;
2498 ext4_journal_stop(handle);
2501 folio_batch_release(&fbatch);
2503 ext4_journal_stop(handle);
2507 static int ext4_do_writepages(struct mpage_da_data *mpd)
2509 struct writeback_control *wbc = mpd->wbc;
2510 pgoff_t writeback_index = 0;
2511 long nr_to_write = wbc->nr_to_write;
2512 int range_whole = 0;
2514 handle_t *handle = NULL;
2515 struct inode *inode = mpd->inode;
2516 struct address_space *mapping = inode->i_mapping;
2517 int needed_blocks, rsv_blocks = 0, ret = 0;
2518 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2519 struct blk_plug plug;
2520 bool give_up_on_write = false;
2522 trace_ext4_writepages(inode, wbc);
2525 * No pages to write? This is mainly a kludge to avoid starting
2526 * a transaction for special inodes like journal inode on last iput()
2527 * because that could violate lock ordering on umount
2529 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2530 goto out_writepages;
2533 * If the filesystem has aborted, it is read-only, so return
2534 * right away instead of dumping stack traces later on that
2535 * will obscure the real source of the problem. We test
2536 * fs shutdown state instead of sb->s_flag's SB_RDONLY because
2537 * the latter could be true if the filesystem is mounted
2538 * read-only, and in that case, ext4_writepages should
2539 * *never* be called, so if that ever happens, we would want
2542 if (unlikely(ext4_forced_shutdown(mapping->host->i_sb))) {
2544 goto out_writepages;
2548 * If we have inline data and arrive here, it means that
2549 * we will soon create the block for the 1st page, so
2550 * we'd better clear the inline data here.
2552 if (ext4_has_inline_data(inode)) {
2553 /* Just inode will be modified... */
2554 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2555 if (IS_ERR(handle)) {
2556 ret = PTR_ERR(handle);
2557 goto out_writepages;
2559 BUG_ON(ext4_test_inode_state(inode,
2560 EXT4_STATE_MAY_INLINE_DATA));
2561 ext4_destroy_inline_data(handle, inode);
2562 ext4_journal_stop(handle);
2566 * data=journal mode does not do delalloc so we just need to writeout /
2567 * journal already mapped buffers. On the other hand we need to commit
2568 * transaction to make data stable. We expect all the data to be
2569 * already in the journal (the only exception are DMA pinned pages
2570 * dirtied behind our back) so we commit transaction here and run the
2571 * writeback loop to checkpoint them. The checkpointing is not actually
2572 * necessary to make data persistent *but* quite a few places (extent
2573 * shifting operations, fsverity, ...) depend on being able to drop
2574 * pagecache pages after calling filemap_write_and_wait() and for that
2575 * checkpointing needs to happen.
2577 if (ext4_should_journal_data(inode)) {
2579 if (wbc->sync_mode == WB_SYNC_ALL)
2580 ext4_fc_commit(sbi->s_journal,
2581 EXT4_I(inode)->i_datasync_tid);
2583 mpd->journalled_more_data = 0;
2585 if (ext4_should_dioread_nolock(inode)) {
2587 * We may need to convert up to one extent per block in
2588 * the page and we may dirty the inode.
2590 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2591 PAGE_SIZE >> inode->i_blkbits);
2594 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2597 if (wbc->range_cyclic) {
2598 writeback_index = mapping->writeback_index;
2599 if (writeback_index)
2601 mpd->first_page = writeback_index;
2602 mpd->last_page = -1;
2604 mpd->first_page = wbc->range_start >> PAGE_SHIFT;
2605 mpd->last_page = wbc->range_end >> PAGE_SHIFT;
2608 ext4_io_submit_init(&mpd->io_submit, wbc);
2610 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2611 tag_pages_for_writeback(mapping, mpd->first_page,
2613 blk_start_plug(&plug);
2616 * First writeback pages that don't need mapping - we can avoid
2617 * starting a transaction unnecessarily and also avoid being blocked
2618 * in the block layer on device congestion while having transaction
2622 mpd->scanned_until_end = 0;
2623 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2624 if (!mpd->io_submit.io_end) {
2628 ret = mpage_prepare_extent_to_map(mpd);
2629 /* Unlock pages we didn't use */
2630 mpage_release_unused_pages(mpd, false);
2631 /* Submit prepared bio */
2632 ext4_io_submit(&mpd->io_submit);
2633 ext4_put_io_end_defer(mpd->io_submit.io_end);
2634 mpd->io_submit.io_end = NULL;
2638 while (!mpd->scanned_until_end && wbc->nr_to_write > 0) {
2639 /* For each extent of pages we use new io_end */
2640 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2641 if (!mpd->io_submit.io_end) {
2646 WARN_ON_ONCE(!mpd->can_map);
2648 * We have two constraints: We find one extent to map and we
2649 * must always write out whole page (makes a difference when
2650 * blocksize < pagesize) so that we don't block on IO when we
2651 * try to write out the rest of the page. Journalled mode is
2652 * not supported by delalloc.
2654 BUG_ON(ext4_should_journal_data(inode));
2655 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2657 /* start a new transaction */
2658 handle = ext4_journal_start_with_reserve(inode,
2659 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2660 if (IS_ERR(handle)) {
2661 ret = PTR_ERR(handle);
2662 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2663 "%ld pages, ino %lu; err %d", __func__,
2664 wbc->nr_to_write, inode->i_ino, ret);
2665 /* Release allocated io_end */
2666 ext4_put_io_end(mpd->io_submit.io_end);
2667 mpd->io_submit.io_end = NULL;
2672 trace_ext4_da_write_pages(inode, mpd->first_page, wbc);
2673 ret = mpage_prepare_extent_to_map(mpd);
2674 if (!ret && mpd->map.m_len)
2675 ret = mpage_map_and_submit_extent(handle, mpd,
2678 * Caution: If the handle is synchronous,
2679 * ext4_journal_stop() can wait for transaction commit
2680 * to finish which may depend on writeback of pages to
2681 * complete or on page lock to be released. In that
2682 * case, we have to wait until after we have
2683 * submitted all the IO, released page locks we hold,
2684 * and dropped io_end reference (for extent conversion
2685 * to be able to complete) before stopping the handle.
2687 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2688 ext4_journal_stop(handle);
2692 /* Unlock pages we didn't use */
2693 mpage_release_unused_pages(mpd, give_up_on_write);
2694 /* Submit prepared bio */
2695 ext4_io_submit(&mpd->io_submit);
2698 * Drop our io_end reference we got from init. We have
2699 * to be careful and use deferred io_end finishing if
2700 * we are still holding the transaction as we can
2701 * release the last reference to io_end which may end
2702 * up doing unwritten extent conversion.
2705 ext4_put_io_end_defer(mpd->io_submit.io_end);
2706 ext4_journal_stop(handle);
2708 ext4_put_io_end(mpd->io_submit.io_end);
2709 mpd->io_submit.io_end = NULL;
2711 if (ret == -ENOSPC && sbi->s_journal) {
2713 * Commit the transaction which would
2714 * free blocks released in the transaction
2717 jbd2_journal_force_commit_nested(sbi->s_journal);
2721 /* Fatal error - ENOMEM, EIO... */
2726 blk_finish_plug(&plug);
2727 if (!ret && !cycled && wbc->nr_to_write > 0) {
2729 mpd->last_page = writeback_index - 1;
2730 mpd->first_page = 0;
2735 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2737 * Set the writeback_index so that range_cyclic
2738 * mode will write it back later
2740 mapping->writeback_index = mpd->first_page;
2743 trace_ext4_writepages_result(inode, wbc, ret,
2744 nr_to_write - wbc->nr_to_write);
2748 static int ext4_writepages(struct address_space *mapping,
2749 struct writeback_control *wbc)
2751 struct super_block *sb = mapping->host->i_sb;
2752 struct mpage_da_data mpd = {
2753 .inode = mapping->host,
2760 if (unlikely(ext4_forced_shutdown(sb)))
2763 alloc_ctx = ext4_writepages_down_read(sb);
2764 ret = ext4_do_writepages(&mpd);
2766 * For data=journal writeback we could have come across pages marked
2767 * for delayed dirtying (PageChecked) which were just added to the
2768 * running transaction. Try once more to get them to stable storage.
2770 if (!ret && mpd.journalled_more_data)
2771 ret = ext4_do_writepages(&mpd);
2772 ext4_writepages_up_read(sb, alloc_ctx);
2777 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode)
2779 struct writeback_control wbc = {
2780 .sync_mode = WB_SYNC_ALL,
2781 .nr_to_write = LONG_MAX,
2782 .range_start = jinode->i_dirty_start,
2783 .range_end = jinode->i_dirty_end,
2785 struct mpage_da_data mpd = {
2786 .inode = jinode->i_vfs_inode,
2790 return ext4_do_writepages(&mpd);
2793 static int ext4_dax_writepages(struct address_space *mapping,
2794 struct writeback_control *wbc)
2797 long nr_to_write = wbc->nr_to_write;
2798 struct inode *inode = mapping->host;
2801 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2804 alloc_ctx = ext4_writepages_down_read(inode->i_sb);
2805 trace_ext4_writepages(inode, wbc);
2807 ret = dax_writeback_mapping_range(mapping,
2808 EXT4_SB(inode->i_sb)->s_daxdev, wbc);
2809 trace_ext4_writepages_result(inode, wbc, ret,
2810 nr_to_write - wbc->nr_to_write);
2811 ext4_writepages_up_read(inode->i_sb, alloc_ctx);
2815 static int ext4_nonda_switch(struct super_block *sb)
2817 s64 free_clusters, dirty_clusters;
2818 struct ext4_sb_info *sbi = EXT4_SB(sb);
2821 * switch to non delalloc mode if we are running low
2822 * on free block. The free block accounting via percpu
2823 * counters can get slightly wrong with percpu_counter_batch getting
2824 * accumulated on each CPU without updating global counters
2825 * Delalloc need an accurate free block accounting. So switch
2826 * to non delalloc when we are near to error range.
2829 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2831 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2833 * Start pushing delalloc when 1/2 of free blocks are dirty.
2835 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2836 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2838 if (2 * free_clusters < 3 * dirty_clusters ||
2839 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2841 * free block count is less than 150% of dirty blocks
2842 * or free blocks is less than watermark
2849 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2850 loff_t pos, unsigned len,
2851 struct page **pagep, void **fsdata)
2853 int ret, retries = 0;
2854 struct folio *folio;
2856 struct inode *inode = mapping->host;
2858 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2861 index = pos >> PAGE_SHIFT;
2863 if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
2864 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2865 return ext4_write_begin(file, mapping, pos,
2866 len, pagep, fsdata);
2868 *fsdata = (void *)0;
2869 trace_ext4_da_write_begin(inode, pos, len);
2871 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2872 ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
2881 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2882 mapping_gfp_mask(mapping));
2884 return PTR_ERR(folio);
2886 /* In case writeback began while the folio was unlocked */
2887 folio_wait_stable(folio);
2889 #ifdef CONFIG_FS_ENCRYPTION
2890 ret = ext4_block_write_begin(folio, pos, len, ext4_da_get_block_prep);
2892 ret = __block_write_begin(&folio->page, pos, len, ext4_da_get_block_prep);
2895 folio_unlock(folio);
2898 * block_write_begin may have instantiated a few blocks
2899 * outside i_size. Trim these off again. Don't need
2900 * i_size_read because we hold inode lock.
2902 if (pos + len > inode->i_size)
2903 ext4_truncate_failed_write(inode);
2905 if (ret == -ENOSPC &&
2906 ext4_should_retry_alloc(inode->i_sb, &retries))
2911 *pagep = &folio->page;
2916 * Check if we should update i_disksize
2917 * when write to the end of file but not require block allocation
2919 static int ext4_da_should_update_i_disksize(struct folio *folio,
2920 unsigned long offset)
2922 struct buffer_head *bh;
2923 struct inode *inode = folio->mapping->host;
2927 bh = folio_buffers(folio);
2928 idx = offset >> inode->i_blkbits;
2930 for (i = 0; i < idx; i++)
2931 bh = bh->b_this_page;
2933 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2938 static int ext4_da_do_write_end(struct address_space *mapping,
2939 loff_t pos, unsigned len, unsigned copied,
2942 struct inode *inode = mapping->host;
2943 loff_t old_size = inode->i_size;
2944 bool disksize_changed = false;
2948 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES
2949 * flag, which all that's needed to trigger page writeback.
2951 copied = block_write_end(NULL, mapping, pos, len, copied, page, NULL);
2952 new_i_size = pos + copied;
2955 * It's important to update i_size while still holding page lock,
2956 * because page writeout could otherwise come in and zero beyond
2959 * Since we are holding inode lock, we are sure i_disksize <=
2960 * i_size. We also know that if i_disksize < i_size, there are
2961 * delalloc writes pending in the range up to i_size. If the end of
2962 * the current write is <= i_size, there's no need to touch
2963 * i_disksize since writeback will push i_disksize up to i_size
2964 * eventually. If the end of the current write is > i_size and
2965 * inside an allocated block which ext4_da_should_update_i_disksize()
2966 * checked, we need to update i_disksize here as certain
2967 * ext4_writepages() paths not allocating blocks and update i_disksize.
2969 if (new_i_size > inode->i_size) {
2972 i_size_write(inode, new_i_size);
2973 end = (new_i_size - 1) & (PAGE_SIZE - 1);
2974 if (copied && ext4_da_should_update_i_disksize(page_folio(page), end)) {
2975 ext4_update_i_disksize(inode, new_i_size);
2976 disksize_changed = true;
2984 pagecache_isize_extended(inode, old_size, pos);
2986 if (disksize_changed) {
2989 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
2991 return PTR_ERR(handle);
2992 ext4_mark_inode_dirty(handle, inode);
2993 ext4_journal_stop(handle);
2999 static int ext4_da_write_end(struct file *file,
3000 struct address_space *mapping,
3001 loff_t pos, unsigned len, unsigned copied,
3002 struct page *page, void *fsdata)
3004 struct inode *inode = mapping->host;
3005 int write_mode = (int)(unsigned long)fsdata;
3006 struct folio *folio = page_folio(page);
3008 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3009 return ext4_write_end(file, mapping, pos,
3010 len, copied, &folio->page, fsdata);
3012 trace_ext4_da_write_end(inode, pos, len, copied);
3014 if (write_mode != CONVERT_INLINE_DATA &&
3015 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3016 ext4_has_inline_data(inode))
3017 return ext4_write_inline_data_end(inode, pos, len, copied,
3020 if (unlikely(copied < len) && !PageUptodate(page))
3023 return ext4_da_do_write_end(mapping, pos, len, copied, &folio->page);
3027 * Force all delayed allocation blocks to be allocated for a given inode.
3029 int ext4_alloc_da_blocks(struct inode *inode)
3031 trace_ext4_alloc_da_blocks(inode);
3033 if (!EXT4_I(inode)->i_reserved_data_blocks)
3037 * We do something simple for now. The filemap_flush() will
3038 * also start triggering a write of the data blocks, which is
3039 * not strictly speaking necessary (and for users of
3040 * laptop_mode, not even desirable). However, to do otherwise
3041 * would require replicating code paths in:
3043 * ext4_writepages() ->
3044 * write_cache_pages() ---> (via passed in callback function)
3045 * __mpage_da_writepage() -->
3046 * mpage_add_bh_to_extent()
3047 * mpage_da_map_blocks()
3049 * The problem is that write_cache_pages(), located in
3050 * mm/page-writeback.c, marks pages clean in preparation for
3051 * doing I/O, which is not desirable if we're not planning on
3054 * We could call write_cache_pages(), and then redirty all of
3055 * the pages by calling redirty_page_for_writepage() but that
3056 * would be ugly in the extreme. So instead we would need to
3057 * replicate parts of the code in the above functions,
3058 * simplifying them because we wouldn't actually intend to
3059 * write out the pages, but rather only collect contiguous
3060 * logical block extents, call the multi-block allocator, and
3061 * then update the buffer heads with the block allocations.
3063 * For now, though, we'll cheat by calling filemap_flush(),
3064 * which will map the blocks, and start the I/O, but not
3065 * actually wait for the I/O to complete.
3067 return filemap_flush(inode->i_mapping);
3071 * bmap() is special. It gets used by applications such as lilo and by
3072 * the swapper to find the on-disk block of a specific piece of data.
3074 * Naturally, this is dangerous if the block concerned is still in the
3075 * journal. If somebody makes a swapfile on an ext4 data-journaling
3076 * filesystem and enables swap, then they may get a nasty shock when the
3077 * data getting swapped to that swapfile suddenly gets overwritten by
3078 * the original zero's written out previously to the journal and
3079 * awaiting writeback in the kernel's buffer cache.
3081 * So, if we see any bmap calls here on a modified, data-journaled file,
3082 * take extra steps to flush any blocks which might be in the cache.
3084 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3086 struct inode *inode = mapping->host;
3089 inode_lock_shared(inode);
3091 * We can get here for an inline file via the FIBMAP ioctl
3093 if (ext4_has_inline_data(inode))
3096 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3097 (test_opt(inode->i_sb, DELALLOC) ||
3098 ext4_should_journal_data(inode))) {
3100 * With delalloc or journalled data we want to sync the file so
3101 * that we can make sure we allocate blocks for file and data
3102 * is in place for the user to see it
3104 filemap_write_and_wait(mapping);
3107 ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3110 inode_unlock_shared(inode);
3114 static int ext4_read_folio(struct file *file, struct folio *folio)
3117 struct inode *inode = folio->mapping->host;
3119 trace_ext4_read_folio(inode, folio);
3121 if (ext4_has_inline_data(inode))
3122 ret = ext4_readpage_inline(inode, folio);
3125 return ext4_mpage_readpages(inode, NULL, folio);
3130 static void ext4_readahead(struct readahead_control *rac)
3132 struct inode *inode = rac->mapping->host;
3134 /* If the file has inline data, no need to do readahead. */
3135 if (ext4_has_inline_data(inode))
3138 ext4_mpage_readpages(inode, rac, NULL);
3141 static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3144 trace_ext4_invalidate_folio(folio, offset, length);
3146 /* No journalling happens on data buffers when this function is used */
3147 WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3149 block_invalidate_folio(folio, offset, length);
3152 static int __ext4_journalled_invalidate_folio(struct folio *folio,
3153 size_t offset, size_t length)
3155 journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3157 trace_ext4_journalled_invalidate_folio(folio, offset, length);
3160 * If it's a full truncate we just forget about the pending dirtying
3162 if (offset == 0 && length == folio_size(folio))
3163 folio_clear_checked(folio);
3165 return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3168 /* Wrapper for aops... */
3169 static void ext4_journalled_invalidate_folio(struct folio *folio,
3173 WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3176 static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3178 struct inode *inode = folio->mapping->host;
3179 journal_t *journal = EXT4_JOURNAL(inode);
3181 trace_ext4_release_folio(inode, folio);
3183 /* Page has dirty journalled data -> cannot release */
3184 if (folio_test_checked(folio))
3187 return jbd2_journal_try_to_free_buffers(journal, folio);
3189 return try_to_free_buffers(folio);
3192 static bool ext4_inode_datasync_dirty(struct inode *inode)
3194 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3197 if (jbd2_transaction_committed(journal,
3198 EXT4_I(inode)->i_datasync_tid))
3200 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3201 return !list_empty(&EXT4_I(inode)->i_fc_list);
3205 /* Any metadata buffers to write? */
3206 if (!list_empty(&inode->i_mapping->private_list))
3208 return inode->i_state & I_DIRTY_DATASYNC;
3211 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3212 struct ext4_map_blocks *map, loff_t offset,
3213 loff_t length, unsigned int flags)
3215 u8 blkbits = inode->i_blkbits;
3218 * Writes that span EOF might trigger an I/O size update on completion,
3219 * so consider them to be dirty for the purpose of O_DSYNC, even if
3220 * there is no other metadata changes being made or are pending.
3223 if (ext4_inode_datasync_dirty(inode) ||
3224 offset + length > i_size_read(inode))
3225 iomap->flags |= IOMAP_F_DIRTY;
3227 if (map->m_flags & EXT4_MAP_NEW)
3228 iomap->flags |= IOMAP_F_NEW;
3230 if (flags & IOMAP_DAX)
3231 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3233 iomap->bdev = inode->i_sb->s_bdev;
3234 iomap->offset = (u64) map->m_lblk << blkbits;
3235 iomap->length = (u64) map->m_len << blkbits;
3237 if ((map->m_flags & EXT4_MAP_MAPPED) &&
3238 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3239 iomap->flags |= IOMAP_F_MERGED;
3242 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3243 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3244 * set. In order for any allocated unwritten extents to be converted
3245 * into written extents correctly within the ->end_io() handler, we
3246 * need to ensure that the iomap->type is set appropriately. Hence, the
3247 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3250 if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3251 iomap->type = IOMAP_UNWRITTEN;
3252 iomap->addr = (u64) map->m_pblk << blkbits;
3253 if (flags & IOMAP_DAX)
3254 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3255 } else if (map->m_flags & EXT4_MAP_MAPPED) {
3256 iomap->type = IOMAP_MAPPED;
3257 iomap->addr = (u64) map->m_pblk << blkbits;
3258 if (flags & IOMAP_DAX)
3259 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3261 iomap->type = IOMAP_HOLE;
3262 iomap->addr = IOMAP_NULL_ADDR;
3266 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3270 u8 blkbits = inode->i_blkbits;
3271 int ret, dio_credits, m_flags = 0, retries = 0;
3274 * Trim the mapping request to the maximum value that we can map at
3275 * once for direct I/O.
3277 if (map->m_len > DIO_MAX_BLOCKS)
3278 map->m_len = DIO_MAX_BLOCKS;
3279 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3283 * Either we allocate blocks and then don't get an unwritten extent, so
3284 * in that case we have reserved enough credits. Or, the blocks are
3285 * already allocated and unwritten. In that case, the extent conversion
3286 * fits into the credits as well.
3288 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3290 return PTR_ERR(handle);
3293 * DAX and direct I/O are the only two operations that are currently
3294 * supported with IOMAP_WRITE.
3296 WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3297 if (flags & IOMAP_DAX)
3298 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3300 * We use i_size instead of i_disksize here because delalloc writeback
3301 * can complete at any point during the I/O and subsequently push the
3302 * i_disksize out to i_size. This could be beyond where direct I/O is
3303 * happening and thus expose allocated blocks to direct I/O reads.
3305 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3306 m_flags = EXT4_GET_BLOCKS_CREATE;
3307 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3308 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3310 ret = ext4_map_blocks(handle, inode, map, m_flags);
3313 * We cannot fill holes in indirect tree based inodes as that could
3314 * expose stale data in the case of a crash. Use the magic error code
3315 * to fallback to buffered I/O.
3317 if (!m_flags && !ret)
3320 ext4_journal_stop(handle);
3321 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3328 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3329 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3332 struct ext4_map_blocks map;
3333 u8 blkbits = inode->i_blkbits;
3335 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3338 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3342 * Calculate the first and last logical blocks respectively.
3344 map.m_lblk = offset >> blkbits;
3345 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3346 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3348 if (flags & IOMAP_WRITE) {
3350 * We check here if the blocks are already allocated, then we
3351 * don't need to start a journal txn and we can directly return
3352 * the mapping information. This could boost performance
3353 * especially in multi-threaded overwrite requests.
3355 if (offset + length <= i_size_read(inode)) {
3356 ret = ext4_map_blocks(NULL, inode, &map, 0);
3357 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3360 ret = ext4_iomap_alloc(inode, &map, flags);
3362 ret = ext4_map_blocks(NULL, inode, &map, 0);
3369 * When inline encryption is enabled, sometimes I/O to an encrypted file
3370 * has to be broken up to guarantee DUN contiguity. Handle this by
3371 * limiting the length of the mapping returned.
3373 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3375 ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3380 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3381 loff_t length, unsigned flags, struct iomap *iomap,
3382 struct iomap *srcmap)
3387 * Even for writes we don't need to allocate blocks, so just pretend
3388 * we are reading to save overhead of starting a transaction.
3390 flags &= ~IOMAP_WRITE;
3391 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3392 WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED);
3396 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3397 ssize_t written, unsigned flags, struct iomap *iomap)
3400 * Check to see whether an error occurred while writing out the data to
3401 * the allocated blocks. If so, return the magic error code so that we
3402 * fallback to buffered I/O and attempt to complete the remainder of
3403 * the I/O. Any blocks that may have been allocated in preparation for
3404 * the direct I/O will be reused during buffered I/O.
3406 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3412 const struct iomap_ops ext4_iomap_ops = {
3413 .iomap_begin = ext4_iomap_begin,
3414 .iomap_end = ext4_iomap_end,
3417 const struct iomap_ops ext4_iomap_overwrite_ops = {
3418 .iomap_begin = ext4_iomap_overwrite_begin,
3419 .iomap_end = ext4_iomap_end,
3422 static bool ext4_iomap_is_delalloc(struct inode *inode,
3423 struct ext4_map_blocks *map)
3425 struct extent_status es;
3426 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3428 ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3429 map->m_lblk, end, &es);
3431 if (!es.es_len || es.es_lblk > end)
3434 if (es.es_lblk > map->m_lblk) {
3435 map->m_len = es.es_lblk - map->m_lblk;
3439 offset = map->m_lblk - es.es_lblk;
3440 map->m_len = es.es_len - offset;
3445 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3446 loff_t length, unsigned int flags,
3447 struct iomap *iomap, struct iomap *srcmap)
3450 bool delalloc = false;
3451 struct ext4_map_blocks map;
3452 u8 blkbits = inode->i_blkbits;
3454 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3457 if (ext4_has_inline_data(inode)) {
3458 ret = ext4_inline_data_iomap(inode, iomap);
3459 if (ret != -EAGAIN) {
3460 if (ret == 0 && offset >= iomap->length)
3467 * Calculate the first and last logical block respectively.
3469 map.m_lblk = offset >> blkbits;
3470 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3471 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3474 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3475 * So handle it here itself instead of querying ext4_map_blocks().
3476 * Since ext4_map_blocks() will warn about it and will return
3479 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3480 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3482 if (offset >= sbi->s_bitmap_maxbytes) {
3488 ret = ext4_map_blocks(NULL, inode, &map, 0);
3492 delalloc = ext4_iomap_is_delalloc(inode, &map);
3495 ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3496 if (delalloc && iomap->type == IOMAP_HOLE)
3497 iomap->type = IOMAP_DELALLOC;
3502 const struct iomap_ops ext4_iomap_report_ops = {
3503 .iomap_begin = ext4_iomap_begin_report,
3507 * For data=journal mode, folio should be marked dirty only when it was
3508 * writeably mapped. When that happens, it was already attached to the
3509 * transaction and marked as jbddirty (we take care of this in
3510 * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings
3511 * so we should have nothing to do here, except for the case when someone
3512 * had the page pinned and dirtied the page through this pin (e.g. by doing
3513 * direct IO to it). In that case we'd need to attach buffers here to the
3514 * transaction but we cannot due to lock ordering. We cannot just dirty the
3515 * folio and leave attached buffers clean, because the buffers' dirty state is
3516 * "definitive". We cannot just set the buffers dirty or jbddirty because all
3517 * the journalling code will explode. So what we do is to mark the folio
3518 * "pending dirty" and next time ext4_writepages() is called, attach buffers
3519 * to the transaction appropriately.
3521 static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3522 struct folio *folio)
3524 WARN_ON_ONCE(!folio_buffers(folio));
3525 if (folio_maybe_dma_pinned(folio))
3526 folio_set_checked(folio);
3527 return filemap_dirty_folio(mapping, folio);
3530 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3532 WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3533 WARN_ON_ONCE(!folio_buffers(folio));
3534 return block_dirty_folio(mapping, folio);
3537 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3538 struct file *file, sector_t *span)
3540 return iomap_swapfile_activate(sis, file, span,
3541 &ext4_iomap_report_ops);
3544 static const struct address_space_operations ext4_aops = {
3545 .read_folio = ext4_read_folio,
3546 .readahead = ext4_readahead,
3547 .writepages = ext4_writepages,
3548 .write_begin = ext4_write_begin,
3549 .write_end = ext4_write_end,
3550 .dirty_folio = ext4_dirty_folio,
3552 .invalidate_folio = ext4_invalidate_folio,
3553 .release_folio = ext4_release_folio,
3554 .direct_IO = noop_direct_IO,
3555 .migrate_folio = buffer_migrate_folio,
3556 .is_partially_uptodate = block_is_partially_uptodate,
3557 .error_remove_page = generic_error_remove_page,
3558 .swap_activate = ext4_iomap_swap_activate,
3561 static const struct address_space_operations ext4_journalled_aops = {
3562 .read_folio = ext4_read_folio,
3563 .readahead = ext4_readahead,
3564 .writepages = ext4_writepages,
3565 .write_begin = ext4_write_begin,
3566 .write_end = ext4_journalled_write_end,
3567 .dirty_folio = ext4_journalled_dirty_folio,
3569 .invalidate_folio = ext4_journalled_invalidate_folio,
3570 .release_folio = ext4_release_folio,
3571 .direct_IO = noop_direct_IO,
3572 .migrate_folio = buffer_migrate_folio_norefs,
3573 .is_partially_uptodate = block_is_partially_uptodate,
3574 .error_remove_page = generic_error_remove_page,
3575 .swap_activate = ext4_iomap_swap_activate,
3578 static const struct address_space_operations ext4_da_aops = {
3579 .read_folio = ext4_read_folio,
3580 .readahead = ext4_readahead,
3581 .writepages = ext4_writepages,
3582 .write_begin = ext4_da_write_begin,
3583 .write_end = ext4_da_write_end,
3584 .dirty_folio = ext4_dirty_folio,
3586 .invalidate_folio = ext4_invalidate_folio,
3587 .release_folio = ext4_release_folio,
3588 .direct_IO = noop_direct_IO,
3589 .migrate_folio = buffer_migrate_folio,
3590 .is_partially_uptodate = block_is_partially_uptodate,
3591 .error_remove_page = generic_error_remove_page,
3592 .swap_activate = ext4_iomap_swap_activate,
3595 static const struct address_space_operations ext4_dax_aops = {
3596 .writepages = ext4_dax_writepages,
3597 .direct_IO = noop_direct_IO,
3598 .dirty_folio = noop_dirty_folio,
3600 .swap_activate = ext4_iomap_swap_activate,
3603 void ext4_set_aops(struct inode *inode)
3605 switch (ext4_inode_journal_mode(inode)) {
3606 case EXT4_INODE_ORDERED_DATA_MODE:
3607 case EXT4_INODE_WRITEBACK_DATA_MODE:
3609 case EXT4_INODE_JOURNAL_DATA_MODE:
3610 inode->i_mapping->a_ops = &ext4_journalled_aops;
3616 inode->i_mapping->a_ops = &ext4_dax_aops;
3617 else if (test_opt(inode->i_sb, DELALLOC))
3618 inode->i_mapping->a_ops = &ext4_da_aops;
3620 inode->i_mapping->a_ops = &ext4_aops;
3623 static int __ext4_block_zero_page_range(handle_t *handle,
3624 struct address_space *mapping, loff_t from, loff_t length)
3626 ext4_fsblk_t index = from >> PAGE_SHIFT;
3627 unsigned offset = from & (PAGE_SIZE-1);
3628 unsigned blocksize, pos;
3630 struct inode *inode = mapping->host;
3631 struct buffer_head *bh;
3632 struct folio *folio;
3635 folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT,
3636 FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3637 mapping_gfp_constraint(mapping, ~__GFP_FS));
3639 return PTR_ERR(folio);
3641 blocksize = inode->i_sb->s_blocksize;
3643 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3645 bh = folio_buffers(folio);
3647 create_empty_buffers(&folio->page, blocksize, 0);
3648 bh = folio_buffers(folio);
3651 /* Find the buffer that contains "offset" */
3653 while (offset >= pos) {
3654 bh = bh->b_this_page;
3658 if (buffer_freed(bh)) {
3659 BUFFER_TRACE(bh, "freed: skip");
3662 if (!buffer_mapped(bh)) {
3663 BUFFER_TRACE(bh, "unmapped");
3664 ext4_get_block(inode, iblock, bh, 0);
3665 /* unmapped? It's a hole - nothing to do */
3666 if (!buffer_mapped(bh)) {
3667 BUFFER_TRACE(bh, "still unmapped");
3672 /* Ok, it's mapped. Make sure it's up-to-date */
3673 if (folio_test_uptodate(folio))
3674 set_buffer_uptodate(bh);
3676 if (!buffer_uptodate(bh)) {
3677 err = ext4_read_bh_lock(bh, 0, true);
3680 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3681 /* We expect the key to be set. */
3682 BUG_ON(!fscrypt_has_encryption_key(inode));
3683 err = fscrypt_decrypt_pagecache_blocks(folio,
3687 clear_buffer_uptodate(bh);
3692 if (ext4_should_journal_data(inode)) {
3693 BUFFER_TRACE(bh, "get write access");
3694 err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3699 folio_zero_range(folio, offset, length);
3700 BUFFER_TRACE(bh, "zeroed end of block");
3702 if (ext4_should_journal_data(inode)) {
3703 err = ext4_dirty_journalled_data(handle, bh);
3706 mark_buffer_dirty(bh);
3707 if (ext4_should_order_data(inode))
3708 err = ext4_jbd2_inode_add_write(handle, inode, from,
3713 folio_unlock(folio);
3719 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3720 * starting from file offset 'from'. The range to be zero'd must
3721 * be contained with in one block. If the specified range exceeds
3722 * the end of the block it will be shortened to end of the block
3723 * that corresponds to 'from'
3725 static int ext4_block_zero_page_range(handle_t *handle,
3726 struct address_space *mapping, loff_t from, loff_t length)
3728 struct inode *inode = mapping->host;
3729 unsigned offset = from & (PAGE_SIZE-1);
3730 unsigned blocksize = inode->i_sb->s_blocksize;
3731 unsigned max = blocksize - (offset & (blocksize - 1));
3734 * correct length if it does not fall between
3735 * 'from' and the end of the block
3737 if (length > max || length < 0)
3740 if (IS_DAX(inode)) {
3741 return dax_zero_range(inode, from, length, NULL,
3744 return __ext4_block_zero_page_range(handle, mapping, from, length);
3748 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3749 * up to the end of the block which corresponds to `from'.
3750 * This required during truncate. We need to physically zero the tail end
3751 * of that block so it doesn't yield old data if the file is later grown.
3753 static int ext4_block_truncate_page(handle_t *handle,
3754 struct address_space *mapping, loff_t from)
3756 unsigned offset = from & (PAGE_SIZE-1);
3759 struct inode *inode = mapping->host;
3761 /* If we are processing an encrypted inode during orphan list handling */
3762 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3765 blocksize = inode->i_sb->s_blocksize;
3766 length = blocksize - (offset & (blocksize - 1));
3768 return ext4_block_zero_page_range(handle, mapping, from, length);
3771 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3772 loff_t lstart, loff_t length)
3774 struct super_block *sb = inode->i_sb;
3775 struct address_space *mapping = inode->i_mapping;
3776 unsigned partial_start, partial_end;
3777 ext4_fsblk_t start, end;
3778 loff_t byte_end = (lstart + length - 1);
3781 partial_start = lstart & (sb->s_blocksize - 1);
3782 partial_end = byte_end & (sb->s_blocksize - 1);
3784 start = lstart >> sb->s_blocksize_bits;
3785 end = byte_end >> sb->s_blocksize_bits;
3787 /* Handle partial zero within the single block */
3789 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3790 err = ext4_block_zero_page_range(handle, mapping,
3794 /* Handle partial zero out on the start of the range */
3795 if (partial_start) {
3796 err = ext4_block_zero_page_range(handle, mapping,
3797 lstart, sb->s_blocksize);
3801 /* Handle partial zero out on the end of the range */
3802 if (partial_end != sb->s_blocksize - 1)
3803 err = ext4_block_zero_page_range(handle, mapping,
3804 byte_end - partial_end,
3809 int ext4_can_truncate(struct inode *inode)
3811 if (S_ISREG(inode->i_mode))
3813 if (S_ISDIR(inode->i_mode))
3815 if (S_ISLNK(inode->i_mode))
3816 return !ext4_inode_is_fast_symlink(inode);
3821 * We have to make sure i_disksize gets properly updated before we truncate
3822 * page cache due to hole punching or zero range. Otherwise i_disksize update
3823 * can get lost as it may have been postponed to submission of writeback but
3824 * that will never happen after we truncate page cache.
3826 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3832 loff_t size = i_size_read(inode);
3834 WARN_ON(!inode_is_locked(inode));
3835 if (offset > size || offset + len < size)
3838 if (EXT4_I(inode)->i_disksize >= size)
3841 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3843 return PTR_ERR(handle);
3844 ext4_update_i_disksize(inode, size);
3845 ret = ext4_mark_inode_dirty(handle, inode);
3846 ext4_journal_stop(handle);
3851 static void ext4_wait_dax_page(struct inode *inode)
3853 filemap_invalidate_unlock(inode->i_mapping);
3855 filemap_invalidate_lock(inode->i_mapping);
3858 int ext4_break_layouts(struct inode *inode)
3863 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3867 page = dax_layout_busy_page(inode->i_mapping);
3871 error = ___wait_var_event(&page->_refcount,
3872 atomic_read(&page->_refcount) == 1,
3873 TASK_INTERRUPTIBLE, 0, 0,
3874 ext4_wait_dax_page(inode));
3875 } while (error == 0);
3881 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3882 * associated with the given offset and length
3884 * @inode: File inode
3885 * @offset: The offset where the hole will begin
3886 * @len: The length of the hole
3888 * Returns: 0 on success or negative on failure
3891 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3893 struct inode *inode = file_inode(file);
3894 struct super_block *sb = inode->i_sb;
3895 ext4_lblk_t first_block, stop_block;
3896 struct address_space *mapping = inode->i_mapping;
3897 loff_t first_block_offset, last_block_offset, max_length;
3898 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3900 unsigned int credits;
3901 int ret = 0, ret2 = 0;
3903 trace_ext4_punch_hole(inode, offset, length, 0);
3906 * Write out all dirty pages to avoid race conditions
3907 * Then release them.
3909 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3910 ret = filemap_write_and_wait_range(mapping, offset,
3911 offset + length - 1);
3918 /* No need to punch hole beyond i_size */
3919 if (offset >= inode->i_size)
3923 * If the hole extends beyond i_size, set the hole
3924 * to end after the page that contains i_size
3926 if (offset + length > inode->i_size) {
3927 length = inode->i_size +
3928 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3933 * For punch hole the length + offset needs to be within one block
3934 * before last range. Adjust the length if it goes beyond that limit.
3936 max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
3937 if (offset + length > max_length)
3938 length = max_length - offset;
3940 if (offset & (sb->s_blocksize - 1) ||
3941 (offset + length) & (sb->s_blocksize - 1)) {
3943 * Attach jinode to inode for jbd2 if we do any zeroing of
3946 ret = ext4_inode_attach_jinode(inode);
3952 /* Wait all existing dio workers, newcomers will block on i_rwsem */
3953 inode_dio_wait(inode);
3955 ret = file_modified(file);
3960 * Prevent page faults from reinstantiating pages we have released from
3963 filemap_invalidate_lock(mapping);
3965 ret = ext4_break_layouts(inode);
3969 first_block_offset = round_up(offset, sb->s_blocksize);
3970 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3972 /* Now release the pages and zero block aligned part of pages*/
3973 if (last_block_offset > first_block_offset) {
3974 ret = ext4_update_disksize_before_punch(inode, offset, length);
3977 truncate_pagecache_range(inode, first_block_offset,
3981 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3982 credits = ext4_writepage_trans_blocks(inode);
3984 credits = ext4_blocks_for_truncate(inode);
3985 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3986 if (IS_ERR(handle)) {
3987 ret = PTR_ERR(handle);
3988 ext4_std_error(sb, ret);
3992 ret = ext4_zero_partial_blocks(handle, inode, offset,
3997 first_block = (offset + sb->s_blocksize - 1) >>
3998 EXT4_BLOCK_SIZE_BITS(sb);
3999 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4001 /* If there are blocks to remove, do it */
4002 if (stop_block > first_block) {
4004 down_write(&EXT4_I(inode)->i_data_sem);
4005 ext4_discard_preallocations(inode, 0);
4007 ext4_es_remove_extent(inode, first_block,
4008 stop_block - first_block);
4010 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4011 ret = ext4_ext_remove_space(inode, first_block,
4014 ret = ext4_ind_remove_space(handle, inode, first_block,
4017 up_write(&EXT4_I(inode)->i_data_sem);
4019 ext4_fc_track_range(handle, inode, first_block, stop_block);
4021 ext4_handle_sync(handle);
4023 inode->i_mtime = inode_set_ctime_current(inode);
4024 ret2 = ext4_mark_inode_dirty(handle, inode);
4028 ext4_update_inode_fsync_trans(handle, inode, 1);
4030 ext4_journal_stop(handle);
4032 filemap_invalidate_unlock(mapping);
4034 inode_unlock(inode);
4038 int ext4_inode_attach_jinode(struct inode *inode)
4040 struct ext4_inode_info *ei = EXT4_I(inode);
4041 struct jbd2_inode *jinode;
4043 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4046 jinode = jbd2_alloc_inode(GFP_KERNEL);
4047 spin_lock(&inode->i_lock);
4050 spin_unlock(&inode->i_lock);
4053 ei->jinode = jinode;
4054 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4057 spin_unlock(&inode->i_lock);
4058 if (unlikely(jinode != NULL))
4059 jbd2_free_inode(jinode);
4066 * We block out ext4_get_block() block instantiations across the entire
4067 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4068 * simultaneously on behalf of the same inode.
4070 * As we work through the truncate and commit bits of it to the journal there
4071 * is one core, guiding principle: the file's tree must always be consistent on
4072 * disk. We must be able to restart the truncate after a crash.
4074 * The file's tree may be transiently inconsistent in memory (although it
4075 * probably isn't), but whenever we close off and commit a journal transaction,
4076 * the contents of (the filesystem + the journal) must be consistent and
4077 * restartable. It's pretty simple, really: bottom up, right to left (although
4078 * left-to-right works OK too).
4080 * Note that at recovery time, journal replay occurs *before* the restart of
4081 * truncate against the orphan inode list.
4083 * The committed inode has the new, desired i_size (which is the same as
4084 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4085 * that this inode's truncate did not complete and it will again call
4086 * ext4_truncate() to have another go. So there will be instantiated blocks
4087 * to the right of the truncation point in a crashed ext4 filesystem. But
4088 * that's fine - as long as they are linked from the inode, the post-crash
4089 * ext4_truncate() run will find them and release them.
4091 int ext4_truncate(struct inode *inode)
4093 struct ext4_inode_info *ei = EXT4_I(inode);
4094 unsigned int credits;
4097 struct address_space *mapping = inode->i_mapping;
4100 * There is a possibility that we're either freeing the inode
4101 * or it's a completely new inode. In those cases we might not
4102 * have i_rwsem locked because it's not necessary.
4104 if (!(inode->i_state & (I_NEW|I_FREEING)))
4105 WARN_ON(!inode_is_locked(inode));
4106 trace_ext4_truncate_enter(inode);
4108 if (!ext4_can_truncate(inode))
4111 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4112 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4114 if (ext4_has_inline_data(inode)) {
4117 err = ext4_inline_data_truncate(inode, &has_inline);
4118 if (err || has_inline)
4122 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4123 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4124 err = ext4_inode_attach_jinode(inode);
4129 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4130 credits = ext4_writepage_trans_blocks(inode);
4132 credits = ext4_blocks_for_truncate(inode);
4134 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4135 if (IS_ERR(handle)) {
4136 err = PTR_ERR(handle);
4140 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4141 ext4_block_truncate_page(handle, mapping, inode->i_size);
4144 * We add the inode to the orphan list, so that if this
4145 * truncate spans multiple transactions, and we crash, we will
4146 * resume the truncate when the filesystem recovers. It also
4147 * marks the inode dirty, to catch the new size.
4149 * Implication: the file must always be in a sane, consistent
4150 * truncatable state while each transaction commits.
4152 err = ext4_orphan_add(handle, inode);
4156 down_write(&EXT4_I(inode)->i_data_sem);
4158 ext4_discard_preallocations(inode, 0);
4160 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4161 err = ext4_ext_truncate(handle, inode);
4163 ext4_ind_truncate(handle, inode);
4165 up_write(&ei->i_data_sem);
4170 ext4_handle_sync(handle);
4174 * If this was a simple ftruncate() and the file will remain alive,
4175 * then we need to clear up the orphan record which we created above.
4176 * However, if this was a real unlink then we were called by
4177 * ext4_evict_inode(), and we allow that function to clean up the
4178 * orphan info for us.
4181 ext4_orphan_del(handle, inode);
4183 inode->i_mtime = inode_set_ctime_current(inode);
4184 err2 = ext4_mark_inode_dirty(handle, inode);
4185 if (unlikely(err2 && !err))
4187 ext4_journal_stop(handle);
4190 trace_ext4_truncate_exit(inode);
4194 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4196 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4197 return inode_peek_iversion_raw(inode);
4199 return inode_peek_iversion(inode);
4202 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4203 struct ext4_inode_info *ei)
4205 struct inode *inode = &(ei->vfs_inode);
4206 u64 i_blocks = READ_ONCE(inode->i_blocks);
4207 struct super_block *sb = inode->i_sb;
4209 if (i_blocks <= ~0U) {
4211 * i_blocks can be represented in a 32 bit variable
4212 * as multiple of 512 bytes
4214 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4215 raw_inode->i_blocks_high = 0;
4216 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4221 * This should never happen since sb->s_maxbytes should not have
4222 * allowed this, sb->s_maxbytes was set according to the huge_file
4223 * feature in ext4_fill_super().
4225 if (!ext4_has_feature_huge_file(sb))
4226 return -EFSCORRUPTED;
4228 if (i_blocks <= 0xffffffffffffULL) {
4230 * i_blocks can be represented in a 48 bit variable
4231 * as multiple of 512 bytes
4233 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4234 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4235 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4237 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4238 /* i_block is stored in file system block size */
4239 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4240 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4241 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4246 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4248 struct ext4_inode_info *ei = EXT4_I(inode);
4255 err = ext4_inode_blocks_set(raw_inode, ei);
4257 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4258 i_uid = i_uid_read(inode);
4259 i_gid = i_gid_read(inode);
4260 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4261 if (!(test_opt(inode->i_sb, NO_UID32))) {
4262 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4263 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4265 * Fix up interoperability with old kernels. Otherwise,
4266 * old inodes get re-used with the upper 16 bits of the
4269 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4270 raw_inode->i_uid_high = 0;
4271 raw_inode->i_gid_high = 0;
4273 raw_inode->i_uid_high =
4274 cpu_to_le16(high_16_bits(i_uid));
4275 raw_inode->i_gid_high =
4276 cpu_to_le16(high_16_bits(i_gid));
4279 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4280 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4281 raw_inode->i_uid_high = 0;
4282 raw_inode->i_gid_high = 0;
4284 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4286 EXT4_INODE_SET_CTIME(inode, raw_inode);
4287 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4288 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4289 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4291 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4292 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4293 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4294 raw_inode->i_file_acl_high =
4295 cpu_to_le16(ei->i_file_acl >> 32);
4296 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4297 ext4_isize_set(raw_inode, ei->i_disksize);
4299 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4300 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4301 if (old_valid_dev(inode->i_rdev)) {
4302 raw_inode->i_block[0] =
4303 cpu_to_le32(old_encode_dev(inode->i_rdev));
4304 raw_inode->i_block[1] = 0;
4306 raw_inode->i_block[0] = 0;
4307 raw_inode->i_block[1] =
4308 cpu_to_le32(new_encode_dev(inode->i_rdev));
4309 raw_inode->i_block[2] = 0;
4311 } else if (!ext4_has_inline_data(inode)) {
4312 for (block = 0; block < EXT4_N_BLOCKS; block++)
4313 raw_inode->i_block[block] = ei->i_data[block];
4316 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4317 u64 ivers = ext4_inode_peek_iversion(inode);
4319 raw_inode->i_disk_version = cpu_to_le32(ivers);
4320 if (ei->i_extra_isize) {
4321 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4322 raw_inode->i_version_hi =
4323 cpu_to_le32(ivers >> 32);
4324 raw_inode->i_extra_isize =
4325 cpu_to_le16(ei->i_extra_isize);
4329 if (i_projid != EXT4_DEF_PROJID &&
4330 !ext4_has_feature_project(inode->i_sb))
4331 err = err ?: -EFSCORRUPTED;
4333 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4334 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4335 raw_inode->i_projid = cpu_to_le32(i_projid);
4337 ext4_inode_csum_set(inode, raw_inode, ei);
4342 * ext4_get_inode_loc returns with an extra refcount against the inode's
4343 * underlying buffer_head on success. If we pass 'inode' and it does not
4344 * have in-inode xattr, we have all inode data in memory that is needed
4345 * to recreate the on-disk version of this inode.
4347 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4348 struct inode *inode, struct ext4_iloc *iloc,
4349 ext4_fsblk_t *ret_block)
4351 struct ext4_group_desc *gdp;
4352 struct buffer_head *bh;
4354 struct blk_plug plug;
4355 int inodes_per_block, inode_offset;
4358 if (ino < EXT4_ROOT_INO ||
4359 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4360 return -EFSCORRUPTED;
4362 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4363 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4368 * Figure out the offset within the block group inode table
4370 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4371 inode_offset = ((ino - 1) %
4372 EXT4_INODES_PER_GROUP(sb));
4373 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4375 block = ext4_inode_table(sb, gdp);
4376 if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4377 (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4378 ext4_error(sb, "Invalid inode table block %llu in "
4379 "block_group %u", block, iloc->block_group);
4380 return -EFSCORRUPTED;
4382 block += (inode_offset / inodes_per_block);
4384 bh = sb_getblk(sb, block);
4387 if (ext4_buffer_uptodate(bh))
4391 if (ext4_buffer_uptodate(bh)) {
4392 /* Someone brought it uptodate while we waited */
4398 * If we have all information of the inode in memory and this
4399 * is the only valid inode in the block, we need not read the
4402 if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4403 struct buffer_head *bitmap_bh;
4406 start = inode_offset & ~(inodes_per_block - 1);
4408 /* Is the inode bitmap in cache? */
4409 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4410 if (unlikely(!bitmap_bh))
4414 * If the inode bitmap isn't in cache then the
4415 * optimisation may end up performing two reads instead
4416 * of one, so skip it.
4418 if (!buffer_uptodate(bitmap_bh)) {
4422 for (i = start; i < start + inodes_per_block; i++) {
4423 if (i == inode_offset)
4425 if (ext4_test_bit(i, bitmap_bh->b_data))
4429 if (i == start + inodes_per_block) {
4430 struct ext4_inode *raw_inode =
4431 (struct ext4_inode *) (bh->b_data + iloc->offset);
4433 /* all other inodes are free, so skip I/O */
4434 memset(bh->b_data, 0, bh->b_size);
4435 if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4436 ext4_fill_raw_inode(inode, raw_inode);
4437 set_buffer_uptodate(bh);
4445 * If we need to do any I/O, try to pre-readahead extra
4446 * blocks from the inode table.
4448 blk_start_plug(&plug);
4449 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4450 ext4_fsblk_t b, end, table;
4452 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4454 table = ext4_inode_table(sb, gdp);
4455 /* s_inode_readahead_blks is always a power of 2 */
4456 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4460 num = EXT4_INODES_PER_GROUP(sb);
4461 if (ext4_has_group_desc_csum(sb))
4462 num -= ext4_itable_unused_count(sb, gdp);
4463 table += num / inodes_per_block;
4467 ext4_sb_breadahead_unmovable(sb, b++);
4471 * There are other valid inodes in the buffer, this inode
4472 * has in-inode xattrs, or we don't have this inode in memory.
4473 * Read the block from disk.
4475 trace_ext4_load_inode(sb, ino);
4476 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4477 blk_finish_plug(&plug);
4479 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4480 if (!buffer_uptodate(bh)) {
4491 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4492 struct ext4_iloc *iloc)
4494 ext4_fsblk_t err_blk = 0;
4497 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4501 ext4_error_inode_block(inode, err_blk, EIO,
4502 "unable to read itable block");
4507 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4509 ext4_fsblk_t err_blk = 0;
4512 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4516 ext4_error_inode_block(inode, err_blk, EIO,
4517 "unable to read itable block");
4523 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4524 struct ext4_iloc *iloc)
4526 return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4529 static bool ext4_should_enable_dax(struct inode *inode)
4531 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4533 if (test_opt2(inode->i_sb, DAX_NEVER))
4535 if (!S_ISREG(inode->i_mode))
4537 if (ext4_should_journal_data(inode))
4539 if (ext4_has_inline_data(inode))
4541 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4543 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4545 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4547 if (test_opt(inode->i_sb, DAX_ALWAYS))
4550 return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4553 void ext4_set_inode_flags(struct inode *inode, bool init)
4555 unsigned int flags = EXT4_I(inode)->i_flags;
4556 unsigned int new_fl = 0;
4558 WARN_ON_ONCE(IS_DAX(inode) && init);
4560 if (flags & EXT4_SYNC_FL)
4562 if (flags & EXT4_APPEND_FL)
4564 if (flags & EXT4_IMMUTABLE_FL)
4565 new_fl |= S_IMMUTABLE;
4566 if (flags & EXT4_NOATIME_FL)
4567 new_fl |= S_NOATIME;
4568 if (flags & EXT4_DIRSYNC_FL)
4569 new_fl |= S_DIRSYNC;
4571 /* Because of the way inode_set_flags() works we must preserve S_DAX
4572 * here if already set. */
4573 new_fl |= (inode->i_flags & S_DAX);
4574 if (init && ext4_should_enable_dax(inode))
4577 if (flags & EXT4_ENCRYPT_FL)
4578 new_fl |= S_ENCRYPTED;
4579 if (flags & EXT4_CASEFOLD_FL)
4580 new_fl |= S_CASEFOLD;
4581 if (flags & EXT4_VERITY_FL)
4583 inode_set_flags(inode, new_fl,
4584 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4585 S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4588 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4589 struct ext4_inode_info *ei)
4592 struct inode *inode = &(ei->vfs_inode);
4593 struct super_block *sb = inode->i_sb;
4595 if (ext4_has_feature_huge_file(sb)) {
4596 /* we are using combined 48 bit field */
4597 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4598 le32_to_cpu(raw_inode->i_blocks_lo);
4599 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4600 /* i_blocks represent file system block size */
4601 return i_blocks << (inode->i_blkbits - 9);
4606 return le32_to_cpu(raw_inode->i_blocks_lo);
4610 static inline int ext4_iget_extra_inode(struct inode *inode,
4611 struct ext4_inode *raw_inode,
4612 struct ext4_inode_info *ei)
4614 __le32 *magic = (void *)raw_inode +
4615 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4617 if (EXT4_INODE_HAS_XATTR_SPACE(inode) &&
4618 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4621 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4622 err = ext4_find_inline_data_nolock(inode);
4623 if (!err && ext4_has_inline_data(inode))
4624 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4627 EXT4_I(inode)->i_inline_off = 0;
4631 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4633 if (!ext4_has_feature_project(inode->i_sb))
4635 *projid = EXT4_I(inode)->i_projid;
4640 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4641 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4644 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4646 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4647 inode_set_iversion_raw(inode, val);
4649 inode_set_iversion_queried(inode, val);
4652 static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags)
4655 if (flags & EXT4_IGET_EA_INODE) {
4656 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4657 return "missing EA_INODE flag";
4658 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4659 EXT4_I(inode)->i_file_acl)
4660 return "ea_inode with extended attributes";
4662 if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4663 return "unexpected EA_INODE flag";
4665 if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD))
4666 return "unexpected bad inode w/o EXT4_IGET_BAD";
4670 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4671 ext4_iget_flags flags, const char *function,
4674 struct ext4_iloc iloc;
4675 struct ext4_inode *raw_inode;
4676 struct ext4_inode_info *ei;
4677 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4678 struct inode *inode;
4679 const char *err_str;
4680 journal_t *journal = EXT4_SB(sb)->s_journal;
4688 if ((!(flags & EXT4_IGET_SPECIAL) &&
4689 ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4690 ino == le32_to_cpu(es->s_usr_quota_inum) ||
4691 ino == le32_to_cpu(es->s_grp_quota_inum) ||
4692 ino == le32_to_cpu(es->s_prj_quota_inum) ||
4693 ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4694 (ino < EXT4_ROOT_INO) ||
4695 (ino > le32_to_cpu(es->s_inodes_count))) {
4696 if (flags & EXT4_IGET_HANDLE)
4697 return ERR_PTR(-ESTALE);
4698 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4699 "inode #%lu: comm %s: iget: illegal inode #",
4700 ino, current->comm);
4701 return ERR_PTR(-EFSCORRUPTED);
4704 inode = iget_locked(sb, ino);
4706 return ERR_PTR(-ENOMEM);
4707 if (!(inode->i_state & I_NEW)) {
4708 if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4709 ext4_error_inode(inode, function, line, 0, err_str);
4711 return ERR_PTR(-EFSCORRUPTED);
4719 ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4722 raw_inode = ext4_raw_inode(&iloc);
4724 if ((flags & EXT4_IGET_HANDLE) &&
4725 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4730 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4731 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4732 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4733 EXT4_INODE_SIZE(inode->i_sb) ||
4734 (ei->i_extra_isize & 3)) {
4735 ext4_error_inode(inode, function, line, 0,
4736 "iget: bad extra_isize %u "
4739 EXT4_INODE_SIZE(inode->i_sb));
4740 ret = -EFSCORRUPTED;
4744 ei->i_extra_isize = 0;
4746 /* Precompute checksum seed for inode metadata */
4747 if (ext4_has_metadata_csum(sb)) {
4748 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4750 __le32 inum = cpu_to_le32(inode->i_ino);
4751 __le32 gen = raw_inode->i_generation;
4752 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4754 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4758 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4759 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4760 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4761 ext4_error_inode_err(inode, function, line, 0,
4762 EFSBADCRC, "iget: checksum invalid");
4767 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4768 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4769 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4770 if (ext4_has_feature_project(sb) &&
4771 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4772 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4773 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4775 i_projid = EXT4_DEF_PROJID;
4777 if (!(test_opt(inode->i_sb, NO_UID32))) {
4778 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4779 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4781 i_uid_write(inode, i_uid);
4782 i_gid_write(inode, i_gid);
4783 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4784 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4786 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4787 ei->i_inline_off = 0;
4788 ei->i_dir_start_lookup = 0;
4789 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4790 /* We now have enough fields to check if the inode was active or not.
4791 * This is needed because nfsd might try to access dead inodes
4792 * the test is that same one that e2fsck uses
4793 * NeilBrown 1999oct15
4795 if (inode->i_nlink == 0) {
4796 if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
4797 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4798 ino != EXT4_BOOT_LOADER_INO) {
4799 /* this inode is deleted or unallocated */
4800 if (flags & EXT4_IGET_SPECIAL) {
4801 ext4_error_inode(inode, function, line, 0,
4802 "iget: special inode unallocated");
4803 ret = -EFSCORRUPTED;
4808 /* The only unlinked inodes we let through here have
4809 * valid i_mode and are being read by the orphan
4810 * recovery code: that's fine, we're about to complete
4811 * the process of deleting those.
4812 * OR it is the EXT4_BOOT_LOADER_INO which is
4813 * not initialized on a new filesystem. */
4815 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4816 ext4_set_inode_flags(inode, true);
4817 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4818 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4819 if (ext4_has_feature_64bit(sb))
4821 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4822 inode->i_size = ext4_isize(sb, raw_inode);
4823 if ((size = i_size_read(inode)) < 0) {
4824 ext4_error_inode(inode, function, line, 0,
4825 "iget: bad i_size value: %lld", size);
4826 ret = -EFSCORRUPTED;
4830 * If dir_index is not enabled but there's dir with INDEX flag set,
4831 * we'd normally treat htree data as empty space. But with metadata
4832 * checksumming that corrupts checksums so forbid that.
4834 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4835 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4836 ext4_error_inode(inode, function, line, 0,
4837 "iget: Dir with htree data on filesystem without dir_index feature.");
4838 ret = -EFSCORRUPTED;
4841 ei->i_disksize = inode->i_size;
4843 ei->i_reserved_quota = 0;
4845 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4846 ei->i_block_group = iloc.block_group;
4847 ei->i_last_alloc_group = ~0;
4849 * NOTE! The in-memory inode i_data array is in little-endian order
4850 * even on big-endian machines: we do NOT byteswap the block numbers!
4852 for (block = 0; block < EXT4_N_BLOCKS; block++)
4853 ei->i_data[block] = raw_inode->i_block[block];
4854 INIT_LIST_HEAD(&ei->i_orphan);
4855 ext4_fc_init_inode(&ei->vfs_inode);
4858 * Set transaction id's of transactions that have to be committed
4859 * to finish f[data]sync. We set them to currently running transaction
4860 * as we cannot be sure that the inode or some of its metadata isn't
4861 * part of the transaction - the inode could have been reclaimed and
4862 * now it is reread from disk.
4865 transaction_t *transaction;
4868 read_lock(&journal->j_state_lock);
4869 if (journal->j_running_transaction)
4870 transaction = journal->j_running_transaction;
4872 transaction = journal->j_committing_transaction;
4874 tid = transaction->t_tid;
4876 tid = journal->j_commit_sequence;
4877 read_unlock(&journal->j_state_lock);
4878 ei->i_sync_tid = tid;
4879 ei->i_datasync_tid = tid;
4882 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4883 if (ei->i_extra_isize == 0) {
4884 /* The extra space is currently unused. Use it. */
4885 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4886 ei->i_extra_isize = sizeof(struct ext4_inode) -
4887 EXT4_GOOD_OLD_INODE_SIZE;
4889 ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4895 EXT4_INODE_GET_CTIME(inode, raw_inode);
4896 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4897 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4898 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4900 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4901 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4903 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4904 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4906 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4908 ext4_inode_set_iversion_queried(inode, ivers);
4912 if (ei->i_file_acl &&
4913 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4914 ext4_error_inode(inode, function, line, 0,
4915 "iget: bad extended attribute block %llu",
4917 ret = -EFSCORRUPTED;
4919 } else if (!ext4_has_inline_data(inode)) {
4920 /* validate the block references in the inode */
4921 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4922 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4923 (S_ISLNK(inode->i_mode) &&
4924 !ext4_inode_is_fast_symlink(inode)))) {
4925 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4926 ret = ext4_ext_check_inode(inode);
4928 ret = ext4_ind_check_inode(inode);
4934 if (S_ISREG(inode->i_mode)) {
4935 inode->i_op = &ext4_file_inode_operations;
4936 inode->i_fop = &ext4_file_operations;
4937 ext4_set_aops(inode);
4938 } else if (S_ISDIR(inode->i_mode)) {
4939 inode->i_op = &ext4_dir_inode_operations;
4940 inode->i_fop = &ext4_dir_operations;
4941 } else if (S_ISLNK(inode->i_mode)) {
4942 /* VFS does not allow setting these so must be corruption */
4943 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4944 ext4_error_inode(inode, function, line, 0,
4945 "iget: immutable or append flags "
4946 "not allowed on symlinks");
4947 ret = -EFSCORRUPTED;
4950 if (IS_ENCRYPTED(inode)) {
4951 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4952 } else if (ext4_inode_is_fast_symlink(inode)) {
4953 inode->i_link = (char *)ei->i_data;
4954 inode->i_op = &ext4_fast_symlink_inode_operations;
4955 nd_terminate_link(ei->i_data, inode->i_size,
4956 sizeof(ei->i_data) - 1);
4958 inode->i_op = &ext4_symlink_inode_operations;
4960 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4961 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4962 inode->i_op = &ext4_special_inode_operations;
4963 if (raw_inode->i_block[0])
4964 init_special_inode(inode, inode->i_mode,
4965 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4967 init_special_inode(inode, inode->i_mode,
4968 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4969 } else if (ino == EXT4_BOOT_LOADER_INO) {
4970 make_bad_inode(inode);
4972 ret = -EFSCORRUPTED;
4973 ext4_error_inode(inode, function, line, 0,
4974 "iget: bogus i_mode (%o)", inode->i_mode);
4977 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) {
4978 ext4_error_inode(inode, function, line, 0,
4979 "casefold flag without casefold feature");
4980 ret = -EFSCORRUPTED;
4983 if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4984 ext4_error_inode(inode, function, line, 0, err_str);
4985 ret = -EFSCORRUPTED;
4990 unlock_new_inode(inode);
4996 return ERR_PTR(ret);
4999 static void __ext4_update_other_inode_time(struct super_block *sb,
5000 unsigned long orig_ino,
5002 struct ext4_inode *raw_inode)
5004 struct inode *inode;
5006 inode = find_inode_by_ino_rcu(sb, ino);
5010 if (!inode_is_dirtytime_only(inode))
5013 spin_lock(&inode->i_lock);
5014 if (inode_is_dirtytime_only(inode)) {
5015 struct ext4_inode_info *ei = EXT4_I(inode);
5017 inode->i_state &= ~I_DIRTY_TIME;
5018 spin_unlock(&inode->i_lock);
5020 spin_lock(&ei->i_raw_lock);
5021 EXT4_INODE_SET_CTIME(inode, raw_inode);
5022 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5023 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5024 ext4_inode_csum_set(inode, raw_inode, ei);
5025 spin_unlock(&ei->i_raw_lock);
5026 trace_ext4_other_inode_update_time(inode, orig_ino);
5029 spin_unlock(&inode->i_lock);
5033 * Opportunistically update the other time fields for other inodes in
5034 * the same inode table block.
5036 static void ext4_update_other_inodes_time(struct super_block *sb,
5037 unsigned long orig_ino, char *buf)
5040 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5041 int inode_size = EXT4_INODE_SIZE(sb);
5044 * Calculate the first inode in the inode table block. Inode
5045 * numbers are one-based. That is, the first inode in a block
5046 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5048 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5050 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5051 if (ino == orig_ino)
5053 __ext4_update_other_inode_time(sb, orig_ino, ino,
5054 (struct ext4_inode *)buf);
5060 * Post the struct inode info into an on-disk inode location in the
5061 * buffer-cache. This gobbles the caller's reference to the
5062 * buffer_head in the inode location struct.
5064 * The caller must have write access to iloc->bh.
5066 static int ext4_do_update_inode(handle_t *handle,
5067 struct inode *inode,
5068 struct ext4_iloc *iloc)
5070 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5071 struct ext4_inode_info *ei = EXT4_I(inode);
5072 struct buffer_head *bh = iloc->bh;
5073 struct super_block *sb = inode->i_sb;
5075 int need_datasync = 0, set_large_file = 0;
5077 spin_lock(&ei->i_raw_lock);
5080 * For fields not tracked in the in-memory inode, initialise them
5081 * to zero for new inodes.
5083 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5084 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5086 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5088 if (ei->i_disksize > 0x7fffffffULL) {
5089 if (!ext4_has_feature_large_file(sb) ||
5090 EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5094 err = ext4_fill_raw_inode(inode, raw_inode);
5095 spin_unlock(&ei->i_raw_lock);
5097 EXT4_ERROR_INODE(inode, "corrupted inode contents");
5101 if (inode->i_sb->s_flags & SB_LAZYTIME)
5102 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5105 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5106 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5109 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5110 if (set_large_file) {
5111 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5112 err = ext4_journal_get_write_access(handle, sb,
5117 lock_buffer(EXT4_SB(sb)->s_sbh);
5118 ext4_set_feature_large_file(sb);
5119 ext4_superblock_csum_set(sb);
5120 unlock_buffer(EXT4_SB(sb)->s_sbh);
5121 ext4_handle_sync(handle);
5122 err = ext4_handle_dirty_metadata(handle, NULL,
5123 EXT4_SB(sb)->s_sbh);
5125 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5127 ext4_std_error(inode->i_sb, err);
5134 * ext4_write_inode()
5136 * We are called from a few places:
5138 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5139 * Here, there will be no transaction running. We wait for any running
5140 * transaction to commit.
5142 * - Within flush work (sys_sync(), kupdate and such).
5143 * We wait on commit, if told to.
5145 * - Within iput_final() -> write_inode_now()
5146 * We wait on commit, if told to.
5148 * In all cases it is actually safe for us to return without doing anything,
5149 * because the inode has been copied into a raw inode buffer in
5150 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5153 * Note that we are absolutely dependent upon all inode dirtiers doing the
5154 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5155 * which we are interested.
5157 * It would be a bug for them to not do this. The code:
5159 * mark_inode_dirty(inode)
5161 * inode->i_size = expr;
5163 * is in error because write_inode() could occur while `stuff()' is running,
5164 * and the new i_size will be lost. Plus the inode will no longer be on the
5165 * superblock's dirty inode list.
5167 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5171 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5174 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5177 if (EXT4_SB(inode->i_sb)->s_journal) {
5178 if (ext4_journal_current_handle()) {
5179 ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5185 * No need to force transaction in WB_SYNC_NONE mode. Also
5186 * ext4_sync_fs() will force the commit after everything is
5189 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5192 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5193 EXT4_I(inode)->i_sync_tid);
5195 struct ext4_iloc iloc;
5197 err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5201 * sync(2) will flush the whole buffer cache. No need to do
5202 * it here separately for each inode.
5204 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5205 sync_dirty_buffer(iloc.bh);
5206 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5207 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5208 "IO error syncing inode");
5217 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5218 * buffers that are attached to a folio straddling i_size and are undergoing
5219 * commit. In that case we have to wait for commit to finish and try again.
5221 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5224 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5225 tid_t commit_tid = 0;
5228 offset = inode->i_size & (PAGE_SIZE - 1);
5230 * If the folio is fully truncated, we don't need to wait for any commit
5231 * (and we even should not as __ext4_journalled_invalidate_folio() may
5232 * strip all buffers from the folio but keep the folio dirty which can then
5233 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without
5234 * buffers). Also we don't need to wait for any commit if all buffers in
5235 * the folio remain valid. This is most beneficial for the common case of
5236 * blocksize == PAGESIZE.
5238 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5241 struct folio *folio = filemap_lock_folio(inode->i_mapping,
5242 inode->i_size >> PAGE_SHIFT);
5245 ret = __ext4_journalled_invalidate_folio(folio, offset,
5246 folio_size(folio) - offset);
5247 folio_unlock(folio);
5252 read_lock(&journal->j_state_lock);
5253 if (journal->j_committing_transaction)
5254 commit_tid = journal->j_committing_transaction->t_tid;
5255 read_unlock(&journal->j_state_lock);
5257 jbd2_log_wait_commit(journal, commit_tid);
5264 * Called from notify_change.
5266 * We want to trap VFS attempts to truncate the file as soon as
5267 * possible. In particular, we want to make sure that when the VFS
5268 * shrinks i_size, we put the inode on the orphan list and modify
5269 * i_disksize immediately, so that during the subsequent flushing of
5270 * dirty pages and freeing of disk blocks, we can guarantee that any
5271 * commit will leave the blocks being flushed in an unused state on
5272 * disk. (On recovery, the inode will get truncated and the blocks will
5273 * be freed, so we have a strong guarantee that no future commit will
5274 * leave these blocks visible to the user.)
5276 * Another thing we have to assure is that if we are in ordered mode
5277 * and inode is still attached to the committing transaction, we must
5278 * we start writeout of all the dirty pages which are being truncated.
5279 * This way we are sure that all the data written in the previous
5280 * transaction are already on disk (truncate waits for pages under
5283 * Called with inode->i_rwsem down.
5285 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5288 struct inode *inode = d_inode(dentry);
5291 const unsigned int ia_valid = attr->ia_valid;
5292 bool inc_ivers = true;
5294 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5297 if (unlikely(IS_IMMUTABLE(inode)))
5300 if (unlikely(IS_APPEND(inode) &&
5301 (ia_valid & (ATTR_MODE | ATTR_UID |
5302 ATTR_GID | ATTR_TIMES_SET))))
5305 error = setattr_prepare(idmap, dentry, attr);
5309 error = fscrypt_prepare_setattr(dentry, attr);
5313 error = fsverity_prepare_setattr(dentry, attr);
5317 if (is_quota_modification(idmap, inode, attr)) {
5318 error = dquot_initialize(inode);
5323 if (i_uid_needs_update(idmap, attr, inode) ||
5324 i_gid_needs_update(idmap, attr, inode)) {
5327 /* (user+group)*(old+new) structure, inode write (sb,
5328 * inode block, ? - but truncate inode update has it) */
5329 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5330 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5331 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5332 if (IS_ERR(handle)) {
5333 error = PTR_ERR(handle);
5337 /* dquot_transfer() calls back ext4_get_inode_usage() which
5338 * counts xattr inode references.
5340 down_read(&EXT4_I(inode)->xattr_sem);
5341 error = dquot_transfer(idmap, inode, attr);
5342 up_read(&EXT4_I(inode)->xattr_sem);
5345 ext4_journal_stop(handle);
5348 /* Update corresponding info in inode so that everything is in
5349 * one transaction */
5350 i_uid_update(idmap, attr, inode);
5351 i_gid_update(idmap, attr, inode);
5352 error = ext4_mark_inode_dirty(handle, inode);
5353 ext4_journal_stop(handle);
5354 if (unlikely(error)) {
5359 if (attr->ia_valid & ATTR_SIZE) {
5361 loff_t oldsize = inode->i_size;
5362 loff_t old_disksize;
5363 int shrink = (attr->ia_size < inode->i_size);
5365 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5366 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5368 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5372 if (!S_ISREG(inode->i_mode)) {
5376 if (attr->ia_size == inode->i_size)
5380 if (ext4_should_order_data(inode)) {
5381 error = ext4_begin_ordered_truncate(inode,
5387 * Blocks are going to be removed from the inode. Wait
5388 * for dio in flight.
5390 inode_dio_wait(inode);
5393 filemap_invalidate_lock(inode->i_mapping);
5395 rc = ext4_break_layouts(inode);
5397 filemap_invalidate_unlock(inode->i_mapping);
5401 if (attr->ia_size != inode->i_size) {
5402 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5403 if (IS_ERR(handle)) {
5404 error = PTR_ERR(handle);
5407 if (ext4_handle_valid(handle) && shrink) {
5408 error = ext4_orphan_add(handle, inode);
5412 * Update c/mtime on truncate up, ext4_truncate() will
5413 * update c/mtime in shrink case below
5416 inode->i_mtime = inode_set_ctime_current(inode);
5419 ext4_fc_track_range(handle, inode,
5420 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5421 inode->i_sb->s_blocksize_bits,
5422 EXT_MAX_BLOCKS - 1);
5424 ext4_fc_track_range(
5426 (oldsize > 0 ? oldsize - 1 : oldsize) >>
5427 inode->i_sb->s_blocksize_bits,
5428 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5429 inode->i_sb->s_blocksize_bits);
5431 down_write(&EXT4_I(inode)->i_data_sem);
5432 old_disksize = EXT4_I(inode)->i_disksize;
5433 EXT4_I(inode)->i_disksize = attr->ia_size;
5434 rc = ext4_mark_inode_dirty(handle, inode);
5438 * We have to update i_size under i_data_sem together
5439 * with i_disksize to avoid races with writeback code
5440 * running ext4_wb_update_i_disksize().
5443 i_size_write(inode, attr->ia_size);
5445 EXT4_I(inode)->i_disksize = old_disksize;
5446 up_write(&EXT4_I(inode)->i_data_sem);
5447 ext4_journal_stop(handle);
5451 pagecache_isize_extended(inode, oldsize,
5453 } else if (ext4_should_journal_data(inode)) {
5454 ext4_wait_for_tail_page_commit(inode);
5459 * Truncate pagecache after we've waited for commit
5460 * in data=journal mode to make pages freeable.
5462 truncate_pagecache(inode, inode->i_size);
5464 * Call ext4_truncate() even if i_size didn't change to
5465 * truncate possible preallocated blocks.
5467 if (attr->ia_size <= oldsize) {
5468 rc = ext4_truncate(inode);
5473 filemap_invalidate_unlock(inode->i_mapping);
5478 inode_inc_iversion(inode);
5479 setattr_copy(idmap, inode, attr);
5480 mark_inode_dirty(inode);
5484 * If the call to ext4_truncate failed to get a transaction handle at
5485 * all, we need to clean up the in-core orphan list manually.
5487 if (orphan && inode->i_nlink)
5488 ext4_orphan_del(NULL, inode);
5490 if (!error && (ia_valid & ATTR_MODE))
5491 rc = posix_acl_chmod(idmap, dentry, inode->i_mode);
5495 ext4_std_error(inode->i_sb, error);
5501 u32 ext4_dio_alignment(struct inode *inode)
5503 if (fsverity_active(inode))
5505 if (ext4_should_journal_data(inode))
5507 if (ext4_has_inline_data(inode))
5509 if (IS_ENCRYPTED(inode)) {
5510 if (!fscrypt_dio_supported(inode))
5512 return i_blocksize(inode);
5514 return 1; /* use the iomap defaults */
5517 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path,
5518 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5520 struct inode *inode = d_inode(path->dentry);
5521 struct ext4_inode *raw_inode;
5522 struct ext4_inode_info *ei = EXT4_I(inode);
5525 if ((request_mask & STATX_BTIME) &&
5526 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5527 stat->result_mask |= STATX_BTIME;
5528 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5529 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5533 * Return the DIO alignment restrictions if requested. We only return
5534 * this information when requested, since on encrypted files it might
5535 * take a fair bit of work to get if the file wasn't opened recently.
5537 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5538 u32 dio_align = ext4_dio_alignment(inode);
5540 stat->result_mask |= STATX_DIOALIGN;
5541 if (dio_align == 1) {
5542 struct block_device *bdev = inode->i_sb->s_bdev;
5544 /* iomap defaults */
5545 stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5546 stat->dio_offset_align = bdev_logical_block_size(bdev);
5548 stat->dio_mem_align = dio_align;
5549 stat->dio_offset_align = dio_align;
5553 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5554 if (flags & EXT4_APPEND_FL)
5555 stat->attributes |= STATX_ATTR_APPEND;
5556 if (flags & EXT4_COMPR_FL)
5557 stat->attributes |= STATX_ATTR_COMPRESSED;
5558 if (flags & EXT4_ENCRYPT_FL)
5559 stat->attributes |= STATX_ATTR_ENCRYPTED;
5560 if (flags & EXT4_IMMUTABLE_FL)
5561 stat->attributes |= STATX_ATTR_IMMUTABLE;
5562 if (flags & EXT4_NODUMP_FL)
5563 stat->attributes |= STATX_ATTR_NODUMP;
5564 if (flags & EXT4_VERITY_FL)
5565 stat->attributes |= STATX_ATTR_VERITY;
5567 stat->attributes_mask |= (STATX_ATTR_APPEND |
5568 STATX_ATTR_COMPRESSED |
5569 STATX_ATTR_ENCRYPTED |
5570 STATX_ATTR_IMMUTABLE |
5574 generic_fillattr(idmap, request_mask, inode, stat);
5578 int ext4_file_getattr(struct mnt_idmap *idmap,
5579 const struct path *path, struct kstat *stat,
5580 u32 request_mask, unsigned int query_flags)
5582 struct inode *inode = d_inode(path->dentry);
5583 u64 delalloc_blocks;
5585 ext4_getattr(idmap, path, stat, request_mask, query_flags);
5588 * If there is inline data in the inode, the inode will normally not
5589 * have data blocks allocated (it may have an external xattr block).
5590 * Report at least one sector for such files, so tools like tar, rsync,
5591 * others don't incorrectly think the file is completely sparse.
5593 if (unlikely(ext4_has_inline_data(inode)))
5594 stat->blocks += (stat->size + 511) >> 9;
5597 * We can't update i_blocks if the block allocation is delayed
5598 * otherwise in the case of system crash before the real block
5599 * allocation is done, we will have i_blocks inconsistent with
5600 * on-disk file blocks.
5601 * We always keep i_blocks updated together with real
5602 * allocation. But to not confuse with user, stat
5603 * will return the blocks that include the delayed allocation
5604 * blocks for this file.
5606 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5607 EXT4_I(inode)->i_reserved_data_blocks);
5608 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5612 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5615 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5616 return ext4_ind_trans_blocks(inode, lblocks);
5617 return ext4_ext_index_trans_blocks(inode, pextents);
5621 * Account for index blocks, block groups bitmaps and block group
5622 * descriptor blocks if modify datablocks and index blocks
5623 * worse case, the indexs blocks spread over different block groups
5625 * If datablocks are discontiguous, they are possible to spread over
5626 * different block groups too. If they are contiguous, with flexbg,
5627 * they could still across block group boundary.
5629 * Also account for superblock, inode, quota and xattr blocks
5631 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5634 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5640 * How many index blocks need to touch to map @lblocks logical blocks
5641 * to @pextents physical extents?
5643 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5648 * Now let's see how many group bitmaps and group descriptors need
5651 groups = idxblocks + pextents;
5653 if (groups > ngroups)
5655 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5656 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5658 /* bitmaps and block group descriptor blocks */
5659 ret += groups + gdpblocks;
5661 /* Blocks for super block, inode, quota and xattr blocks */
5662 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5668 * Calculate the total number of credits to reserve to fit
5669 * the modification of a single pages into a single transaction,
5670 * which may include multiple chunks of block allocations.
5672 * This could be called via ext4_write_begin()
5674 * We need to consider the worse case, when
5675 * one new block per extent.
5677 int ext4_writepage_trans_blocks(struct inode *inode)
5679 int bpp = ext4_journal_blocks_per_page(inode);
5682 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5684 /* Account for data blocks for journalled mode */
5685 if (ext4_should_journal_data(inode))
5691 * Calculate the journal credits for a chunk of data modification.
5693 * This is called from DIO, fallocate or whoever calling
5694 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5696 * journal buffers for data blocks are not included here, as DIO
5697 * and fallocate do no need to journal data buffers.
5699 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5701 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5705 * The caller must have previously called ext4_reserve_inode_write().
5706 * Give this, we know that the caller already has write access to iloc->bh.
5708 int ext4_mark_iloc_dirty(handle_t *handle,
5709 struct inode *inode, struct ext4_iloc *iloc)
5713 if (unlikely(ext4_forced_shutdown(inode->i_sb))) {
5717 ext4_fc_track_inode(handle, inode);
5719 /* the do_update_inode consumes one bh->b_count */
5722 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5723 err = ext4_do_update_inode(handle, inode, iloc);
5729 * On success, We end up with an outstanding reference count against
5730 * iloc->bh. This _must_ be cleaned up later.
5734 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5735 struct ext4_iloc *iloc)
5739 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5742 err = ext4_get_inode_loc(inode, iloc);
5744 BUFFER_TRACE(iloc->bh, "get_write_access");
5745 err = ext4_journal_get_write_access(handle, inode->i_sb,
5746 iloc->bh, EXT4_JTR_NONE);
5752 ext4_std_error(inode->i_sb, err);
5756 static int __ext4_expand_extra_isize(struct inode *inode,
5757 unsigned int new_extra_isize,
5758 struct ext4_iloc *iloc,
5759 handle_t *handle, int *no_expand)
5761 struct ext4_inode *raw_inode;
5762 struct ext4_xattr_ibody_header *header;
5763 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5764 struct ext4_inode_info *ei = EXT4_I(inode);
5767 /* this was checked at iget time, but double check for good measure */
5768 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5769 (ei->i_extra_isize & 3)) {
5770 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5772 EXT4_INODE_SIZE(inode->i_sb));
5773 return -EFSCORRUPTED;
5775 if ((new_extra_isize < ei->i_extra_isize) ||
5776 (new_extra_isize < 4) ||
5777 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5778 return -EINVAL; /* Should never happen */
5780 raw_inode = ext4_raw_inode(iloc);
5782 header = IHDR(inode, raw_inode);
5784 /* No extended attributes present */
5785 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5786 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5787 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5788 EXT4_I(inode)->i_extra_isize, 0,
5789 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5790 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5795 * We may need to allocate external xattr block so we need quotas
5796 * initialized. Here we can be called with various locks held so we
5797 * cannot affort to initialize quotas ourselves. So just bail.
5799 if (dquot_initialize_needed(inode))
5802 /* try to expand with EAs present */
5803 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5807 * Inode size expansion failed; don't try again
5816 * Expand an inode by new_extra_isize bytes.
5817 * Returns 0 on success or negative error number on failure.
5819 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5820 unsigned int new_extra_isize,
5821 struct ext4_iloc iloc,
5827 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5831 * In nojournal mode, we can immediately attempt to expand
5832 * the inode. When journaled, we first need to obtain extra
5833 * buffer credits since we may write into the EA block
5834 * with this same handle. If journal_extend fails, then it will
5835 * only result in a minor loss of functionality for that inode.
5836 * If this is felt to be critical, then e2fsck should be run to
5837 * force a large enough s_min_extra_isize.
5839 if (ext4_journal_extend(handle,
5840 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5843 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5846 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5847 handle, &no_expand);
5848 ext4_write_unlock_xattr(inode, &no_expand);
5853 int ext4_expand_extra_isize(struct inode *inode,
5854 unsigned int new_extra_isize,
5855 struct ext4_iloc *iloc)
5861 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5866 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5867 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5868 if (IS_ERR(handle)) {
5869 error = PTR_ERR(handle);
5874 ext4_write_lock_xattr(inode, &no_expand);
5876 BUFFER_TRACE(iloc->bh, "get_write_access");
5877 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5884 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5885 handle, &no_expand);
5887 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5892 ext4_write_unlock_xattr(inode, &no_expand);
5893 ext4_journal_stop(handle);
5898 * What we do here is to mark the in-core inode as clean with respect to inode
5899 * dirtiness (it may still be data-dirty).
5900 * This means that the in-core inode may be reaped by prune_icache
5901 * without having to perform any I/O. This is a very good thing,
5902 * because *any* task may call prune_icache - even ones which
5903 * have a transaction open against a different journal.
5905 * Is this cheating? Not really. Sure, we haven't written the
5906 * inode out, but prune_icache isn't a user-visible syncing function.
5907 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5908 * we start and wait on commits.
5910 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5911 const char *func, unsigned int line)
5913 struct ext4_iloc iloc;
5914 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5918 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5919 err = ext4_reserve_inode_write(handle, inode, &iloc);
5923 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5924 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5927 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5930 ext4_error_inode_err(inode, func, line, 0, err,
5931 "mark_inode_dirty error");
5936 * ext4_dirty_inode() is called from __mark_inode_dirty()
5938 * We're really interested in the case where a file is being extended.
5939 * i_size has been changed by generic_commit_write() and we thus need
5940 * to include the updated inode in the current transaction.
5942 * Also, dquot_alloc_block() will always dirty the inode when blocks
5943 * are allocated to the file.
5945 * If the inode is marked synchronous, we don't honour that here - doing
5946 * so would cause a commit on atime updates, which we don't bother doing.
5947 * We handle synchronous inodes at the highest possible level.
5949 void ext4_dirty_inode(struct inode *inode, int flags)
5953 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5956 ext4_mark_inode_dirty(handle, inode);
5957 ext4_journal_stop(handle);
5960 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5968 * We have to be very careful here: changing a data block's
5969 * journaling status dynamically is dangerous. If we write a
5970 * data block to the journal, change the status and then delete
5971 * that block, we risk forgetting to revoke the old log record
5972 * from the journal and so a subsequent replay can corrupt data.
5973 * So, first we make sure that the journal is empty and that
5974 * nobody is changing anything.
5977 journal = EXT4_JOURNAL(inode);
5980 if (is_journal_aborted(journal))
5983 /* Wait for all existing dio workers */
5984 inode_dio_wait(inode);
5987 * Before flushing the journal and switching inode's aops, we have
5988 * to flush all dirty data the inode has. There can be outstanding
5989 * delayed allocations, there can be unwritten extents created by
5990 * fallocate or buffered writes in dioread_nolock mode covered by
5991 * dirty data which can be converted only after flushing the dirty
5992 * data (and journalled aops don't know how to handle these cases).
5995 filemap_invalidate_lock(inode->i_mapping);
5996 err = filemap_write_and_wait(inode->i_mapping);
5998 filemap_invalidate_unlock(inode->i_mapping);
6003 alloc_ctx = ext4_writepages_down_write(inode->i_sb);
6004 jbd2_journal_lock_updates(journal);
6007 * OK, there are no updates running now, and all cached data is
6008 * synced to disk. We are now in a completely consistent state
6009 * which doesn't have anything in the journal, and we know that
6010 * no filesystem updates are running, so it is safe to modify
6011 * the inode's in-core data-journaling state flag now.
6015 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6017 err = jbd2_journal_flush(journal, 0);
6019 jbd2_journal_unlock_updates(journal);
6020 ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6023 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6025 ext4_set_aops(inode);
6027 jbd2_journal_unlock_updates(journal);
6028 ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6031 filemap_invalidate_unlock(inode->i_mapping);
6033 /* Finally we can mark the inode as dirty. */
6035 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6037 return PTR_ERR(handle);
6039 ext4_fc_mark_ineligible(inode->i_sb,
6040 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6041 err = ext4_mark_inode_dirty(handle, inode);
6042 ext4_handle_sync(handle);
6043 ext4_journal_stop(handle);
6044 ext4_std_error(inode->i_sb, err);
6049 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6050 struct buffer_head *bh)
6052 return !buffer_mapped(bh);
6055 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6057 struct vm_area_struct *vma = vmf->vma;
6058 struct folio *folio = page_folio(vmf->page);
6063 struct file *file = vma->vm_file;
6064 struct inode *inode = file_inode(file);
6065 struct address_space *mapping = inode->i_mapping;
6067 get_block_t *get_block;
6070 if (unlikely(IS_IMMUTABLE(inode)))
6071 return VM_FAULT_SIGBUS;
6073 sb_start_pagefault(inode->i_sb);
6074 file_update_time(vma->vm_file);
6076 filemap_invalidate_lock_shared(mapping);
6078 err = ext4_convert_inline_data(inode);
6083 * On data journalling we skip straight to the transaction handle:
6084 * there's no delalloc; page truncated will be checked later; the
6085 * early return w/ all buffers mapped (calculates size/len) can't
6086 * be used; and there's no dioread_nolock, so only ext4_get_block.
6088 if (ext4_should_journal_data(inode))
6091 /* Delalloc case is easy... */
6092 if (test_opt(inode->i_sb, DELALLOC) &&
6093 !ext4_nonda_switch(inode->i_sb)) {
6095 err = block_page_mkwrite(vma, vmf,
6096 ext4_da_get_block_prep);
6097 } while (err == -ENOSPC &&
6098 ext4_should_retry_alloc(inode->i_sb, &retries));
6103 size = i_size_read(inode);
6104 /* Page got truncated from under us? */
6105 if (folio->mapping != mapping || folio_pos(folio) > size) {
6106 folio_unlock(folio);
6107 ret = VM_FAULT_NOPAGE;
6111 len = folio_size(folio);
6112 if (folio_pos(folio) + len > size)
6113 len = size - folio_pos(folio);
6115 * Return if we have all the buffers mapped. This avoids the need to do
6116 * journal_start/journal_stop which can block and take a long time
6118 * This cannot be done for data journalling, as we have to add the
6119 * inode to the transaction's list to writeprotect pages on commit.
6121 if (folio_buffers(folio)) {
6122 if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio),
6124 ext4_bh_unmapped)) {
6125 /* Wait so that we don't change page under IO */
6126 folio_wait_stable(folio);
6127 ret = VM_FAULT_LOCKED;
6131 folio_unlock(folio);
6132 /* OK, we need to fill the hole... */
6133 if (ext4_should_dioread_nolock(inode))
6134 get_block = ext4_get_block_unwritten;
6136 get_block = ext4_get_block;
6138 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6139 ext4_writepage_trans_blocks(inode));
6140 if (IS_ERR(handle)) {
6141 ret = VM_FAULT_SIGBUS;
6145 * Data journalling can't use block_page_mkwrite() because it
6146 * will set_buffer_dirty() before do_journal_get_write_access()
6147 * thus might hit warning messages for dirty metadata buffers.
6149 if (!ext4_should_journal_data(inode)) {
6150 err = block_page_mkwrite(vma, vmf, get_block);
6153 size = i_size_read(inode);
6154 /* Page got truncated from under us? */
6155 if (folio->mapping != mapping || folio_pos(folio) > size) {
6156 ret = VM_FAULT_NOPAGE;
6160 len = folio_size(folio);
6161 if (folio_pos(folio) + len > size)
6162 len = size - folio_pos(folio);
6164 err = __block_write_begin(&folio->page, 0, len, ext4_get_block);
6166 ret = VM_FAULT_SIGBUS;
6167 if (ext4_journal_folio_buffers(handle, folio, len))
6170 folio_unlock(folio);
6173 ext4_journal_stop(handle);
6174 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6177 ret = vmf_fs_error(err);
6179 filemap_invalidate_unlock_shared(mapping);
6180 sb_end_pagefault(inode->i_sb);
6183 folio_unlock(folio);
6184 ext4_journal_stop(handle);