ext4: convert write_begin methods to stable_page_writes semantics
[platform/adaptation/renesas_rcar/renesas_kernel.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52                               struct ext4_inode_info *ei)
53 {
54         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55         __u16 csum_lo;
56         __u16 csum_hi = 0;
57         __u32 csum;
58
59         csum_lo = le16_to_cpu(raw->i_checksum_lo);
60         raw->i_checksum_lo = 0;
61         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
63                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
64                 raw->i_checksum_hi = 0;
65         }
66
67         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68                            EXT4_INODE_SIZE(inode->i_sb));
69
70         raw->i_checksum_lo = cpu_to_le16(csum_lo);
71         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
73                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
74
75         return csum;
76 }
77
78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79                                   struct ext4_inode_info *ei)
80 {
81         __u32 provided, calculated;
82
83         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84             cpu_to_le32(EXT4_OS_LINUX) ||
85             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
87                 return 1;
88
89         provided = le16_to_cpu(raw->i_checksum_lo);
90         calculated = ext4_inode_csum(inode, raw, ei);
91         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94         else
95                 calculated &= 0xFFFF;
96
97         return provided == calculated;
98 }
99
100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101                                 struct ext4_inode_info *ei)
102 {
103         __u32 csum;
104
105         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106             cpu_to_le32(EXT4_OS_LINUX) ||
107             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
109                 return;
110
111         csum = ext4_inode_csum(inode, raw, ei);
112         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116 }
117
118 static inline int ext4_begin_ordered_truncate(struct inode *inode,
119                                               loff_t new_size)
120 {
121         trace_ext4_begin_ordered_truncate(inode, new_size);
122         /*
123          * If jinode is zero, then we never opened the file for
124          * writing, so there's no need to call
125          * jbd2_journal_begin_ordered_truncate() since there's no
126          * outstanding writes we need to flush.
127          */
128         if (!EXT4_I(inode)->jinode)
129                 return 0;
130         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131                                                    EXT4_I(inode)->jinode,
132                                                    new_size);
133 }
134
135 static void ext4_invalidatepage(struct page *page, unsigned int offset,
136                                 unsigned int length);
137 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140                                   int pextents);
141
142 /*
143  * Test whether an inode is a fast symlink.
144  */
145 static int ext4_inode_is_fast_symlink(struct inode *inode)
146 {
147         int ea_blocks = EXT4_I(inode)->i_file_acl ?
148                 (inode->i_sb->s_blocksize >> 9) : 0;
149
150         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152
153 /*
154  * Restart the transaction associated with *handle.  This does a commit,
155  * so before we call here everything must be consistently dirtied against
156  * this transaction.
157  */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159                                  int nblocks)
160 {
161         int ret;
162
163         /*
164          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
165          * moment, get_block can be called only for blocks inside i_size since
166          * page cache has been already dropped and writes are blocked by
167          * i_mutex. So we can safely drop the i_data_sem here.
168          */
169         BUG_ON(EXT4_JOURNAL(inode) == NULL);
170         jbd_debug(2, "restarting handle %p\n", handle);
171         up_write(&EXT4_I(inode)->i_data_sem);
172         ret = ext4_journal_restart(handle, nblocks);
173         down_write(&EXT4_I(inode)->i_data_sem);
174         ext4_discard_preallocations(inode);
175
176         return ret;
177 }
178
179 /*
180  * Called at the last iput() if i_nlink is zero.
181  */
182 void ext4_evict_inode(struct inode *inode)
183 {
184         handle_t *handle;
185         int err;
186
187         trace_ext4_evict_inode(inode);
188
189         if (inode->i_nlink) {
190                 /*
191                  * When journalling data dirty buffers are tracked only in the
192                  * journal. So although mm thinks everything is clean and
193                  * ready for reaping the inode might still have some pages to
194                  * write in the running transaction or waiting to be
195                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
196                  * (via truncate_inode_pages()) to discard these buffers can
197                  * cause data loss. Also even if we did not discard these
198                  * buffers, we would have no way to find them after the inode
199                  * is reaped and thus user could see stale data if he tries to
200                  * read them before the transaction is checkpointed. So be
201                  * careful and force everything to disk here... We use
202                  * ei->i_datasync_tid to store the newest transaction
203                  * containing inode's data.
204                  *
205                  * Note that directories do not have this problem because they
206                  * don't use page cache.
207                  */
208                 if (ext4_should_journal_data(inode) &&
209                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210                     inode->i_ino != EXT4_JOURNAL_INO) {
211                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
214                         jbd2_complete_transaction(journal, commit_tid);
215                         filemap_write_and_wait(&inode->i_data);
216                 }
217                 truncate_inode_pages(&inode->i_data, 0);
218
219                 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
220                 goto no_delete;
221         }
222
223         if (!is_bad_inode(inode))
224                 dquot_initialize(inode);
225
226         if (ext4_should_order_data(inode))
227                 ext4_begin_ordered_truncate(inode, 0);
228         truncate_inode_pages(&inode->i_data, 0);
229
230         WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
231         if (is_bad_inode(inode))
232                 goto no_delete;
233
234         /*
235          * Protect us against freezing - iput() caller didn't have to have any
236          * protection against it
237          */
238         sb_start_intwrite(inode->i_sb);
239         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
240                                     ext4_blocks_for_truncate(inode)+3);
241         if (IS_ERR(handle)) {
242                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
243                 /*
244                  * If we're going to skip the normal cleanup, we still need to
245                  * make sure that the in-core orphan linked list is properly
246                  * cleaned up.
247                  */
248                 ext4_orphan_del(NULL, inode);
249                 sb_end_intwrite(inode->i_sb);
250                 goto no_delete;
251         }
252
253         if (IS_SYNC(inode))
254                 ext4_handle_sync(handle);
255         inode->i_size = 0;
256         err = ext4_mark_inode_dirty(handle, inode);
257         if (err) {
258                 ext4_warning(inode->i_sb,
259                              "couldn't mark inode dirty (err %d)", err);
260                 goto stop_handle;
261         }
262         if (inode->i_blocks)
263                 ext4_truncate(inode);
264
265         /*
266          * ext4_ext_truncate() doesn't reserve any slop when it
267          * restarts journal transactions; therefore there may not be
268          * enough credits left in the handle to remove the inode from
269          * the orphan list and set the dtime field.
270          */
271         if (!ext4_handle_has_enough_credits(handle, 3)) {
272                 err = ext4_journal_extend(handle, 3);
273                 if (err > 0)
274                         err = ext4_journal_restart(handle, 3);
275                 if (err != 0) {
276                         ext4_warning(inode->i_sb,
277                                      "couldn't extend journal (err %d)", err);
278                 stop_handle:
279                         ext4_journal_stop(handle);
280                         ext4_orphan_del(NULL, inode);
281                         sb_end_intwrite(inode->i_sb);
282                         goto no_delete;
283                 }
284         }
285
286         /*
287          * Kill off the orphan record which ext4_truncate created.
288          * AKPM: I think this can be inside the above `if'.
289          * Note that ext4_orphan_del() has to be able to cope with the
290          * deletion of a non-existent orphan - this is because we don't
291          * know if ext4_truncate() actually created an orphan record.
292          * (Well, we could do this if we need to, but heck - it works)
293          */
294         ext4_orphan_del(handle, inode);
295         EXT4_I(inode)->i_dtime  = get_seconds();
296
297         /*
298          * One subtle ordering requirement: if anything has gone wrong
299          * (transaction abort, IO errors, whatever), then we can still
300          * do these next steps (the fs will already have been marked as
301          * having errors), but we can't free the inode if the mark_dirty
302          * fails.
303          */
304         if (ext4_mark_inode_dirty(handle, inode))
305                 /* If that failed, just do the required in-core inode clear. */
306                 ext4_clear_inode(inode);
307         else
308                 ext4_free_inode(handle, inode);
309         ext4_journal_stop(handle);
310         sb_end_intwrite(inode->i_sb);
311         return;
312 no_delete:
313         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
314 }
315
316 #ifdef CONFIG_QUOTA
317 qsize_t *ext4_get_reserved_space(struct inode *inode)
318 {
319         return &EXT4_I(inode)->i_reserved_quota;
320 }
321 #endif
322
323 /*
324  * Calculate the number of metadata blocks need to reserve
325  * to allocate a block located at @lblock
326  */
327 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
328 {
329         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
330                 return ext4_ext_calc_metadata_amount(inode, lblock);
331
332         return ext4_ind_calc_metadata_amount(inode, lblock);
333 }
334
335 /*
336  * Called with i_data_sem down, which is important since we can call
337  * ext4_discard_preallocations() from here.
338  */
339 void ext4_da_update_reserve_space(struct inode *inode,
340                                         int used, int quota_claim)
341 {
342         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
343         struct ext4_inode_info *ei = EXT4_I(inode);
344
345         spin_lock(&ei->i_block_reservation_lock);
346         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
347         if (unlikely(used > ei->i_reserved_data_blocks)) {
348                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
349                          "with only %d reserved data blocks",
350                          __func__, inode->i_ino, used,
351                          ei->i_reserved_data_blocks);
352                 WARN_ON(1);
353                 used = ei->i_reserved_data_blocks;
354         }
355
356         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
357                 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
358                         "with only %d reserved metadata blocks "
359                         "(releasing %d blocks with reserved %d data blocks)",
360                         inode->i_ino, ei->i_allocated_meta_blocks,
361                              ei->i_reserved_meta_blocks, used,
362                              ei->i_reserved_data_blocks);
363                 WARN_ON(1);
364                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
365         }
366
367         /* Update per-inode reservations */
368         ei->i_reserved_data_blocks -= used;
369         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
370         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
371                            used + ei->i_allocated_meta_blocks);
372         ei->i_allocated_meta_blocks = 0;
373
374         if (ei->i_reserved_data_blocks == 0) {
375                 /*
376                  * We can release all of the reserved metadata blocks
377                  * only when we have written all of the delayed
378                  * allocation blocks.
379                  */
380                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
381                                    ei->i_reserved_meta_blocks);
382                 ei->i_reserved_meta_blocks = 0;
383                 ei->i_da_metadata_calc_len = 0;
384         }
385         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
386
387         /* Update quota subsystem for data blocks */
388         if (quota_claim)
389                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
390         else {
391                 /*
392                  * We did fallocate with an offset that is already delayed
393                  * allocated. So on delayed allocated writeback we should
394                  * not re-claim the quota for fallocated blocks.
395                  */
396                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
397         }
398
399         /*
400          * If we have done all the pending block allocations and if
401          * there aren't any writers on the inode, we can discard the
402          * inode's preallocations.
403          */
404         if ((ei->i_reserved_data_blocks == 0) &&
405             (atomic_read(&inode->i_writecount) == 0))
406                 ext4_discard_preallocations(inode);
407 }
408
409 static int __check_block_validity(struct inode *inode, const char *func,
410                                 unsigned int line,
411                                 struct ext4_map_blocks *map)
412 {
413         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
414                                    map->m_len)) {
415                 ext4_error_inode(inode, func, line, map->m_pblk,
416                                  "lblock %lu mapped to illegal pblock "
417                                  "(length %d)", (unsigned long) map->m_lblk,
418                                  map->m_len);
419                 return -EIO;
420         }
421         return 0;
422 }
423
424 #define check_block_validity(inode, map)        \
425         __check_block_validity((inode), __func__, __LINE__, (map))
426
427 #ifdef ES_AGGRESSIVE_TEST
428 static void ext4_map_blocks_es_recheck(handle_t *handle,
429                                        struct inode *inode,
430                                        struct ext4_map_blocks *es_map,
431                                        struct ext4_map_blocks *map,
432                                        int flags)
433 {
434         int retval;
435
436         map->m_flags = 0;
437         /*
438          * There is a race window that the result is not the same.
439          * e.g. xfstests #223 when dioread_nolock enables.  The reason
440          * is that we lookup a block mapping in extent status tree with
441          * out taking i_data_sem.  So at the time the unwritten extent
442          * could be converted.
443          */
444         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
445                 down_read((&EXT4_I(inode)->i_data_sem));
446         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
447                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
448                                              EXT4_GET_BLOCKS_KEEP_SIZE);
449         } else {
450                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
451                                              EXT4_GET_BLOCKS_KEEP_SIZE);
452         }
453         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
454                 up_read((&EXT4_I(inode)->i_data_sem));
455         /*
456          * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
457          * because it shouldn't be marked in es_map->m_flags.
458          */
459         map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
460
461         /*
462          * We don't check m_len because extent will be collpased in status
463          * tree.  So the m_len might not equal.
464          */
465         if (es_map->m_lblk != map->m_lblk ||
466             es_map->m_flags != map->m_flags ||
467             es_map->m_pblk != map->m_pblk) {
468                 printk("ES cache assertion failed for inode: %lu "
469                        "es_cached ex [%d/%d/%llu/%x] != "
470                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
471                        inode->i_ino, es_map->m_lblk, es_map->m_len,
472                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
473                        map->m_len, map->m_pblk, map->m_flags,
474                        retval, flags);
475         }
476 }
477 #endif /* ES_AGGRESSIVE_TEST */
478
479 /*
480  * The ext4_map_blocks() function tries to look up the requested blocks,
481  * and returns if the blocks are already mapped.
482  *
483  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
484  * and store the allocated blocks in the result buffer head and mark it
485  * mapped.
486  *
487  * If file type is extents based, it will call ext4_ext_map_blocks(),
488  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
489  * based files
490  *
491  * On success, it returns the number of blocks being mapped or allocate.
492  * if create==0 and the blocks are pre-allocated and uninitialized block,
493  * the result buffer head is unmapped. If the create ==1, it will make sure
494  * the buffer head is mapped.
495  *
496  * It returns 0 if plain look up failed (blocks have not been allocated), in
497  * that case, buffer head is unmapped
498  *
499  * It returns the error in case of allocation failure.
500  */
501 int ext4_map_blocks(handle_t *handle, struct inode *inode,
502                     struct ext4_map_blocks *map, int flags)
503 {
504         struct extent_status es;
505         int retval;
506 #ifdef ES_AGGRESSIVE_TEST
507         struct ext4_map_blocks orig_map;
508
509         memcpy(&orig_map, map, sizeof(*map));
510 #endif
511
512         map->m_flags = 0;
513         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
514                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
515                   (unsigned long) map->m_lblk);
516
517         /* Lookup extent status tree firstly */
518         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
519                 ext4_es_lru_add(inode);
520                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
521                         map->m_pblk = ext4_es_pblock(&es) +
522                                         map->m_lblk - es.es_lblk;
523                         map->m_flags |= ext4_es_is_written(&es) ?
524                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
525                         retval = es.es_len - (map->m_lblk - es.es_lblk);
526                         if (retval > map->m_len)
527                                 retval = map->m_len;
528                         map->m_len = retval;
529                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
530                         retval = 0;
531                 } else {
532                         BUG_ON(1);
533                 }
534 #ifdef ES_AGGRESSIVE_TEST
535                 ext4_map_blocks_es_recheck(handle, inode, map,
536                                            &orig_map, flags);
537 #endif
538                 goto found;
539         }
540
541         /*
542          * Try to see if we can get the block without requesting a new
543          * file system block.
544          */
545         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
546                 down_read((&EXT4_I(inode)->i_data_sem));
547         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
548                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
549                                              EXT4_GET_BLOCKS_KEEP_SIZE);
550         } else {
551                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
552                                              EXT4_GET_BLOCKS_KEEP_SIZE);
553         }
554         if (retval > 0) {
555                 int ret;
556                 unsigned int status;
557
558                 if (unlikely(retval != map->m_len)) {
559                         ext4_warning(inode->i_sb,
560                                      "ES len assertion failed for inode "
561                                      "%lu: retval %d != map->m_len %d",
562                                      inode->i_ino, retval, map->m_len);
563                         WARN_ON(1);
564                 }
565
566                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
567                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
568                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
569                     ext4_find_delalloc_range(inode, map->m_lblk,
570                                              map->m_lblk + map->m_len - 1))
571                         status |= EXTENT_STATUS_DELAYED;
572                 ret = ext4_es_insert_extent(inode, map->m_lblk,
573                                             map->m_len, map->m_pblk, status);
574                 if (ret < 0)
575                         retval = ret;
576         }
577         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
578                 up_read((&EXT4_I(inode)->i_data_sem));
579
580 found:
581         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
582                 int ret = check_block_validity(inode, map);
583                 if (ret != 0)
584                         return ret;
585         }
586
587         /* If it is only a block(s) look up */
588         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
589                 return retval;
590
591         /*
592          * Returns if the blocks have already allocated
593          *
594          * Note that if blocks have been preallocated
595          * ext4_ext_get_block() returns the create = 0
596          * with buffer head unmapped.
597          */
598         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
599                 return retval;
600
601         /*
602          * Here we clear m_flags because after allocating an new extent,
603          * it will be set again.
604          */
605         map->m_flags &= ~EXT4_MAP_FLAGS;
606
607         /*
608          * New blocks allocate and/or writing to uninitialized extent
609          * will possibly result in updating i_data, so we take
610          * the write lock of i_data_sem, and call get_blocks()
611          * with create == 1 flag.
612          */
613         down_write((&EXT4_I(inode)->i_data_sem));
614
615         /*
616          * if the caller is from delayed allocation writeout path
617          * we have already reserved fs blocks for allocation
618          * let the underlying get_block() function know to
619          * avoid double accounting
620          */
621         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
622                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
623         /*
624          * We need to check for EXT4 here because migrate
625          * could have changed the inode type in between
626          */
627         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
628                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
629         } else {
630                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
631
632                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
633                         /*
634                          * We allocated new blocks which will result in
635                          * i_data's format changing.  Force the migrate
636                          * to fail by clearing migrate flags
637                          */
638                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
639                 }
640
641                 /*
642                  * Update reserved blocks/metadata blocks after successful
643                  * block allocation which had been deferred till now. We don't
644                  * support fallocate for non extent files. So we can update
645                  * reserve space here.
646                  */
647                 if ((retval > 0) &&
648                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
649                         ext4_da_update_reserve_space(inode, retval, 1);
650         }
651         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
652                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
653
654         if (retval > 0) {
655                 int ret;
656                 unsigned int status;
657
658                 if (unlikely(retval != map->m_len)) {
659                         ext4_warning(inode->i_sb,
660                                      "ES len assertion failed for inode "
661                                      "%lu: retval %d != map->m_len %d",
662                                      inode->i_ino, retval, map->m_len);
663                         WARN_ON(1);
664                 }
665
666                 /*
667                  * If the extent has been zeroed out, we don't need to update
668                  * extent status tree.
669                  */
670                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
671                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
672                         if (ext4_es_is_written(&es))
673                                 goto has_zeroout;
674                 }
675                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
676                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
677                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
678                     ext4_find_delalloc_range(inode, map->m_lblk,
679                                              map->m_lblk + map->m_len - 1))
680                         status |= EXTENT_STATUS_DELAYED;
681                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
682                                             map->m_pblk, status);
683                 if (ret < 0)
684                         retval = ret;
685         }
686
687 has_zeroout:
688         up_write((&EXT4_I(inode)->i_data_sem));
689         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
690                 int ret = check_block_validity(inode, map);
691                 if (ret != 0)
692                         return ret;
693         }
694         return retval;
695 }
696
697 /* Maximum number of blocks we map for direct IO at once. */
698 #define DIO_MAX_BLOCKS 4096
699
700 static int _ext4_get_block(struct inode *inode, sector_t iblock,
701                            struct buffer_head *bh, int flags)
702 {
703         handle_t *handle = ext4_journal_current_handle();
704         struct ext4_map_blocks map;
705         int ret = 0, started = 0;
706         int dio_credits;
707
708         if (ext4_has_inline_data(inode))
709                 return -ERANGE;
710
711         map.m_lblk = iblock;
712         map.m_len = bh->b_size >> inode->i_blkbits;
713
714         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
715                 /* Direct IO write... */
716                 if (map.m_len > DIO_MAX_BLOCKS)
717                         map.m_len = DIO_MAX_BLOCKS;
718                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
719                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
720                                             dio_credits);
721                 if (IS_ERR(handle)) {
722                         ret = PTR_ERR(handle);
723                         return ret;
724                 }
725                 started = 1;
726         }
727
728         ret = ext4_map_blocks(handle, inode, &map, flags);
729         if (ret > 0) {
730                 map_bh(bh, inode->i_sb, map.m_pblk);
731                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
732                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
733                 ret = 0;
734         }
735         if (started)
736                 ext4_journal_stop(handle);
737         return ret;
738 }
739
740 int ext4_get_block(struct inode *inode, sector_t iblock,
741                    struct buffer_head *bh, int create)
742 {
743         return _ext4_get_block(inode, iblock, bh,
744                                create ? EXT4_GET_BLOCKS_CREATE : 0);
745 }
746
747 /*
748  * `handle' can be NULL if create is zero
749  */
750 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
751                                 ext4_lblk_t block, int create, int *errp)
752 {
753         struct ext4_map_blocks map;
754         struct buffer_head *bh;
755         int fatal = 0, err;
756
757         J_ASSERT(handle != NULL || create == 0);
758
759         map.m_lblk = block;
760         map.m_len = 1;
761         err = ext4_map_blocks(handle, inode, &map,
762                               create ? EXT4_GET_BLOCKS_CREATE : 0);
763
764         /* ensure we send some value back into *errp */
765         *errp = 0;
766
767         if (create && err == 0)
768                 err = -ENOSPC;  /* should never happen */
769         if (err < 0)
770                 *errp = err;
771         if (err <= 0)
772                 return NULL;
773
774         bh = sb_getblk(inode->i_sb, map.m_pblk);
775         if (unlikely(!bh)) {
776                 *errp = -ENOMEM;
777                 return NULL;
778         }
779         if (map.m_flags & EXT4_MAP_NEW) {
780                 J_ASSERT(create != 0);
781                 J_ASSERT(handle != NULL);
782
783                 /*
784                  * Now that we do not always journal data, we should
785                  * keep in mind whether this should always journal the
786                  * new buffer as metadata.  For now, regular file
787                  * writes use ext4_get_block instead, so it's not a
788                  * problem.
789                  */
790                 lock_buffer(bh);
791                 BUFFER_TRACE(bh, "call get_create_access");
792                 fatal = ext4_journal_get_create_access(handle, bh);
793                 if (!fatal && !buffer_uptodate(bh)) {
794                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
795                         set_buffer_uptodate(bh);
796                 }
797                 unlock_buffer(bh);
798                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
799                 err = ext4_handle_dirty_metadata(handle, inode, bh);
800                 if (!fatal)
801                         fatal = err;
802         } else {
803                 BUFFER_TRACE(bh, "not a new buffer");
804         }
805         if (fatal) {
806                 *errp = fatal;
807                 brelse(bh);
808                 bh = NULL;
809         }
810         return bh;
811 }
812
813 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
814                                ext4_lblk_t block, int create, int *err)
815 {
816         struct buffer_head *bh;
817
818         bh = ext4_getblk(handle, inode, block, create, err);
819         if (!bh)
820                 return bh;
821         if (buffer_uptodate(bh))
822                 return bh;
823         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
824         wait_on_buffer(bh);
825         if (buffer_uptodate(bh))
826                 return bh;
827         put_bh(bh);
828         *err = -EIO;
829         return NULL;
830 }
831
832 int ext4_walk_page_buffers(handle_t *handle,
833                            struct buffer_head *head,
834                            unsigned from,
835                            unsigned to,
836                            int *partial,
837                            int (*fn)(handle_t *handle,
838                                      struct buffer_head *bh))
839 {
840         struct buffer_head *bh;
841         unsigned block_start, block_end;
842         unsigned blocksize = head->b_size;
843         int err, ret = 0;
844         struct buffer_head *next;
845
846         for (bh = head, block_start = 0;
847              ret == 0 && (bh != head || !block_start);
848              block_start = block_end, bh = next) {
849                 next = bh->b_this_page;
850                 block_end = block_start + blocksize;
851                 if (block_end <= from || block_start >= to) {
852                         if (partial && !buffer_uptodate(bh))
853                                 *partial = 1;
854                         continue;
855                 }
856                 err = (*fn)(handle, bh);
857                 if (!ret)
858                         ret = err;
859         }
860         return ret;
861 }
862
863 /*
864  * To preserve ordering, it is essential that the hole instantiation and
865  * the data write be encapsulated in a single transaction.  We cannot
866  * close off a transaction and start a new one between the ext4_get_block()
867  * and the commit_write().  So doing the jbd2_journal_start at the start of
868  * prepare_write() is the right place.
869  *
870  * Also, this function can nest inside ext4_writepage().  In that case, we
871  * *know* that ext4_writepage() has generated enough buffer credits to do the
872  * whole page.  So we won't block on the journal in that case, which is good,
873  * because the caller may be PF_MEMALLOC.
874  *
875  * By accident, ext4 can be reentered when a transaction is open via
876  * quota file writes.  If we were to commit the transaction while thus
877  * reentered, there can be a deadlock - we would be holding a quota
878  * lock, and the commit would never complete if another thread had a
879  * transaction open and was blocking on the quota lock - a ranking
880  * violation.
881  *
882  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
883  * will _not_ run commit under these circumstances because handle->h_ref
884  * is elevated.  We'll still have enough credits for the tiny quotafile
885  * write.
886  */
887 int do_journal_get_write_access(handle_t *handle,
888                                 struct buffer_head *bh)
889 {
890         int dirty = buffer_dirty(bh);
891         int ret;
892
893         if (!buffer_mapped(bh) || buffer_freed(bh))
894                 return 0;
895         /*
896          * __block_write_begin() could have dirtied some buffers. Clean
897          * the dirty bit as jbd2_journal_get_write_access() could complain
898          * otherwise about fs integrity issues. Setting of the dirty bit
899          * by __block_write_begin() isn't a real problem here as we clear
900          * the bit before releasing a page lock and thus writeback cannot
901          * ever write the buffer.
902          */
903         if (dirty)
904                 clear_buffer_dirty(bh);
905         ret = ext4_journal_get_write_access(handle, bh);
906         if (!ret && dirty)
907                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
908         return ret;
909 }
910
911 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
912                    struct buffer_head *bh_result, int create);
913 static int ext4_write_begin(struct file *file, struct address_space *mapping,
914                             loff_t pos, unsigned len, unsigned flags,
915                             struct page **pagep, void **fsdata)
916 {
917         struct inode *inode = mapping->host;
918         int ret, needed_blocks;
919         handle_t *handle;
920         int retries = 0;
921         struct page *page;
922         pgoff_t index;
923         unsigned from, to;
924
925         trace_ext4_write_begin(inode, pos, len, flags);
926         /*
927          * Reserve one block more for addition to orphan list in case
928          * we allocate blocks but write fails for some reason
929          */
930         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
931         index = pos >> PAGE_CACHE_SHIFT;
932         from = pos & (PAGE_CACHE_SIZE - 1);
933         to = from + len;
934
935         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
936                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
937                                                     flags, pagep);
938                 if (ret < 0)
939                         return ret;
940                 if (ret == 1)
941                         return 0;
942         }
943
944         /*
945          * grab_cache_page_write_begin() can take a long time if the
946          * system is thrashing due to memory pressure, or if the page
947          * is being written back.  So grab it first before we start
948          * the transaction handle.  This also allows us to allocate
949          * the page (if needed) without using GFP_NOFS.
950          */
951 retry_grab:
952         page = grab_cache_page_write_begin(mapping, index, flags);
953         if (!page)
954                 return -ENOMEM;
955         unlock_page(page);
956
957 retry_journal:
958         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
959         if (IS_ERR(handle)) {
960                 page_cache_release(page);
961                 return PTR_ERR(handle);
962         }
963
964         lock_page(page);
965         if (page->mapping != mapping) {
966                 /* The page got truncated from under us */
967                 unlock_page(page);
968                 page_cache_release(page);
969                 ext4_journal_stop(handle);
970                 goto retry_grab;
971         }
972         /* In case writeback began while the page was unlocked */
973         wait_for_stable_page(page);
974
975         if (ext4_should_dioread_nolock(inode))
976                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
977         else
978                 ret = __block_write_begin(page, pos, len, ext4_get_block);
979
980         if (!ret && ext4_should_journal_data(inode)) {
981                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
982                                              from, to, NULL,
983                                              do_journal_get_write_access);
984         }
985
986         if (ret) {
987                 unlock_page(page);
988                 /*
989                  * __block_write_begin may have instantiated a few blocks
990                  * outside i_size.  Trim these off again. Don't need
991                  * i_size_read because we hold i_mutex.
992                  *
993                  * Add inode to orphan list in case we crash before
994                  * truncate finishes
995                  */
996                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
997                         ext4_orphan_add(handle, inode);
998
999                 ext4_journal_stop(handle);
1000                 if (pos + len > inode->i_size) {
1001                         ext4_truncate_failed_write(inode);
1002                         /*
1003                          * If truncate failed early the inode might
1004                          * still be on the orphan list; we need to
1005                          * make sure the inode is removed from the
1006                          * orphan list in that case.
1007                          */
1008                         if (inode->i_nlink)
1009                                 ext4_orphan_del(NULL, inode);
1010                 }
1011
1012                 if (ret == -ENOSPC &&
1013                     ext4_should_retry_alloc(inode->i_sb, &retries))
1014                         goto retry_journal;
1015                 page_cache_release(page);
1016                 return ret;
1017         }
1018         *pagep = page;
1019         return ret;
1020 }
1021
1022 /* For write_end() in data=journal mode */
1023 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1024 {
1025         int ret;
1026         if (!buffer_mapped(bh) || buffer_freed(bh))
1027                 return 0;
1028         set_buffer_uptodate(bh);
1029         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1030         clear_buffer_meta(bh);
1031         clear_buffer_prio(bh);
1032         return ret;
1033 }
1034
1035 /*
1036  * We need to pick up the new inode size which generic_commit_write gave us
1037  * `file' can be NULL - eg, when called from page_symlink().
1038  *
1039  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1040  * buffers are managed internally.
1041  */
1042 static int ext4_write_end(struct file *file,
1043                           struct address_space *mapping,
1044                           loff_t pos, unsigned len, unsigned copied,
1045                           struct page *page, void *fsdata)
1046 {
1047         handle_t *handle = ext4_journal_current_handle();
1048         struct inode *inode = mapping->host;
1049         int ret = 0, ret2;
1050         int i_size_changed = 0;
1051
1052         trace_ext4_write_end(inode, pos, len, copied);
1053         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1054                 ret = ext4_jbd2_file_inode(handle, inode);
1055                 if (ret) {
1056                         unlock_page(page);
1057                         page_cache_release(page);
1058                         goto errout;
1059                 }
1060         }
1061
1062         if (ext4_has_inline_data(inode)) {
1063                 ret = ext4_write_inline_data_end(inode, pos, len,
1064                                                  copied, page);
1065                 if (ret < 0)
1066                         goto errout;
1067                 copied = ret;
1068         } else
1069                 copied = block_write_end(file, mapping, pos,
1070                                          len, copied, page, fsdata);
1071
1072         /*
1073          * No need to use i_size_read() here, the i_size
1074          * cannot change under us because we hole i_mutex.
1075          *
1076          * But it's important to update i_size while still holding page lock:
1077          * page writeout could otherwise come in and zero beyond i_size.
1078          */
1079         if (pos + copied > inode->i_size) {
1080                 i_size_write(inode, pos + copied);
1081                 i_size_changed = 1;
1082         }
1083
1084         if (pos + copied > EXT4_I(inode)->i_disksize) {
1085                 /* We need to mark inode dirty even if
1086                  * new_i_size is less that inode->i_size
1087                  * but greater than i_disksize. (hint delalloc)
1088                  */
1089                 ext4_update_i_disksize(inode, (pos + copied));
1090                 i_size_changed = 1;
1091         }
1092         unlock_page(page);
1093         page_cache_release(page);
1094
1095         /*
1096          * Don't mark the inode dirty under page lock. First, it unnecessarily
1097          * makes the holding time of page lock longer. Second, it forces lock
1098          * ordering of page lock and transaction start for journaling
1099          * filesystems.
1100          */
1101         if (i_size_changed)
1102                 ext4_mark_inode_dirty(handle, inode);
1103
1104         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1105                 /* if we have allocated more blocks and copied
1106                  * less. We will have blocks allocated outside
1107                  * inode->i_size. So truncate them
1108                  */
1109                 ext4_orphan_add(handle, inode);
1110 errout:
1111         ret2 = ext4_journal_stop(handle);
1112         if (!ret)
1113                 ret = ret2;
1114
1115         if (pos + len > inode->i_size) {
1116                 ext4_truncate_failed_write(inode);
1117                 /*
1118                  * If truncate failed early the inode might still be
1119                  * on the orphan list; we need to make sure the inode
1120                  * is removed from the orphan list in that case.
1121                  */
1122                 if (inode->i_nlink)
1123                         ext4_orphan_del(NULL, inode);
1124         }
1125
1126         return ret ? ret : copied;
1127 }
1128
1129 static int ext4_journalled_write_end(struct file *file,
1130                                      struct address_space *mapping,
1131                                      loff_t pos, unsigned len, unsigned copied,
1132                                      struct page *page, void *fsdata)
1133 {
1134         handle_t *handle = ext4_journal_current_handle();
1135         struct inode *inode = mapping->host;
1136         int ret = 0, ret2;
1137         int partial = 0;
1138         unsigned from, to;
1139         loff_t new_i_size;
1140
1141         trace_ext4_journalled_write_end(inode, pos, len, copied);
1142         from = pos & (PAGE_CACHE_SIZE - 1);
1143         to = from + len;
1144
1145         BUG_ON(!ext4_handle_valid(handle));
1146
1147         if (ext4_has_inline_data(inode))
1148                 copied = ext4_write_inline_data_end(inode, pos, len,
1149                                                     copied, page);
1150         else {
1151                 if (copied < len) {
1152                         if (!PageUptodate(page))
1153                                 copied = 0;
1154                         page_zero_new_buffers(page, from+copied, to);
1155                 }
1156
1157                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1158                                              to, &partial, write_end_fn);
1159                 if (!partial)
1160                         SetPageUptodate(page);
1161         }
1162         new_i_size = pos + copied;
1163         if (new_i_size > inode->i_size)
1164                 i_size_write(inode, pos+copied);
1165         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1166         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1167         if (new_i_size > EXT4_I(inode)->i_disksize) {
1168                 ext4_update_i_disksize(inode, new_i_size);
1169                 ret2 = ext4_mark_inode_dirty(handle, inode);
1170                 if (!ret)
1171                         ret = ret2;
1172         }
1173
1174         unlock_page(page);
1175         page_cache_release(page);
1176         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1177                 /* if we have allocated more blocks and copied
1178                  * less. We will have blocks allocated outside
1179                  * inode->i_size. So truncate them
1180                  */
1181                 ext4_orphan_add(handle, inode);
1182
1183         ret2 = ext4_journal_stop(handle);
1184         if (!ret)
1185                 ret = ret2;
1186         if (pos + len > inode->i_size) {
1187                 ext4_truncate_failed_write(inode);
1188                 /*
1189                  * If truncate failed early the inode might still be
1190                  * on the orphan list; we need to make sure the inode
1191                  * is removed from the orphan list in that case.
1192                  */
1193                 if (inode->i_nlink)
1194                         ext4_orphan_del(NULL, inode);
1195         }
1196
1197         return ret ? ret : copied;
1198 }
1199
1200 /*
1201  * Reserve a metadata for a single block located at lblock
1202  */
1203 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1204 {
1205         int retries = 0;
1206         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1207         struct ext4_inode_info *ei = EXT4_I(inode);
1208         unsigned int md_needed;
1209         ext4_lblk_t save_last_lblock;
1210         int save_len;
1211
1212         /*
1213          * recalculate the amount of metadata blocks to reserve
1214          * in order to allocate nrblocks
1215          * worse case is one extent per block
1216          */
1217 repeat:
1218         spin_lock(&ei->i_block_reservation_lock);
1219         /*
1220          * ext4_calc_metadata_amount() has side effects, which we have
1221          * to be prepared undo if we fail to claim space.
1222          */
1223         save_len = ei->i_da_metadata_calc_len;
1224         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1225         md_needed = EXT4_NUM_B2C(sbi,
1226                                  ext4_calc_metadata_amount(inode, lblock));
1227         trace_ext4_da_reserve_space(inode, md_needed);
1228
1229         /*
1230          * We do still charge estimated metadata to the sb though;
1231          * we cannot afford to run out of free blocks.
1232          */
1233         if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1234                 ei->i_da_metadata_calc_len = save_len;
1235                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1236                 spin_unlock(&ei->i_block_reservation_lock);
1237                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1238                         cond_resched();
1239                         goto repeat;
1240                 }
1241                 return -ENOSPC;
1242         }
1243         ei->i_reserved_meta_blocks += md_needed;
1244         spin_unlock(&ei->i_block_reservation_lock);
1245
1246         return 0;       /* success */
1247 }
1248
1249 /*
1250  * Reserve a single cluster located at lblock
1251  */
1252 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1253 {
1254         int retries = 0;
1255         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1256         struct ext4_inode_info *ei = EXT4_I(inode);
1257         unsigned int md_needed;
1258         int ret;
1259         ext4_lblk_t save_last_lblock;
1260         int save_len;
1261
1262         /*
1263          * We will charge metadata quota at writeout time; this saves
1264          * us from metadata over-estimation, though we may go over by
1265          * a small amount in the end.  Here we just reserve for data.
1266          */
1267         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1268         if (ret)
1269                 return ret;
1270
1271         /*
1272          * recalculate the amount of metadata blocks to reserve
1273          * in order to allocate nrblocks
1274          * worse case is one extent per block
1275          */
1276 repeat:
1277         spin_lock(&ei->i_block_reservation_lock);
1278         /*
1279          * ext4_calc_metadata_amount() has side effects, which we have
1280          * to be prepared undo if we fail to claim space.
1281          */
1282         save_len = ei->i_da_metadata_calc_len;
1283         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1284         md_needed = EXT4_NUM_B2C(sbi,
1285                                  ext4_calc_metadata_amount(inode, lblock));
1286         trace_ext4_da_reserve_space(inode, md_needed);
1287
1288         /*
1289          * We do still charge estimated metadata to the sb though;
1290          * we cannot afford to run out of free blocks.
1291          */
1292         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1293                 ei->i_da_metadata_calc_len = save_len;
1294                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1295                 spin_unlock(&ei->i_block_reservation_lock);
1296                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1297                         cond_resched();
1298                         goto repeat;
1299                 }
1300                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1301                 return -ENOSPC;
1302         }
1303         ei->i_reserved_data_blocks++;
1304         ei->i_reserved_meta_blocks += md_needed;
1305         spin_unlock(&ei->i_block_reservation_lock);
1306
1307         return 0;       /* success */
1308 }
1309
1310 static void ext4_da_release_space(struct inode *inode, int to_free)
1311 {
1312         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1313         struct ext4_inode_info *ei = EXT4_I(inode);
1314
1315         if (!to_free)
1316                 return;         /* Nothing to release, exit */
1317
1318         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1319
1320         trace_ext4_da_release_space(inode, to_free);
1321         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1322                 /*
1323                  * if there aren't enough reserved blocks, then the
1324                  * counter is messed up somewhere.  Since this
1325                  * function is called from invalidate page, it's
1326                  * harmless to return without any action.
1327                  */
1328                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1329                          "ino %lu, to_free %d with only %d reserved "
1330                          "data blocks", inode->i_ino, to_free,
1331                          ei->i_reserved_data_blocks);
1332                 WARN_ON(1);
1333                 to_free = ei->i_reserved_data_blocks;
1334         }
1335         ei->i_reserved_data_blocks -= to_free;
1336
1337         if (ei->i_reserved_data_blocks == 0) {
1338                 /*
1339                  * We can release all of the reserved metadata blocks
1340                  * only when we have written all of the delayed
1341                  * allocation blocks.
1342                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1343                  * i_reserved_data_blocks, etc. refer to number of clusters.
1344                  */
1345                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1346                                    ei->i_reserved_meta_blocks);
1347                 ei->i_reserved_meta_blocks = 0;
1348                 ei->i_da_metadata_calc_len = 0;
1349         }
1350
1351         /* update fs dirty data blocks counter */
1352         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1353
1354         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1355
1356         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1357 }
1358
1359 static void ext4_da_page_release_reservation(struct page *page,
1360                                              unsigned int offset,
1361                                              unsigned int length)
1362 {
1363         int to_release = 0;
1364         struct buffer_head *head, *bh;
1365         unsigned int curr_off = 0;
1366         struct inode *inode = page->mapping->host;
1367         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1368         unsigned int stop = offset + length;
1369         int num_clusters;
1370         ext4_fsblk_t lblk;
1371
1372         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1373
1374         head = page_buffers(page);
1375         bh = head;
1376         do {
1377                 unsigned int next_off = curr_off + bh->b_size;
1378
1379                 if (next_off > stop)
1380                         break;
1381
1382                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1383                         to_release++;
1384                         clear_buffer_delay(bh);
1385                 }
1386                 curr_off = next_off;
1387         } while ((bh = bh->b_this_page) != head);
1388
1389         if (to_release) {
1390                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1391                 ext4_es_remove_extent(inode, lblk, to_release);
1392         }
1393
1394         /* If we have released all the blocks belonging to a cluster, then we
1395          * need to release the reserved space for that cluster. */
1396         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1397         while (num_clusters > 0) {
1398                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1399                         ((num_clusters - 1) << sbi->s_cluster_bits);
1400                 if (sbi->s_cluster_ratio == 1 ||
1401                     !ext4_find_delalloc_cluster(inode, lblk))
1402                         ext4_da_release_space(inode, 1);
1403
1404                 num_clusters--;
1405         }
1406 }
1407
1408 /*
1409  * Delayed allocation stuff
1410  */
1411
1412 struct mpage_da_data {
1413         struct inode *inode;
1414         struct writeback_control *wbc;
1415
1416         pgoff_t first_page;     /* The first page to write */
1417         pgoff_t next_page;      /* Current page to examine */
1418         pgoff_t last_page;      /* Last page to examine */
1419         /*
1420          * Extent to map - this can be after first_page because that can be
1421          * fully mapped. We somewhat abuse m_flags to store whether the extent
1422          * is delalloc or unwritten.
1423          */
1424         struct ext4_map_blocks map;
1425         struct ext4_io_submit io_submit;        /* IO submission data */
1426 };
1427
1428 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1429                                        bool invalidate)
1430 {
1431         int nr_pages, i;
1432         pgoff_t index, end;
1433         struct pagevec pvec;
1434         struct inode *inode = mpd->inode;
1435         struct address_space *mapping = inode->i_mapping;
1436
1437         /* This is necessary when next_page == 0. */
1438         if (mpd->first_page >= mpd->next_page)
1439                 return;
1440
1441         index = mpd->first_page;
1442         end   = mpd->next_page - 1;
1443         if (invalidate) {
1444                 ext4_lblk_t start, last;
1445                 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1446                 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1447                 ext4_es_remove_extent(inode, start, last - start + 1);
1448         }
1449
1450         pagevec_init(&pvec, 0);
1451         while (index <= end) {
1452                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1453                 if (nr_pages == 0)
1454                         break;
1455                 for (i = 0; i < nr_pages; i++) {
1456                         struct page *page = pvec.pages[i];
1457                         if (page->index > end)
1458                                 break;
1459                         BUG_ON(!PageLocked(page));
1460                         BUG_ON(PageWriteback(page));
1461                         if (invalidate) {
1462                                 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1463                                 ClearPageUptodate(page);
1464                         }
1465                         unlock_page(page);
1466                 }
1467                 index = pvec.pages[nr_pages - 1]->index + 1;
1468                 pagevec_release(&pvec);
1469         }
1470 }
1471
1472 static void ext4_print_free_blocks(struct inode *inode)
1473 {
1474         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1475         struct super_block *sb = inode->i_sb;
1476         struct ext4_inode_info *ei = EXT4_I(inode);
1477
1478         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1479                EXT4_C2B(EXT4_SB(inode->i_sb),
1480                         ext4_count_free_clusters(sb)));
1481         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1482         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1483                (long long) EXT4_C2B(EXT4_SB(sb),
1484                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1485         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1486                (long long) EXT4_C2B(EXT4_SB(sb),
1487                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1488         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1489         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1490                  ei->i_reserved_data_blocks);
1491         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1492                ei->i_reserved_meta_blocks);
1493         ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1494                ei->i_allocated_meta_blocks);
1495         return;
1496 }
1497
1498 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1499 {
1500         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1501 }
1502
1503 /*
1504  * This function is grabs code from the very beginning of
1505  * ext4_map_blocks, but assumes that the caller is from delayed write
1506  * time. This function looks up the requested blocks and sets the
1507  * buffer delay bit under the protection of i_data_sem.
1508  */
1509 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1510                               struct ext4_map_blocks *map,
1511                               struct buffer_head *bh)
1512 {
1513         struct extent_status es;
1514         int retval;
1515         sector_t invalid_block = ~((sector_t) 0xffff);
1516 #ifdef ES_AGGRESSIVE_TEST
1517         struct ext4_map_blocks orig_map;
1518
1519         memcpy(&orig_map, map, sizeof(*map));
1520 #endif
1521
1522         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1523                 invalid_block = ~0;
1524
1525         map->m_flags = 0;
1526         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1527                   "logical block %lu\n", inode->i_ino, map->m_len,
1528                   (unsigned long) map->m_lblk);
1529
1530         /* Lookup extent status tree firstly */
1531         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1532                 ext4_es_lru_add(inode);
1533                 if (ext4_es_is_hole(&es)) {
1534                         retval = 0;
1535                         down_read((&EXT4_I(inode)->i_data_sem));
1536                         goto add_delayed;
1537                 }
1538
1539                 /*
1540                  * Delayed extent could be allocated by fallocate.
1541                  * So we need to check it.
1542                  */
1543                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1544                         map_bh(bh, inode->i_sb, invalid_block);
1545                         set_buffer_new(bh);
1546                         set_buffer_delay(bh);
1547                         return 0;
1548                 }
1549
1550                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1551                 retval = es.es_len - (iblock - es.es_lblk);
1552                 if (retval > map->m_len)
1553                         retval = map->m_len;
1554                 map->m_len = retval;
1555                 if (ext4_es_is_written(&es))
1556                         map->m_flags |= EXT4_MAP_MAPPED;
1557                 else if (ext4_es_is_unwritten(&es))
1558                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1559                 else
1560                         BUG_ON(1);
1561
1562 #ifdef ES_AGGRESSIVE_TEST
1563                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1564 #endif
1565                 return retval;
1566         }
1567
1568         /*
1569          * Try to see if we can get the block without requesting a new
1570          * file system block.
1571          */
1572         down_read((&EXT4_I(inode)->i_data_sem));
1573         if (ext4_has_inline_data(inode)) {
1574                 /*
1575                  * We will soon create blocks for this page, and let
1576                  * us pretend as if the blocks aren't allocated yet.
1577                  * In case of clusters, we have to handle the work
1578                  * of mapping from cluster so that the reserved space
1579                  * is calculated properly.
1580                  */
1581                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1582                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1583                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1584                 retval = 0;
1585         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1586                 retval = ext4_ext_map_blocks(NULL, inode, map,
1587                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1588         else
1589                 retval = ext4_ind_map_blocks(NULL, inode, map,
1590                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1591
1592 add_delayed:
1593         if (retval == 0) {
1594                 int ret;
1595                 /*
1596                  * XXX: __block_prepare_write() unmaps passed block,
1597                  * is it OK?
1598                  */
1599                 /*
1600                  * If the block was allocated from previously allocated cluster,
1601                  * then we don't need to reserve it again. However we still need
1602                  * to reserve metadata for every block we're going to write.
1603                  */
1604                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1605                         ret = ext4_da_reserve_space(inode, iblock);
1606                         if (ret) {
1607                                 /* not enough space to reserve */
1608                                 retval = ret;
1609                                 goto out_unlock;
1610                         }
1611                 } else {
1612                         ret = ext4_da_reserve_metadata(inode, iblock);
1613                         if (ret) {
1614                                 /* not enough space to reserve */
1615                                 retval = ret;
1616                                 goto out_unlock;
1617                         }
1618                 }
1619
1620                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1621                                             ~0, EXTENT_STATUS_DELAYED);
1622                 if (ret) {
1623                         retval = ret;
1624                         goto out_unlock;
1625                 }
1626
1627                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1628                  * and it should not appear on the bh->b_state.
1629                  */
1630                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1631
1632                 map_bh(bh, inode->i_sb, invalid_block);
1633                 set_buffer_new(bh);
1634                 set_buffer_delay(bh);
1635         } else if (retval > 0) {
1636                 int ret;
1637                 unsigned int status;
1638
1639                 if (unlikely(retval != map->m_len)) {
1640                         ext4_warning(inode->i_sb,
1641                                      "ES len assertion failed for inode "
1642                                      "%lu: retval %d != map->m_len %d",
1643                                      inode->i_ino, retval, map->m_len);
1644                         WARN_ON(1);
1645                 }
1646
1647                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1648                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1649                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1650                                             map->m_pblk, status);
1651                 if (ret != 0)
1652                         retval = ret;
1653         }
1654
1655 out_unlock:
1656         up_read((&EXT4_I(inode)->i_data_sem));
1657
1658         return retval;
1659 }
1660
1661 /*
1662  * This is a special get_blocks_t callback which is used by
1663  * ext4_da_write_begin().  It will either return mapped block or
1664  * reserve space for a single block.
1665  *
1666  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1667  * We also have b_blocknr = -1 and b_bdev initialized properly
1668  *
1669  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1670  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1671  * initialized properly.
1672  */
1673 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1674                            struct buffer_head *bh, int create)
1675 {
1676         struct ext4_map_blocks map;
1677         int ret = 0;
1678
1679         BUG_ON(create == 0);
1680         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1681
1682         map.m_lblk = iblock;
1683         map.m_len = 1;
1684
1685         /*
1686          * first, we need to know whether the block is allocated already
1687          * preallocated blocks are unmapped but should treated
1688          * the same as allocated blocks.
1689          */
1690         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1691         if (ret <= 0)
1692                 return ret;
1693
1694         map_bh(bh, inode->i_sb, map.m_pblk);
1695         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1696
1697         if (buffer_unwritten(bh)) {
1698                 /* A delayed write to unwritten bh should be marked
1699                  * new and mapped.  Mapped ensures that we don't do
1700                  * get_block multiple times when we write to the same
1701                  * offset and new ensures that we do proper zero out
1702                  * for partial write.
1703                  */
1704                 set_buffer_new(bh);
1705                 set_buffer_mapped(bh);
1706         }
1707         return 0;
1708 }
1709
1710 static int bget_one(handle_t *handle, struct buffer_head *bh)
1711 {
1712         get_bh(bh);
1713         return 0;
1714 }
1715
1716 static int bput_one(handle_t *handle, struct buffer_head *bh)
1717 {
1718         put_bh(bh);
1719         return 0;
1720 }
1721
1722 static int __ext4_journalled_writepage(struct page *page,
1723                                        unsigned int len)
1724 {
1725         struct address_space *mapping = page->mapping;
1726         struct inode *inode = mapping->host;
1727         struct buffer_head *page_bufs = NULL;
1728         handle_t *handle = NULL;
1729         int ret = 0, err = 0;
1730         int inline_data = ext4_has_inline_data(inode);
1731         struct buffer_head *inode_bh = NULL;
1732
1733         ClearPageChecked(page);
1734
1735         if (inline_data) {
1736                 BUG_ON(page->index != 0);
1737                 BUG_ON(len > ext4_get_max_inline_size(inode));
1738                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1739                 if (inode_bh == NULL)
1740                         goto out;
1741         } else {
1742                 page_bufs = page_buffers(page);
1743                 if (!page_bufs) {
1744                         BUG();
1745                         goto out;
1746                 }
1747                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1748                                        NULL, bget_one);
1749         }
1750         /* As soon as we unlock the page, it can go away, but we have
1751          * references to buffers so we are safe */
1752         unlock_page(page);
1753
1754         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1755                                     ext4_writepage_trans_blocks(inode));
1756         if (IS_ERR(handle)) {
1757                 ret = PTR_ERR(handle);
1758                 goto out;
1759         }
1760
1761         BUG_ON(!ext4_handle_valid(handle));
1762
1763         if (inline_data) {
1764                 ret = ext4_journal_get_write_access(handle, inode_bh);
1765
1766                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1767
1768         } else {
1769                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1770                                              do_journal_get_write_access);
1771
1772                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1773                                              write_end_fn);
1774         }
1775         if (ret == 0)
1776                 ret = err;
1777         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1778         err = ext4_journal_stop(handle);
1779         if (!ret)
1780                 ret = err;
1781
1782         if (!ext4_has_inline_data(inode))
1783                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1784                                        NULL, bput_one);
1785         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1786 out:
1787         brelse(inode_bh);
1788         return ret;
1789 }
1790
1791 /*
1792  * Note that we don't need to start a transaction unless we're journaling data
1793  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1794  * need to file the inode to the transaction's list in ordered mode because if
1795  * we are writing back data added by write(), the inode is already there and if
1796  * we are writing back data modified via mmap(), no one guarantees in which
1797  * transaction the data will hit the disk. In case we are journaling data, we
1798  * cannot start transaction directly because transaction start ranks above page
1799  * lock so we have to do some magic.
1800  *
1801  * This function can get called via...
1802  *   - ext4_writepages after taking page lock (have journal handle)
1803  *   - journal_submit_inode_data_buffers (no journal handle)
1804  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1805  *   - grab_page_cache when doing write_begin (have journal handle)
1806  *
1807  * We don't do any block allocation in this function. If we have page with
1808  * multiple blocks we need to write those buffer_heads that are mapped. This
1809  * is important for mmaped based write. So if we do with blocksize 1K
1810  * truncate(f, 1024);
1811  * a = mmap(f, 0, 4096);
1812  * a[0] = 'a';
1813  * truncate(f, 4096);
1814  * we have in the page first buffer_head mapped via page_mkwrite call back
1815  * but other buffer_heads would be unmapped but dirty (dirty done via the
1816  * do_wp_page). So writepage should write the first block. If we modify
1817  * the mmap area beyond 1024 we will again get a page_fault and the
1818  * page_mkwrite callback will do the block allocation and mark the
1819  * buffer_heads mapped.
1820  *
1821  * We redirty the page if we have any buffer_heads that is either delay or
1822  * unwritten in the page.
1823  *
1824  * We can get recursively called as show below.
1825  *
1826  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1827  *              ext4_writepage()
1828  *
1829  * But since we don't do any block allocation we should not deadlock.
1830  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1831  */
1832 static int ext4_writepage(struct page *page,
1833                           struct writeback_control *wbc)
1834 {
1835         int ret = 0;
1836         loff_t size;
1837         unsigned int len;
1838         struct buffer_head *page_bufs = NULL;
1839         struct inode *inode = page->mapping->host;
1840         struct ext4_io_submit io_submit;
1841
1842         trace_ext4_writepage(page);
1843         size = i_size_read(inode);
1844         if (page->index == size >> PAGE_CACHE_SHIFT)
1845                 len = size & ~PAGE_CACHE_MASK;
1846         else
1847                 len = PAGE_CACHE_SIZE;
1848
1849         page_bufs = page_buffers(page);
1850         /*
1851          * We cannot do block allocation or other extent handling in this
1852          * function. If there are buffers needing that, we have to redirty
1853          * the page. But we may reach here when we do a journal commit via
1854          * journal_submit_inode_data_buffers() and in that case we must write
1855          * allocated buffers to achieve data=ordered mode guarantees.
1856          */
1857         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1858                                    ext4_bh_delay_or_unwritten)) {
1859                 redirty_page_for_writepage(wbc, page);
1860                 if (current->flags & PF_MEMALLOC) {
1861                         /*
1862                          * For memory cleaning there's no point in writing only
1863                          * some buffers. So just bail out. Warn if we came here
1864                          * from direct reclaim.
1865                          */
1866                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1867                                                         == PF_MEMALLOC);
1868                         unlock_page(page);
1869                         return 0;
1870                 }
1871         }
1872
1873         if (PageChecked(page) && ext4_should_journal_data(inode))
1874                 /*
1875                  * It's mmapped pagecache.  Add buffers and journal it.  There
1876                  * doesn't seem much point in redirtying the page here.
1877                  */
1878                 return __ext4_journalled_writepage(page, len);
1879
1880         ext4_io_submit_init(&io_submit, wbc);
1881         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1882         if (!io_submit.io_end) {
1883                 redirty_page_for_writepage(wbc, page);
1884                 unlock_page(page);
1885                 return -ENOMEM;
1886         }
1887         ret = ext4_bio_write_page(&io_submit, page, len, wbc);
1888         ext4_io_submit(&io_submit);
1889         /* Drop io_end reference we got from init */
1890         ext4_put_io_end_defer(io_submit.io_end);
1891         return ret;
1892 }
1893
1894 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1895 {
1896         int len;
1897         loff_t size = i_size_read(mpd->inode);
1898         int err;
1899
1900         BUG_ON(page->index != mpd->first_page);
1901         if (page->index == size >> PAGE_CACHE_SHIFT)
1902                 len = size & ~PAGE_CACHE_MASK;
1903         else
1904                 len = PAGE_CACHE_SIZE;
1905         clear_page_dirty_for_io(page);
1906         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc);
1907         if (!err)
1908                 mpd->wbc->nr_to_write--;
1909         mpd->first_page++;
1910
1911         return err;
1912 }
1913
1914 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1915
1916 /*
1917  * mballoc gives us at most this number of blocks...
1918  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1919  * The rest of mballoc seems to handle chunks upto full group size.
1920  */
1921 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1922
1923 /*
1924  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1925  *
1926  * @mpd - extent of blocks
1927  * @lblk - logical number of the block in the file
1928  * @bh - buffer head we want to add to the extent
1929  *
1930  * The function is used to collect contig. blocks in the same state. If the
1931  * buffer doesn't require mapping for writeback and we haven't started the
1932  * extent of buffers to map yet, the function returns 'true' immediately - the
1933  * caller can write the buffer right away. Otherwise the function returns true
1934  * if the block has been added to the extent, false if the block couldn't be
1935  * added.
1936  */
1937 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1938                                    struct buffer_head *bh)
1939 {
1940         struct ext4_map_blocks *map = &mpd->map;
1941
1942         /* Buffer that doesn't need mapping for writeback? */
1943         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1944             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1945                 /* So far no extent to map => we write the buffer right away */
1946                 if (map->m_len == 0)
1947                         return true;
1948                 return false;
1949         }
1950
1951         /* First block in the extent? */
1952         if (map->m_len == 0) {
1953                 map->m_lblk = lblk;
1954                 map->m_len = 1;
1955                 map->m_flags = bh->b_state & BH_FLAGS;
1956                 return true;
1957         }
1958
1959         /* Don't go larger than mballoc is willing to allocate */
1960         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1961                 return false;
1962
1963         /* Can we merge the block to our big extent? */
1964         if (lblk == map->m_lblk + map->m_len &&
1965             (bh->b_state & BH_FLAGS) == map->m_flags) {
1966                 map->m_len++;
1967                 return true;
1968         }
1969         return false;
1970 }
1971
1972 /*
1973  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1974  *
1975  * @mpd - extent of blocks for mapping
1976  * @head - the first buffer in the page
1977  * @bh - buffer we should start processing from
1978  * @lblk - logical number of the block in the file corresponding to @bh
1979  *
1980  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1981  * the page for IO if all buffers in this page were mapped and there's no
1982  * accumulated extent of buffers to map or add buffers in the page to the
1983  * extent of buffers to map. The function returns 1 if the caller can continue
1984  * by processing the next page, 0 if it should stop adding buffers to the
1985  * extent to map because we cannot extend it anymore. It can also return value
1986  * < 0 in case of error during IO submission.
1987  */
1988 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1989                                    struct buffer_head *head,
1990                                    struct buffer_head *bh,
1991                                    ext4_lblk_t lblk)
1992 {
1993         struct inode *inode = mpd->inode;
1994         int err;
1995         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1996                                                         >> inode->i_blkbits;
1997
1998         do {
1999                 BUG_ON(buffer_locked(bh));
2000
2001                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2002                         /* Found extent to map? */
2003                         if (mpd->map.m_len)
2004                                 return 0;
2005                         /* Everything mapped so far and we hit EOF */
2006                         break;
2007                 }
2008         } while (lblk++, (bh = bh->b_this_page) != head);
2009         /* So far everything mapped? Submit the page for IO. */
2010         if (mpd->map.m_len == 0) {
2011                 err = mpage_submit_page(mpd, head->b_page);
2012                 if (err < 0)
2013                         return err;
2014         }
2015         return lblk < blocks;
2016 }
2017
2018 /*
2019  * mpage_map_buffers - update buffers corresponding to changed extent and
2020  *                     submit fully mapped pages for IO
2021  *
2022  * @mpd - description of extent to map, on return next extent to map
2023  *
2024  * Scan buffers corresponding to changed extent (we expect corresponding pages
2025  * to be already locked) and update buffer state according to new extent state.
2026  * We map delalloc buffers to their physical location, clear unwritten bits,
2027  * and mark buffers as uninit when we perform writes to uninitialized extents
2028  * and do extent conversion after IO is finished. If the last page is not fully
2029  * mapped, we update @map to the next extent in the last page that needs
2030  * mapping. Otherwise we submit the page for IO.
2031  */
2032 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2033 {
2034         struct pagevec pvec;
2035         int nr_pages, i;
2036         struct inode *inode = mpd->inode;
2037         struct buffer_head *head, *bh;
2038         int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2039         pgoff_t start, end;
2040         ext4_lblk_t lblk;
2041         sector_t pblock;
2042         int err;
2043
2044         start = mpd->map.m_lblk >> bpp_bits;
2045         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2046         lblk = start << bpp_bits;
2047         pblock = mpd->map.m_pblk;
2048
2049         pagevec_init(&pvec, 0);
2050         while (start <= end) {
2051                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2052                                           PAGEVEC_SIZE);
2053                 if (nr_pages == 0)
2054                         break;
2055                 for (i = 0; i < nr_pages; i++) {
2056                         struct page *page = pvec.pages[i];
2057
2058                         if (page->index > end)
2059                                 break;
2060                         /* Upto 'end' pages must be contiguous */
2061                         BUG_ON(page->index != start);
2062                         bh = head = page_buffers(page);
2063                         do {
2064                                 if (lblk < mpd->map.m_lblk)
2065                                         continue;
2066                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2067                                         /*
2068                                          * Buffer after end of mapped extent.
2069                                          * Find next buffer in the page to map.
2070                                          */
2071                                         mpd->map.m_len = 0;
2072                                         mpd->map.m_flags = 0;
2073                                         /*
2074                                          * FIXME: If dioread_nolock supports
2075                                          * blocksize < pagesize, we need to make
2076                                          * sure we add size mapped so far to
2077                                          * io_end->size as the following call
2078                                          * can submit the page for IO.
2079                                          */
2080                                         err = mpage_process_page_bufs(mpd, head,
2081                                                                       bh, lblk);
2082                                         pagevec_release(&pvec);
2083                                         if (err > 0)
2084                                                 err = 0;
2085                                         return err;
2086                                 }
2087                                 if (buffer_delay(bh)) {
2088                                         clear_buffer_delay(bh);
2089                                         bh->b_blocknr = pblock++;
2090                                 }
2091                                 clear_buffer_unwritten(bh);
2092                         } while (lblk++, (bh = bh->b_this_page) != head);
2093
2094                         /*
2095                          * FIXME: This is going to break if dioread_nolock
2096                          * supports blocksize < pagesize as we will try to
2097                          * convert potentially unmapped parts of inode.
2098                          */
2099                         mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2100                         /* Page fully mapped - let IO run! */
2101                         err = mpage_submit_page(mpd, page);
2102                         if (err < 0) {
2103                                 pagevec_release(&pvec);
2104                                 return err;
2105                         }
2106                         start++;
2107                 }
2108                 pagevec_release(&pvec);
2109         }
2110         /* Extent fully mapped and matches with page boundary. We are done. */
2111         mpd->map.m_len = 0;
2112         mpd->map.m_flags = 0;
2113         return 0;
2114 }
2115
2116 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2117 {
2118         struct inode *inode = mpd->inode;
2119         struct ext4_map_blocks *map = &mpd->map;
2120         int get_blocks_flags;
2121         int err;
2122
2123         trace_ext4_da_write_pages_extent(inode, map);
2124         /*
2125          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2126          * to convert an uninitialized extent to be initialized (in the case
2127          * where we have written into one or more preallocated blocks).  It is
2128          * possible that we're going to need more metadata blocks than
2129          * previously reserved. However we must not fail because we're in
2130          * writeback and there is nothing we can do about it so it might result
2131          * in data loss.  So use reserved blocks to allocate metadata if
2132          * possible.
2133          *
2134          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2135          * in question are delalloc blocks.  This affects functions in many
2136          * different parts of the allocation call path.  This flag exists
2137          * primarily because we don't want to change *many* call functions, so
2138          * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2139          * once the inode's allocation semaphore is taken.
2140          */
2141         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2142                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
2143         if (ext4_should_dioread_nolock(inode))
2144                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2145         if (map->m_flags & (1 << BH_Delay))
2146                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2147
2148         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2149         if (err < 0)
2150                 return err;
2151         if (map->m_flags & EXT4_MAP_UNINIT) {
2152                 if (!mpd->io_submit.io_end->handle &&
2153                     ext4_handle_valid(handle)) {
2154                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2155                         handle->h_rsv_handle = NULL;
2156                 }
2157                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2158         }
2159
2160         BUG_ON(map->m_len == 0);
2161         if (map->m_flags & EXT4_MAP_NEW) {
2162                 struct block_device *bdev = inode->i_sb->s_bdev;
2163                 int i;
2164
2165                 for (i = 0; i < map->m_len; i++)
2166                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2167         }
2168         return 0;
2169 }
2170
2171 /*
2172  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2173  *                               mpd->len and submit pages underlying it for IO
2174  *
2175  * @handle - handle for journal operations
2176  * @mpd - extent to map
2177  *
2178  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2179  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2180  * them to initialized or split the described range from larger unwritten
2181  * extent. Note that we need not map all the described range since allocation
2182  * can return less blocks or the range is covered by more unwritten extents. We
2183  * cannot map more because we are limited by reserved transaction credits. On
2184  * the other hand we always make sure that the last touched page is fully
2185  * mapped so that it can be written out (and thus forward progress is
2186  * guaranteed). After mapping we submit all mapped pages for IO.
2187  */
2188 static int mpage_map_and_submit_extent(handle_t *handle,
2189                                        struct mpage_da_data *mpd,
2190                                        bool *give_up_on_write)
2191 {
2192         struct inode *inode = mpd->inode;
2193         struct ext4_map_blocks *map = &mpd->map;
2194         int err;
2195         loff_t disksize;
2196
2197         mpd->io_submit.io_end->offset =
2198                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2199         do {
2200                 err = mpage_map_one_extent(handle, mpd);
2201                 if (err < 0) {
2202                         struct super_block *sb = inode->i_sb;
2203
2204                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2205                                 goto invalidate_dirty_pages;
2206                         /*
2207                          * Let the uper layers retry transient errors.
2208                          * In the case of ENOSPC, if ext4_count_free_blocks()
2209                          * is non-zero, a commit should free up blocks.
2210                          */
2211                         if ((err == -ENOMEM) ||
2212                             (err == -ENOSPC && ext4_count_free_clusters(sb)))
2213                                 return err;
2214                         ext4_msg(sb, KERN_CRIT,
2215                                  "Delayed block allocation failed for "
2216                                  "inode %lu at logical offset %llu with"
2217                                  " max blocks %u with error %d",
2218                                  inode->i_ino,
2219                                  (unsigned long long)map->m_lblk,
2220                                  (unsigned)map->m_len, -err);
2221                         ext4_msg(sb, KERN_CRIT,
2222                                  "This should not happen!! Data will "
2223                                  "be lost\n");
2224                         if (err == -ENOSPC)
2225                                 ext4_print_free_blocks(inode);
2226                 invalidate_dirty_pages:
2227                         *give_up_on_write = true;
2228                         return err;
2229                 }
2230                 /*
2231                  * Update buffer state, submit mapped pages, and get us new
2232                  * extent to map
2233                  */
2234                 err = mpage_map_and_submit_buffers(mpd);
2235                 if (err < 0)
2236                         return err;
2237         } while (map->m_len);
2238
2239         /* Update on-disk size after IO is submitted */
2240         disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2241         if (disksize > EXT4_I(inode)->i_disksize) {
2242                 int err2;
2243
2244                 ext4_wb_update_i_disksize(inode, disksize);
2245                 err2 = ext4_mark_inode_dirty(handle, inode);
2246                 if (err2)
2247                         ext4_error(inode->i_sb,
2248                                    "Failed to mark inode %lu dirty",
2249                                    inode->i_ino);
2250                 if (!err)
2251                         err = err2;
2252         }
2253         return err;
2254 }
2255
2256 /*
2257  * Calculate the total number of credits to reserve for one writepages
2258  * iteration. This is called from ext4_writepages(). We map an extent of
2259  * upto MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2260  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2261  * bpp - 1 blocks in bpp different extents.
2262  */
2263 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2264 {
2265         int bpp = ext4_journal_blocks_per_page(inode);
2266
2267         return ext4_meta_trans_blocks(inode,
2268                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2269 }
2270
2271 /*
2272  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2273  *                               and underlying extent to map
2274  *
2275  * @mpd - where to look for pages
2276  *
2277  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2278  * IO immediately. When we find a page which isn't mapped we start accumulating
2279  * extent of buffers underlying these pages that needs mapping (formed by
2280  * either delayed or unwritten buffers). We also lock the pages containing
2281  * these buffers. The extent found is returned in @mpd structure (starting at
2282  * mpd->lblk with length mpd->len blocks).
2283  *
2284  * Note that this function can attach bios to one io_end structure which are
2285  * neither logically nor physically contiguous. Although it may seem as an
2286  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2287  * case as we need to track IO to all buffers underlying a page in one io_end.
2288  */
2289 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2290 {
2291         struct address_space *mapping = mpd->inode->i_mapping;
2292         struct pagevec pvec;
2293         unsigned int nr_pages;
2294         pgoff_t index = mpd->first_page;
2295         pgoff_t end = mpd->last_page;
2296         int tag;
2297         int i, err = 0;
2298         int blkbits = mpd->inode->i_blkbits;
2299         ext4_lblk_t lblk;
2300         struct buffer_head *head;
2301
2302         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2303                 tag = PAGECACHE_TAG_TOWRITE;
2304         else
2305                 tag = PAGECACHE_TAG_DIRTY;
2306
2307         pagevec_init(&pvec, 0);
2308         mpd->map.m_len = 0;
2309         mpd->next_page = index;
2310         while (index <= end) {
2311                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2312                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2313                 if (nr_pages == 0)
2314                         goto out;
2315
2316                 for (i = 0; i < nr_pages; i++) {
2317                         struct page *page = pvec.pages[i];
2318
2319                         /*
2320                          * At this point, the page may be truncated or
2321                          * invalidated (changing page->mapping to NULL), or
2322                          * even swizzled back from swapper_space to tmpfs file
2323                          * mapping. However, page->index will not change
2324                          * because we have a reference on the page.
2325                          */
2326                         if (page->index > end)
2327                                 goto out;
2328
2329                         /* If we can't merge this page, we are done. */
2330                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2331                                 goto out;
2332
2333                         lock_page(page);
2334                         /*
2335                          * If the page is no longer dirty, or its mapping no
2336                          * longer corresponds to inode we are writing (which
2337                          * means it has been truncated or invalidated), or the
2338                          * page is already under writeback and we are not doing
2339                          * a data integrity writeback, skip the page
2340                          */
2341                         if (!PageDirty(page) ||
2342                             (PageWriteback(page) &&
2343                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2344                             unlikely(page->mapping != mapping)) {
2345                                 unlock_page(page);
2346                                 continue;
2347                         }
2348
2349                         wait_on_page_writeback(page);
2350                         BUG_ON(PageWriteback(page));
2351
2352                         if (mpd->map.m_len == 0)
2353                                 mpd->first_page = page->index;
2354                         mpd->next_page = page->index + 1;
2355                         /* Add all dirty buffers to mpd */
2356                         lblk = ((ext4_lblk_t)page->index) <<
2357                                 (PAGE_CACHE_SHIFT - blkbits);
2358                         head = page_buffers(page);
2359                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2360                         if (err <= 0)
2361                                 goto out;
2362                         err = 0;
2363
2364                         /*
2365                          * Accumulated enough dirty pages? This doesn't apply
2366                          * to WB_SYNC_ALL mode. For integrity sync we have to
2367                          * keep going because someone may be concurrently
2368                          * dirtying pages, and we might have synced a lot of
2369                          * newly appeared dirty pages, but have not synced all
2370                          * of the old dirty pages.
2371                          */
2372                         if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2373                             mpd->next_page - mpd->first_page >=
2374                                                         mpd->wbc->nr_to_write)
2375                                 goto out;
2376                 }
2377                 pagevec_release(&pvec);
2378                 cond_resched();
2379         }
2380         return 0;
2381 out:
2382         pagevec_release(&pvec);
2383         return err;
2384 }
2385
2386 static int __writepage(struct page *page, struct writeback_control *wbc,
2387                        void *data)
2388 {
2389         struct address_space *mapping = data;
2390         int ret = ext4_writepage(page, wbc);
2391         mapping_set_error(mapping, ret);
2392         return ret;
2393 }
2394
2395 static int ext4_writepages(struct address_space *mapping,
2396                            struct writeback_control *wbc)
2397 {
2398         pgoff_t writeback_index = 0;
2399         long nr_to_write = wbc->nr_to_write;
2400         int range_whole = 0;
2401         int cycled = 1;
2402         handle_t *handle = NULL;
2403         struct mpage_da_data mpd;
2404         struct inode *inode = mapping->host;
2405         int needed_blocks, rsv_blocks = 0, ret = 0;
2406         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2407         bool done;
2408         struct blk_plug plug;
2409         bool give_up_on_write = false;
2410
2411         trace_ext4_writepages(inode, wbc);
2412
2413         /*
2414          * No pages to write? This is mainly a kludge to avoid starting
2415          * a transaction for special inodes like journal inode on last iput()
2416          * because that could violate lock ordering on umount
2417          */
2418         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2419                 return 0;
2420
2421         if (ext4_should_journal_data(inode)) {
2422                 struct blk_plug plug;
2423                 int ret;
2424
2425                 blk_start_plug(&plug);
2426                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2427                 blk_finish_plug(&plug);
2428                 return ret;
2429         }
2430
2431         /*
2432          * If the filesystem has aborted, it is read-only, so return
2433          * right away instead of dumping stack traces later on that
2434          * will obscure the real source of the problem.  We test
2435          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2436          * the latter could be true if the filesystem is mounted
2437          * read-only, and in that case, ext4_writepages should
2438          * *never* be called, so if that ever happens, we would want
2439          * the stack trace.
2440          */
2441         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2442                 return -EROFS;
2443
2444         if (ext4_should_dioread_nolock(inode)) {
2445                 /*
2446                  * We may need to convert upto one extent per block in
2447                  * the page and we may dirty the inode.
2448                  */
2449                 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2450         }
2451
2452         /*
2453          * If we have inline data and arrive here, it means that
2454          * we will soon create the block for the 1st page, so
2455          * we'd better clear the inline data here.
2456          */
2457         if (ext4_has_inline_data(inode)) {
2458                 /* Just inode will be modified... */
2459                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2460                 if (IS_ERR(handle)) {
2461                         ret = PTR_ERR(handle);
2462                         goto out_writepages;
2463                 }
2464                 BUG_ON(ext4_test_inode_state(inode,
2465                                 EXT4_STATE_MAY_INLINE_DATA));
2466                 ext4_destroy_inline_data(handle, inode);
2467                 ext4_journal_stop(handle);
2468         }
2469
2470         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2471                 range_whole = 1;
2472
2473         if (wbc->range_cyclic) {
2474                 writeback_index = mapping->writeback_index;
2475                 if (writeback_index)
2476                         cycled = 0;
2477                 mpd.first_page = writeback_index;
2478                 mpd.last_page = -1;
2479         } else {
2480                 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2481                 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2482         }
2483
2484         mpd.inode = inode;
2485         mpd.wbc = wbc;
2486         ext4_io_submit_init(&mpd.io_submit, wbc);
2487 retry:
2488         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2489                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2490         done = false;
2491         blk_start_plug(&plug);
2492         while (!done && mpd.first_page <= mpd.last_page) {
2493                 /* For each extent of pages we use new io_end */
2494                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2495                 if (!mpd.io_submit.io_end) {
2496                         ret = -ENOMEM;
2497                         break;
2498                 }
2499
2500                 /*
2501                  * We have two constraints: We find one extent to map and we
2502                  * must always write out whole page (makes a difference when
2503                  * blocksize < pagesize) so that we don't block on IO when we
2504                  * try to write out the rest of the page. Journalled mode is
2505                  * not supported by delalloc.
2506                  */
2507                 BUG_ON(ext4_should_journal_data(inode));
2508                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2509
2510                 /* start a new transaction */
2511                 handle = ext4_journal_start_with_reserve(inode,
2512                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2513                 if (IS_ERR(handle)) {
2514                         ret = PTR_ERR(handle);
2515                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2516                                "%ld pages, ino %lu; err %d", __func__,
2517                                 wbc->nr_to_write, inode->i_ino, ret);
2518                         /* Release allocated io_end */
2519                         ext4_put_io_end(mpd.io_submit.io_end);
2520                         break;
2521                 }
2522
2523                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2524                 ret = mpage_prepare_extent_to_map(&mpd);
2525                 if (!ret) {
2526                         if (mpd.map.m_len)
2527                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2528                                         &give_up_on_write);
2529                         else {
2530                                 /*
2531                                  * We scanned the whole range (or exhausted
2532                                  * nr_to_write), submitted what was mapped and
2533                                  * didn't find anything needing mapping. We are
2534                                  * done.
2535                                  */
2536                                 done = true;
2537                         }
2538                 }
2539                 ext4_journal_stop(handle);
2540                 /* Submit prepared bio */
2541                 ext4_io_submit(&mpd.io_submit);
2542                 /* Unlock pages we didn't use */
2543                 mpage_release_unused_pages(&mpd, give_up_on_write);
2544                 /* Drop our io_end reference we got from init */
2545                 ext4_put_io_end(mpd.io_submit.io_end);
2546
2547                 if (ret == -ENOSPC && sbi->s_journal) {
2548                         /*
2549                          * Commit the transaction which would
2550                          * free blocks released in the transaction
2551                          * and try again
2552                          */
2553                         jbd2_journal_force_commit_nested(sbi->s_journal);
2554                         ret = 0;
2555                         continue;
2556                 }
2557                 /* Fatal error - ENOMEM, EIO... */
2558                 if (ret)
2559                         break;
2560         }
2561         blk_finish_plug(&plug);
2562         if (!ret && !cycled) {
2563                 cycled = 1;
2564                 mpd.last_page = writeback_index - 1;
2565                 mpd.first_page = 0;
2566                 goto retry;
2567         }
2568
2569         /* Update index */
2570         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2571                 /*
2572                  * Set the writeback_index so that range_cyclic
2573                  * mode will write it back later
2574                  */
2575                 mapping->writeback_index = mpd.first_page;
2576
2577 out_writepages:
2578         trace_ext4_writepages_result(inode, wbc, ret,
2579                                      nr_to_write - wbc->nr_to_write);
2580         return ret;
2581 }
2582
2583 static int ext4_nonda_switch(struct super_block *sb)
2584 {
2585         s64 free_clusters, dirty_clusters;
2586         struct ext4_sb_info *sbi = EXT4_SB(sb);
2587
2588         /*
2589          * switch to non delalloc mode if we are running low
2590          * on free block. The free block accounting via percpu
2591          * counters can get slightly wrong with percpu_counter_batch getting
2592          * accumulated on each CPU without updating global counters
2593          * Delalloc need an accurate free block accounting. So switch
2594          * to non delalloc when we are near to error range.
2595          */
2596         free_clusters =
2597                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2598         dirty_clusters =
2599                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2600         /*
2601          * Start pushing delalloc when 1/2 of free blocks are dirty.
2602          */
2603         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2604                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2605
2606         if (2 * free_clusters < 3 * dirty_clusters ||
2607             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2608                 /*
2609                  * free block count is less than 150% of dirty blocks
2610                  * or free blocks is less than watermark
2611                  */
2612                 return 1;
2613         }
2614         return 0;
2615 }
2616
2617 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2618                                loff_t pos, unsigned len, unsigned flags,
2619                                struct page **pagep, void **fsdata)
2620 {
2621         int ret, retries = 0;
2622         struct page *page;
2623         pgoff_t index;
2624         struct inode *inode = mapping->host;
2625         handle_t *handle;
2626
2627         index = pos >> PAGE_CACHE_SHIFT;
2628
2629         if (ext4_nonda_switch(inode->i_sb)) {
2630                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2631                 return ext4_write_begin(file, mapping, pos,
2632                                         len, flags, pagep, fsdata);
2633         }
2634         *fsdata = (void *)0;
2635         trace_ext4_da_write_begin(inode, pos, len, flags);
2636
2637         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2638                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2639                                                       pos, len, flags,
2640                                                       pagep, fsdata);
2641                 if (ret < 0)
2642                         return ret;
2643                 if (ret == 1)
2644                         return 0;
2645         }
2646
2647         /*
2648          * grab_cache_page_write_begin() can take a long time if the
2649          * system is thrashing due to memory pressure, or if the page
2650          * is being written back.  So grab it first before we start
2651          * the transaction handle.  This also allows us to allocate
2652          * the page (if needed) without using GFP_NOFS.
2653          */
2654 retry_grab:
2655         page = grab_cache_page_write_begin(mapping, index, flags);
2656         if (!page)
2657                 return -ENOMEM;
2658         unlock_page(page);
2659
2660         /*
2661          * With delayed allocation, we don't log the i_disksize update
2662          * if there is delayed block allocation. But we still need
2663          * to journalling the i_disksize update if writes to the end
2664          * of file which has an already mapped buffer.
2665          */
2666 retry_journal:
2667         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2668         if (IS_ERR(handle)) {
2669                 page_cache_release(page);
2670                 return PTR_ERR(handle);
2671         }
2672
2673         lock_page(page);
2674         if (page->mapping != mapping) {
2675                 /* The page got truncated from under us */
2676                 unlock_page(page);
2677                 page_cache_release(page);
2678                 ext4_journal_stop(handle);
2679                 goto retry_grab;
2680         }
2681         /* In case writeback began while the page was unlocked */
2682         wait_for_stable_page(page);
2683
2684         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2685         if (ret < 0) {
2686                 unlock_page(page);
2687                 ext4_journal_stop(handle);
2688                 /*
2689                  * block_write_begin may have instantiated a few blocks
2690                  * outside i_size.  Trim these off again. Don't need
2691                  * i_size_read because we hold i_mutex.
2692                  */
2693                 if (pos + len > inode->i_size)
2694                         ext4_truncate_failed_write(inode);
2695
2696                 if (ret == -ENOSPC &&
2697                     ext4_should_retry_alloc(inode->i_sb, &retries))
2698                         goto retry_journal;
2699
2700                 page_cache_release(page);
2701                 return ret;
2702         }
2703
2704         *pagep = page;
2705         return ret;
2706 }
2707
2708 /*
2709  * Check if we should update i_disksize
2710  * when write to the end of file but not require block allocation
2711  */
2712 static int ext4_da_should_update_i_disksize(struct page *page,
2713                                             unsigned long offset)
2714 {
2715         struct buffer_head *bh;
2716         struct inode *inode = page->mapping->host;
2717         unsigned int idx;
2718         int i;
2719
2720         bh = page_buffers(page);
2721         idx = offset >> inode->i_blkbits;
2722
2723         for (i = 0; i < idx; i++)
2724                 bh = bh->b_this_page;
2725
2726         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2727                 return 0;
2728         return 1;
2729 }
2730
2731 static int ext4_da_write_end(struct file *file,
2732                              struct address_space *mapping,
2733                              loff_t pos, unsigned len, unsigned copied,
2734                              struct page *page, void *fsdata)
2735 {
2736         struct inode *inode = mapping->host;
2737         int ret = 0, ret2;
2738         handle_t *handle = ext4_journal_current_handle();
2739         loff_t new_i_size;
2740         unsigned long start, end;
2741         int write_mode = (int)(unsigned long)fsdata;
2742
2743         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2744                 return ext4_write_end(file, mapping, pos,
2745                                       len, copied, page, fsdata);
2746
2747         trace_ext4_da_write_end(inode, pos, len, copied);
2748         start = pos & (PAGE_CACHE_SIZE - 1);
2749         end = start + copied - 1;
2750
2751         /*
2752          * generic_write_end() will run mark_inode_dirty() if i_size
2753          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2754          * into that.
2755          */
2756         new_i_size = pos + copied;
2757         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2758                 if (ext4_has_inline_data(inode) ||
2759                     ext4_da_should_update_i_disksize(page, end)) {
2760                         down_write(&EXT4_I(inode)->i_data_sem);
2761                         if (new_i_size > EXT4_I(inode)->i_disksize)
2762                                 EXT4_I(inode)->i_disksize = new_i_size;
2763                         up_write(&EXT4_I(inode)->i_data_sem);
2764                         /* We need to mark inode dirty even if
2765                          * new_i_size is less that inode->i_size
2766                          * bu greater than i_disksize.(hint delalloc)
2767                          */
2768                         ext4_mark_inode_dirty(handle, inode);
2769                 }
2770         }
2771
2772         if (write_mode != CONVERT_INLINE_DATA &&
2773             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2774             ext4_has_inline_data(inode))
2775                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2776                                                      page);
2777         else
2778                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2779                                                         page, fsdata);
2780
2781         copied = ret2;
2782         if (ret2 < 0)
2783                 ret = ret2;
2784         ret2 = ext4_journal_stop(handle);
2785         if (!ret)
2786                 ret = ret2;
2787
2788         return ret ? ret : copied;
2789 }
2790
2791 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2792                                    unsigned int length)
2793 {
2794         /*
2795          * Drop reserved blocks
2796          */
2797         BUG_ON(!PageLocked(page));
2798         if (!page_has_buffers(page))
2799                 goto out;
2800
2801         ext4_da_page_release_reservation(page, offset, length);
2802
2803 out:
2804         ext4_invalidatepage(page, offset, length);
2805
2806         return;
2807 }
2808
2809 /*
2810  * Force all delayed allocation blocks to be allocated for a given inode.
2811  */
2812 int ext4_alloc_da_blocks(struct inode *inode)
2813 {
2814         trace_ext4_alloc_da_blocks(inode);
2815
2816         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2817             !EXT4_I(inode)->i_reserved_meta_blocks)
2818                 return 0;
2819
2820         /*
2821          * We do something simple for now.  The filemap_flush() will
2822          * also start triggering a write of the data blocks, which is
2823          * not strictly speaking necessary (and for users of
2824          * laptop_mode, not even desirable).  However, to do otherwise
2825          * would require replicating code paths in:
2826          *
2827          * ext4_writepages() ->
2828          *    write_cache_pages() ---> (via passed in callback function)
2829          *        __mpage_da_writepage() -->
2830          *           mpage_add_bh_to_extent()
2831          *           mpage_da_map_blocks()
2832          *
2833          * The problem is that write_cache_pages(), located in
2834          * mm/page-writeback.c, marks pages clean in preparation for
2835          * doing I/O, which is not desirable if we're not planning on
2836          * doing I/O at all.
2837          *
2838          * We could call write_cache_pages(), and then redirty all of
2839          * the pages by calling redirty_page_for_writepage() but that
2840          * would be ugly in the extreme.  So instead we would need to
2841          * replicate parts of the code in the above functions,
2842          * simplifying them because we wouldn't actually intend to
2843          * write out the pages, but rather only collect contiguous
2844          * logical block extents, call the multi-block allocator, and
2845          * then update the buffer heads with the block allocations.
2846          *
2847          * For now, though, we'll cheat by calling filemap_flush(),
2848          * which will map the blocks, and start the I/O, but not
2849          * actually wait for the I/O to complete.
2850          */
2851         return filemap_flush(inode->i_mapping);
2852 }
2853
2854 /*
2855  * bmap() is special.  It gets used by applications such as lilo and by
2856  * the swapper to find the on-disk block of a specific piece of data.
2857  *
2858  * Naturally, this is dangerous if the block concerned is still in the
2859  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2860  * filesystem and enables swap, then they may get a nasty shock when the
2861  * data getting swapped to that swapfile suddenly gets overwritten by
2862  * the original zero's written out previously to the journal and
2863  * awaiting writeback in the kernel's buffer cache.
2864  *
2865  * So, if we see any bmap calls here on a modified, data-journaled file,
2866  * take extra steps to flush any blocks which might be in the cache.
2867  */
2868 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2869 {
2870         struct inode *inode = mapping->host;
2871         journal_t *journal;
2872         int err;
2873
2874         /*
2875          * We can get here for an inline file via the FIBMAP ioctl
2876          */
2877         if (ext4_has_inline_data(inode))
2878                 return 0;
2879
2880         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2881                         test_opt(inode->i_sb, DELALLOC)) {
2882                 /*
2883                  * With delalloc we want to sync the file
2884                  * so that we can make sure we allocate
2885                  * blocks for file
2886                  */
2887                 filemap_write_and_wait(mapping);
2888         }
2889
2890         if (EXT4_JOURNAL(inode) &&
2891             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2892                 /*
2893                  * This is a REALLY heavyweight approach, but the use of
2894                  * bmap on dirty files is expected to be extremely rare:
2895                  * only if we run lilo or swapon on a freshly made file
2896                  * do we expect this to happen.
2897                  *
2898                  * (bmap requires CAP_SYS_RAWIO so this does not
2899                  * represent an unprivileged user DOS attack --- we'd be
2900                  * in trouble if mortal users could trigger this path at
2901                  * will.)
2902                  *
2903                  * NB. EXT4_STATE_JDATA is not set on files other than
2904                  * regular files.  If somebody wants to bmap a directory
2905                  * or symlink and gets confused because the buffer
2906                  * hasn't yet been flushed to disk, they deserve
2907                  * everything they get.
2908                  */
2909
2910                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2911                 journal = EXT4_JOURNAL(inode);
2912                 jbd2_journal_lock_updates(journal);
2913                 err = jbd2_journal_flush(journal);
2914                 jbd2_journal_unlock_updates(journal);
2915
2916                 if (err)
2917                         return 0;
2918         }
2919
2920         return generic_block_bmap(mapping, block, ext4_get_block);
2921 }
2922
2923 static int ext4_readpage(struct file *file, struct page *page)
2924 {
2925         int ret = -EAGAIN;
2926         struct inode *inode = page->mapping->host;
2927
2928         trace_ext4_readpage(page);
2929
2930         if (ext4_has_inline_data(inode))
2931                 ret = ext4_readpage_inline(inode, page);
2932
2933         if (ret == -EAGAIN)
2934                 return mpage_readpage(page, ext4_get_block);
2935
2936         return ret;
2937 }
2938
2939 static int
2940 ext4_readpages(struct file *file, struct address_space *mapping,
2941                 struct list_head *pages, unsigned nr_pages)
2942 {
2943         struct inode *inode = mapping->host;
2944
2945         /* If the file has inline data, no need to do readpages. */
2946         if (ext4_has_inline_data(inode))
2947                 return 0;
2948
2949         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2950 }
2951
2952 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2953                                 unsigned int length)
2954 {
2955         trace_ext4_invalidatepage(page, offset, length);
2956
2957         /* No journalling happens on data buffers when this function is used */
2958         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2959
2960         block_invalidatepage(page, offset, length);
2961 }
2962
2963 static int __ext4_journalled_invalidatepage(struct page *page,
2964                                             unsigned int offset,
2965                                             unsigned int length)
2966 {
2967         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2968
2969         trace_ext4_journalled_invalidatepage(page, offset, length);
2970
2971         /*
2972          * If it's a full truncate we just forget about the pending dirtying
2973          */
2974         if (offset == 0 && length == PAGE_CACHE_SIZE)
2975                 ClearPageChecked(page);
2976
2977         return jbd2_journal_invalidatepage(journal, page, offset, length);
2978 }
2979
2980 /* Wrapper for aops... */
2981 static void ext4_journalled_invalidatepage(struct page *page,
2982                                            unsigned int offset,
2983                                            unsigned int length)
2984 {
2985         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2986 }
2987
2988 static int ext4_releasepage(struct page *page, gfp_t wait)
2989 {
2990         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2991
2992         trace_ext4_releasepage(page);
2993
2994         /* Page has dirty journalled data -> cannot release */
2995         if (PageChecked(page))
2996                 return 0;
2997         if (journal)
2998                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2999         else
3000                 return try_to_free_buffers(page);
3001 }
3002
3003 /*
3004  * ext4_get_block used when preparing for a DIO write or buffer write.
3005  * We allocate an uinitialized extent if blocks haven't been allocated.
3006  * The extent will be converted to initialized after the IO is complete.
3007  */
3008 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3009                    struct buffer_head *bh_result, int create)
3010 {
3011         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3012                    inode->i_ino, create);
3013         return _ext4_get_block(inode, iblock, bh_result,
3014                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3015 }
3016
3017 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3018                    struct buffer_head *bh_result, int create)
3019 {
3020         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3021                    inode->i_ino, create);
3022         return _ext4_get_block(inode, iblock, bh_result,
3023                                EXT4_GET_BLOCKS_NO_LOCK);
3024 }
3025
3026 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3027                             ssize_t size, void *private, int ret,
3028                             bool is_async)
3029 {
3030         struct inode *inode = file_inode(iocb->ki_filp);
3031         ext4_io_end_t *io_end = iocb->private;
3032
3033         /* if not async direct IO just return */
3034         if (!io_end) {
3035                 inode_dio_done(inode);
3036                 if (is_async)
3037                         aio_complete(iocb, ret, 0);
3038                 return;
3039         }
3040
3041         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3042                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3043                   iocb->private, io_end->inode->i_ino, iocb, offset,
3044                   size);
3045
3046         iocb->private = NULL;
3047         io_end->offset = offset;
3048         io_end->size = size;
3049         if (is_async) {
3050                 io_end->iocb = iocb;
3051                 io_end->result = ret;
3052         }
3053         ext4_put_io_end_defer(io_end);
3054 }
3055
3056 /*
3057  * For ext4 extent files, ext4 will do direct-io write to holes,
3058  * preallocated extents, and those write extend the file, no need to
3059  * fall back to buffered IO.
3060  *
3061  * For holes, we fallocate those blocks, mark them as uninitialized
3062  * If those blocks were preallocated, we mark sure they are split, but
3063  * still keep the range to write as uninitialized.
3064  *
3065  * The unwritten extents will be converted to written when DIO is completed.
3066  * For async direct IO, since the IO may still pending when return, we
3067  * set up an end_io call back function, which will do the conversion
3068  * when async direct IO completed.
3069  *
3070  * If the O_DIRECT write will extend the file then add this inode to the
3071  * orphan list.  So recovery will truncate it back to the original size
3072  * if the machine crashes during the write.
3073  *
3074  */
3075 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3076                               const struct iovec *iov, loff_t offset,
3077                               unsigned long nr_segs)
3078 {
3079         struct file *file = iocb->ki_filp;
3080         struct inode *inode = file->f_mapping->host;
3081         ssize_t ret;
3082         size_t count = iov_length(iov, nr_segs);
3083         int overwrite = 0;
3084         get_block_t *get_block_func = NULL;
3085         int dio_flags = 0;
3086         loff_t final_size = offset + count;
3087         ext4_io_end_t *io_end = NULL;
3088
3089         /* Use the old path for reads and writes beyond i_size. */
3090         if (rw != WRITE || final_size > inode->i_size)
3091                 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3092
3093         BUG_ON(iocb->private == NULL);
3094
3095         /*
3096          * Make all waiters for direct IO properly wait also for extent
3097          * conversion. This also disallows race between truncate() and
3098          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3099          */
3100         if (rw == WRITE)
3101                 atomic_inc(&inode->i_dio_count);
3102
3103         /* If we do a overwrite dio, i_mutex locking can be released */
3104         overwrite = *((int *)iocb->private);
3105
3106         if (overwrite) {
3107                 down_read(&EXT4_I(inode)->i_data_sem);
3108                 mutex_unlock(&inode->i_mutex);
3109         }
3110
3111         /*
3112          * We could direct write to holes and fallocate.
3113          *
3114          * Allocated blocks to fill the hole are marked as
3115          * uninitialized to prevent parallel buffered read to expose
3116          * the stale data before DIO complete the data IO.
3117          *
3118          * As to previously fallocated extents, ext4 get_block will
3119          * just simply mark the buffer mapped but still keep the
3120          * extents uninitialized.
3121          *
3122          * For non AIO case, we will convert those unwritten extents
3123          * to written after return back from blockdev_direct_IO.
3124          *
3125          * For async DIO, the conversion needs to be deferred when the
3126          * IO is completed. The ext4 end_io callback function will be
3127          * called to take care of the conversion work.  Here for async
3128          * case, we allocate an io_end structure to hook to the iocb.
3129          */
3130         iocb->private = NULL;
3131         ext4_inode_aio_set(inode, NULL);
3132         if (!is_sync_kiocb(iocb)) {
3133                 io_end = ext4_init_io_end(inode, GFP_NOFS);
3134                 if (!io_end) {
3135                         ret = -ENOMEM;
3136                         goto retake_lock;
3137                 }
3138                 io_end->flag |= EXT4_IO_END_DIRECT;
3139                 /*
3140                  * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3141                  */
3142                 iocb->private = ext4_get_io_end(io_end);
3143                 /*
3144                  * we save the io structure for current async direct
3145                  * IO, so that later ext4_map_blocks() could flag the
3146                  * io structure whether there is a unwritten extents
3147                  * needs to be converted when IO is completed.
3148                  */
3149                 ext4_inode_aio_set(inode, io_end);
3150         }
3151
3152         if (overwrite) {
3153                 get_block_func = ext4_get_block_write_nolock;
3154         } else {
3155                 get_block_func = ext4_get_block_write;
3156                 dio_flags = DIO_LOCKING;
3157         }
3158         ret = __blockdev_direct_IO(rw, iocb, inode,
3159                                    inode->i_sb->s_bdev, iov,
3160                                    offset, nr_segs,
3161                                    get_block_func,
3162                                    ext4_end_io_dio,
3163                                    NULL,
3164                                    dio_flags);
3165
3166         /*
3167          * Put our reference to io_end. This can free the io_end structure e.g.
3168          * in sync IO case or in case of error. It can even perform extent
3169          * conversion if all bios we submitted finished before we got here.
3170          * Note that in that case iocb->private can be already set to NULL
3171          * here.
3172          */
3173         if (io_end) {
3174                 ext4_inode_aio_set(inode, NULL);
3175                 ext4_put_io_end(io_end);
3176                 /*
3177                  * When no IO was submitted ext4_end_io_dio() was not
3178                  * called so we have to put iocb's reference.
3179                  */
3180                 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3181                         WARN_ON(iocb->private != io_end);
3182                         WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3183                         WARN_ON(io_end->iocb);
3184                         /*
3185                          * Generic code already did inode_dio_done() so we
3186                          * have to clear EXT4_IO_END_DIRECT to not do it for
3187                          * the second time.
3188                          */
3189                         io_end->flag = 0;
3190                         ext4_put_io_end(io_end);
3191                         iocb->private = NULL;
3192                 }
3193         }
3194         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3195                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3196                 int err;
3197                 /*
3198                  * for non AIO case, since the IO is already
3199                  * completed, we could do the conversion right here
3200                  */
3201                 err = ext4_convert_unwritten_extents(NULL, inode,
3202                                                      offset, ret);
3203                 if (err < 0)
3204                         ret = err;
3205                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3206         }
3207
3208 retake_lock:
3209         if (rw == WRITE)
3210                 inode_dio_done(inode);
3211         /* take i_mutex locking again if we do a ovewrite dio */
3212         if (overwrite) {
3213                 up_read(&EXT4_I(inode)->i_data_sem);
3214                 mutex_lock(&inode->i_mutex);
3215         }
3216
3217         return ret;
3218 }
3219
3220 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3221                               const struct iovec *iov, loff_t offset,
3222                               unsigned long nr_segs)
3223 {
3224         struct file *file = iocb->ki_filp;
3225         struct inode *inode = file->f_mapping->host;
3226         ssize_t ret;
3227
3228         /*
3229          * If we are doing data journalling we don't support O_DIRECT
3230          */
3231         if (ext4_should_journal_data(inode))
3232                 return 0;
3233
3234         /* Let buffer I/O handle the inline data case. */
3235         if (ext4_has_inline_data(inode))
3236                 return 0;
3237
3238         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3239         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3240                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3241         else
3242                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3243         trace_ext4_direct_IO_exit(inode, offset,
3244                                 iov_length(iov, nr_segs), rw, ret);
3245         return ret;
3246 }
3247
3248 /*
3249  * Pages can be marked dirty completely asynchronously from ext4's journalling
3250  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3251  * much here because ->set_page_dirty is called under VFS locks.  The page is
3252  * not necessarily locked.
3253  *
3254  * We cannot just dirty the page and leave attached buffers clean, because the
3255  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3256  * or jbddirty because all the journalling code will explode.
3257  *
3258  * So what we do is to mark the page "pending dirty" and next time writepage
3259  * is called, propagate that into the buffers appropriately.
3260  */
3261 static int ext4_journalled_set_page_dirty(struct page *page)
3262 {
3263         SetPageChecked(page);
3264         return __set_page_dirty_nobuffers(page);
3265 }
3266
3267 static const struct address_space_operations ext4_aops = {
3268         .readpage               = ext4_readpage,
3269         .readpages              = ext4_readpages,
3270         .writepage              = ext4_writepage,
3271         .writepages             = ext4_writepages,
3272         .write_begin            = ext4_write_begin,
3273         .write_end              = ext4_write_end,
3274         .bmap                   = ext4_bmap,
3275         .invalidatepage         = ext4_invalidatepage,
3276         .releasepage            = ext4_releasepage,
3277         .direct_IO              = ext4_direct_IO,
3278         .migratepage            = buffer_migrate_page,
3279         .is_partially_uptodate  = block_is_partially_uptodate,
3280         .error_remove_page      = generic_error_remove_page,
3281 };
3282
3283 static const struct address_space_operations ext4_journalled_aops = {
3284         .readpage               = ext4_readpage,
3285         .readpages              = ext4_readpages,
3286         .writepage              = ext4_writepage,
3287         .writepages             = ext4_writepages,
3288         .write_begin            = ext4_write_begin,
3289         .write_end              = ext4_journalled_write_end,
3290         .set_page_dirty         = ext4_journalled_set_page_dirty,
3291         .bmap                   = ext4_bmap,
3292         .invalidatepage         = ext4_journalled_invalidatepage,
3293         .releasepage            = ext4_releasepage,
3294         .direct_IO              = ext4_direct_IO,
3295         .is_partially_uptodate  = block_is_partially_uptodate,
3296         .error_remove_page      = generic_error_remove_page,
3297 };
3298
3299 static const struct address_space_operations ext4_da_aops = {
3300         .readpage               = ext4_readpage,
3301         .readpages              = ext4_readpages,
3302         .writepage              = ext4_writepage,
3303         .writepages             = ext4_writepages,
3304         .write_begin            = ext4_da_write_begin,
3305         .write_end              = ext4_da_write_end,
3306         .bmap                   = ext4_bmap,
3307         .invalidatepage         = ext4_da_invalidatepage,
3308         .releasepage            = ext4_releasepage,
3309         .direct_IO              = ext4_direct_IO,
3310         .migratepage            = buffer_migrate_page,
3311         .is_partially_uptodate  = block_is_partially_uptodate,
3312         .error_remove_page      = generic_error_remove_page,
3313 };
3314
3315 void ext4_set_aops(struct inode *inode)
3316 {
3317         switch (ext4_inode_journal_mode(inode)) {
3318         case EXT4_INODE_ORDERED_DATA_MODE:
3319                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3320                 break;
3321         case EXT4_INODE_WRITEBACK_DATA_MODE:
3322                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3323                 break;
3324         case EXT4_INODE_JOURNAL_DATA_MODE:
3325                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3326                 return;
3327         default:
3328                 BUG();
3329         }
3330         if (test_opt(inode->i_sb, DELALLOC))
3331                 inode->i_mapping->a_ops = &ext4_da_aops;
3332         else
3333                 inode->i_mapping->a_ops = &ext4_aops;
3334 }
3335
3336 /*
3337  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3338  * up to the end of the block which corresponds to `from'.
3339  * This required during truncate. We need to physically zero the tail end
3340  * of that block so it doesn't yield old data if the file is later grown.
3341  */
3342 int ext4_block_truncate_page(handle_t *handle,
3343                 struct address_space *mapping, loff_t from)
3344 {
3345         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3346         unsigned length;
3347         unsigned blocksize;
3348         struct inode *inode = mapping->host;
3349
3350         blocksize = inode->i_sb->s_blocksize;
3351         length = blocksize - (offset & (blocksize - 1));
3352
3353         return ext4_block_zero_page_range(handle, mapping, from, length);
3354 }
3355
3356 /*
3357  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3358  * starting from file offset 'from'.  The range to be zero'd must
3359  * be contained with in one block.  If the specified range exceeds
3360  * the end of the block it will be shortened to end of the block
3361  * that cooresponds to 'from'
3362  */
3363 int ext4_block_zero_page_range(handle_t *handle,
3364                 struct address_space *mapping, loff_t from, loff_t length)
3365 {
3366         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3367         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3368         unsigned blocksize, max, pos;
3369         ext4_lblk_t iblock;
3370         struct inode *inode = mapping->host;
3371         struct buffer_head *bh;
3372         struct page *page;
3373         int err = 0;
3374
3375         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3376                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3377         if (!page)
3378                 return -ENOMEM;
3379
3380         blocksize = inode->i_sb->s_blocksize;
3381         max = blocksize - (offset & (blocksize - 1));
3382
3383         /*
3384          * correct length if it does not fall between
3385          * 'from' and the end of the block
3386          */
3387         if (length > max || length < 0)
3388                 length = max;
3389
3390         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3391
3392         if (!page_has_buffers(page))
3393                 create_empty_buffers(page, blocksize, 0);
3394
3395         /* Find the buffer that contains "offset" */
3396         bh = page_buffers(page);
3397         pos = blocksize;
3398         while (offset >= pos) {
3399                 bh = bh->b_this_page;
3400                 iblock++;
3401                 pos += blocksize;
3402         }
3403         if (buffer_freed(bh)) {
3404                 BUFFER_TRACE(bh, "freed: skip");
3405                 goto unlock;
3406         }
3407         if (!buffer_mapped(bh)) {
3408                 BUFFER_TRACE(bh, "unmapped");
3409                 ext4_get_block(inode, iblock, bh, 0);
3410                 /* unmapped? It's a hole - nothing to do */
3411                 if (!buffer_mapped(bh)) {
3412                         BUFFER_TRACE(bh, "still unmapped");
3413                         goto unlock;
3414                 }
3415         }
3416
3417         /* Ok, it's mapped. Make sure it's up-to-date */
3418         if (PageUptodate(page))
3419                 set_buffer_uptodate(bh);
3420
3421         if (!buffer_uptodate(bh)) {
3422                 err = -EIO;
3423                 ll_rw_block(READ, 1, &bh);
3424                 wait_on_buffer(bh);
3425                 /* Uhhuh. Read error. Complain and punt. */
3426                 if (!buffer_uptodate(bh))
3427                         goto unlock;
3428         }
3429         if (ext4_should_journal_data(inode)) {
3430                 BUFFER_TRACE(bh, "get write access");
3431                 err = ext4_journal_get_write_access(handle, bh);
3432                 if (err)
3433                         goto unlock;
3434         }
3435         zero_user(page, offset, length);
3436         BUFFER_TRACE(bh, "zeroed end of block");
3437
3438         if (ext4_should_journal_data(inode)) {
3439                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3440         } else {
3441                 err = 0;
3442                 mark_buffer_dirty(bh);
3443                 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3444                         err = ext4_jbd2_file_inode(handle, inode);
3445         }
3446
3447 unlock:
3448         unlock_page(page);
3449         page_cache_release(page);
3450         return err;
3451 }
3452
3453 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3454                              loff_t lstart, loff_t length)
3455 {
3456         struct super_block *sb = inode->i_sb;
3457         struct address_space *mapping = inode->i_mapping;
3458         unsigned partial_start, partial_end;
3459         ext4_fsblk_t start, end;
3460         loff_t byte_end = (lstart + length - 1);
3461         int err = 0;
3462
3463         partial_start = lstart & (sb->s_blocksize - 1);
3464         partial_end = byte_end & (sb->s_blocksize - 1);
3465
3466         start = lstart >> sb->s_blocksize_bits;
3467         end = byte_end >> sb->s_blocksize_bits;
3468
3469         /* Handle partial zero within the single block */
3470         if (start == end &&
3471             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3472                 err = ext4_block_zero_page_range(handle, mapping,
3473                                                  lstart, length);
3474                 return err;
3475         }
3476         /* Handle partial zero out on the start of the range */
3477         if (partial_start) {
3478                 err = ext4_block_zero_page_range(handle, mapping,
3479                                                  lstart, sb->s_blocksize);
3480                 if (err)
3481                         return err;
3482         }
3483         /* Handle partial zero out on the end of the range */
3484         if (partial_end != sb->s_blocksize - 1)
3485                 err = ext4_block_zero_page_range(handle, mapping,
3486                                                  byte_end - partial_end,
3487                                                  partial_end + 1);
3488         return err;
3489 }
3490
3491 int ext4_can_truncate(struct inode *inode)
3492 {
3493         if (S_ISREG(inode->i_mode))
3494                 return 1;
3495         if (S_ISDIR(inode->i_mode))
3496                 return 1;
3497         if (S_ISLNK(inode->i_mode))
3498                 return !ext4_inode_is_fast_symlink(inode);
3499         return 0;
3500 }
3501
3502 /*
3503  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3504  * associated with the given offset and length
3505  *
3506  * @inode:  File inode
3507  * @offset: The offset where the hole will begin
3508  * @len:    The length of the hole
3509  *
3510  * Returns: 0 on success or negative on failure
3511  */
3512
3513 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3514 {
3515         struct super_block *sb = inode->i_sb;
3516         ext4_lblk_t first_block, stop_block;
3517         struct address_space *mapping = inode->i_mapping;
3518         loff_t first_block_offset, last_block_offset;
3519         handle_t *handle;
3520         unsigned int credits;
3521         int ret = 0;
3522
3523         if (!S_ISREG(inode->i_mode))
3524                 return -EOPNOTSUPP;
3525
3526         if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3527                 /* TODO: Add support for bigalloc file systems */
3528                 return -EOPNOTSUPP;
3529         }
3530
3531         trace_ext4_punch_hole(inode, offset, length);
3532
3533         /*
3534          * Write out all dirty pages to avoid race conditions
3535          * Then release them.
3536          */
3537         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3538                 ret = filemap_write_and_wait_range(mapping, offset,
3539                                                    offset + length - 1);
3540                 if (ret)
3541                         return ret;
3542         }
3543
3544         mutex_lock(&inode->i_mutex);
3545         /* It's not possible punch hole on append only file */
3546         if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3547                 ret = -EPERM;
3548                 goto out_mutex;
3549         }
3550         if (IS_SWAPFILE(inode)) {
3551                 ret = -ETXTBSY;
3552                 goto out_mutex;
3553         }
3554
3555         /* No need to punch hole beyond i_size */
3556         if (offset >= inode->i_size)
3557                 goto out_mutex;
3558
3559         /*
3560          * If the hole extends beyond i_size, set the hole
3561          * to end after the page that contains i_size
3562          */
3563         if (offset + length > inode->i_size) {
3564                 length = inode->i_size +
3565                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3566                    offset;
3567         }
3568
3569         if (offset & (sb->s_blocksize - 1) ||
3570             (offset + length) & (sb->s_blocksize - 1)) {
3571                 /*
3572                  * Attach jinode to inode for jbd2 if we do any zeroing of
3573                  * partial block
3574                  */
3575                 ret = ext4_inode_attach_jinode(inode);
3576                 if (ret < 0)
3577                         goto out_mutex;
3578
3579         }
3580
3581         first_block_offset = round_up(offset, sb->s_blocksize);
3582         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3583
3584         /* Now release the pages and zero block aligned part of pages*/
3585         if (last_block_offset > first_block_offset)
3586                 truncate_pagecache_range(inode, first_block_offset,
3587                                          last_block_offset);
3588
3589         /* Wait all existing dio workers, newcomers will block on i_mutex */
3590         ext4_inode_block_unlocked_dio(inode);
3591         inode_dio_wait(inode);
3592
3593         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3594                 credits = ext4_writepage_trans_blocks(inode);
3595         else
3596                 credits = ext4_blocks_for_truncate(inode);
3597         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3598         if (IS_ERR(handle)) {
3599                 ret = PTR_ERR(handle);
3600                 ext4_std_error(sb, ret);
3601                 goto out_dio;
3602         }
3603
3604         ret = ext4_zero_partial_blocks(handle, inode, offset,
3605                                        length);
3606         if (ret)
3607                 goto out_stop;
3608
3609         first_block = (offset + sb->s_blocksize - 1) >>
3610                 EXT4_BLOCK_SIZE_BITS(sb);
3611         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3612
3613         /* If there are no blocks to remove, return now */
3614         if (first_block >= stop_block)
3615                 goto out_stop;
3616
3617         down_write(&EXT4_I(inode)->i_data_sem);
3618         ext4_discard_preallocations(inode);
3619
3620         ret = ext4_es_remove_extent(inode, first_block,
3621                                     stop_block - first_block);
3622         if (ret) {
3623                 up_write(&EXT4_I(inode)->i_data_sem);
3624                 goto out_stop;
3625         }
3626
3627         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3628                 ret = ext4_ext_remove_space(inode, first_block,
3629                                             stop_block - 1);
3630         else
3631                 ret = ext4_free_hole_blocks(handle, inode, first_block,
3632                                             stop_block);
3633
3634         ext4_discard_preallocations(inode);
3635         up_write(&EXT4_I(inode)->i_data_sem);
3636         if (IS_SYNC(inode))
3637                 ext4_handle_sync(handle);
3638         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3639         ext4_mark_inode_dirty(handle, inode);
3640 out_stop:
3641         ext4_journal_stop(handle);
3642 out_dio:
3643         ext4_inode_resume_unlocked_dio(inode);
3644 out_mutex:
3645         mutex_unlock(&inode->i_mutex);
3646         return ret;
3647 }
3648
3649 int ext4_inode_attach_jinode(struct inode *inode)
3650 {
3651         struct ext4_inode_info *ei = EXT4_I(inode);
3652         struct jbd2_inode *jinode;
3653
3654         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3655                 return 0;
3656
3657         jinode = jbd2_alloc_inode(GFP_KERNEL);
3658         spin_lock(&inode->i_lock);
3659         if (!ei->jinode) {
3660                 if (!jinode) {
3661                         spin_unlock(&inode->i_lock);
3662                         return -ENOMEM;
3663                 }
3664                 ei->jinode = jinode;
3665                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3666                 jinode = NULL;
3667         }
3668         spin_unlock(&inode->i_lock);
3669         if (unlikely(jinode != NULL))
3670                 jbd2_free_inode(jinode);
3671         return 0;
3672 }
3673
3674 /*
3675  * ext4_truncate()
3676  *
3677  * We block out ext4_get_block() block instantiations across the entire
3678  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3679  * simultaneously on behalf of the same inode.
3680  *
3681  * As we work through the truncate and commit bits of it to the journal there
3682  * is one core, guiding principle: the file's tree must always be consistent on
3683  * disk.  We must be able to restart the truncate after a crash.
3684  *
3685  * The file's tree may be transiently inconsistent in memory (although it
3686  * probably isn't), but whenever we close off and commit a journal transaction,
3687  * the contents of (the filesystem + the journal) must be consistent and
3688  * restartable.  It's pretty simple, really: bottom up, right to left (although
3689  * left-to-right works OK too).
3690  *
3691  * Note that at recovery time, journal replay occurs *before* the restart of
3692  * truncate against the orphan inode list.
3693  *
3694  * The committed inode has the new, desired i_size (which is the same as
3695  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3696  * that this inode's truncate did not complete and it will again call
3697  * ext4_truncate() to have another go.  So there will be instantiated blocks
3698  * to the right of the truncation point in a crashed ext4 filesystem.  But
3699  * that's fine - as long as they are linked from the inode, the post-crash
3700  * ext4_truncate() run will find them and release them.
3701  */
3702 void ext4_truncate(struct inode *inode)
3703 {
3704         struct ext4_inode_info *ei = EXT4_I(inode);
3705         unsigned int credits;
3706         handle_t *handle;
3707         struct address_space *mapping = inode->i_mapping;
3708
3709         /*
3710          * There is a possibility that we're either freeing the inode
3711          * or it completely new indode. In those cases we might not
3712          * have i_mutex locked because it's not necessary.
3713          */
3714         if (!(inode->i_state & (I_NEW|I_FREEING)))
3715                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3716         trace_ext4_truncate_enter(inode);
3717
3718         if (!ext4_can_truncate(inode))
3719                 return;
3720
3721         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3722
3723         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3724                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3725
3726         if (ext4_has_inline_data(inode)) {
3727                 int has_inline = 1;
3728
3729                 ext4_inline_data_truncate(inode, &has_inline);
3730                 if (has_inline)
3731                         return;
3732         }
3733
3734         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3735         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3736                 if (ext4_inode_attach_jinode(inode) < 0)
3737                         return;
3738         }
3739
3740         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3741                 credits = ext4_writepage_trans_blocks(inode);
3742         else
3743                 credits = ext4_blocks_for_truncate(inode);
3744
3745         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3746         if (IS_ERR(handle)) {
3747                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3748                 return;
3749         }
3750
3751         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3752                 ext4_block_truncate_page(handle, mapping, inode->i_size);
3753
3754         /*
3755          * We add the inode to the orphan list, so that if this
3756          * truncate spans multiple transactions, and we crash, we will
3757          * resume the truncate when the filesystem recovers.  It also
3758          * marks the inode dirty, to catch the new size.
3759          *
3760          * Implication: the file must always be in a sane, consistent
3761          * truncatable state while each transaction commits.
3762          */
3763         if (ext4_orphan_add(handle, inode))
3764                 goto out_stop;
3765
3766         down_write(&EXT4_I(inode)->i_data_sem);
3767
3768         ext4_discard_preallocations(inode);
3769
3770         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3771                 ext4_ext_truncate(handle, inode);
3772         else
3773                 ext4_ind_truncate(handle, inode);
3774
3775         up_write(&ei->i_data_sem);
3776
3777         if (IS_SYNC(inode))
3778                 ext4_handle_sync(handle);
3779
3780 out_stop:
3781         /*
3782          * If this was a simple ftruncate() and the file will remain alive,
3783          * then we need to clear up the orphan record which we created above.
3784          * However, if this was a real unlink then we were called by
3785          * ext4_delete_inode(), and we allow that function to clean up the
3786          * orphan info for us.
3787          */
3788         if (inode->i_nlink)
3789                 ext4_orphan_del(handle, inode);
3790
3791         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3792         ext4_mark_inode_dirty(handle, inode);
3793         ext4_journal_stop(handle);
3794
3795         trace_ext4_truncate_exit(inode);
3796 }
3797
3798 /*
3799  * ext4_get_inode_loc returns with an extra refcount against the inode's
3800  * underlying buffer_head on success. If 'in_mem' is true, we have all
3801  * data in memory that is needed to recreate the on-disk version of this
3802  * inode.
3803  */
3804 static int __ext4_get_inode_loc(struct inode *inode,
3805                                 struct ext4_iloc *iloc, int in_mem)
3806 {
3807         struct ext4_group_desc  *gdp;
3808         struct buffer_head      *bh;
3809         struct super_block      *sb = inode->i_sb;
3810         ext4_fsblk_t            block;
3811         int                     inodes_per_block, inode_offset;
3812
3813         iloc->bh = NULL;
3814         if (!ext4_valid_inum(sb, inode->i_ino))
3815                 return -EIO;
3816
3817         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3818         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3819         if (!gdp)
3820                 return -EIO;
3821
3822         /*
3823          * Figure out the offset within the block group inode table
3824          */
3825         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3826         inode_offset = ((inode->i_ino - 1) %
3827                         EXT4_INODES_PER_GROUP(sb));
3828         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3829         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3830
3831         bh = sb_getblk(sb, block);
3832         if (unlikely(!bh))
3833                 return -ENOMEM;
3834         if (!buffer_uptodate(bh)) {
3835                 lock_buffer(bh);
3836
3837                 /*
3838                  * If the buffer has the write error flag, we have failed
3839                  * to write out another inode in the same block.  In this
3840                  * case, we don't have to read the block because we may
3841                  * read the old inode data successfully.
3842                  */
3843                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3844                         set_buffer_uptodate(bh);
3845
3846                 if (buffer_uptodate(bh)) {
3847                         /* someone brought it uptodate while we waited */
3848                         unlock_buffer(bh);
3849                         goto has_buffer;
3850                 }
3851
3852                 /*
3853                  * If we have all information of the inode in memory and this
3854                  * is the only valid inode in the block, we need not read the
3855                  * block.
3856                  */
3857                 if (in_mem) {
3858                         struct buffer_head *bitmap_bh;
3859                         int i, start;
3860
3861                         start = inode_offset & ~(inodes_per_block - 1);
3862
3863                         /* Is the inode bitmap in cache? */
3864                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3865                         if (unlikely(!bitmap_bh))
3866                                 goto make_io;
3867
3868                         /*
3869                          * If the inode bitmap isn't in cache then the
3870                          * optimisation may end up performing two reads instead
3871                          * of one, so skip it.
3872                          */
3873                         if (!buffer_uptodate(bitmap_bh)) {
3874                                 brelse(bitmap_bh);
3875                                 goto make_io;
3876                         }
3877                         for (i = start; i < start + inodes_per_block; i++) {
3878                                 if (i == inode_offset)
3879                                         continue;
3880                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3881                                         break;
3882                         }
3883                         brelse(bitmap_bh);
3884                         if (i == start + inodes_per_block) {
3885                                 /* all other inodes are free, so skip I/O */
3886                                 memset(bh->b_data, 0, bh->b_size);
3887                                 set_buffer_uptodate(bh);
3888                                 unlock_buffer(bh);
3889                                 goto has_buffer;
3890                         }
3891                 }
3892
3893 make_io:
3894                 /*
3895                  * If we need to do any I/O, try to pre-readahead extra
3896                  * blocks from the inode table.
3897                  */
3898                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3899                         ext4_fsblk_t b, end, table;
3900                         unsigned num;
3901                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3902
3903                         table = ext4_inode_table(sb, gdp);
3904                         /* s_inode_readahead_blks is always a power of 2 */
3905                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
3906                         if (table > b)
3907                                 b = table;
3908                         end = b + ra_blks;
3909                         num = EXT4_INODES_PER_GROUP(sb);
3910                         if (ext4_has_group_desc_csum(sb))
3911                                 num -= ext4_itable_unused_count(sb, gdp);
3912                         table += num / inodes_per_block;
3913                         if (end > table)
3914                                 end = table;
3915                         while (b <= end)
3916                                 sb_breadahead(sb, b++);
3917                 }
3918
3919                 /*
3920                  * There are other valid inodes in the buffer, this inode
3921                  * has in-inode xattrs, or we don't have this inode in memory.
3922                  * Read the block from disk.
3923                  */
3924                 trace_ext4_load_inode(inode);
3925                 get_bh(bh);
3926                 bh->b_end_io = end_buffer_read_sync;
3927                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3928                 wait_on_buffer(bh);
3929                 if (!buffer_uptodate(bh)) {
3930                         EXT4_ERROR_INODE_BLOCK(inode, block,
3931                                                "unable to read itable block");
3932                         brelse(bh);
3933                         return -EIO;
3934                 }
3935         }
3936 has_buffer:
3937         iloc->bh = bh;
3938         return 0;
3939 }
3940
3941 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3942 {
3943         /* We have all inode data except xattrs in memory here. */
3944         return __ext4_get_inode_loc(inode, iloc,
3945                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3946 }
3947
3948 void ext4_set_inode_flags(struct inode *inode)
3949 {
3950         unsigned int flags = EXT4_I(inode)->i_flags;
3951
3952         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3953         if (flags & EXT4_SYNC_FL)
3954                 inode->i_flags |= S_SYNC;
3955         if (flags & EXT4_APPEND_FL)
3956                 inode->i_flags |= S_APPEND;
3957         if (flags & EXT4_IMMUTABLE_FL)
3958                 inode->i_flags |= S_IMMUTABLE;
3959         if (flags & EXT4_NOATIME_FL)
3960                 inode->i_flags |= S_NOATIME;
3961         if (flags & EXT4_DIRSYNC_FL)
3962                 inode->i_flags |= S_DIRSYNC;
3963 }
3964
3965 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3966 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3967 {
3968         unsigned int vfs_fl;
3969         unsigned long old_fl, new_fl;
3970
3971         do {
3972                 vfs_fl = ei->vfs_inode.i_flags;
3973                 old_fl = ei->i_flags;
3974                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3975                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3976                                 EXT4_DIRSYNC_FL);
3977                 if (vfs_fl & S_SYNC)
3978                         new_fl |= EXT4_SYNC_FL;
3979                 if (vfs_fl & S_APPEND)
3980                         new_fl |= EXT4_APPEND_FL;
3981                 if (vfs_fl & S_IMMUTABLE)
3982                         new_fl |= EXT4_IMMUTABLE_FL;
3983                 if (vfs_fl & S_NOATIME)
3984                         new_fl |= EXT4_NOATIME_FL;
3985                 if (vfs_fl & S_DIRSYNC)
3986                         new_fl |= EXT4_DIRSYNC_FL;
3987         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3988 }
3989
3990 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3991                                   struct ext4_inode_info *ei)
3992 {
3993         blkcnt_t i_blocks ;
3994         struct inode *inode = &(ei->vfs_inode);
3995         struct super_block *sb = inode->i_sb;
3996
3997         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3998                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3999                 /* we are using combined 48 bit field */
4000                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4001                                         le32_to_cpu(raw_inode->i_blocks_lo);
4002                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4003                         /* i_blocks represent file system block size */
4004                         return i_blocks  << (inode->i_blkbits - 9);
4005                 } else {
4006                         return i_blocks;
4007                 }
4008         } else {
4009                 return le32_to_cpu(raw_inode->i_blocks_lo);
4010         }
4011 }
4012
4013 static inline void ext4_iget_extra_inode(struct inode *inode,
4014                                          struct ext4_inode *raw_inode,
4015                                          struct ext4_inode_info *ei)
4016 {
4017         __le32 *magic = (void *)raw_inode +
4018                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4019         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4020                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4021                 ext4_find_inline_data_nolock(inode);
4022         } else
4023                 EXT4_I(inode)->i_inline_off = 0;
4024 }
4025
4026 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4027 {
4028         struct ext4_iloc iloc;
4029         struct ext4_inode *raw_inode;
4030         struct ext4_inode_info *ei;
4031         struct inode *inode;
4032         journal_t *journal = EXT4_SB(sb)->s_journal;
4033         long ret;
4034         int block;
4035         uid_t i_uid;
4036         gid_t i_gid;
4037
4038         inode = iget_locked(sb, ino);
4039         if (!inode)
4040                 return ERR_PTR(-ENOMEM);
4041         if (!(inode->i_state & I_NEW))
4042                 return inode;
4043
4044         ei = EXT4_I(inode);
4045         iloc.bh = NULL;
4046
4047         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4048         if (ret < 0)
4049                 goto bad_inode;
4050         raw_inode = ext4_raw_inode(&iloc);
4051
4052         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4053                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4054                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4055                     EXT4_INODE_SIZE(inode->i_sb)) {
4056                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4057                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4058                                 EXT4_INODE_SIZE(inode->i_sb));
4059                         ret = -EIO;
4060                         goto bad_inode;
4061                 }
4062         } else
4063                 ei->i_extra_isize = 0;
4064
4065         /* Precompute checksum seed for inode metadata */
4066         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4067                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4068                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4069                 __u32 csum;
4070                 __le32 inum = cpu_to_le32(inode->i_ino);
4071                 __le32 gen = raw_inode->i_generation;
4072                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4073                                    sizeof(inum));
4074                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4075                                               sizeof(gen));
4076         }
4077
4078         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4079                 EXT4_ERROR_INODE(inode, "checksum invalid");
4080                 ret = -EIO;
4081                 goto bad_inode;
4082         }
4083
4084         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4085         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4086         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4087         if (!(test_opt(inode->i_sb, NO_UID32))) {
4088                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4089                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4090         }
4091         i_uid_write(inode, i_uid);
4092         i_gid_write(inode, i_gid);
4093         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4094
4095         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4096         ei->i_inline_off = 0;
4097         ei->i_dir_start_lookup = 0;
4098         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4099         /* We now have enough fields to check if the inode was active or not.
4100          * This is needed because nfsd might try to access dead inodes
4101          * the test is that same one that e2fsck uses
4102          * NeilBrown 1999oct15
4103          */
4104         if (inode->i_nlink == 0) {
4105                 if ((inode->i_mode == 0 ||
4106                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4107                     ino != EXT4_BOOT_LOADER_INO) {
4108                         /* this inode is deleted */
4109                         ret = -ESTALE;
4110                         goto bad_inode;
4111                 }
4112                 /* The only unlinked inodes we let through here have
4113                  * valid i_mode and are being read by the orphan
4114                  * recovery code: that's fine, we're about to complete
4115                  * the process of deleting those.
4116                  * OR it is the EXT4_BOOT_LOADER_INO which is
4117                  * not initialized on a new filesystem. */
4118         }
4119         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4120         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4121         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4122         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4123                 ei->i_file_acl |=
4124                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4125         inode->i_size = ext4_isize(raw_inode);
4126         ei->i_disksize = inode->i_size;
4127 #ifdef CONFIG_QUOTA
4128         ei->i_reserved_quota = 0;
4129 #endif
4130         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4131         ei->i_block_group = iloc.block_group;
4132         ei->i_last_alloc_group = ~0;
4133         /*
4134          * NOTE! The in-memory inode i_data array is in little-endian order
4135          * even on big-endian machines: we do NOT byteswap the block numbers!
4136          */
4137         for (block = 0; block < EXT4_N_BLOCKS; block++)
4138                 ei->i_data[block] = raw_inode->i_block[block];
4139         INIT_LIST_HEAD(&ei->i_orphan);
4140
4141         /*
4142          * Set transaction id's of transactions that have to be committed
4143          * to finish f[data]sync. We set them to currently running transaction
4144          * as we cannot be sure that the inode or some of its metadata isn't
4145          * part of the transaction - the inode could have been reclaimed and
4146          * now it is reread from disk.
4147          */
4148         if (journal) {
4149                 transaction_t *transaction;
4150                 tid_t tid;
4151
4152                 read_lock(&journal->j_state_lock);
4153                 if (journal->j_running_transaction)
4154                         transaction = journal->j_running_transaction;
4155                 else
4156                         transaction = journal->j_committing_transaction;
4157                 if (transaction)
4158                         tid = transaction->t_tid;
4159                 else
4160                         tid = journal->j_commit_sequence;
4161                 read_unlock(&journal->j_state_lock);
4162                 ei->i_sync_tid = tid;
4163                 ei->i_datasync_tid = tid;
4164         }
4165
4166         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4167                 if (ei->i_extra_isize == 0) {
4168                         /* The extra space is currently unused. Use it. */
4169                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4170                                             EXT4_GOOD_OLD_INODE_SIZE;
4171                 } else {
4172                         ext4_iget_extra_inode(inode, raw_inode, ei);
4173                 }
4174         }
4175
4176         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4177         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4178         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4179         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4180
4181         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4182         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4183                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4184                         inode->i_version |=
4185                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4186         }
4187
4188         ret = 0;
4189         if (ei->i_file_acl &&
4190             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4191                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4192                                  ei->i_file_acl);
4193                 ret = -EIO;
4194                 goto bad_inode;
4195         } else if (!ext4_has_inline_data(inode)) {
4196                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4197                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4198                             (S_ISLNK(inode->i_mode) &&
4199                              !ext4_inode_is_fast_symlink(inode))))
4200                                 /* Validate extent which is part of inode */
4201                                 ret = ext4_ext_check_inode(inode);
4202                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4203                            (S_ISLNK(inode->i_mode) &&
4204                             !ext4_inode_is_fast_symlink(inode))) {
4205                         /* Validate block references which are part of inode */
4206                         ret = ext4_ind_check_inode(inode);
4207                 }
4208         }
4209         if (ret)
4210                 goto bad_inode;
4211
4212         if (S_ISREG(inode->i_mode)) {
4213                 inode->i_op = &ext4_file_inode_operations;
4214                 inode->i_fop = &ext4_file_operations;
4215                 ext4_set_aops(inode);
4216         } else if (S_ISDIR(inode->i_mode)) {
4217                 inode->i_op = &ext4_dir_inode_operations;
4218                 inode->i_fop = &ext4_dir_operations;
4219         } else if (S_ISLNK(inode->i_mode)) {
4220                 if (ext4_inode_is_fast_symlink(inode)) {
4221                         inode->i_op = &ext4_fast_symlink_inode_operations;
4222                         nd_terminate_link(ei->i_data, inode->i_size,
4223                                 sizeof(ei->i_data) - 1);
4224                 } else {
4225                         inode->i_op = &ext4_symlink_inode_operations;
4226                         ext4_set_aops(inode);
4227                 }
4228         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4229               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4230                 inode->i_op = &ext4_special_inode_operations;
4231                 if (raw_inode->i_block[0])
4232                         init_special_inode(inode, inode->i_mode,
4233                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4234                 else
4235                         init_special_inode(inode, inode->i_mode,
4236                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4237         } else if (ino == EXT4_BOOT_LOADER_INO) {
4238                 make_bad_inode(inode);
4239         } else {
4240                 ret = -EIO;
4241                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4242                 goto bad_inode;
4243         }
4244         brelse(iloc.bh);
4245         ext4_set_inode_flags(inode);
4246         unlock_new_inode(inode);
4247         return inode;
4248
4249 bad_inode:
4250         brelse(iloc.bh);
4251         iget_failed(inode);
4252         return ERR_PTR(ret);
4253 }
4254
4255 static int ext4_inode_blocks_set(handle_t *handle,
4256                                 struct ext4_inode *raw_inode,
4257                                 struct ext4_inode_info *ei)
4258 {
4259         struct inode *inode = &(ei->vfs_inode);
4260         u64 i_blocks = inode->i_blocks;
4261         struct super_block *sb = inode->i_sb;
4262
4263         if (i_blocks <= ~0U) {
4264                 /*
4265                  * i_blocks can be represented in a 32 bit variable
4266                  * as multiple of 512 bytes
4267                  */
4268                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4269                 raw_inode->i_blocks_high = 0;
4270                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4271                 return 0;
4272         }
4273         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4274                 return -EFBIG;
4275
4276         if (i_blocks <= 0xffffffffffffULL) {
4277                 /*
4278                  * i_blocks can be represented in a 48 bit variable
4279                  * as multiple of 512 bytes
4280                  */
4281                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4282                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4283                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4284         } else {
4285                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4286                 /* i_block is stored in file system block size */
4287                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4288                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4289                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4290         }
4291         return 0;
4292 }
4293
4294 /*
4295  * Post the struct inode info into an on-disk inode location in the
4296  * buffer-cache.  This gobbles the caller's reference to the
4297  * buffer_head in the inode location struct.
4298  *
4299  * The caller must have write access to iloc->bh.
4300  */
4301 static int ext4_do_update_inode(handle_t *handle,
4302                                 struct inode *inode,
4303                                 struct ext4_iloc *iloc)
4304 {
4305         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4306         struct ext4_inode_info *ei = EXT4_I(inode);
4307         struct buffer_head *bh = iloc->bh;
4308         int err = 0, rc, block;
4309         int need_datasync = 0;
4310         uid_t i_uid;
4311         gid_t i_gid;
4312
4313         /* For fields not not tracking in the in-memory inode,
4314          * initialise them to zero for new inodes. */
4315         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4316                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4317
4318         ext4_get_inode_flags(ei);
4319         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4320         i_uid = i_uid_read(inode);
4321         i_gid = i_gid_read(inode);
4322         if (!(test_opt(inode->i_sb, NO_UID32))) {
4323                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4324                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4325 /*
4326  * Fix up interoperability with old kernels. Otherwise, old inodes get
4327  * re-used with the upper 16 bits of the uid/gid intact
4328  */
4329                 if (!ei->i_dtime) {
4330                         raw_inode->i_uid_high =
4331                                 cpu_to_le16(high_16_bits(i_uid));
4332                         raw_inode->i_gid_high =
4333                                 cpu_to_le16(high_16_bits(i_gid));
4334                 } else {
4335                         raw_inode->i_uid_high = 0;
4336                         raw_inode->i_gid_high = 0;
4337                 }
4338         } else {
4339                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4340                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4341                 raw_inode->i_uid_high = 0;
4342                 raw_inode->i_gid_high = 0;
4343         }
4344         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4345
4346         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4347         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4348         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4349         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4350
4351         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4352                 goto out_brelse;
4353         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4354         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4355         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4356             cpu_to_le32(EXT4_OS_HURD))
4357                 raw_inode->i_file_acl_high =
4358                         cpu_to_le16(ei->i_file_acl >> 32);
4359         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4360         if (ei->i_disksize != ext4_isize(raw_inode)) {
4361                 ext4_isize_set(raw_inode, ei->i_disksize);
4362                 need_datasync = 1;
4363         }
4364         if (ei->i_disksize > 0x7fffffffULL) {
4365                 struct super_block *sb = inode->i_sb;
4366                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4367                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4368                                 EXT4_SB(sb)->s_es->s_rev_level ==
4369                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4370                         /* If this is the first large file
4371                          * created, add a flag to the superblock.
4372                          */
4373                         err = ext4_journal_get_write_access(handle,
4374                                         EXT4_SB(sb)->s_sbh);
4375                         if (err)
4376                                 goto out_brelse;
4377                         ext4_update_dynamic_rev(sb);
4378                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4379                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4380                         ext4_handle_sync(handle);
4381                         err = ext4_handle_dirty_super(handle, sb);
4382                 }
4383         }
4384         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4385         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4386                 if (old_valid_dev(inode->i_rdev)) {
4387                         raw_inode->i_block[0] =
4388                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4389                         raw_inode->i_block[1] = 0;
4390                 } else {
4391                         raw_inode->i_block[0] = 0;
4392                         raw_inode->i_block[1] =
4393                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4394                         raw_inode->i_block[2] = 0;
4395                 }
4396         } else if (!ext4_has_inline_data(inode)) {
4397                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4398                         raw_inode->i_block[block] = ei->i_data[block];
4399         }
4400
4401         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4402         if (ei->i_extra_isize) {
4403                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4404                         raw_inode->i_version_hi =
4405                         cpu_to_le32(inode->i_version >> 32);
4406                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4407         }
4408
4409         ext4_inode_csum_set(inode, raw_inode, ei);
4410
4411         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4412         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4413         if (!err)
4414                 err = rc;
4415         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4416
4417         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4418 out_brelse:
4419         brelse(bh);
4420         ext4_std_error(inode->i_sb, err);
4421         return err;
4422 }
4423
4424 /*
4425  * ext4_write_inode()
4426  *
4427  * We are called from a few places:
4428  *
4429  * - Within generic_file_write() for O_SYNC files.
4430  *   Here, there will be no transaction running. We wait for any running
4431  *   transaction to commit.
4432  *
4433  * - Within sys_sync(), kupdate and such.
4434  *   We wait on commit, if tol to.
4435  *
4436  * - Within prune_icache() (PF_MEMALLOC == true)
4437  *   Here we simply return.  We can't afford to block kswapd on the
4438  *   journal commit.
4439  *
4440  * In all cases it is actually safe for us to return without doing anything,
4441  * because the inode has been copied into a raw inode buffer in
4442  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4443  * knfsd.
4444  *
4445  * Note that we are absolutely dependent upon all inode dirtiers doing the
4446  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4447  * which we are interested.
4448  *
4449  * It would be a bug for them to not do this.  The code:
4450  *
4451  *      mark_inode_dirty(inode)
4452  *      stuff();
4453  *      inode->i_size = expr;
4454  *
4455  * is in error because a kswapd-driven write_inode() could occur while
4456  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4457  * will no longer be on the superblock's dirty inode list.
4458  */
4459 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4460 {
4461         int err;
4462
4463         if (current->flags & PF_MEMALLOC)
4464                 return 0;
4465
4466         if (EXT4_SB(inode->i_sb)->s_journal) {
4467                 if (ext4_journal_current_handle()) {
4468                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4469                         dump_stack();
4470                         return -EIO;
4471                 }
4472
4473                 if (wbc->sync_mode != WB_SYNC_ALL)
4474                         return 0;
4475
4476                 err = ext4_force_commit(inode->i_sb);
4477         } else {
4478                 struct ext4_iloc iloc;
4479
4480                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4481                 if (err)
4482                         return err;
4483                 if (wbc->sync_mode == WB_SYNC_ALL)
4484                         sync_dirty_buffer(iloc.bh);
4485                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4486                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4487                                          "IO error syncing inode");
4488                         err = -EIO;
4489                 }
4490                 brelse(iloc.bh);
4491         }
4492         return err;
4493 }
4494
4495 /*
4496  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4497  * buffers that are attached to a page stradding i_size and are undergoing
4498  * commit. In that case we have to wait for commit to finish and try again.
4499  */
4500 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4501 {
4502         struct page *page;
4503         unsigned offset;
4504         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4505         tid_t commit_tid = 0;
4506         int ret;
4507
4508         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4509         /*
4510          * All buffers in the last page remain valid? Then there's nothing to
4511          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4512          * blocksize case
4513          */
4514         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4515                 return;
4516         while (1) {
4517                 page = find_lock_page(inode->i_mapping,
4518                                       inode->i_size >> PAGE_CACHE_SHIFT);
4519                 if (!page)
4520                         return;
4521                 ret = __ext4_journalled_invalidatepage(page, offset,
4522                                                 PAGE_CACHE_SIZE - offset);
4523                 unlock_page(page);
4524                 page_cache_release(page);
4525                 if (ret != -EBUSY)
4526                         return;
4527                 commit_tid = 0;
4528                 read_lock(&journal->j_state_lock);
4529                 if (journal->j_committing_transaction)
4530                         commit_tid = journal->j_committing_transaction->t_tid;
4531                 read_unlock(&journal->j_state_lock);
4532                 if (commit_tid)
4533                         jbd2_log_wait_commit(journal, commit_tid);
4534         }
4535 }
4536
4537 /*
4538  * ext4_setattr()
4539  *
4540  * Called from notify_change.
4541  *
4542  * We want to trap VFS attempts to truncate the file as soon as
4543  * possible.  In particular, we want to make sure that when the VFS
4544  * shrinks i_size, we put the inode on the orphan list and modify
4545  * i_disksize immediately, so that during the subsequent flushing of
4546  * dirty pages and freeing of disk blocks, we can guarantee that any
4547  * commit will leave the blocks being flushed in an unused state on
4548  * disk.  (On recovery, the inode will get truncated and the blocks will
4549  * be freed, so we have a strong guarantee that no future commit will
4550  * leave these blocks visible to the user.)
4551  *
4552  * Another thing we have to assure is that if we are in ordered mode
4553  * and inode is still attached to the committing transaction, we must
4554  * we start writeout of all the dirty pages which are being truncated.
4555  * This way we are sure that all the data written in the previous
4556  * transaction are already on disk (truncate waits for pages under
4557  * writeback).
4558  *
4559  * Called with inode->i_mutex down.
4560  */
4561 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4562 {
4563         struct inode *inode = dentry->d_inode;
4564         int error, rc = 0;
4565         int orphan = 0;
4566         const unsigned int ia_valid = attr->ia_valid;
4567
4568         error = inode_change_ok(inode, attr);
4569         if (error)
4570                 return error;
4571
4572         if (is_quota_modification(inode, attr))
4573                 dquot_initialize(inode);
4574         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4575             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4576                 handle_t *handle;
4577
4578                 /* (user+group)*(old+new) structure, inode write (sb,
4579                  * inode block, ? - but truncate inode update has it) */
4580                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4581                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4582                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4583                 if (IS_ERR(handle)) {
4584                         error = PTR_ERR(handle);
4585                         goto err_out;
4586                 }
4587                 error = dquot_transfer(inode, attr);
4588                 if (error) {
4589                         ext4_journal_stop(handle);
4590                         return error;
4591                 }
4592                 /* Update corresponding info in inode so that everything is in
4593                  * one transaction */
4594                 if (attr->ia_valid & ATTR_UID)
4595                         inode->i_uid = attr->ia_uid;
4596                 if (attr->ia_valid & ATTR_GID)
4597                         inode->i_gid = attr->ia_gid;
4598                 error = ext4_mark_inode_dirty(handle, inode);
4599                 ext4_journal_stop(handle);
4600         }
4601
4602         if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4603                 handle_t *handle;
4604                 loff_t oldsize = inode->i_size;
4605
4606                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4607                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4608
4609                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4610                                 return -EFBIG;
4611                 }
4612                 if (S_ISREG(inode->i_mode) &&
4613                     (attr->ia_size < inode->i_size)) {
4614                         if (ext4_should_order_data(inode)) {
4615                                 error = ext4_begin_ordered_truncate(inode,
4616                                                             attr->ia_size);
4617                                 if (error)
4618                                         goto err_out;
4619                         }
4620                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4621                         if (IS_ERR(handle)) {
4622                                 error = PTR_ERR(handle);
4623                                 goto err_out;
4624                         }
4625                         if (ext4_handle_valid(handle)) {
4626                                 error = ext4_orphan_add(handle, inode);
4627                                 orphan = 1;
4628                         }
4629                         down_write(&EXT4_I(inode)->i_data_sem);
4630                         EXT4_I(inode)->i_disksize = attr->ia_size;
4631                         rc = ext4_mark_inode_dirty(handle, inode);
4632                         if (!error)
4633                                 error = rc;
4634                         /*
4635                          * We have to update i_size under i_data_sem together
4636                          * with i_disksize to avoid races with writeback code
4637                          * running ext4_wb_update_i_disksize().
4638                          */
4639                         if (!error)
4640                                 i_size_write(inode, attr->ia_size);
4641                         up_write(&EXT4_I(inode)->i_data_sem);
4642                         ext4_journal_stop(handle);
4643                         if (error) {
4644                                 ext4_orphan_del(NULL, inode);
4645                                 goto err_out;
4646                         }
4647                 } else
4648                         i_size_write(inode, attr->ia_size);
4649
4650                 /*
4651                  * Blocks are going to be removed from the inode. Wait
4652                  * for dio in flight.  Temporarily disable
4653                  * dioread_nolock to prevent livelock.
4654                  */
4655                 if (orphan) {
4656                         if (!ext4_should_journal_data(inode)) {
4657                                 ext4_inode_block_unlocked_dio(inode);
4658                                 inode_dio_wait(inode);
4659                                 ext4_inode_resume_unlocked_dio(inode);
4660                         } else
4661                                 ext4_wait_for_tail_page_commit(inode);
4662                 }
4663                 /*
4664                  * Truncate pagecache after we've waited for commit
4665                  * in data=journal mode to make pages freeable.
4666                  */
4667                 truncate_pagecache(inode, oldsize, inode->i_size);
4668         }
4669         /*
4670          * We want to call ext4_truncate() even if attr->ia_size ==
4671          * inode->i_size for cases like truncation of fallocated space
4672          */
4673         if (attr->ia_valid & ATTR_SIZE)
4674                 ext4_truncate(inode);
4675
4676         if (!rc) {
4677                 setattr_copy(inode, attr);
4678                 mark_inode_dirty(inode);
4679         }
4680
4681         /*
4682          * If the call to ext4_truncate failed to get a transaction handle at
4683          * all, we need to clean up the in-core orphan list manually.
4684          */
4685         if (orphan && inode->i_nlink)
4686                 ext4_orphan_del(NULL, inode);
4687
4688         if (!rc && (ia_valid & ATTR_MODE))
4689                 rc = ext4_acl_chmod(inode);
4690
4691 err_out:
4692         ext4_std_error(inode->i_sb, error);
4693         if (!error)
4694                 error = rc;
4695         return error;
4696 }
4697
4698 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4699                  struct kstat *stat)
4700 {
4701         struct inode *inode;
4702         unsigned long long delalloc_blocks;
4703
4704         inode = dentry->d_inode;
4705         generic_fillattr(inode, stat);
4706
4707         /*
4708          * We can't update i_blocks if the block allocation is delayed
4709          * otherwise in the case of system crash before the real block
4710          * allocation is done, we will have i_blocks inconsistent with
4711          * on-disk file blocks.
4712          * We always keep i_blocks updated together with real
4713          * allocation. But to not confuse with user, stat
4714          * will return the blocks that include the delayed allocation
4715          * blocks for this file.
4716          */
4717         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4718                                 EXT4_I(inode)->i_reserved_data_blocks);
4719
4720         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9);
4721         return 0;
4722 }
4723
4724 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4725                                    int pextents)
4726 {
4727         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4728                 return ext4_ind_trans_blocks(inode, lblocks);
4729         return ext4_ext_index_trans_blocks(inode, pextents);
4730 }
4731
4732 /*
4733  * Account for index blocks, block groups bitmaps and block group
4734  * descriptor blocks if modify datablocks and index blocks
4735  * worse case, the indexs blocks spread over different block groups
4736  *
4737  * If datablocks are discontiguous, they are possible to spread over
4738  * different block groups too. If they are contiguous, with flexbg,
4739  * they could still across block group boundary.
4740  *
4741  * Also account for superblock, inode, quota and xattr blocks
4742  */
4743 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4744                                   int pextents)
4745 {
4746         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4747         int gdpblocks;
4748         int idxblocks;
4749         int ret = 0;
4750
4751         /*
4752          * How many index blocks need to touch to map @lblocks logical blocks
4753          * to @pextents physical extents?
4754          */
4755         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4756
4757         ret = idxblocks;
4758
4759         /*
4760          * Now let's see how many group bitmaps and group descriptors need
4761          * to account
4762          */
4763         groups = idxblocks + pextents;
4764         gdpblocks = groups;
4765         if (groups > ngroups)
4766                 groups = ngroups;
4767         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4768                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4769
4770         /* bitmaps and block group descriptor blocks */
4771         ret += groups + gdpblocks;
4772
4773         /* Blocks for super block, inode, quota and xattr blocks */
4774         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4775
4776         return ret;
4777 }
4778
4779 /*
4780  * Calculate the total number of credits to reserve to fit
4781  * the modification of a single pages into a single transaction,
4782  * which may include multiple chunks of block allocations.
4783  *
4784  * This could be called via ext4_write_begin()
4785  *
4786  * We need to consider the worse case, when
4787  * one new block per extent.
4788  */
4789 int ext4_writepage_trans_blocks(struct inode *inode)
4790 {
4791         int bpp = ext4_journal_blocks_per_page(inode);
4792         int ret;
4793
4794         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4795
4796         /* Account for data blocks for journalled mode */
4797         if (ext4_should_journal_data(inode))
4798                 ret += bpp;
4799         return ret;
4800 }
4801
4802 /*
4803  * Calculate the journal credits for a chunk of data modification.
4804  *
4805  * This is called from DIO, fallocate or whoever calling
4806  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4807  *
4808  * journal buffers for data blocks are not included here, as DIO
4809  * and fallocate do no need to journal data buffers.
4810  */
4811 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4812 {
4813         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4814 }
4815
4816 /*
4817  * The caller must have previously called ext4_reserve_inode_write().
4818  * Give this, we know that the caller already has write access to iloc->bh.
4819  */
4820 int ext4_mark_iloc_dirty(handle_t *handle,
4821                          struct inode *inode, struct ext4_iloc *iloc)
4822 {
4823         int err = 0;
4824
4825         if (IS_I_VERSION(inode))
4826                 inode_inc_iversion(inode);
4827
4828         /* the do_update_inode consumes one bh->b_count */
4829         get_bh(iloc->bh);
4830
4831         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4832         err = ext4_do_update_inode(handle, inode, iloc);
4833         put_bh(iloc->bh);
4834         return err;
4835 }
4836
4837 /*
4838  * On success, We end up with an outstanding reference count against
4839  * iloc->bh.  This _must_ be cleaned up later.
4840  */
4841
4842 int
4843 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4844                          struct ext4_iloc *iloc)
4845 {
4846         int err;
4847
4848         err = ext4_get_inode_loc(inode, iloc);
4849         if (!err) {
4850                 BUFFER_TRACE(iloc->bh, "get_write_access");
4851                 err = ext4_journal_get_write_access(handle, iloc->bh);
4852                 if (err) {
4853                         brelse(iloc->bh);
4854                         iloc->bh = NULL;
4855                 }
4856         }
4857         ext4_std_error(inode->i_sb, err);
4858         return err;
4859 }
4860
4861 /*
4862  * Expand an inode by new_extra_isize bytes.
4863  * Returns 0 on success or negative error number on failure.
4864  */
4865 static int ext4_expand_extra_isize(struct inode *inode,
4866                                    unsigned int new_extra_isize,
4867                                    struct ext4_iloc iloc,
4868                                    handle_t *handle)
4869 {
4870         struct ext4_inode *raw_inode;
4871         struct ext4_xattr_ibody_header *header;
4872
4873         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4874                 return 0;
4875
4876         raw_inode = ext4_raw_inode(&iloc);
4877
4878         header = IHDR(inode, raw_inode);
4879
4880         /* No extended attributes present */
4881         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4882             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4883                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4884                         new_extra_isize);
4885                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4886                 return 0;
4887         }
4888
4889         /* try to expand with EAs present */
4890         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4891                                           raw_inode, handle);
4892 }
4893
4894 /*
4895  * What we do here is to mark the in-core inode as clean with respect to inode
4896  * dirtiness (it may still be data-dirty).
4897  * This means that the in-core inode may be reaped by prune_icache
4898  * without having to perform any I/O.  This is a very good thing,
4899  * because *any* task may call prune_icache - even ones which
4900  * have a transaction open against a different journal.
4901  *
4902  * Is this cheating?  Not really.  Sure, we haven't written the
4903  * inode out, but prune_icache isn't a user-visible syncing function.
4904  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4905  * we start and wait on commits.
4906  */
4907 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4908 {
4909         struct ext4_iloc iloc;
4910         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4911         static unsigned int mnt_count;
4912         int err, ret;
4913
4914         might_sleep();
4915         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4916         err = ext4_reserve_inode_write(handle, inode, &iloc);
4917         if (ext4_handle_valid(handle) &&
4918             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4919             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4920                 /*
4921                  * We need extra buffer credits since we may write into EA block
4922                  * with this same handle. If journal_extend fails, then it will
4923                  * only result in a minor loss of functionality for that inode.
4924                  * If this is felt to be critical, then e2fsck should be run to
4925                  * force a large enough s_min_extra_isize.
4926                  */
4927                 if ((jbd2_journal_extend(handle,
4928                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4929                         ret = ext4_expand_extra_isize(inode,
4930                                                       sbi->s_want_extra_isize,
4931                                                       iloc, handle);
4932                         if (ret) {
4933                                 ext4_set_inode_state(inode,
4934                                                      EXT4_STATE_NO_EXPAND);
4935                                 if (mnt_count !=
4936                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4937                                         ext4_warning(inode->i_sb,
4938                                         "Unable to expand inode %lu. Delete"
4939                                         " some EAs or run e2fsck.",
4940                                         inode->i_ino);
4941                                         mnt_count =
4942                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4943                                 }
4944                         }
4945                 }
4946         }
4947         if (!err)
4948                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4949         return err;
4950 }
4951
4952 /*
4953  * ext4_dirty_inode() is called from __mark_inode_dirty()
4954  *
4955  * We're really interested in the case where a file is being extended.
4956  * i_size has been changed by generic_commit_write() and we thus need
4957  * to include the updated inode in the current transaction.
4958  *
4959  * Also, dquot_alloc_block() will always dirty the inode when blocks
4960  * are allocated to the file.
4961  *
4962  * If the inode is marked synchronous, we don't honour that here - doing
4963  * so would cause a commit on atime updates, which we don't bother doing.
4964  * We handle synchronous inodes at the highest possible level.
4965  */
4966 void ext4_dirty_inode(struct inode *inode, int flags)
4967 {
4968         handle_t *handle;
4969
4970         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4971         if (IS_ERR(handle))
4972                 goto out;
4973
4974         ext4_mark_inode_dirty(handle, inode);
4975
4976         ext4_journal_stop(handle);
4977 out:
4978         return;
4979 }
4980
4981 #if 0
4982 /*
4983  * Bind an inode's backing buffer_head into this transaction, to prevent
4984  * it from being flushed to disk early.  Unlike
4985  * ext4_reserve_inode_write, this leaves behind no bh reference and
4986  * returns no iloc structure, so the caller needs to repeat the iloc
4987  * lookup to mark the inode dirty later.
4988  */
4989 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4990 {
4991         struct ext4_iloc iloc;
4992
4993         int err = 0;
4994         if (handle) {
4995                 err = ext4_get_inode_loc(inode, &iloc);
4996                 if (!err) {
4997                         BUFFER_TRACE(iloc.bh, "get_write_access");
4998                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4999                         if (!err)
5000                                 err = ext4_handle_dirty_metadata(handle,
5001                                                                  NULL,
5002                                                                  iloc.bh);
5003                         brelse(iloc.bh);
5004                 }
5005         }
5006         ext4_std_error(inode->i_sb, err);
5007         return err;
5008 }
5009 #endif
5010
5011 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5012 {
5013         journal_t *journal;
5014         handle_t *handle;
5015         int err;
5016
5017         /*
5018          * We have to be very careful here: changing a data block's
5019          * journaling status dynamically is dangerous.  If we write a
5020          * data block to the journal, change the status and then delete
5021          * that block, we risk forgetting to revoke the old log record
5022          * from the journal and so a subsequent replay can corrupt data.
5023          * So, first we make sure that the journal is empty and that
5024          * nobody is changing anything.
5025          */
5026
5027         journal = EXT4_JOURNAL(inode);
5028         if (!journal)
5029                 return 0;
5030         if (is_journal_aborted(journal))
5031                 return -EROFS;
5032         /* We have to allocate physical blocks for delalloc blocks
5033          * before flushing journal. otherwise delalloc blocks can not
5034          * be allocated any more. even more truncate on delalloc blocks
5035          * could trigger BUG by flushing delalloc blocks in journal.
5036          * There is no delalloc block in non-journal data mode.
5037          */
5038         if (val && test_opt(inode->i_sb, DELALLOC)) {
5039                 err = ext4_alloc_da_blocks(inode);
5040                 if (err < 0)
5041                         return err;
5042         }
5043
5044         /* Wait for all existing dio workers */
5045         ext4_inode_block_unlocked_dio(inode);
5046         inode_dio_wait(inode);
5047
5048         jbd2_journal_lock_updates(journal);
5049
5050         /*
5051          * OK, there are no updates running now, and all cached data is
5052          * synced to disk.  We are now in a completely consistent state
5053          * which doesn't have anything in the journal, and we know that
5054          * no filesystem updates are running, so it is safe to modify
5055          * the inode's in-core data-journaling state flag now.
5056          */
5057
5058         if (val)
5059                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5060         else {
5061                 jbd2_journal_flush(journal);
5062                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5063         }
5064         ext4_set_aops(inode);
5065
5066         jbd2_journal_unlock_updates(journal);
5067         ext4_inode_resume_unlocked_dio(inode);
5068
5069         /* Finally we can mark the inode as dirty. */
5070
5071         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5072         if (IS_ERR(handle))
5073                 return PTR_ERR(handle);
5074
5075         err = ext4_mark_inode_dirty(handle, inode);
5076         ext4_handle_sync(handle);
5077         ext4_journal_stop(handle);
5078         ext4_std_error(inode->i_sb, err);
5079
5080         return err;
5081 }
5082
5083 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5084 {
5085         return !buffer_mapped(bh);
5086 }
5087
5088 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5089 {
5090         struct page *page = vmf->page;
5091         loff_t size;
5092         unsigned long len;
5093         int ret;
5094         struct file *file = vma->vm_file;
5095         struct inode *inode = file_inode(file);
5096         struct address_space *mapping = inode->i_mapping;
5097         handle_t *handle;
5098         get_block_t *get_block;
5099         int retries = 0;
5100
5101         sb_start_pagefault(inode->i_sb);
5102         file_update_time(vma->vm_file);
5103         /* Delalloc case is easy... */
5104         if (test_opt(inode->i_sb, DELALLOC) &&
5105             !ext4_should_journal_data(inode) &&
5106             !ext4_nonda_switch(inode->i_sb)) {
5107                 do {
5108                         ret = __block_page_mkwrite(vma, vmf,
5109                                                    ext4_da_get_block_prep);
5110                 } while (ret == -ENOSPC &&
5111                        ext4_should_retry_alloc(inode->i_sb, &retries));
5112                 goto out_ret;
5113         }
5114
5115         lock_page(page);
5116         size = i_size_read(inode);
5117         /* Page got truncated from under us? */
5118         if (page->mapping != mapping || page_offset(page) > size) {
5119                 unlock_page(page);
5120                 ret = VM_FAULT_NOPAGE;
5121                 goto out;
5122         }
5123
5124         if (page->index == size >> PAGE_CACHE_SHIFT)
5125                 len = size & ~PAGE_CACHE_MASK;
5126         else
5127                 len = PAGE_CACHE_SIZE;
5128         /*
5129          * Return if we have all the buffers mapped. This avoids the need to do
5130          * journal_start/journal_stop which can block and take a long time
5131          */
5132         if (page_has_buffers(page)) {
5133                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5134                                             0, len, NULL,
5135                                             ext4_bh_unmapped)) {
5136                         /* Wait so that we don't change page under IO */
5137                         wait_for_stable_page(page);
5138                         ret = VM_FAULT_LOCKED;
5139                         goto out;
5140                 }
5141         }
5142         unlock_page(page);
5143         /* OK, we need to fill the hole... */
5144         if (ext4_should_dioread_nolock(inode))
5145                 get_block = ext4_get_block_write;
5146         else
5147                 get_block = ext4_get_block;
5148 retry_alloc:
5149         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5150                                     ext4_writepage_trans_blocks(inode));
5151         if (IS_ERR(handle)) {
5152                 ret = VM_FAULT_SIGBUS;
5153                 goto out;
5154         }
5155         ret = __block_page_mkwrite(vma, vmf, get_block);
5156         if (!ret && ext4_should_journal_data(inode)) {
5157                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5158                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5159                         unlock_page(page);
5160                         ret = VM_FAULT_SIGBUS;
5161                         ext4_journal_stop(handle);
5162                         goto out;
5163                 }
5164                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5165         }
5166         ext4_journal_stop(handle);
5167         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5168                 goto retry_alloc;
5169 out_ret:
5170         ret = block_page_mkwrite_return(ret);
5171 out:
5172         sb_end_pagefault(inode->i_sb);
5173         return ret;
5174 }