Merge tag 'i2c-for-6.1-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa...
[platform/kernel/linux-starfive.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      (jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
44
45 #include "ext4_jbd2.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "truncate.h"
49
50 #include <trace/events/ext4.h>
51
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53                               struct ext4_inode_info *ei)
54 {
55         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56         __u32 csum;
57         __u16 dummy_csum = 0;
58         int offset = offsetof(struct ext4_inode, i_checksum_lo);
59         unsigned int csum_size = sizeof(dummy_csum);
60
61         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63         offset += csum_size;
64         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65                            EXT4_GOOD_OLD_INODE_SIZE - offset);
66
67         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68                 offset = offsetof(struct ext4_inode, i_checksum_hi);
69                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70                                    EXT4_GOOD_OLD_INODE_SIZE,
71                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
72                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74                                            csum_size);
75                         offset += csum_size;
76                 }
77                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
79         }
80
81         return csum;
82 }
83
84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85                                   struct ext4_inode_info *ei)
86 {
87         __u32 provided, calculated;
88
89         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90             cpu_to_le32(EXT4_OS_LINUX) ||
91             !ext4_has_metadata_csum(inode->i_sb))
92                 return 1;
93
94         provided = le16_to_cpu(raw->i_checksum_lo);
95         calculated = ext4_inode_csum(inode, raw, ei);
96         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99         else
100                 calculated &= 0xFFFF;
101
102         return provided == calculated;
103 }
104
105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106                          struct ext4_inode_info *ei)
107 {
108         __u32 csum;
109
110         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111             cpu_to_le32(EXT4_OS_LINUX) ||
112             !ext4_has_metadata_csum(inode->i_sb))
113                 return;
114
115         csum = ext4_inode_csum(inode, raw, ei);
116         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120 }
121
122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
123                                               loff_t new_size)
124 {
125         trace_ext4_begin_ordered_truncate(inode, new_size);
126         /*
127          * If jinode is zero, then we never opened the file for
128          * writing, so there's no need to call
129          * jbd2_journal_begin_ordered_truncate() since there's no
130          * outstanding writes we need to flush.
131          */
132         if (!EXT4_I(inode)->jinode)
133                 return 0;
134         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135                                                    EXT4_I(inode)->jinode,
136                                                    new_size);
137 }
138
139 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
141                                   int pextents);
142
143 /*
144  * Test whether an inode is a fast symlink.
145  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
146  */
147 int ext4_inode_is_fast_symlink(struct inode *inode)
148 {
149         if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
150                 int ea_blocks = EXT4_I(inode)->i_file_acl ?
151                                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152
153                 if (ext4_has_inline_data(inode))
154                         return 0;
155
156                 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157         }
158         return S_ISLNK(inode->i_mode) && inode->i_size &&
159                (inode->i_size < EXT4_N_BLOCKS * 4);
160 }
161
162 /*
163  * Called at the last iput() if i_nlink is zero.
164  */
165 void ext4_evict_inode(struct inode *inode)
166 {
167         handle_t *handle;
168         int err;
169         /*
170          * Credits for final inode cleanup and freeing:
171          * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
172          * (xattr block freeing), bitmap, group descriptor (inode freeing)
173          */
174         int extra_credits = 6;
175         struct ext4_xattr_inode_array *ea_inode_array = NULL;
176         bool freeze_protected = false;
177
178         trace_ext4_evict_inode(inode);
179
180         if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
181                 ext4_evict_ea_inode(inode);
182         if (inode->i_nlink) {
183                 /*
184                  * When journalling data dirty buffers are tracked only in the
185                  * journal. So although mm thinks everything is clean and
186                  * ready for reaping the inode might still have some pages to
187                  * write in the running transaction or waiting to be
188                  * checkpointed. Thus calling jbd2_journal_invalidate_folio()
189                  * (via truncate_inode_pages()) to discard these buffers can
190                  * cause data loss. Also even if we did not discard these
191                  * buffers, we would have no way to find them after the inode
192                  * is reaped and thus user could see stale data if he tries to
193                  * read them before the transaction is checkpointed. So be
194                  * careful and force everything to disk here... We use
195                  * ei->i_datasync_tid to store the newest transaction
196                  * containing inode's data.
197                  *
198                  * Note that directories do not have this problem because they
199                  * don't use page cache.
200                  */
201                 if (inode->i_ino != EXT4_JOURNAL_INO &&
202                     ext4_should_journal_data(inode) &&
203                     S_ISREG(inode->i_mode) && inode->i_data.nrpages) {
204                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
205                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
206
207                         jbd2_complete_transaction(journal, commit_tid);
208                         filemap_write_and_wait(&inode->i_data);
209                 }
210                 truncate_inode_pages_final(&inode->i_data);
211
212                 goto no_delete;
213         }
214
215         if (is_bad_inode(inode))
216                 goto no_delete;
217         dquot_initialize(inode);
218
219         if (ext4_should_order_data(inode))
220                 ext4_begin_ordered_truncate(inode, 0);
221         truncate_inode_pages_final(&inode->i_data);
222
223         /*
224          * For inodes with journalled data, transaction commit could have
225          * dirtied the inode. Flush worker is ignoring it because of I_FREEING
226          * flag but we still need to remove the inode from the writeback lists.
227          */
228         if (!list_empty_careful(&inode->i_io_list)) {
229                 WARN_ON_ONCE(!ext4_should_journal_data(inode));
230                 inode_io_list_del(inode);
231         }
232
233         /*
234          * Protect us against freezing - iput() caller didn't have to have any
235          * protection against it. When we are in a running transaction though,
236          * we are already protected against freezing and we cannot grab further
237          * protection due to lock ordering constraints.
238          */
239         if (!ext4_journal_current_handle()) {
240                 sb_start_intwrite(inode->i_sb);
241                 freeze_protected = true;
242         }
243
244         if (!IS_NOQUOTA(inode))
245                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
246
247         /*
248          * Block bitmap, group descriptor, and inode are accounted in both
249          * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
250          */
251         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
252                          ext4_blocks_for_truncate(inode) + extra_credits - 3);
253         if (IS_ERR(handle)) {
254                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
255                 /*
256                  * If we're going to skip the normal cleanup, we still need to
257                  * make sure that the in-core orphan linked list is properly
258                  * cleaned up.
259                  */
260                 ext4_orphan_del(NULL, inode);
261                 if (freeze_protected)
262                         sb_end_intwrite(inode->i_sb);
263                 goto no_delete;
264         }
265
266         if (IS_SYNC(inode))
267                 ext4_handle_sync(handle);
268
269         /*
270          * Set inode->i_size to 0 before calling ext4_truncate(). We need
271          * special handling of symlinks here because i_size is used to
272          * determine whether ext4_inode_info->i_data contains symlink data or
273          * block mappings. Setting i_size to 0 will remove its fast symlink
274          * status. Erase i_data so that it becomes a valid empty block map.
275          */
276         if (ext4_inode_is_fast_symlink(inode))
277                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
278         inode->i_size = 0;
279         err = ext4_mark_inode_dirty(handle, inode);
280         if (err) {
281                 ext4_warning(inode->i_sb,
282                              "couldn't mark inode dirty (err %d)", err);
283                 goto stop_handle;
284         }
285         if (inode->i_blocks) {
286                 err = ext4_truncate(inode);
287                 if (err) {
288                         ext4_error_err(inode->i_sb, -err,
289                                        "couldn't truncate inode %lu (err %d)",
290                                        inode->i_ino, err);
291                         goto stop_handle;
292                 }
293         }
294
295         /* Remove xattr references. */
296         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
297                                       extra_credits);
298         if (err) {
299                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
300 stop_handle:
301                 ext4_journal_stop(handle);
302                 ext4_orphan_del(NULL, inode);
303                 if (freeze_protected)
304                         sb_end_intwrite(inode->i_sb);
305                 ext4_xattr_inode_array_free(ea_inode_array);
306                 goto no_delete;
307         }
308
309         /*
310          * Kill off the orphan record which ext4_truncate created.
311          * AKPM: I think this can be inside the above `if'.
312          * Note that ext4_orphan_del() has to be able to cope with the
313          * deletion of a non-existent orphan - this is because we don't
314          * know if ext4_truncate() actually created an orphan record.
315          * (Well, we could do this if we need to, but heck - it works)
316          */
317         ext4_orphan_del(handle, inode);
318         EXT4_I(inode)->i_dtime  = (__u32)ktime_get_real_seconds();
319
320         /*
321          * One subtle ordering requirement: if anything has gone wrong
322          * (transaction abort, IO errors, whatever), then we can still
323          * do these next steps (the fs will already have been marked as
324          * having errors), but we can't free the inode if the mark_dirty
325          * fails.
326          */
327         if (ext4_mark_inode_dirty(handle, inode))
328                 /* If that failed, just do the required in-core inode clear. */
329                 ext4_clear_inode(inode);
330         else
331                 ext4_free_inode(handle, inode);
332         ext4_journal_stop(handle);
333         if (freeze_protected)
334                 sb_end_intwrite(inode->i_sb);
335         ext4_xattr_inode_array_free(ea_inode_array);
336         return;
337 no_delete:
338         if (!list_empty(&EXT4_I(inode)->i_fc_list))
339                 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
340         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
341 }
342
343 #ifdef CONFIG_QUOTA
344 qsize_t *ext4_get_reserved_space(struct inode *inode)
345 {
346         return &EXT4_I(inode)->i_reserved_quota;
347 }
348 #endif
349
350 /*
351  * Called with i_data_sem down, which is important since we can call
352  * ext4_discard_preallocations() from here.
353  */
354 void ext4_da_update_reserve_space(struct inode *inode,
355                                         int used, int quota_claim)
356 {
357         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
358         struct ext4_inode_info *ei = EXT4_I(inode);
359
360         spin_lock(&ei->i_block_reservation_lock);
361         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
362         if (unlikely(used > ei->i_reserved_data_blocks)) {
363                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
364                          "with only %d reserved data blocks",
365                          __func__, inode->i_ino, used,
366                          ei->i_reserved_data_blocks);
367                 WARN_ON(1);
368                 used = ei->i_reserved_data_blocks;
369         }
370
371         /* Update per-inode reservations */
372         ei->i_reserved_data_blocks -= used;
373         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
374
375         spin_unlock(&ei->i_block_reservation_lock);
376
377         /* Update quota subsystem for data blocks */
378         if (quota_claim)
379                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
380         else {
381                 /*
382                  * We did fallocate with an offset that is already delayed
383                  * allocated. So on delayed allocated writeback we should
384                  * not re-claim the quota for fallocated blocks.
385                  */
386                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
387         }
388
389         /*
390          * If we have done all the pending block allocations and if
391          * there aren't any writers on the inode, we can discard the
392          * inode's preallocations.
393          */
394         if ((ei->i_reserved_data_blocks == 0) &&
395             !inode_is_open_for_write(inode))
396                 ext4_discard_preallocations(inode, 0);
397 }
398
399 static int __check_block_validity(struct inode *inode, const char *func,
400                                 unsigned int line,
401                                 struct ext4_map_blocks *map)
402 {
403         if (ext4_has_feature_journal(inode->i_sb) &&
404             (inode->i_ino ==
405              le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
406                 return 0;
407         if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
408                 ext4_error_inode(inode, func, line, map->m_pblk,
409                                  "lblock %lu mapped to illegal pblock %llu "
410                                  "(length %d)", (unsigned long) map->m_lblk,
411                                  map->m_pblk, map->m_len);
412                 return -EFSCORRUPTED;
413         }
414         return 0;
415 }
416
417 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
418                        ext4_lblk_t len)
419 {
420         int ret;
421
422         if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
423                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
424
425         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
426         if (ret > 0)
427                 ret = 0;
428
429         return ret;
430 }
431
432 #define check_block_validity(inode, map)        \
433         __check_block_validity((inode), __func__, __LINE__, (map))
434
435 #ifdef ES_AGGRESSIVE_TEST
436 static void ext4_map_blocks_es_recheck(handle_t *handle,
437                                        struct inode *inode,
438                                        struct ext4_map_blocks *es_map,
439                                        struct ext4_map_blocks *map,
440                                        int flags)
441 {
442         int retval;
443
444         map->m_flags = 0;
445         /*
446          * There is a race window that the result is not the same.
447          * e.g. xfstests #223 when dioread_nolock enables.  The reason
448          * is that we lookup a block mapping in extent status tree with
449          * out taking i_data_sem.  So at the time the unwritten extent
450          * could be converted.
451          */
452         down_read(&EXT4_I(inode)->i_data_sem);
453         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
454                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
455         } else {
456                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
457         }
458         up_read((&EXT4_I(inode)->i_data_sem));
459
460         /*
461          * We don't check m_len because extent will be collpased in status
462          * tree.  So the m_len might not equal.
463          */
464         if (es_map->m_lblk != map->m_lblk ||
465             es_map->m_flags != map->m_flags ||
466             es_map->m_pblk != map->m_pblk) {
467                 printk("ES cache assertion failed for inode: %lu "
468                        "es_cached ex [%d/%d/%llu/%x] != "
469                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
470                        inode->i_ino, es_map->m_lblk, es_map->m_len,
471                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
472                        map->m_len, map->m_pblk, map->m_flags,
473                        retval, flags);
474         }
475 }
476 #endif /* ES_AGGRESSIVE_TEST */
477
478 /*
479  * The ext4_map_blocks() function tries to look up the requested blocks,
480  * and returns if the blocks are already mapped.
481  *
482  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
483  * and store the allocated blocks in the result buffer head and mark it
484  * mapped.
485  *
486  * If file type is extents based, it will call ext4_ext_map_blocks(),
487  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
488  * based files
489  *
490  * On success, it returns the number of blocks being mapped or allocated.  if
491  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
492  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
493  *
494  * It returns 0 if plain look up failed (blocks have not been allocated), in
495  * that case, @map is returned as unmapped but we still do fill map->m_len to
496  * indicate the length of a hole starting at map->m_lblk.
497  *
498  * It returns the error in case of allocation failure.
499  */
500 int ext4_map_blocks(handle_t *handle, struct inode *inode,
501                     struct ext4_map_blocks *map, int flags)
502 {
503         struct extent_status es;
504         int retval;
505         int ret = 0;
506 #ifdef ES_AGGRESSIVE_TEST
507         struct ext4_map_blocks orig_map;
508
509         memcpy(&orig_map, map, sizeof(*map));
510 #endif
511
512         map->m_flags = 0;
513         ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
514                   flags, map->m_len, (unsigned long) map->m_lblk);
515
516         /*
517          * ext4_map_blocks returns an int, and m_len is an unsigned int
518          */
519         if (unlikely(map->m_len > INT_MAX))
520                 map->m_len = INT_MAX;
521
522         /* We can handle the block number less than EXT_MAX_BLOCKS */
523         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
524                 return -EFSCORRUPTED;
525
526         /* Lookup extent status tree firstly */
527         if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
528             ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
529                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
530                         map->m_pblk = ext4_es_pblock(&es) +
531                                         map->m_lblk - es.es_lblk;
532                         map->m_flags |= ext4_es_is_written(&es) ?
533                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
534                         retval = es.es_len - (map->m_lblk - es.es_lblk);
535                         if (retval > map->m_len)
536                                 retval = map->m_len;
537                         map->m_len = retval;
538                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
539                         map->m_pblk = 0;
540                         retval = es.es_len - (map->m_lblk - es.es_lblk);
541                         if (retval > map->m_len)
542                                 retval = map->m_len;
543                         map->m_len = retval;
544                         retval = 0;
545                 } else {
546                         BUG();
547                 }
548
549                 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
550                         return retval;
551 #ifdef ES_AGGRESSIVE_TEST
552                 ext4_map_blocks_es_recheck(handle, inode, map,
553                                            &orig_map, flags);
554 #endif
555                 goto found;
556         }
557         /*
558          * In the query cache no-wait mode, nothing we can do more if we
559          * cannot find extent in the cache.
560          */
561         if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
562                 return 0;
563
564         /*
565          * Try to see if we can get the block without requesting a new
566          * file system block.
567          */
568         down_read(&EXT4_I(inode)->i_data_sem);
569         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
570                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
571         } else {
572                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
573         }
574         if (retval > 0) {
575                 unsigned int status;
576
577                 if (unlikely(retval != map->m_len)) {
578                         ext4_warning(inode->i_sb,
579                                      "ES len assertion failed for inode "
580                                      "%lu: retval %d != map->m_len %d",
581                                      inode->i_ino, retval, map->m_len);
582                         WARN_ON(1);
583                 }
584
585                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
586                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
587                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
588                     !(status & EXTENT_STATUS_WRITTEN) &&
589                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
590                                        map->m_lblk + map->m_len - 1))
591                         status |= EXTENT_STATUS_DELAYED;
592                 ret = ext4_es_insert_extent(inode, map->m_lblk,
593                                             map->m_len, map->m_pblk, status);
594                 if (ret < 0)
595                         retval = ret;
596         }
597         up_read((&EXT4_I(inode)->i_data_sem));
598
599 found:
600         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
601                 ret = check_block_validity(inode, map);
602                 if (ret != 0)
603                         return ret;
604         }
605
606         /* If it is only a block(s) look up */
607         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
608                 return retval;
609
610         /*
611          * Returns if the blocks have already allocated
612          *
613          * Note that if blocks have been preallocated
614          * ext4_ext_get_block() returns the create = 0
615          * with buffer head unmapped.
616          */
617         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
618                 /*
619                  * If we need to convert extent to unwritten
620                  * we continue and do the actual work in
621                  * ext4_ext_map_blocks()
622                  */
623                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
624                         return retval;
625
626         /*
627          * Here we clear m_flags because after allocating an new extent,
628          * it will be set again.
629          */
630         map->m_flags &= ~EXT4_MAP_FLAGS;
631
632         /*
633          * New blocks allocate and/or writing to unwritten extent
634          * will possibly result in updating i_data, so we take
635          * the write lock of i_data_sem, and call get_block()
636          * with create == 1 flag.
637          */
638         down_write(&EXT4_I(inode)->i_data_sem);
639
640         /*
641          * We need to check for EXT4 here because migrate
642          * could have changed the inode type in between
643          */
644         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
645                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
646         } else {
647                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
648
649                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
650                         /*
651                          * We allocated new blocks which will result in
652                          * i_data's format changing.  Force the migrate
653                          * to fail by clearing migrate flags
654                          */
655                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
656                 }
657
658                 /*
659                  * Update reserved blocks/metadata blocks after successful
660                  * block allocation which had been deferred till now. We don't
661                  * support fallocate for non extent files. So we can update
662                  * reserve space here.
663                  */
664                 if ((retval > 0) &&
665                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
666                         ext4_da_update_reserve_space(inode, retval, 1);
667         }
668
669         if (retval > 0) {
670                 unsigned int status;
671
672                 if (unlikely(retval != map->m_len)) {
673                         ext4_warning(inode->i_sb,
674                                      "ES len assertion failed for inode "
675                                      "%lu: retval %d != map->m_len %d",
676                                      inode->i_ino, retval, map->m_len);
677                         WARN_ON(1);
678                 }
679
680                 /*
681                  * We have to zeroout blocks before inserting them into extent
682                  * status tree. Otherwise someone could look them up there and
683                  * use them before they are really zeroed. We also have to
684                  * unmap metadata before zeroing as otherwise writeback can
685                  * overwrite zeros with stale data from block device.
686                  */
687                 if (flags & EXT4_GET_BLOCKS_ZERO &&
688                     map->m_flags & EXT4_MAP_MAPPED &&
689                     map->m_flags & EXT4_MAP_NEW) {
690                         ret = ext4_issue_zeroout(inode, map->m_lblk,
691                                                  map->m_pblk, map->m_len);
692                         if (ret) {
693                                 retval = ret;
694                                 goto out_sem;
695                         }
696                 }
697
698                 /*
699                  * If the extent has been zeroed out, we don't need to update
700                  * extent status tree.
701                  */
702                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
703                     ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
704                         if (ext4_es_is_written(&es))
705                                 goto out_sem;
706                 }
707                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
708                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
709                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
710                     !(status & EXTENT_STATUS_WRITTEN) &&
711                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
712                                        map->m_lblk + map->m_len - 1))
713                         status |= EXTENT_STATUS_DELAYED;
714                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
715                                             map->m_pblk, status);
716                 if (ret < 0) {
717                         retval = ret;
718                         goto out_sem;
719                 }
720         }
721
722 out_sem:
723         up_write((&EXT4_I(inode)->i_data_sem));
724         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
725                 ret = check_block_validity(inode, map);
726                 if (ret != 0)
727                         return ret;
728
729                 /*
730                  * Inodes with freshly allocated blocks where contents will be
731                  * visible after transaction commit must be on transaction's
732                  * ordered data list.
733                  */
734                 if (map->m_flags & EXT4_MAP_NEW &&
735                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
736                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
737                     !ext4_is_quota_file(inode) &&
738                     ext4_should_order_data(inode)) {
739                         loff_t start_byte =
740                                 (loff_t)map->m_lblk << inode->i_blkbits;
741                         loff_t length = (loff_t)map->m_len << inode->i_blkbits;
742
743                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
744                                 ret = ext4_jbd2_inode_add_wait(handle, inode,
745                                                 start_byte, length);
746                         else
747                                 ret = ext4_jbd2_inode_add_write(handle, inode,
748                                                 start_byte, length);
749                         if (ret)
750                                 return ret;
751                 }
752         }
753         if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
754                                 map->m_flags & EXT4_MAP_MAPPED))
755                 ext4_fc_track_range(handle, inode, map->m_lblk,
756                                         map->m_lblk + map->m_len - 1);
757         if (retval < 0)
758                 ext_debug(inode, "failed with err %d\n", retval);
759         return retval;
760 }
761
762 /*
763  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
764  * we have to be careful as someone else may be manipulating b_state as well.
765  */
766 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
767 {
768         unsigned long old_state;
769         unsigned long new_state;
770
771         flags &= EXT4_MAP_FLAGS;
772
773         /* Dummy buffer_head? Set non-atomically. */
774         if (!bh->b_page) {
775                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
776                 return;
777         }
778         /*
779          * Someone else may be modifying b_state. Be careful! This is ugly but
780          * once we get rid of using bh as a container for mapping information
781          * to pass to / from get_block functions, this can go away.
782          */
783         do {
784                 old_state = READ_ONCE(bh->b_state);
785                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
786         } while (unlikely(
787                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
788 }
789
790 static int _ext4_get_block(struct inode *inode, sector_t iblock,
791                            struct buffer_head *bh, int flags)
792 {
793         struct ext4_map_blocks map;
794         int ret = 0;
795
796         if (ext4_has_inline_data(inode))
797                 return -ERANGE;
798
799         map.m_lblk = iblock;
800         map.m_len = bh->b_size >> inode->i_blkbits;
801
802         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
803                               flags);
804         if (ret > 0) {
805                 map_bh(bh, inode->i_sb, map.m_pblk);
806                 ext4_update_bh_state(bh, map.m_flags);
807                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
808                 ret = 0;
809         } else if (ret == 0) {
810                 /* hole case, need to fill in bh->b_size */
811                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
812         }
813         return ret;
814 }
815
816 int ext4_get_block(struct inode *inode, sector_t iblock,
817                    struct buffer_head *bh, int create)
818 {
819         return _ext4_get_block(inode, iblock, bh,
820                                create ? EXT4_GET_BLOCKS_CREATE : 0);
821 }
822
823 /*
824  * Get block function used when preparing for buffered write if we require
825  * creating an unwritten extent if blocks haven't been allocated.  The extent
826  * will be converted to written after the IO is complete.
827  */
828 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
829                              struct buffer_head *bh_result, int create)
830 {
831         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
832                    inode->i_ino, create);
833         return _ext4_get_block(inode, iblock, bh_result,
834                                EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
835 }
836
837 /* Maximum number of blocks we map for direct IO at once. */
838 #define DIO_MAX_BLOCKS 4096
839
840 /*
841  * `handle' can be NULL if create is zero
842  */
843 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
844                                 ext4_lblk_t block, int map_flags)
845 {
846         struct ext4_map_blocks map;
847         struct buffer_head *bh;
848         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
849         bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
850         int err;
851
852         ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
853                     || handle != NULL || create == 0);
854         ASSERT(create == 0 || !nowait);
855
856         map.m_lblk = block;
857         map.m_len = 1;
858         err = ext4_map_blocks(handle, inode, &map, map_flags);
859
860         if (err == 0)
861                 return create ? ERR_PTR(-ENOSPC) : NULL;
862         if (err < 0)
863                 return ERR_PTR(err);
864
865         if (nowait)
866                 return sb_find_get_block(inode->i_sb, map.m_pblk);
867
868         bh = sb_getblk(inode->i_sb, map.m_pblk);
869         if (unlikely(!bh))
870                 return ERR_PTR(-ENOMEM);
871         if (map.m_flags & EXT4_MAP_NEW) {
872                 ASSERT(create != 0);
873                 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
874                             || (handle != NULL));
875
876                 /*
877                  * Now that we do not always journal data, we should
878                  * keep in mind whether this should always journal the
879                  * new buffer as metadata.  For now, regular file
880                  * writes use ext4_get_block instead, so it's not a
881                  * problem.
882                  */
883                 lock_buffer(bh);
884                 BUFFER_TRACE(bh, "call get_create_access");
885                 err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
886                                                      EXT4_JTR_NONE);
887                 if (unlikely(err)) {
888                         unlock_buffer(bh);
889                         goto errout;
890                 }
891                 if (!buffer_uptodate(bh)) {
892                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
893                         set_buffer_uptodate(bh);
894                 }
895                 unlock_buffer(bh);
896                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
897                 err = ext4_handle_dirty_metadata(handle, inode, bh);
898                 if (unlikely(err))
899                         goto errout;
900         } else
901                 BUFFER_TRACE(bh, "not a new buffer");
902         return bh;
903 errout:
904         brelse(bh);
905         return ERR_PTR(err);
906 }
907
908 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
909                                ext4_lblk_t block, int map_flags)
910 {
911         struct buffer_head *bh;
912         int ret;
913
914         bh = ext4_getblk(handle, inode, block, map_flags);
915         if (IS_ERR(bh))
916                 return bh;
917         if (!bh || ext4_buffer_uptodate(bh))
918                 return bh;
919
920         ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
921         if (ret) {
922                 put_bh(bh);
923                 return ERR_PTR(ret);
924         }
925         return bh;
926 }
927
928 /* Read a contiguous batch of blocks. */
929 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
930                      bool wait, struct buffer_head **bhs)
931 {
932         int i, err;
933
934         for (i = 0; i < bh_count; i++) {
935                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
936                 if (IS_ERR(bhs[i])) {
937                         err = PTR_ERR(bhs[i]);
938                         bh_count = i;
939                         goto out_brelse;
940                 }
941         }
942
943         for (i = 0; i < bh_count; i++)
944                 /* Note that NULL bhs[i] is valid because of holes. */
945                 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
946                         ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
947
948         if (!wait)
949                 return 0;
950
951         for (i = 0; i < bh_count; i++)
952                 if (bhs[i])
953                         wait_on_buffer(bhs[i]);
954
955         for (i = 0; i < bh_count; i++) {
956                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
957                         err = -EIO;
958                         goto out_brelse;
959                 }
960         }
961         return 0;
962
963 out_brelse:
964         for (i = 0; i < bh_count; i++) {
965                 brelse(bhs[i]);
966                 bhs[i] = NULL;
967         }
968         return err;
969 }
970
971 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
972                            struct buffer_head *head,
973                            unsigned from,
974                            unsigned to,
975                            int *partial,
976                            int (*fn)(handle_t *handle, struct inode *inode,
977                                      struct buffer_head *bh))
978 {
979         struct buffer_head *bh;
980         unsigned block_start, block_end;
981         unsigned blocksize = head->b_size;
982         int err, ret = 0;
983         struct buffer_head *next;
984
985         for (bh = head, block_start = 0;
986              ret == 0 && (bh != head || !block_start);
987              block_start = block_end, bh = next) {
988                 next = bh->b_this_page;
989                 block_end = block_start + blocksize;
990                 if (block_end <= from || block_start >= to) {
991                         if (partial && !buffer_uptodate(bh))
992                                 *partial = 1;
993                         continue;
994                 }
995                 err = (*fn)(handle, inode, bh);
996                 if (!ret)
997                         ret = err;
998         }
999         return ret;
1000 }
1001
1002 /*
1003  * To preserve ordering, it is essential that the hole instantiation and
1004  * the data write be encapsulated in a single transaction.  We cannot
1005  * close off a transaction and start a new one between the ext4_get_block()
1006  * and the commit_write().  So doing the jbd2_journal_start at the start of
1007  * prepare_write() is the right place.
1008  *
1009  * Also, this function can nest inside ext4_writepage().  In that case, we
1010  * *know* that ext4_writepage() has generated enough buffer credits to do the
1011  * whole page.  So we won't block on the journal in that case, which is good,
1012  * because the caller may be PF_MEMALLOC.
1013  *
1014  * By accident, ext4 can be reentered when a transaction is open via
1015  * quota file writes.  If we were to commit the transaction while thus
1016  * reentered, there can be a deadlock - we would be holding a quota
1017  * lock, and the commit would never complete if another thread had a
1018  * transaction open and was blocking on the quota lock - a ranking
1019  * violation.
1020  *
1021  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1022  * will _not_ run commit under these circumstances because handle->h_ref
1023  * is elevated.  We'll still have enough credits for the tiny quotafile
1024  * write.
1025  */
1026 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1027                                 struct buffer_head *bh)
1028 {
1029         int dirty = buffer_dirty(bh);
1030         int ret;
1031
1032         if (!buffer_mapped(bh) || buffer_freed(bh))
1033                 return 0;
1034         /*
1035          * __block_write_begin() could have dirtied some buffers. Clean
1036          * the dirty bit as jbd2_journal_get_write_access() could complain
1037          * otherwise about fs integrity issues. Setting of the dirty bit
1038          * by __block_write_begin() isn't a real problem here as we clear
1039          * the bit before releasing a page lock and thus writeback cannot
1040          * ever write the buffer.
1041          */
1042         if (dirty)
1043                 clear_buffer_dirty(bh);
1044         BUFFER_TRACE(bh, "get write access");
1045         ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1046                                             EXT4_JTR_NONE);
1047         if (!ret && dirty)
1048                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1049         return ret;
1050 }
1051
1052 #ifdef CONFIG_FS_ENCRYPTION
1053 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1054                                   get_block_t *get_block)
1055 {
1056         unsigned from = pos & (PAGE_SIZE - 1);
1057         unsigned to = from + len;
1058         struct inode *inode = page->mapping->host;
1059         unsigned block_start, block_end;
1060         sector_t block;
1061         int err = 0;
1062         unsigned blocksize = inode->i_sb->s_blocksize;
1063         unsigned bbits;
1064         struct buffer_head *bh, *head, *wait[2];
1065         int nr_wait = 0;
1066         int i;
1067
1068         BUG_ON(!PageLocked(page));
1069         BUG_ON(from > PAGE_SIZE);
1070         BUG_ON(to > PAGE_SIZE);
1071         BUG_ON(from > to);
1072
1073         if (!page_has_buffers(page))
1074                 create_empty_buffers(page, blocksize, 0);
1075         head = page_buffers(page);
1076         bbits = ilog2(blocksize);
1077         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1078
1079         for (bh = head, block_start = 0; bh != head || !block_start;
1080             block++, block_start = block_end, bh = bh->b_this_page) {
1081                 block_end = block_start + blocksize;
1082                 if (block_end <= from || block_start >= to) {
1083                         if (PageUptodate(page)) {
1084                                 set_buffer_uptodate(bh);
1085                         }
1086                         continue;
1087                 }
1088                 if (buffer_new(bh))
1089                         clear_buffer_new(bh);
1090                 if (!buffer_mapped(bh)) {
1091                         WARN_ON(bh->b_size != blocksize);
1092                         err = get_block(inode, block, bh, 1);
1093                         if (err)
1094                                 break;
1095                         if (buffer_new(bh)) {
1096                                 if (PageUptodate(page)) {
1097                                         clear_buffer_new(bh);
1098                                         set_buffer_uptodate(bh);
1099                                         mark_buffer_dirty(bh);
1100                                         continue;
1101                                 }
1102                                 if (block_end > to || block_start < from)
1103                                         zero_user_segments(page, to, block_end,
1104                                                            block_start, from);
1105                                 continue;
1106                         }
1107                 }
1108                 if (PageUptodate(page)) {
1109                         set_buffer_uptodate(bh);
1110                         continue;
1111                 }
1112                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1113                     !buffer_unwritten(bh) &&
1114                     (block_start < from || block_end > to)) {
1115                         ext4_read_bh_lock(bh, 0, false);
1116                         wait[nr_wait++] = bh;
1117                 }
1118         }
1119         /*
1120          * If we issued read requests, let them complete.
1121          */
1122         for (i = 0; i < nr_wait; i++) {
1123                 wait_on_buffer(wait[i]);
1124                 if (!buffer_uptodate(wait[i]))
1125                         err = -EIO;
1126         }
1127         if (unlikely(err)) {
1128                 page_zero_new_buffers(page, from, to);
1129         } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1130                 for (i = 0; i < nr_wait; i++) {
1131                         int err2;
1132
1133                         err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1134                                                                 bh_offset(wait[i]));
1135                         if (err2) {
1136                                 clear_buffer_uptodate(wait[i]);
1137                                 err = err2;
1138                         }
1139                 }
1140         }
1141
1142         return err;
1143 }
1144 #endif
1145
1146 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1147                             loff_t pos, unsigned len,
1148                             struct page **pagep, void **fsdata)
1149 {
1150         struct inode *inode = mapping->host;
1151         int ret, needed_blocks;
1152         handle_t *handle;
1153         int retries = 0;
1154         struct page *page;
1155         pgoff_t index;
1156         unsigned from, to;
1157
1158         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1159                 return -EIO;
1160
1161         trace_ext4_write_begin(inode, pos, len);
1162         /*
1163          * Reserve one block more for addition to orphan list in case
1164          * we allocate blocks but write fails for some reason
1165          */
1166         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1167         index = pos >> PAGE_SHIFT;
1168         from = pos & (PAGE_SIZE - 1);
1169         to = from + len;
1170
1171         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1172                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1173                                                     pagep);
1174                 if (ret < 0)
1175                         return ret;
1176                 if (ret == 1)
1177                         return 0;
1178         }
1179
1180         /*
1181          * grab_cache_page_write_begin() can take a long time if the
1182          * system is thrashing due to memory pressure, or if the page
1183          * is being written back.  So grab it first before we start
1184          * the transaction handle.  This also allows us to allocate
1185          * the page (if needed) without using GFP_NOFS.
1186          */
1187 retry_grab:
1188         page = grab_cache_page_write_begin(mapping, index);
1189         if (!page)
1190                 return -ENOMEM;
1191         /*
1192          * The same as page allocation, we prealloc buffer heads before
1193          * starting the handle.
1194          */
1195         if (!page_has_buffers(page))
1196                 create_empty_buffers(page, inode->i_sb->s_blocksize, 0);
1197
1198         unlock_page(page);
1199
1200 retry_journal:
1201         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1202         if (IS_ERR(handle)) {
1203                 put_page(page);
1204                 return PTR_ERR(handle);
1205         }
1206
1207         lock_page(page);
1208         if (page->mapping != mapping) {
1209                 /* The page got truncated from under us */
1210                 unlock_page(page);
1211                 put_page(page);
1212                 ext4_journal_stop(handle);
1213                 goto retry_grab;
1214         }
1215         /* In case writeback began while the page was unlocked */
1216         wait_for_stable_page(page);
1217
1218 #ifdef CONFIG_FS_ENCRYPTION
1219         if (ext4_should_dioread_nolock(inode))
1220                 ret = ext4_block_write_begin(page, pos, len,
1221                                              ext4_get_block_unwritten);
1222         else
1223                 ret = ext4_block_write_begin(page, pos, len,
1224                                              ext4_get_block);
1225 #else
1226         if (ext4_should_dioread_nolock(inode))
1227                 ret = __block_write_begin(page, pos, len,
1228                                           ext4_get_block_unwritten);
1229         else
1230                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1231 #endif
1232         if (!ret && ext4_should_journal_data(inode)) {
1233                 ret = ext4_walk_page_buffers(handle, inode,
1234                                              page_buffers(page), from, to, NULL,
1235                                              do_journal_get_write_access);
1236         }
1237
1238         if (ret) {
1239                 bool extended = (pos + len > inode->i_size) &&
1240                                 !ext4_verity_in_progress(inode);
1241
1242                 unlock_page(page);
1243                 /*
1244                  * __block_write_begin may have instantiated a few blocks
1245                  * outside i_size.  Trim these off again. Don't need
1246                  * i_size_read because we hold i_rwsem.
1247                  *
1248                  * Add inode to orphan list in case we crash before
1249                  * truncate finishes
1250                  */
1251                 if (extended && ext4_can_truncate(inode))
1252                         ext4_orphan_add(handle, inode);
1253
1254                 ext4_journal_stop(handle);
1255                 if (extended) {
1256                         ext4_truncate_failed_write(inode);
1257                         /*
1258                          * If truncate failed early the inode might
1259                          * still be on the orphan list; we need to
1260                          * make sure the inode is removed from the
1261                          * orphan list in that case.
1262                          */
1263                         if (inode->i_nlink)
1264                                 ext4_orphan_del(NULL, inode);
1265                 }
1266
1267                 if (ret == -ENOSPC &&
1268                     ext4_should_retry_alloc(inode->i_sb, &retries))
1269                         goto retry_journal;
1270                 put_page(page);
1271                 return ret;
1272         }
1273         *pagep = page;
1274         return ret;
1275 }
1276
1277 /* For write_end() in data=journal mode */
1278 static int write_end_fn(handle_t *handle, struct inode *inode,
1279                         struct buffer_head *bh)
1280 {
1281         int ret;
1282         if (!buffer_mapped(bh) || buffer_freed(bh))
1283                 return 0;
1284         set_buffer_uptodate(bh);
1285         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1286         clear_buffer_meta(bh);
1287         clear_buffer_prio(bh);
1288         return ret;
1289 }
1290
1291 /*
1292  * We need to pick up the new inode size which generic_commit_write gave us
1293  * `file' can be NULL - eg, when called from page_symlink().
1294  *
1295  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1296  * buffers are managed internally.
1297  */
1298 static int ext4_write_end(struct file *file,
1299                           struct address_space *mapping,
1300                           loff_t pos, unsigned len, unsigned copied,
1301                           struct page *page, void *fsdata)
1302 {
1303         handle_t *handle = ext4_journal_current_handle();
1304         struct inode *inode = mapping->host;
1305         loff_t old_size = inode->i_size;
1306         int ret = 0, ret2;
1307         int i_size_changed = 0;
1308         bool verity = ext4_verity_in_progress(inode);
1309
1310         trace_ext4_write_end(inode, pos, len, copied);
1311
1312         if (ext4_has_inline_data(inode))
1313                 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1314
1315         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1316         /*
1317          * it's important to update i_size while still holding page lock:
1318          * page writeout could otherwise come in and zero beyond i_size.
1319          *
1320          * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1321          * blocks are being written past EOF, so skip the i_size update.
1322          */
1323         if (!verity)
1324                 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1325         unlock_page(page);
1326         put_page(page);
1327
1328         if (old_size < pos && !verity)
1329                 pagecache_isize_extended(inode, old_size, pos);
1330         /*
1331          * Don't mark the inode dirty under page lock. First, it unnecessarily
1332          * makes the holding time of page lock longer. Second, it forces lock
1333          * ordering of page lock and transaction start for journaling
1334          * filesystems.
1335          */
1336         if (i_size_changed)
1337                 ret = ext4_mark_inode_dirty(handle, inode);
1338
1339         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1340                 /* if we have allocated more blocks and copied
1341                  * less. We will have blocks allocated outside
1342                  * inode->i_size. So truncate them
1343                  */
1344                 ext4_orphan_add(handle, inode);
1345
1346         ret2 = ext4_journal_stop(handle);
1347         if (!ret)
1348                 ret = ret2;
1349
1350         if (pos + len > inode->i_size && !verity) {
1351                 ext4_truncate_failed_write(inode);
1352                 /*
1353                  * If truncate failed early the inode might still be
1354                  * on the orphan list; we need to make sure the inode
1355                  * is removed from the orphan list in that case.
1356                  */
1357                 if (inode->i_nlink)
1358                         ext4_orphan_del(NULL, inode);
1359         }
1360
1361         return ret ? ret : copied;
1362 }
1363
1364 /*
1365  * This is a private version of page_zero_new_buffers() which doesn't
1366  * set the buffer to be dirty, since in data=journalled mode we need
1367  * to call ext4_handle_dirty_metadata() instead.
1368  */
1369 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1370                                             struct inode *inode,
1371                                             struct page *page,
1372                                             unsigned from, unsigned to)
1373 {
1374         unsigned int block_start = 0, block_end;
1375         struct buffer_head *head, *bh;
1376
1377         bh = head = page_buffers(page);
1378         do {
1379                 block_end = block_start + bh->b_size;
1380                 if (buffer_new(bh)) {
1381                         if (block_end > from && block_start < to) {
1382                                 if (!PageUptodate(page)) {
1383                                         unsigned start, size;
1384
1385                                         start = max(from, block_start);
1386                                         size = min(to, block_end) - start;
1387
1388                                         zero_user(page, start, size);
1389                                         write_end_fn(handle, inode, bh);
1390                                 }
1391                                 clear_buffer_new(bh);
1392                         }
1393                 }
1394                 block_start = block_end;
1395                 bh = bh->b_this_page;
1396         } while (bh != head);
1397 }
1398
1399 static int ext4_journalled_write_end(struct file *file,
1400                                      struct address_space *mapping,
1401                                      loff_t pos, unsigned len, unsigned copied,
1402                                      struct page *page, void *fsdata)
1403 {
1404         handle_t *handle = ext4_journal_current_handle();
1405         struct inode *inode = mapping->host;
1406         loff_t old_size = inode->i_size;
1407         int ret = 0, ret2;
1408         int partial = 0;
1409         unsigned from, to;
1410         int size_changed = 0;
1411         bool verity = ext4_verity_in_progress(inode);
1412
1413         trace_ext4_journalled_write_end(inode, pos, len, copied);
1414         from = pos & (PAGE_SIZE - 1);
1415         to = from + len;
1416
1417         BUG_ON(!ext4_handle_valid(handle));
1418
1419         if (ext4_has_inline_data(inode))
1420                 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1421
1422         if (unlikely(copied < len) && !PageUptodate(page)) {
1423                 copied = 0;
1424                 ext4_journalled_zero_new_buffers(handle, inode, page, from, to);
1425         } else {
1426                 if (unlikely(copied < len))
1427                         ext4_journalled_zero_new_buffers(handle, inode, page,
1428                                                          from + copied, to);
1429                 ret = ext4_walk_page_buffers(handle, inode, page_buffers(page),
1430                                              from, from + copied, &partial,
1431                                              write_end_fn);
1432                 if (!partial)
1433                         SetPageUptodate(page);
1434         }
1435         if (!verity)
1436                 size_changed = ext4_update_inode_size(inode, pos + copied);
1437         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1438         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1439         unlock_page(page);
1440         put_page(page);
1441
1442         if (old_size < pos && !verity)
1443                 pagecache_isize_extended(inode, old_size, pos);
1444
1445         if (size_changed) {
1446                 ret2 = ext4_mark_inode_dirty(handle, inode);
1447                 if (!ret)
1448                         ret = ret2;
1449         }
1450
1451         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1452                 /* if we have allocated more blocks and copied
1453                  * less. We will have blocks allocated outside
1454                  * inode->i_size. So truncate them
1455                  */
1456                 ext4_orphan_add(handle, inode);
1457
1458         ret2 = ext4_journal_stop(handle);
1459         if (!ret)
1460                 ret = ret2;
1461         if (pos + len > inode->i_size && !verity) {
1462                 ext4_truncate_failed_write(inode);
1463                 /*
1464                  * If truncate failed early the inode might still be
1465                  * on the orphan list; we need to make sure the inode
1466                  * is removed from the orphan list in that case.
1467                  */
1468                 if (inode->i_nlink)
1469                         ext4_orphan_del(NULL, inode);
1470         }
1471
1472         return ret ? ret : copied;
1473 }
1474
1475 /*
1476  * Reserve space for a single cluster
1477  */
1478 static int ext4_da_reserve_space(struct inode *inode)
1479 {
1480         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1481         struct ext4_inode_info *ei = EXT4_I(inode);
1482         int ret;
1483
1484         /*
1485          * We will charge metadata quota at writeout time; this saves
1486          * us from metadata over-estimation, though we may go over by
1487          * a small amount in the end.  Here we just reserve for data.
1488          */
1489         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1490         if (ret)
1491                 return ret;
1492
1493         spin_lock(&ei->i_block_reservation_lock);
1494         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1495                 spin_unlock(&ei->i_block_reservation_lock);
1496                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1497                 return -ENOSPC;
1498         }
1499         ei->i_reserved_data_blocks++;
1500         trace_ext4_da_reserve_space(inode);
1501         spin_unlock(&ei->i_block_reservation_lock);
1502
1503         return 0;       /* success */
1504 }
1505
1506 void ext4_da_release_space(struct inode *inode, int to_free)
1507 {
1508         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1509         struct ext4_inode_info *ei = EXT4_I(inode);
1510
1511         if (!to_free)
1512                 return;         /* Nothing to release, exit */
1513
1514         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1515
1516         trace_ext4_da_release_space(inode, to_free);
1517         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1518                 /*
1519                  * if there aren't enough reserved blocks, then the
1520                  * counter is messed up somewhere.  Since this
1521                  * function is called from invalidate page, it's
1522                  * harmless to return without any action.
1523                  */
1524                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1525                          "ino %lu, to_free %d with only %d reserved "
1526                          "data blocks", inode->i_ino, to_free,
1527                          ei->i_reserved_data_blocks);
1528                 WARN_ON(1);
1529                 to_free = ei->i_reserved_data_blocks;
1530         }
1531         ei->i_reserved_data_blocks -= to_free;
1532
1533         /* update fs dirty data blocks counter */
1534         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1535
1536         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1537
1538         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1539 }
1540
1541 /*
1542  * Delayed allocation stuff
1543  */
1544
1545 struct mpage_da_data {
1546         struct inode *inode;
1547         struct writeback_control *wbc;
1548
1549         pgoff_t first_page;     /* The first page to write */
1550         pgoff_t next_page;      /* Current page to examine */
1551         pgoff_t last_page;      /* Last page to examine */
1552         /*
1553          * Extent to map - this can be after first_page because that can be
1554          * fully mapped. We somewhat abuse m_flags to store whether the extent
1555          * is delalloc or unwritten.
1556          */
1557         struct ext4_map_blocks map;
1558         struct ext4_io_submit io_submit;        /* IO submission data */
1559         unsigned int do_map:1;
1560         unsigned int scanned_until_end:1;
1561 };
1562
1563 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1564                                        bool invalidate)
1565 {
1566         unsigned nr, i;
1567         pgoff_t index, end;
1568         struct folio_batch fbatch;
1569         struct inode *inode = mpd->inode;
1570         struct address_space *mapping = inode->i_mapping;
1571
1572         /* This is necessary when next_page == 0. */
1573         if (mpd->first_page >= mpd->next_page)
1574                 return;
1575
1576         mpd->scanned_until_end = 0;
1577         index = mpd->first_page;
1578         end   = mpd->next_page - 1;
1579         if (invalidate) {
1580                 ext4_lblk_t start, last;
1581                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1582                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1583
1584                 /*
1585                  * avoid racing with extent status tree scans made by
1586                  * ext4_insert_delayed_block()
1587                  */
1588                 down_write(&EXT4_I(inode)->i_data_sem);
1589                 ext4_es_remove_extent(inode, start, last - start + 1);
1590                 up_write(&EXT4_I(inode)->i_data_sem);
1591         }
1592
1593         folio_batch_init(&fbatch);
1594         while (index <= end) {
1595                 nr = filemap_get_folios(mapping, &index, end, &fbatch);
1596                 if (nr == 0)
1597                         break;
1598                 for (i = 0; i < nr; i++) {
1599                         struct folio *folio = fbatch.folios[i];
1600
1601                         if (folio->index < mpd->first_page)
1602                                 continue;
1603                         if (folio->index + folio_nr_pages(folio) - 1 > end)
1604                                 continue;
1605                         BUG_ON(!folio_test_locked(folio));
1606                         BUG_ON(folio_test_writeback(folio));
1607                         if (invalidate) {
1608                                 if (folio_mapped(folio))
1609                                         folio_clear_dirty_for_io(folio);
1610                                 block_invalidate_folio(folio, 0,
1611                                                 folio_size(folio));
1612                                 folio_clear_uptodate(folio);
1613                         }
1614                         folio_unlock(folio);
1615                 }
1616                 folio_batch_release(&fbatch);
1617         }
1618 }
1619
1620 static void ext4_print_free_blocks(struct inode *inode)
1621 {
1622         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1623         struct super_block *sb = inode->i_sb;
1624         struct ext4_inode_info *ei = EXT4_I(inode);
1625
1626         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1627                EXT4_C2B(EXT4_SB(inode->i_sb),
1628                         ext4_count_free_clusters(sb)));
1629         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1630         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1631                (long long) EXT4_C2B(EXT4_SB(sb),
1632                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1633         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1634                (long long) EXT4_C2B(EXT4_SB(sb),
1635                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1636         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1637         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1638                  ei->i_reserved_data_blocks);
1639         return;
1640 }
1641
1642 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode,
1643                                       struct buffer_head *bh)
1644 {
1645         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1646 }
1647
1648 /*
1649  * ext4_insert_delayed_block - adds a delayed block to the extents status
1650  *                             tree, incrementing the reserved cluster/block
1651  *                             count or making a pending reservation
1652  *                             where needed
1653  *
1654  * @inode - file containing the newly added block
1655  * @lblk - logical block to be added
1656  *
1657  * Returns 0 on success, negative error code on failure.
1658  */
1659 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1660 {
1661         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1662         int ret;
1663         bool allocated = false;
1664         bool reserved = false;
1665
1666         /*
1667          * If the cluster containing lblk is shared with a delayed,
1668          * written, or unwritten extent in a bigalloc file system, it's
1669          * already been accounted for and does not need to be reserved.
1670          * A pending reservation must be made for the cluster if it's
1671          * shared with a written or unwritten extent and doesn't already
1672          * have one.  Written and unwritten extents can be purged from the
1673          * extents status tree if the system is under memory pressure, so
1674          * it's necessary to examine the extent tree if a search of the
1675          * extents status tree doesn't get a match.
1676          */
1677         if (sbi->s_cluster_ratio == 1) {
1678                 ret = ext4_da_reserve_space(inode);
1679                 if (ret != 0)   /* ENOSPC */
1680                         goto errout;
1681                 reserved = true;
1682         } else {   /* bigalloc */
1683                 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1684                         if (!ext4_es_scan_clu(inode,
1685                                               &ext4_es_is_mapped, lblk)) {
1686                                 ret = ext4_clu_mapped(inode,
1687                                                       EXT4_B2C(sbi, lblk));
1688                                 if (ret < 0)
1689                                         goto errout;
1690                                 if (ret == 0) {
1691                                         ret = ext4_da_reserve_space(inode);
1692                                         if (ret != 0)   /* ENOSPC */
1693                                                 goto errout;
1694                                         reserved = true;
1695                                 } else {
1696                                         allocated = true;
1697                                 }
1698                         } else {
1699                                 allocated = true;
1700                         }
1701                 }
1702         }
1703
1704         ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1705         if (ret && reserved)
1706                 ext4_da_release_space(inode, 1);
1707
1708 errout:
1709         return ret;
1710 }
1711
1712 /*
1713  * This function is grabs code from the very beginning of
1714  * ext4_map_blocks, but assumes that the caller is from delayed write
1715  * time. This function looks up the requested blocks and sets the
1716  * buffer delay bit under the protection of i_data_sem.
1717  */
1718 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1719                               struct ext4_map_blocks *map,
1720                               struct buffer_head *bh)
1721 {
1722         struct extent_status es;
1723         int retval;
1724         sector_t invalid_block = ~((sector_t) 0xffff);
1725 #ifdef ES_AGGRESSIVE_TEST
1726         struct ext4_map_blocks orig_map;
1727
1728         memcpy(&orig_map, map, sizeof(*map));
1729 #endif
1730
1731         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1732                 invalid_block = ~0;
1733
1734         map->m_flags = 0;
1735         ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1736                   (unsigned long) map->m_lblk);
1737
1738         /* Lookup extent status tree firstly */
1739         if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1740                 if (ext4_es_is_hole(&es)) {
1741                         retval = 0;
1742                         down_read(&EXT4_I(inode)->i_data_sem);
1743                         goto add_delayed;
1744                 }
1745
1746                 /*
1747                  * Delayed extent could be allocated by fallocate.
1748                  * So we need to check it.
1749                  */
1750                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1751                         map_bh(bh, inode->i_sb, invalid_block);
1752                         set_buffer_new(bh);
1753                         set_buffer_delay(bh);
1754                         return 0;
1755                 }
1756
1757                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1758                 retval = es.es_len - (iblock - es.es_lblk);
1759                 if (retval > map->m_len)
1760                         retval = map->m_len;
1761                 map->m_len = retval;
1762                 if (ext4_es_is_written(&es))
1763                         map->m_flags |= EXT4_MAP_MAPPED;
1764                 else if (ext4_es_is_unwritten(&es))
1765                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1766                 else
1767                         BUG();
1768
1769 #ifdef ES_AGGRESSIVE_TEST
1770                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1771 #endif
1772                 return retval;
1773         }
1774
1775         /*
1776          * Try to see if we can get the block without requesting a new
1777          * file system block.
1778          */
1779         down_read(&EXT4_I(inode)->i_data_sem);
1780         if (ext4_has_inline_data(inode))
1781                 retval = 0;
1782         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1783                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1784         else
1785                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1786
1787 add_delayed:
1788         if (retval == 0) {
1789                 int ret;
1790
1791                 /*
1792                  * XXX: __block_prepare_write() unmaps passed block,
1793                  * is it OK?
1794                  */
1795
1796                 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1797                 if (ret != 0) {
1798                         retval = ret;
1799                         goto out_unlock;
1800                 }
1801
1802                 map_bh(bh, inode->i_sb, invalid_block);
1803                 set_buffer_new(bh);
1804                 set_buffer_delay(bh);
1805         } else if (retval > 0) {
1806                 int ret;
1807                 unsigned int status;
1808
1809                 if (unlikely(retval != map->m_len)) {
1810                         ext4_warning(inode->i_sb,
1811                                      "ES len assertion failed for inode "
1812                                      "%lu: retval %d != map->m_len %d",
1813                                      inode->i_ino, retval, map->m_len);
1814                         WARN_ON(1);
1815                 }
1816
1817                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1818                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1819                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1820                                             map->m_pblk, status);
1821                 if (ret != 0)
1822                         retval = ret;
1823         }
1824
1825 out_unlock:
1826         up_read((&EXT4_I(inode)->i_data_sem));
1827
1828         return retval;
1829 }
1830
1831 /*
1832  * This is a special get_block_t callback which is used by
1833  * ext4_da_write_begin().  It will either return mapped block or
1834  * reserve space for a single block.
1835  *
1836  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1837  * We also have b_blocknr = -1 and b_bdev initialized properly
1838  *
1839  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1840  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1841  * initialized properly.
1842  */
1843 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1844                            struct buffer_head *bh, int create)
1845 {
1846         struct ext4_map_blocks map;
1847         int ret = 0;
1848
1849         BUG_ON(create == 0);
1850         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1851
1852         map.m_lblk = iblock;
1853         map.m_len = 1;
1854
1855         /*
1856          * first, we need to know whether the block is allocated already
1857          * preallocated blocks are unmapped but should treated
1858          * the same as allocated blocks.
1859          */
1860         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1861         if (ret <= 0)
1862                 return ret;
1863
1864         map_bh(bh, inode->i_sb, map.m_pblk);
1865         ext4_update_bh_state(bh, map.m_flags);
1866
1867         if (buffer_unwritten(bh)) {
1868                 /* A delayed write to unwritten bh should be marked
1869                  * new and mapped.  Mapped ensures that we don't do
1870                  * get_block multiple times when we write to the same
1871                  * offset and new ensures that we do proper zero out
1872                  * for partial write.
1873                  */
1874                 set_buffer_new(bh);
1875                 set_buffer_mapped(bh);
1876         }
1877         return 0;
1878 }
1879
1880 static int __ext4_journalled_writepage(struct page *page,
1881                                        unsigned int len)
1882 {
1883         struct address_space *mapping = page->mapping;
1884         struct inode *inode = mapping->host;
1885         handle_t *handle = NULL;
1886         int ret = 0, err = 0;
1887         int inline_data = ext4_has_inline_data(inode);
1888         struct buffer_head *inode_bh = NULL;
1889         loff_t size;
1890
1891         ClearPageChecked(page);
1892
1893         if (inline_data) {
1894                 BUG_ON(page->index != 0);
1895                 BUG_ON(len > ext4_get_max_inline_size(inode));
1896                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1897                 if (inode_bh == NULL)
1898                         goto out;
1899         }
1900         /*
1901          * We need to release the page lock before we start the
1902          * journal, so grab a reference so the page won't disappear
1903          * out from under us.
1904          */
1905         get_page(page);
1906         unlock_page(page);
1907
1908         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1909                                     ext4_writepage_trans_blocks(inode));
1910         if (IS_ERR(handle)) {
1911                 ret = PTR_ERR(handle);
1912                 put_page(page);
1913                 goto out_no_pagelock;
1914         }
1915         BUG_ON(!ext4_handle_valid(handle));
1916
1917         lock_page(page);
1918         put_page(page);
1919         size = i_size_read(inode);
1920         if (page->mapping != mapping || page_offset(page) > size) {
1921                 /* The page got truncated from under us */
1922                 ext4_journal_stop(handle);
1923                 ret = 0;
1924                 goto out;
1925         }
1926
1927         if (inline_data) {
1928                 ret = ext4_mark_inode_dirty(handle, inode);
1929         } else {
1930                 struct buffer_head *page_bufs = page_buffers(page);
1931
1932                 if (page->index == size >> PAGE_SHIFT)
1933                         len = size & ~PAGE_MASK;
1934                 else
1935                         len = PAGE_SIZE;
1936
1937                 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1938                                              NULL, do_journal_get_write_access);
1939
1940                 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1941                                              NULL, write_end_fn);
1942         }
1943         if (ret == 0)
1944                 ret = err;
1945         err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1946         if (ret == 0)
1947                 ret = err;
1948         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1949         err = ext4_journal_stop(handle);
1950         if (!ret)
1951                 ret = err;
1952
1953         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1954 out:
1955         unlock_page(page);
1956 out_no_pagelock:
1957         brelse(inode_bh);
1958         return ret;
1959 }
1960
1961 /*
1962  * Note that we don't need to start a transaction unless we're journaling data
1963  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1964  * need to file the inode to the transaction's list in ordered mode because if
1965  * we are writing back data added by write(), the inode is already there and if
1966  * we are writing back data modified via mmap(), no one guarantees in which
1967  * transaction the data will hit the disk. In case we are journaling data, we
1968  * cannot start transaction directly because transaction start ranks above page
1969  * lock so we have to do some magic.
1970  *
1971  * This function can get called via...
1972  *   - ext4_writepages after taking page lock (have journal handle)
1973  *   - journal_submit_inode_data_buffers (no journal handle)
1974  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1975  *   - grab_page_cache when doing write_begin (have journal handle)
1976  *
1977  * We don't do any block allocation in this function. If we have page with
1978  * multiple blocks we need to write those buffer_heads that are mapped. This
1979  * is important for mmaped based write. So if we do with blocksize 1K
1980  * truncate(f, 1024);
1981  * a = mmap(f, 0, 4096);
1982  * a[0] = 'a';
1983  * truncate(f, 4096);
1984  * we have in the page first buffer_head mapped via page_mkwrite call back
1985  * but other buffer_heads would be unmapped but dirty (dirty done via the
1986  * do_wp_page). So writepage should write the first block. If we modify
1987  * the mmap area beyond 1024 we will again get a page_fault and the
1988  * page_mkwrite callback will do the block allocation and mark the
1989  * buffer_heads mapped.
1990  *
1991  * We redirty the page if we have any buffer_heads that is either delay or
1992  * unwritten in the page.
1993  *
1994  * We can get recursively called as show below.
1995  *
1996  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1997  *              ext4_writepage()
1998  *
1999  * But since we don't do any block allocation we should not deadlock.
2000  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2001  */
2002 static int ext4_writepage(struct page *page,
2003                           struct writeback_control *wbc)
2004 {
2005         struct folio *folio = page_folio(page);
2006         int ret = 0;
2007         loff_t size;
2008         unsigned int len;
2009         struct buffer_head *page_bufs = NULL;
2010         struct inode *inode = page->mapping->host;
2011         struct ext4_io_submit io_submit;
2012         bool keep_towrite = false;
2013
2014         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2015                 folio_invalidate(folio, 0, folio_size(folio));
2016                 folio_unlock(folio);
2017                 return -EIO;
2018         }
2019
2020         trace_ext4_writepage(page);
2021         size = i_size_read(inode);
2022         if (page->index == size >> PAGE_SHIFT &&
2023             !ext4_verity_in_progress(inode))
2024                 len = size & ~PAGE_MASK;
2025         else
2026                 len = PAGE_SIZE;
2027
2028         /* Should never happen but for bugs in other kernel subsystems */
2029         if (!page_has_buffers(page)) {
2030                 ext4_warning_inode(inode,
2031                    "page %lu does not have buffers attached", page->index);
2032                 ClearPageDirty(page);
2033                 unlock_page(page);
2034                 return 0;
2035         }
2036
2037         page_bufs = page_buffers(page);
2038         /*
2039          * We cannot do block allocation or other extent handling in this
2040          * function. If there are buffers needing that, we have to redirty
2041          * the page. But we may reach here when we do a journal commit via
2042          * journal_submit_inode_data_buffers() and in that case we must write
2043          * allocated buffers to achieve data=ordered mode guarantees.
2044          *
2045          * Also, if there is only one buffer per page (the fs block
2046          * size == the page size), if one buffer needs block
2047          * allocation or needs to modify the extent tree to clear the
2048          * unwritten flag, we know that the page can't be written at
2049          * all, so we might as well refuse the write immediately.
2050          * Unfortunately if the block size != page size, we can't as
2051          * easily detect this case using ext4_walk_page_buffers(), but
2052          * for the extremely common case, this is an optimization that
2053          * skips a useless round trip through ext4_bio_write_page().
2054          */
2055         if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL,
2056                                    ext4_bh_delay_or_unwritten)) {
2057                 redirty_page_for_writepage(wbc, page);
2058                 if ((current->flags & PF_MEMALLOC) ||
2059                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2060                         /*
2061                          * For memory cleaning there's no point in writing only
2062                          * some buffers. So just bail out. Warn if we came here
2063                          * from direct reclaim.
2064                          */
2065                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2066                                                         == PF_MEMALLOC);
2067                         unlock_page(page);
2068                         return 0;
2069                 }
2070                 keep_towrite = true;
2071         }
2072
2073         if (PageChecked(page) && ext4_should_journal_data(inode))
2074                 /*
2075                  * It's mmapped pagecache.  Add buffers and journal it.  There
2076                  * doesn't seem much point in redirtying the page here.
2077                  */
2078                 return __ext4_journalled_writepage(page, len);
2079
2080         ext4_io_submit_init(&io_submit, wbc);
2081         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2082         if (!io_submit.io_end) {
2083                 redirty_page_for_writepage(wbc, page);
2084                 unlock_page(page);
2085                 return -ENOMEM;
2086         }
2087         ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite);
2088         ext4_io_submit(&io_submit);
2089         /* Drop io_end reference we got from init */
2090         ext4_put_io_end_defer(io_submit.io_end);
2091         return ret;
2092 }
2093
2094 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2095 {
2096         int len;
2097         loff_t size;
2098         int err;
2099
2100         BUG_ON(page->index != mpd->first_page);
2101         clear_page_dirty_for_io(page);
2102         /*
2103          * We have to be very careful here!  Nothing protects writeback path
2104          * against i_size changes and the page can be writeably mapped into
2105          * page tables. So an application can be growing i_size and writing
2106          * data through mmap while writeback runs. clear_page_dirty_for_io()
2107          * write-protects our page in page tables and the page cannot get
2108          * written to again until we release page lock. So only after
2109          * clear_page_dirty_for_io() we are safe to sample i_size for
2110          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2111          * on the barrier provided by TestClearPageDirty in
2112          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2113          * after page tables are updated.
2114          */
2115         size = i_size_read(mpd->inode);
2116         if (page->index == size >> PAGE_SHIFT &&
2117             !ext4_verity_in_progress(mpd->inode))
2118                 len = size & ~PAGE_MASK;
2119         else
2120                 len = PAGE_SIZE;
2121         err = ext4_bio_write_page(&mpd->io_submit, page, len, false);
2122         if (!err)
2123                 mpd->wbc->nr_to_write--;
2124         mpd->first_page++;
2125
2126         return err;
2127 }
2128
2129 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2130
2131 /*
2132  * mballoc gives us at most this number of blocks...
2133  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2134  * The rest of mballoc seems to handle chunks up to full group size.
2135  */
2136 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2137
2138 /*
2139  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2140  *
2141  * @mpd - extent of blocks
2142  * @lblk - logical number of the block in the file
2143  * @bh - buffer head we want to add to the extent
2144  *
2145  * The function is used to collect contig. blocks in the same state. If the
2146  * buffer doesn't require mapping for writeback and we haven't started the
2147  * extent of buffers to map yet, the function returns 'true' immediately - the
2148  * caller can write the buffer right away. Otherwise the function returns true
2149  * if the block has been added to the extent, false if the block couldn't be
2150  * added.
2151  */
2152 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2153                                    struct buffer_head *bh)
2154 {
2155         struct ext4_map_blocks *map = &mpd->map;
2156
2157         /* Buffer that doesn't need mapping for writeback? */
2158         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2159             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2160                 /* So far no extent to map => we write the buffer right away */
2161                 if (map->m_len == 0)
2162                         return true;
2163                 return false;
2164         }
2165
2166         /* First block in the extent? */
2167         if (map->m_len == 0) {
2168                 /* We cannot map unless handle is started... */
2169                 if (!mpd->do_map)
2170                         return false;
2171                 map->m_lblk = lblk;
2172                 map->m_len = 1;
2173                 map->m_flags = bh->b_state & BH_FLAGS;
2174                 return true;
2175         }
2176
2177         /* Don't go larger than mballoc is willing to allocate */
2178         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2179                 return false;
2180
2181         /* Can we merge the block to our big extent? */
2182         if (lblk == map->m_lblk + map->m_len &&
2183             (bh->b_state & BH_FLAGS) == map->m_flags) {
2184                 map->m_len++;
2185                 return true;
2186         }
2187         return false;
2188 }
2189
2190 /*
2191  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2192  *
2193  * @mpd - extent of blocks for mapping
2194  * @head - the first buffer in the page
2195  * @bh - buffer we should start processing from
2196  * @lblk - logical number of the block in the file corresponding to @bh
2197  *
2198  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2199  * the page for IO if all buffers in this page were mapped and there's no
2200  * accumulated extent of buffers to map or add buffers in the page to the
2201  * extent of buffers to map. The function returns 1 if the caller can continue
2202  * by processing the next page, 0 if it should stop adding buffers to the
2203  * extent to map because we cannot extend it anymore. It can also return value
2204  * < 0 in case of error during IO submission.
2205  */
2206 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2207                                    struct buffer_head *head,
2208                                    struct buffer_head *bh,
2209                                    ext4_lblk_t lblk)
2210 {
2211         struct inode *inode = mpd->inode;
2212         int err;
2213         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2214                                                         >> inode->i_blkbits;
2215
2216         if (ext4_verity_in_progress(inode))
2217                 blocks = EXT_MAX_BLOCKS;
2218
2219         do {
2220                 BUG_ON(buffer_locked(bh));
2221
2222                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2223                         /* Found extent to map? */
2224                         if (mpd->map.m_len)
2225                                 return 0;
2226                         /* Buffer needs mapping and handle is not started? */
2227                         if (!mpd->do_map)
2228                                 return 0;
2229                         /* Everything mapped so far and we hit EOF */
2230                         break;
2231                 }
2232         } while (lblk++, (bh = bh->b_this_page) != head);
2233         /* So far everything mapped? Submit the page for IO. */
2234         if (mpd->map.m_len == 0) {
2235                 err = mpage_submit_page(mpd, head->b_page);
2236                 if (err < 0)
2237                         return err;
2238         }
2239         if (lblk >= blocks) {
2240                 mpd->scanned_until_end = 1;
2241                 return 0;
2242         }
2243         return 1;
2244 }
2245
2246 /*
2247  * mpage_process_page - update page buffers corresponding to changed extent and
2248  *                     may submit fully mapped page for IO
2249  *
2250  * @mpd         - description of extent to map, on return next extent to map
2251  * @m_lblk      - logical block mapping.
2252  * @m_pblk      - corresponding physical mapping.
2253  * @map_bh      - determines on return whether this page requires any further
2254  *                mapping or not.
2255  * Scan given page buffers corresponding to changed extent and update buffer
2256  * state according to new extent state.
2257  * We map delalloc buffers to their physical location, clear unwritten bits.
2258  * If the given page is not fully mapped, we update @map to the next extent in
2259  * the given page that needs mapping & return @map_bh as true.
2260  */
2261 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2262                               ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2263                               bool *map_bh)
2264 {
2265         struct buffer_head *head, *bh;
2266         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2267         ext4_lblk_t lblk = *m_lblk;
2268         ext4_fsblk_t pblock = *m_pblk;
2269         int err = 0;
2270         int blkbits = mpd->inode->i_blkbits;
2271         ssize_t io_end_size = 0;
2272         struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2273
2274         bh = head = page_buffers(page);
2275         do {
2276                 if (lblk < mpd->map.m_lblk)
2277                         continue;
2278                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2279                         /*
2280                          * Buffer after end of mapped extent.
2281                          * Find next buffer in the page to map.
2282                          */
2283                         mpd->map.m_len = 0;
2284                         mpd->map.m_flags = 0;
2285                         io_end_vec->size += io_end_size;
2286
2287                         err = mpage_process_page_bufs(mpd, head, bh, lblk);
2288                         if (err > 0)
2289                                 err = 0;
2290                         if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2291                                 io_end_vec = ext4_alloc_io_end_vec(io_end);
2292                                 if (IS_ERR(io_end_vec)) {
2293                                         err = PTR_ERR(io_end_vec);
2294                                         goto out;
2295                                 }
2296                                 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2297                         }
2298                         *map_bh = true;
2299                         goto out;
2300                 }
2301                 if (buffer_delay(bh)) {
2302                         clear_buffer_delay(bh);
2303                         bh->b_blocknr = pblock++;
2304                 }
2305                 clear_buffer_unwritten(bh);
2306                 io_end_size += (1 << blkbits);
2307         } while (lblk++, (bh = bh->b_this_page) != head);
2308
2309         io_end_vec->size += io_end_size;
2310         *map_bh = false;
2311 out:
2312         *m_lblk = lblk;
2313         *m_pblk = pblock;
2314         return err;
2315 }
2316
2317 /*
2318  * mpage_map_buffers - update buffers corresponding to changed extent and
2319  *                     submit fully mapped pages for IO
2320  *
2321  * @mpd - description of extent to map, on return next extent to map
2322  *
2323  * Scan buffers corresponding to changed extent (we expect corresponding pages
2324  * to be already locked) and update buffer state according to new extent state.
2325  * We map delalloc buffers to their physical location, clear unwritten bits,
2326  * and mark buffers as uninit when we perform writes to unwritten extents
2327  * and do extent conversion after IO is finished. If the last page is not fully
2328  * mapped, we update @map to the next extent in the last page that needs
2329  * mapping. Otherwise we submit the page for IO.
2330  */
2331 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2332 {
2333         struct folio_batch fbatch;
2334         unsigned nr, i;
2335         struct inode *inode = mpd->inode;
2336         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2337         pgoff_t start, end;
2338         ext4_lblk_t lblk;
2339         ext4_fsblk_t pblock;
2340         int err;
2341         bool map_bh = false;
2342
2343         start = mpd->map.m_lblk >> bpp_bits;
2344         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2345         lblk = start << bpp_bits;
2346         pblock = mpd->map.m_pblk;
2347
2348         folio_batch_init(&fbatch);
2349         while (start <= end) {
2350                 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2351                 if (nr == 0)
2352                         break;
2353                 for (i = 0; i < nr; i++) {
2354                         struct page *page = &fbatch.folios[i]->page;
2355
2356                         err = mpage_process_page(mpd, page, &lblk, &pblock,
2357                                                  &map_bh);
2358                         /*
2359                          * If map_bh is true, means page may require further bh
2360                          * mapping, or maybe the page was submitted for IO.
2361                          * So we return to call further extent mapping.
2362                          */
2363                         if (err < 0 || map_bh)
2364                                 goto out;
2365                         /* Page fully mapped - let IO run! */
2366                         err = mpage_submit_page(mpd, page);
2367                         if (err < 0)
2368                                 goto out;
2369                 }
2370                 folio_batch_release(&fbatch);
2371         }
2372         /* Extent fully mapped and matches with page boundary. We are done. */
2373         mpd->map.m_len = 0;
2374         mpd->map.m_flags = 0;
2375         return 0;
2376 out:
2377         folio_batch_release(&fbatch);
2378         return err;
2379 }
2380
2381 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2382 {
2383         struct inode *inode = mpd->inode;
2384         struct ext4_map_blocks *map = &mpd->map;
2385         int get_blocks_flags;
2386         int err, dioread_nolock;
2387
2388         trace_ext4_da_write_pages_extent(inode, map);
2389         /*
2390          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2391          * to convert an unwritten extent to be initialized (in the case
2392          * where we have written into one or more preallocated blocks).  It is
2393          * possible that we're going to need more metadata blocks than
2394          * previously reserved. However we must not fail because we're in
2395          * writeback and there is nothing we can do about it so it might result
2396          * in data loss.  So use reserved blocks to allocate metadata if
2397          * possible.
2398          *
2399          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2400          * the blocks in question are delalloc blocks.  This indicates
2401          * that the blocks and quotas has already been checked when
2402          * the data was copied into the page cache.
2403          */
2404         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2405                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2406                            EXT4_GET_BLOCKS_IO_SUBMIT;
2407         dioread_nolock = ext4_should_dioread_nolock(inode);
2408         if (dioread_nolock)
2409                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2410         if (map->m_flags & BIT(BH_Delay))
2411                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2412
2413         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2414         if (err < 0)
2415                 return err;
2416         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2417                 if (!mpd->io_submit.io_end->handle &&
2418                     ext4_handle_valid(handle)) {
2419                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2420                         handle->h_rsv_handle = NULL;
2421                 }
2422                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2423         }
2424
2425         BUG_ON(map->m_len == 0);
2426         return 0;
2427 }
2428
2429 /*
2430  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2431  *                               mpd->len and submit pages underlying it for IO
2432  *
2433  * @handle - handle for journal operations
2434  * @mpd - extent to map
2435  * @give_up_on_write - we set this to true iff there is a fatal error and there
2436  *                     is no hope of writing the data. The caller should discard
2437  *                     dirty pages to avoid infinite loops.
2438  *
2439  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2440  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2441  * them to initialized or split the described range from larger unwritten
2442  * extent. Note that we need not map all the described range since allocation
2443  * can return less blocks or the range is covered by more unwritten extents. We
2444  * cannot map more because we are limited by reserved transaction credits. On
2445  * the other hand we always make sure that the last touched page is fully
2446  * mapped so that it can be written out (and thus forward progress is
2447  * guaranteed). After mapping we submit all mapped pages for IO.
2448  */
2449 static int mpage_map_and_submit_extent(handle_t *handle,
2450                                        struct mpage_da_data *mpd,
2451                                        bool *give_up_on_write)
2452 {
2453         struct inode *inode = mpd->inode;
2454         struct ext4_map_blocks *map = &mpd->map;
2455         int err;
2456         loff_t disksize;
2457         int progress = 0;
2458         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2459         struct ext4_io_end_vec *io_end_vec;
2460
2461         io_end_vec = ext4_alloc_io_end_vec(io_end);
2462         if (IS_ERR(io_end_vec))
2463                 return PTR_ERR(io_end_vec);
2464         io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2465         do {
2466                 err = mpage_map_one_extent(handle, mpd);
2467                 if (err < 0) {
2468                         struct super_block *sb = inode->i_sb;
2469
2470                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2471                             ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2472                                 goto invalidate_dirty_pages;
2473                         /*
2474                          * Let the uper layers retry transient errors.
2475                          * In the case of ENOSPC, if ext4_count_free_blocks()
2476                          * is non-zero, a commit should free up blocks.
2477                          */
2478                         if ((err == -ENOMEM) ||
2479                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2480                                 if (progress)
2481                                         goto update_disksize;
2482                                 return err;
2483                         }
2484                         ext4_msg(sb, KERN_CRIT,
2485                                  "Delayed block allocation failed for "
2486                                  "inode %lu at logical offset %llu with"
2487                                  " max blocks %u with error %d",
2488                                  inode->i_ino,
2489                                  (unsigned long long)map->m_lblk,
2490                                  (unsigned)map->m_len, -err);
2491                         ext4_msg(sb, KERN_CRIT,
2492                                  "This should not happen!! Data will "
2493                                  "be lost\n");
2494                         if (err == -ENOSPC)
2495                                 ext4_print_free_blocks(inode);
2496                 invalidate_dirty_pages:
2497                         *give_up_on_write = true;
2498                         return err;
2499                 }
2500                 progress = 1;
2501                 /*
2502                  * Update buffer state, submit mapped pages, and get us new
2503                  * extent to map
2504                  */
2505                 err = mpage_map_and_submit_buffers(mpd);
2506                 if (err < 0)
2507                         goto update_disksize;
2508         } while (map->m_len);
2509
2510 update_disksize:
2511         /*
2512          * Update on-disk size after IO is submitted.  Races with
2513          * truncate are avoided by checking i_size under i_data_sem.
2514          */
2515         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2516         if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2517                 int err2;
2518                 loff_t i_size;
2519
2520                 down_write(&EXT4_I(inode)->i_data_sem);
2521                 i_size = i_size_read(inode);
2522                 if (disksize > i_size)
2523                         disksize = i_size;
2524                 if (disksize > EXT4_I(inode)->i_disksize)
2525                         EXT4_I(inode)->i_disksize = disksize;
2526                 up_write(&EXT4_I(inode)->i_data_sem);
2527                 err2 = ext4_mark_inode_dirty(handle, inode);
2528                 if (err2) {
2529                         ext4_error_err(inode->i_sb, -err2,
2530                                        "Failed to mark inode %lu dirty",
2531                                        inode->i_ino);
2532                 }
2533                 if (!err)
2534                         err = err2;
2535         }
2536         return err;
2537 }
2538
2539 /*
2540  * Calculate the total number of credits to reserve for one writepages
2541  * iteration. This is called from ext4_writepages(). We map an extent of
2542  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2543  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2544  * bpp - 1 blocks in bpp different extents.
2545  */
2546 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2547 {
2548         int bpp = ext4_journal_blocks_per_page(inode);
2549
2550         return ext4_meta_trans_blocks(inode,
2551                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2552 }
2553
2554 /*
2555  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2556  *                               and underlying extent to map
2557  *
2558  * @mpd - where to look for pages
2559  *
2560  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2561  * IO immediately. When we find a page which isn't mapped we start accumulating
2562  * extent of buffers underlying these pages that needs mapping (formed by
2563  * either delayed or unwritten buffers). We also lock the pages containing
2564  * these buffers. The extent found is returned in @mpd structure (starting at
2565  * mpd->lblk with length mpd->len blocks).
2566  *
2567  * Note that this function can attach bios to one io_end structure which are
2568  * neither logically nor physically contiguous. Although it may seem as an
2569  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2570  * case as we need to track IO to all buffers underlying a page in one io_end.
2571  */
2572 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2573 {
2574         struct address_space *mapping = mpd->inode->i_mapping;
2575         struct pagevec pvec;
2576         unsigned int nr_pages;
2577         long left = mpd->wbc->nr_to_write;
2578         pgoff_t index = mpd->first_page;
2579         pgoff_t end = mpd->last_page;
2580         xa_mark_t tag;
2581         int i, err = 0;
2582         int blkbits = mpd->inode->i_blkbits;
2583         ext4_lblk_t lblk;
2584         struct buffer_head *head;
2585
2586         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2587                 tag = PAGECACHE_TAG_TOWRITE;
2588         else
2589                 tag = PAGECACHE_TAG_DIRTY;
2590
2591         pagevec_init(&pvec);
2592         mpd->map.m_len = 0;
2593         mpd->next_page = index;
2594         while (index <= end) {
2595                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2596                                 tag);
2597                 if (nr_pages == 0)
2598                         break;
2599
2600                 for (i = 0; i < nr_pages; i++) {
2601                         struct page *page = pvec.pages[i];
2602
2603                         /*
2604                          * Accumulated enough dirty pages? This doesn't apply
2605                          * to WB_SYNC_ALL mode. For integrity sync we have to
2606                          * keep going because someone may be concurrently
2607                          * dirtying pages, and we might have synced a lot of
2608                          * newly appeared dirty pages, but have not synced all
2609                          * of the old dirty pages.
2610                          */
2611                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2612                                 goto out;
2613
2614                         /* If we can't merge this page, we are done. */
2615                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2616                                 goto out;
2617
2618                         lock_page(page);
2619                         /*
2620                          * If the page is no longer dirty, or its mapping no
2621                          * longer corresponds to inode we are writing (which
2622                          * means it has been truncated or invalidated), or the
2623                          * page is already under writeback and we are not doing
2624                          * a data integrity writeback, skip the page
2625                          */
2626                         if (!PageDirty(page) ||
2627                             (PageWriteback(page) &&
2628                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2629                             unlikely(page->mapping != mapping)) {
2630                                 unlock_page(page);
2631                                 continue;
2632                         }
2633
2634                         wait_on_page_writeback(page);
2635                         BUG_ON(PageWriteback(page));
2636
2637                         /*
2638                          * Should never happen but for buggy code in
2639                          * other subsystems that call
2640                          * set_page_dirty() without properly warning
2641                          * the file system first.  See [1] for more
2642                          * information.
2643                          *
2644                          * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2645                          */
2646                         if (!page_has_buffers(page)) {
2647                                 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", page->index);
2648                                 ClearPageDirty(page);
2649                                 unlock_page(page);
2650                                 continue;
2651                         }
2652
2653                         if (mpd->map.m_len == 0)
2654                                 mpd->first_page = page->index;
2655                         mpd->next_page = page->index + 1;
2656                         /* Add all dirty buffers to mpd */
2657                         lblk = ((ext4_lblk_t)page->index) <<
2658                                 (PAGE_SHIFT - blkbits);
2659                         head = page_buffers(page);
2660                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2661                         if (err <= 0)
2662                                 goto out;
2663                         err = 0;
2664                         left--;
2665                 }
2666                 pagevec_release(&pvec);
2667                 cond_resched();
2668         }
2669         mpd->scanned_until_end = 1;
2670         return 0;
2671 out:
2672         pagevec_release(&pvec);
2673         return err;
2674 }
2675
2676 static int ext4_writepages(struct address_space *mapping,
2677                            struct writeback_control *wbc)
2678 {
2679         pgoff_t writeback_index = 0;
2680         long nr_to_write = wbc->nr_to_write;
2681         int range_whole = 0;
2682         int cycled = 1;
2683         handle_t *handle = NULL;
2684         struct mpage_da_data mpd;
2685         struct inode *inode = mapping->host;
2686         int needed_blocks, rsv_blocks = 0, ret = 0;
2687         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2688         struct blk_plug plug;
2689         bool give_up_on_write = false;
2690
2691         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2692                 return -EIO;
2693
2694         percpu_down_read(&sbi->s_writepages_rwsem);
2695         trace_ext4_writepages(inode, wbc);
2696
2697         /*
2698          * No pages to write? This is mainly a kludge to avoid starting
2699          * a transaction for special inodes like journal inode on last iput()
2700          * because that could violate lock ordering on umount
2701          */
2702         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2703                 goto out_writepages;
2704
2705         if (ext4_should_journal_data(inode)) {
2706                 ret = generic_writepages(mapping, wbc);
2707                 goto out_writepages;
2708         }
2709
2710         /*
2711          * If the filesystem has aborted, it is read-only, so return
2712          * right away instead of dumping stack traces later on that
2713          * will obscure the real source of the problem.  We test
2714          * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2715          * the latter could be true if the filesystem is mounted
2716          * read-only, and in that case, ext4_writepages should
2717          * *never* be called, so if that ever happens, we would want
2718          * the stack trace.
2719          */
2720         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2721                      ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2722                 ret = -EROFS;
2723                 goto out_writepages;
2724         }
2725
2726         /*
2727          * If we have inline data and arrive here, it means that
2728          * we will soon create the block for the 1st page, so
2729          * we'd better clear the inline data here.
2730          */
2731         if (ext4_has_inline_data(inode)) {
2732                 /* Just inode will be modified... */
2733                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2734                 if (IS_ERR(handle)) {
2735                         ret = PTR_ERR(handle);
2736                         goto out_writepages;
2737                 }
2738                 BUG_ON(ext4_test_inode_state(inode,
2739                                 EXT4_STATE_MAY_INLINE_DATA));
2740                 ext4_destroy_inline_data(handle, inode);
2741                 ext4_journal_stop(handle);
2742         }
2743
2744         if (ext4_should_dioread_nolock(inode)) {
2745                 /*
2746                  * We may need to convert up to one extent per block in
2747                  * the page and we may dirty the inode.
2748                  */
2749                 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2750                                                 PAGE_SIZE >> inode->i_blkbits);
2751         }
2752
2753         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2754                 range_whole = 1;
2755
2756         if (wbc->range_cyclic) {
2757                 writeback_index = mapping->writeback_index;
2758                 if (writeback_index)
2759                         cycled = 0;
2760                 mpd.first_page = writeback_index;
2761                 mpd.last_page = -1;
2762         } else {
2763                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2764                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2765         }
2766
2767         mpd.inode = inode;
2768         mpd.wbc = wbc;
2769         ext4_io_submit_init(&mpd.io_submit, wbc);
2770 retry:
2771         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2772                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2773         blk_start_plug(&plug);
2774
2775         /*
2776          * First writeback pages that don't need mapping - we can avoid
2777          * starting a transaction unnecessarily and also avoid being blocked
2778          * in the block layer on device congestion while having transaction
2779          * started.
2780          */
2781         mpd.do_map = 0;
2782         mpd.scanned_until_end = 0;
2783         mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2784         if (!mpd.io_submit.io_end) {
2785                 ret = -ENOMEM;
2786                 goto unplug;
2787         }
2788         ret = mpage_prepare_extent_to_map(&mpd);
2789         /* Unlock pages we didn't use */
2790         mpage_release_unused_pages(&mpd, false);
2791         /* Submit prepared bio */
2792         ext4_io_submit(&mpd.io_submit);
2793         ext4_put_io_end_defer(mpd.io_submit.io_end);
2794         mpd.io_submit.io_end = NULL;
2795         if (ret < 0)
2796                 goto unplug;
2797
2798         while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2799                 /* For each extent of pages we use new io_end */
2800                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2801                 if (!mpd.io_submit.io_end) {
2802                         ret = -ENOMEM;
2803                         break;
2804                 }
2805
2806                 /*
2807                  * We have two constraints: We find one extent to map and we
2808                  * must always write out whole page (makes a difference when
2809                  * blocksize < pagesize) so that we don't block on IO when we
2810                  * try to write out the rest of the page. Journalled mode is
2811                  * not supported by delalloc.
2812                  */
2813                 BUG_ON(ext4_should_journal_data(inode));
2814                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2815
2816                 /* start a new transaction */
2817                 handle = ext4_journal_start_with_reserve(inode,
2818                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2819                 if (IS_ERR(handle)) {
2820                         ret = PTR_ERR(handle);
2821                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2822                                "%ld pages, ino %lu; err %d", __func__,
2823                                 wbc->nr_to_write, inode->i_ino, ret);
2824                         /* Release allocated io_end */
2825                         ext4_put_io_end(mpd.io_submit.io_end);
2826                         mpd.io_submit.io_end = NULL;
2827                         break;
2828                 }
2829                 mpd.do_map = 1;
2830
2831                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2832                 ret = mpage_prepare_extent_to_map(&mpd);
2833                 if (!ret && mpd.map.m_len)
2834                         ret = mpage_map_and_submit_extent(handle, &mpd,
2835                                         &give_up_on_write);
2836                 /*
2837                  * Caution: If the handle is synchronous,
2838                  * ext4_journal_stop() can wait for transaction commit
2839                  * to finish which may depend on writeback of pages to
2840                  * complete or on page lock to be released.  In that
2841                  * case, we have to wait until after we have
2842                  * submitted all the IO, released page locks we hold,
2843                  * and dropped io_end reference (for extent conversion
2844                  * to be able to complete) before stopping the handle.
2845                  */
2846                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2847                         ext4_journal_stop(handle);
2848                         handle = NULL;
2849                         mpd.do_map = 0;
2850                 }
2851                 /* Unlock pages we didn't use */
2852                 mpage_release_unused_pages(&mpd, give_up_on_write);
2853                 /* Submit prepared bio */
2854                 ext4_io_submit(&mpd.io_submit);
2855
2856                 /*
2857                  * Drop our io_end reference we got from init. We have
2858                  * to be careful and use deferred io_end finishing if
2859                  * we are still holding the transaction as we can
2860                  * release the last reference to io_end which may end
2861                  * up doing unwritten extent conversion.
2862                  */
2863                 if (handle) {
2864                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2865                         ext4_journal_stop(handle);
2866                 } else
2867                         ext4_put_io_end(mpd.io_submit.io_end);
2868                 mpd.io_submit.io_end = NULL;
2869
2870                 if (ret == -ENOSPC && sbi->s_journal) {
2871                         /*
2872                          * Commit the transaction which would
2873                          * free blocks released in the transaction
2874                          * and try again
2875                          */
2876                         jbd2_journal_force_commit_nested(sbi->s_journal);
2877                         ret = 0;
2878                         continue;
2879                 }
2880                 /* Fatal error - ENOMEM, EIO... */
2881                 if (ret)
2882                         break;
2883         }
2884 unplug:
2885         blk_finish_plug(&plug);
2886         if (!ret && !cycled && wbc->nr_to_write > 0) {
2887                 cycled = 1;
2888                 mpd.last_page = writeback_index - 1;
2889                 mpd.first_page = 0;
2890                 goto retry;
2891         }
2892
2893         /* Update index */
2894         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2895                 /*
2896                  * Set the writeback_index so that range_cyclic
2897                  * mode will write it back later
2898                  */
2899                 mapping->writeback_index = mpd.first_page;
2900
2901 out_writepages:
2902         trace_ext4_writepages_result(inode, wbc, ret,
2903                                      nr_to_write - wbc->nr_to_write);
2904         percpu_up_read(&sbi->s_writepages_rwsem);
2905         return ret;
2906 }
2907
2908 static int ext4_dax_writepages(struct address_space *mapping,
2909                                struct writeback_control *wbc)
2910 {
2911         int ret;
2912         long nr_to_write = wbc->nr_to_write;
2913         struct inode *inode = mapping->host;
2914         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2915
2916         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2917                 return -EIO;
2918
2919         percpu_down_read(&sbi->s_writepages_rwsem);
2920         trace_ext4_writepages(inode, wbc);
2921
2922         ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2923         trace_ext4_writepages_result(inode, wbc, ret,
2924                                      nr_to_write - wbc->nr_to_write);
2925         percpu_up_read(&sbi->s_writepages_rwsem);
2926         return ret;
2927 }
2928
2929 static int ext4_nonda_switch(struct super_block *sb)
2930 {
2931         s64 free_clusters, dirty_clusters;
2932         struct ext4_sb_info *sbi = EXT4_SB(sb);
2933
2934         /*
2935          * switch to non delalloc mode if we are running low
2936          * on free block. The free block accounting via percpu
2937          * counters can get slightly wrong with percpu_counter_batch getting
2938          * accumulated on each CPU without updating global counters
2939          * Delalloc need an accurate free block accounting. So switch
2940          * to non delalloc when we are near to error range.
2941          */
2942         free_clusters =
2943                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2944         dirty_clusters =
2945                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2946         /*
2947          * Start pushing delalloc when 1/2 of free blocks are dirty.
2948          */
2949         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2950                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2951
2952         if (2 * free_clusters < 3 * dirty_clusters ||
2953             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2954                 /*
2955                  * free block count is less than 150% of dirty blocks
2956                  * or free blocks is less than watermark
2957                  */
2958                 return 1;
2959         }
2960         return 0;
2961 }
2962
2963 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2964                                loff_t pos, unsigned len,
2965                                struct page **pagep, void **fsdata)
2966 {
2967         int ret, retries = 0;
2968         struct page *page;
2969         pgoff_t index;
2970         struct inode *inode = mapping->host;
2971
2972         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2973                 return -EIO;
2974
2975         index = pos >> PAGE_SHIFT;
2976
2977         if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
2978                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2979                 return ext4_write_begin(file, mapping, pos,
2980                                         len, pagep, fsdata);
2981         }
2982         *fsdata = (void *)0;
2983         trace_ext4_da_write_begin(inode, pos, len);
2984
2985         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2986                 ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
2987                                                       pagep, fsdata);
2988                 if (ret < 0)
2989                         return ret;
2990                 if (ret == 1)
2991                         return 0;
2992         }
2993
2994 retry:
2995         page = grab_cache_page_write_begin(mapping, index);
2996         if (!page)
2997                 return -ENOMEM;
2998
2999         /* In case writeback began while the page was unlocked */
3000         wait_for_stable_page(page);
3001
3002 #ifdef CONFIG_FS_ENCRYPTION
3003         ret = ext4_block_write_begin(page, pos, len,
3004                                      ext4_da_get_block_prep);
3005 #else
3006         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3007 #endif
3008         if (ret < 0) {
3009                 unlock_page(page);
3010                 put_page(page);
3011                 /*
3012                  * block_write_begin may have instantiated a few blocks
3013                  * outside i_size.  Trim these off again. Don't need
3014                  * i_size_read because we hold inode lock.
3015                  */
3016                 if (pos + len > inode->i_size)
3017                         ext4_truncate_failed_write(inode);
3018
3019                 if (ret == -ENOSPC &&
3020                     ext4_should_retry_alloc(inode->i_sb, &retries))
3021                         goto retry;
3022                 return ret;
3023         }
3024
3025         *pagep = page;
3026         return ret;
3027 }
3028
3029 /*
3030  * Check if we should update i_disksize
3031  * when write to the end of file but not require block allocation
3032  */
3033 static int ext4_da_should_update_i_disksize(struct page *page,
3034                                             unsigned long offset)
3035 {
3036         struct buffer_head *bh;
3037         struct inode *inode = page->mapping->host;
3038         unsigned int idx;
3039         int i;
3040
3041         bh = page_buffers(page);
3042         idx = offset >> inode->i_blkbits;
3043
3044         for (i = 0; i < idx; i++)
3045                 bh = bh->b_this_page;
3046
3047         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3048                 return 0;
3049         return 1;
3050 }
3051
3052 static int ext4_da_write_end(struct file *file,
3053                              struct address_space *mapping,
3054                              loff_t pos, unsigned len, unsigned copied,
3055                              struct page *page, void *fsdata)
3056 {
3057         struct inode *inode = mapping->host;
3058         loff_t new_i_size;
3059         unsigned long start, end;
3060         int write_mode = (int)(unsigned long)fsdata;
3061
3062         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3063                 return ext4_write_end(file, mapping, pos,
3064                                       len, copied, page, fsdata);
3065
3066         trace_ext4_da_write_end(inode, pos, len, copied);
3067
3068         if (write_mode != CONVERT_INLINE_DATA &&
3069             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3070             ext4_has_inline_data(inode))
3071                 return ext4_write_inline_data_end(inode, pos, len, copied, page);
3072
3073         start = pos & (PAGE_SIZE - 1);
3074         end = start + copied - 1;
3075
3076         /*
3077          * Since we are holding inode lock, we are sure i_disksize <=
3078          * i_size. We also know that if i_disksize < i_size, there are
3079          * delalloc writes pending in the range upto i_size. If the end of
3080          * the current write is <= i_size, there's no need to touch
3081          * i_disksize since writeback will push i_disksize upto i_size
3082          * eventually. If the end of the current write is > i_size and
3083          * inside an allocated block (ext4_da_should_update_i_disksize()
3084          * check), we need to update i_disksize here as neither
3085          * ext4_writepage() nor certain ext4_writepages() paths not
3086          * allocating blocks update i_disksize.
3087          *
3088          * Note that we defer inode dirtying to generic_write_end() /
3089          * ext4_da_write_inline_data_end().
3090          */
3091         new_i_size = pos + copied;
3092         if (copied && new_i_size > inode->i_size &&
3093             ext4_da_should_update_i_disksize(page, end))
3094                 ext4_update_i_disksize(inode, new_i_size);
3095
3096         return generic_write_end(file, mapping, pos, len, copied, page, fsdata);
3097 }
3098
3099 /*
3100  * Force all delayed allocation blocks to be allocated for a given inode.
3101  */
3102 int ext4_alloc_da_blocks(struct inode *inode)
3103 {
3104         trace_ext4_alloc_da_blocks(inode);
3105
3106         if (!EXT4_I(inode)->i_reserved_data_blocks)
3107                 return 0;
3108
3109         /*
3110          * We do something simple for now.  The filemap_flush() will
3111          * also start triggering a write of the data blocks, which is
3112          * not strictly speaking necessary (and for users of
3113          * laptop_mode, not even desirable).  However, to do otherwise
3114          * would require replicating code paths in:
3115          *
3116          * ext4_writepages() ->
3117          *    write_cache_pages() ---> (via passed in callback function)
3118          *        __mpage_da_writepage() -->
3119          *           mpage_add_bh_to_extent()
3120          *           mpage_da_map_blocks()
3121          *
3122          * The problem is that write_cache_pages(), located in
3123          * mm/page-writeback.c, marks pages clean in preparation for
3124          * doing I/O, which is not desirable if we're not planning on
3125          * doing I/O at all.
3126          *
3127          * We could call write_cache_pages(), and then redirty all of
3128          * the pages by calling redirty_page_for_writepage() but that
3129          * would be ugly in the extreme.  So instead we would need to
3130          * replicate parts of the code in the above functions,
3131          * simplifying them because we wouldn't actually intend to
3132          * write out the pages, but rather only collect contiguous
3133          * logical block extents, call the multi-block allocator, and
3134          * then update the buffer heads with the block allocations.
3135          *
3136          * For now, though, we'll cheat by calling filemap_flush(),
3137          * which will map the blocks, and start the I/O, but not
3138          * actually wait for the I/O to complete.
3139          */
3140         return filemap_flush(inode->i_mapping);
3141 }
3142
3143 /*
3144  * bmap() is special.  It gets used by applications such as lilo and by
3145  * the swapper to find the on-disk block of a specific piece of data.
3146  *
3147  * Naturally, this is dangerous if the block concerned is still in the
3148  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3149  * filesystem and enables swap, then they may get a nasty shock when the
3150  * data getting swapped to that swapfile suddenly gets overwritten by
3151  * the original zero's written out previously to the journal and
3152  * awaiting writeback in the kernel's buffer cache.
3153  *
3154  * So, if we see any bmap calls here on a modified, data-journaled file,
3155  * take extra steps to flush any blocks which might be in the cache.
3156  */
3157 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3158 {
3159         struct inode *inode = mapping->host;
3160         journal_t *journal;
3161         sector_t ret = 0;
3162         int err;
3163
3164         inode_lock_shared(inode);
3165         /*
3166          * We can get here for an inline file via the FIBMAP ioctl
3167          */
3168         if (ext4_has_inline_data(inode))
3169                 goto out;
3170
3171         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3172                         test_opt(inode->i_sb, DELALLOC)) {
3173                 /*
3174                  * With delalloc we want to sync the file
3175                  * so that we can make sure we allocate
3176                  * blocks for file
3177                  */
3178                 filemap_write_and_wait(mapping);
3179         }
3180
3181         if (EXT4_JOURNAL(inode) &&
3182             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3183                 /*
3184                  * This is a REALLY heavyweight approach, but the use of
3185                  * bmap on dirty files is expected to be extremely rare:
3186                  * only if we run lilo or swapon on a freshly made file
3187                  * do we expect this to happen.
3188                  *
3189                  * (bmap requires CAP_SYS_RAWIO so this does not
3190                  * represent an unprivileged user DOS attack --- we'd be
3191                  * in trouble if mortal users could trigger this path at
3192                  * will.)
3193                  *
3194                  * NB. EXT4_STATE_JDATA is not set on files other than
3195                  * regular files.  If somebody wants to bmap a directory
3196                  * or symlink and gets confused because the buffer
3197                  * hasn't yet been flushed to disk, they deserve
3198                  * everything they get.
3199                  */
3200
3201                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3202                 journal = EXT4_JOURNAL(inode);
3203                 jbd2_journal_lock_updates(journal);
3204                 err = jbd2_journal_flush(journal, 0);
3205                 jbd2_journal_unlock_updates(journal);
3206
3207                 if (err)
3208                         goto out;
3209         }
3210
3211         ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3212
3213 out:
3214         inode_unlock_shared(inode);
3215         return ret;
3216 }
3217
3218 static int ext4_read_folio(struct file *file, struct folio *folio)
3219 {
3220         struct page *page = &folio->page;
3221         int ret = -EAGAIN;
3222         struct inode *inode = page->mapping->host;
3223
3224         trace_ext4_readpage(page);
3225
3226         if (ext4_has_inline_data(inode))
3227                 ret = ext4_readpage_inline(inode, page);
3228
3229         if (ret == -EAGAIN)
3230                 return ext4_mpage_readpages(inode, NULL, page);
3231
3232         return ret;
3233 }
3234
3235 static void ext4_readahead(struct readahead_control *rac)
3236 {
3237         struct inode *inode = rac->mapping->host;
3238
3239         /* If the file has inline data, no need to do readahead. */
3240         if (ext4_has_inline_data(inode))
3241                 return;
3242
3243         ext4_mpage_readpages(inode, rac, NULL);
3244 }
3245
3246 static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3247                                 size_t length)
3248 {
3249         trace_ext4_invalidate_folio(folio, offset, length);
3250
3251         /* No journalling happens on data buffers when this function is used */
3252         WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3253
3254         block_invalidate_folio(folio, offset, length);
3255 }
3256
3257 static int __ext4_journalled_invalidate_folio(struct folio *folio,
3258                                             size_t offset, size_t length)
3259 {
3260         journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3261
3262         trace_ext4_journalled_invalidate_folio(folio, offset, length);
3263
3264         /*
3265          * If it's a full truncate we just forget about the pending dirtying
3266          */
3267         if (offset == 0 && length == folio_size(folio))
3268                 folio_clear_checked(folio);
3269
3270         return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3271 }
3272
3273 /* Wrapper for aops... */
3274 static void ext4_journalled_invalidate_folio(struct folio *folio,
3275                                            size_t offset,
3276                                            size_t length)
3277 {
3278         WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3279 }
3280
3281 static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3282 {
3283         journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3284
3285         trace_ext4_releasepage(&folio->page);
3286
3287         /* Page has dirty journalled data -> cannot release */
3288         if (folio_test_checked(folio))
3289                 return false;
3290         if (journal)
3291                 return jbd2_journal_try_to_free_buffers(journal, folio);
3292         else
3293                 return try_to_free_buffers(folio);
3294 }
3295
3296 static bool ext4_inode_datasync_dirty(struct inode *inode)
3297 {
3298         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3299
3300         if (journal) {
3301                 if (jbd2_transaction_committed(journal,
3302                         EXT4_I(inode)->i_datasync_tid))
3303                         return false;
3304                 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3305                         return !list_empty(&EXT4_I(inode)->i_fc_list);
3306                 return true;
3307         }
3308
3309         /* Any metadata buffers to write? */
3310         if (!list_empty(&inode->i_mapping->private_list))
3311                 return true;
3312         return inode->i_state & I_DIRTY_DATASYNC;
3313 }
3314
3315 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3316                            struct ext4_map_blocks *map, loff_t offset,
3317                            loff_t length, unsigned int flags)
3318 {
3319         u8 blkbits = inode->i_blkbits;
3320
3321         /*
3322          * Writes that span EOF might trigger an I/O size update on completion,
3323          * so consider them to be dirty for the purpose of O_DSYNC, even if
3324          * there is no other metadata changes being made or are pending.
3325          */
3326         iomap->flags = 0;
3327         if (ext4_inode_datasync_dirty(inode) ||
3328             offset + length > i_size_read(inode))
3329                 iomap->flags |= IOMAP_F_DIRTY;
3330
3331         if (map->m_flags & EXT4_MAP_NEW)
3332                 iomap->flags |= IOMAP_F_NEW;
3333
3334         if (flags & IOMAP_DAX)
3335                 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3336         else
3337                 iomap->bdev = inode->i_sb->s_bdev;
3338         iomap->offset = (u64) map->m_lblk << blkbits;
3339         iomap->length = (u64) map->m_len << blkbits;
3340
3341         if ((map->m_flags & EXT4_MAP_MAPPED) &&
3342             !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3343                 iomap->flags |= IOMAP_F_MERGED;
3344
3345         /*
3346          * Flags passed to ext4_map_blocks() for direct I/O writes can result
3347          * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3348          * set. In order for any allocated unwritten extents to be converted
3349          * into written extents correctly within the ->end_io() handler, we
3350          * need to ensure that the iomap->type is set appropriately. Hence, the
3351          * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3352          * been set first.
3353          */
3354         if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3355                 iomap->type = IOMAP_UNWRITTEN;
3356                 iomap->addr = (u64) map->m_pblk << blkbits;
3357                 if (flags & IOMAP_DAX)
3358                         iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3359         } else if (map->m_flags & EXT4_MAP_MAPPED) {
3360                 iomap->type = IOMAP_MAPPED;
3361                 iomap->addr = (u64) map->m_pblk << blkbits;
3362                 if (flags & IOMAP_DAX)
3363                         iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3364         } else {
3365                 iomap->type = IOMAP_HOLE;
3366                 iomap->addr = IOMAP_NULL_ADDR;
3367         }
3368 }
3369
3370 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3371                             unsigned int flags)
3372 {
3373         handle_t *handle;
3374         u8 blkbits = inode->i_blkbits;
3375         int ret, dio_credits, m_flags = 0, retries = 0;
3376
3377         /*
3378          * Trim the mapping request to the maximum value that we can map at
3379          * once for direct I/O.
3380          */
3381         if (map->m_len > DIO_MAX_BLOCKS)
3382                 map->m_len = DIO_MAX_BLOCKS;
3383         dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3384
3385 retry:
3386         /*
3387          * Either we allocate blocks and then don't get an unwritten extent, so
3388          * in that case we have reserved enough credits. Or, the blocks are
3389          * already allocated and unwritten. In that case, the extent conversion
3390          * fits into the credits as well.
3391          */
3392         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3393         if (IS_ERR(handle))
3394                 return PTR_ERR(handle);
3395
3396         /*
3397          * DAX and direct I/O are the only two operations that are currently
3398          * supported with IOMAP_WRITE.
3399          */
3400         WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3401         if (flags & IOMAP_DAX)
3402                 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3403         /*
3404          * We use i_size instead of i_disksize here because delalloc writeback
3405          * can complete at any point during the I/O and subsequently push the
3406          * i_disksize out to i_size. This could be beyond where direct I/O is
3407          * happening and thus expose allocated blocks to direct I/O reads.
3408          */
3409         else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3410                 m_flags = EXT4_GET_BLOCKS_CREATE;
3411         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3412                 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3413
3414         ret = ext4_map_blocks(handle, inode, map, m_flags);
3415
3416         /*
3417          * We cannot fill holes in indirect tree based inodes as that could
3418          * expose stale data in the case of a crash. Use the magic error code
3419          * to fallback to buffered I/O.
3420          */
3421         if (!m_flags && !ret)
3422                 ret = -ENOTBLK;
3423
3424         ext4_journal_stop(handle);
3425         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3426                 goto retry;
3427
3428         return ret;
3429 }
3430
3431
3432 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3433                 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3434 {
3435         int ret;
3436         struct ext4_map_blocks map;
3437         u8 blkbits = inode->i_blkbits;
3438
3439         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3440                 return -EINVAL;
3441
3442         if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3443                 return -ERANGE;
3444
3445         /*
3446          * Calculate the first and last logical blocks respectively.
3447          */
3448         map.m_lblk = offset >> blkbits;
3449         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3450                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3451
3452         if (flags & IOMAP_WRITE) {
3453                 /*
3454                  * We check here if the blocks are already allocated, then we
3455                  * don't need to start a journal txn and we can directly return
3456                  * the mapping information. This could boost performance
3457                  * especially in multi-threaded overwrite requests.
3458                  */
3459                 if (offset + length <= i_size_read(inode)) {
3460                         ret = ext4_map_blocks(NULL, inode, &map, 0);
3461                         if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3462                                 goto out;
3463                 }
3464                 ret = ext4_iomap_alloc(inode, &map, flags);
3465         } else {
3466                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3467         }
3468
3469         if (ret < 0)
3470                 return ret;
3471 out:
3472         /*
3473          * When inline encryption is enabled, sometimes I/O to an encrypted file
3474          * has to be broken up to guarantee DUN contiguity.  Handle this by
3475          * limiting the length of the mapping returned.
3476          */
3477         map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3478
3479         ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3480
3481         return 0;
3482 }
3483
3484 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3485                 loff_t length, unsigned flags, struct iomap *iomap,
3486                 struct iomap *srcmap)
3487 {
3488         int ret;
3489
3490         /*
3491          * Even for writes we don't need to allocate blocks, so just pretend
3492          * we are reading to save overhead of starting a transaction.
3493          */
3494         flags &= ~IOMAP_WRITE;
3495         ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3496         WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3497         return ret;
3498 }
3499
3500 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3501                           ssize_t written, unsigned flags, struct iomap *iomap)
3502 {
3503         /*
3504          * Check to see whether an error occurred while writing out the data to
3505          * the allocated blocks. If so, return the magic error code so that we
3506          * fallback to buffered I/O and attempt to complete the remainder of
3507          * the I/O. Any blocks that may have been allocated in preparation for
3508          * the direct I/O will be reused during buffered I/O.
3509          */
3510         if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3511                 return -ENOTBLK;
3512
3513         return 0;
3514 }
3515
3516 const struct iomap_ops ext4_iomap_ops = {
3517         .iomap_begin            = ext4_iomap_begin,
3518         .iomap_end              = ext4_iomap_end,
3519 };
3520
3521 const struct iomap_ops ext4_iomap_overwrite_ops = {
3522         .iomap_begin            = ext4_iomap_overwrite_begin,
3523         .iomap_end              = ext4_iomap_end,
3524 };
3525
3526 static bool ext4_iomap_is_delalloc(struct inode *inode,
3527                                    struct ext4_map_blocks *map)
3528 {
3529         struct extent_status es;
3530         ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3531
3532         ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3533                                   map->m_lblk, end, &es);
3534
3535         if (!es.es_len || es.es_lblk > end)
3536                 return false;
3537
3538         if (es.es_lblk > map->m_lblk) {
3539                 map->m_len = es.es_lblk - map->m_lblk;
3540                 return false;
3541         }
3542
3543         offset = map->m_lblk - es.es_lblk;
3544         map->m_len = es.es_len - offset;
3545
3546         return true;
3547 }
3548
3549 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3550                                    loff_t length, unsigned int flags,
3551                                    struct iomap *iomap, struct iomap *srcmap)
3552 {
3553         int ret;
3554         bool delalloc = false;
3555         struct ext4_map_blocks map;
3556         u8 blkbits = inode->i_blkbits;
3557
3558         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3559                 return -EINVAL;
3560
3561         if (ext4_has_inline_data(inode)) {
3562                 ret = ext4_inline_data_iomap(inode, iomap);
3563                 if (ret != -EAGAIN) {
3564                         if (ret == 0 && offset >= iomap->length)
3565                                 ret = -ENOENT;
3566                         return ret;
3567                 }
3568         }
3569
3570         /*
3571          * Calculate the first and last logical block respectively.
3572          */
3573         map.m_lblk = offset >> blkbits;
3574         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3575                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3576
3577         /*
3578          * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3579          * So handle it here itself instead of querying ext4_map_blocks().
3580          * Since ext4_map_blocks() will warn about it and will return
3581          * -EIO error.
3582          */
3583         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3584                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3585
3586                 if (offset >= sbi->s_bitmap_maxbytes) {
3587                         map.m_flags = 0;
3588                         goto set_iomap;
3589                 }
3590         }
3591
3592         ret = ext4_map_blocks(NULL, inode, &map, 0);
3593         if (ret < 0)
3594                 return ret;
3595         if (ret == 0)
3596                 delalloc = ext4_iomap_is_delalloc(inode, &map);
3597
3598 set_iomap:
3599         ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3600         if (delalloc && iomap->type == IOMAP_HOLE)
3601                 iomap->type = IOMAP_DELALLOC;
3602
3603         return 0;
3604 }
3605
3606 const struct iomap_ops ext4_iomap_report_ops = {
3607         .iomap_begin = ext4_iomap_begin_report,
3608 };
3609
3610 /*
3611  * Whenever the folio is being dirtied, corresponding buffers should already
3612  * be attached to the transaction (we take care of this in ext4_page_mkwrite()
3613  * and ext4_write_begin()). However we cannot move buffers to dirty transaction
3614  * lists here because ->dirty_folio is called under VFS locks and the folio
3615  * is not necessarily locked.
3616  *
3617  * We cannot just dirty the folio and leave attached buffers clean, because the
3618  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3619  * or jbddirty because all the journalling code will explode.
3620  *
3621  * So what we do is to mark the folio "pending dirty" and next time writepage
3622  * is called, propagate that into the buffers appropriately.
3623  */
3624 static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3625                 struct folio *folio)
3626 {
3627         WARN_ON_ONCE(!folio_buffers(folio));
3628         folio_set_checked(folio);
3629         return filemap_dirty_folio(mapping, folio);
3630 }
3631
3632 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3633 {
3634         WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3635         WARN_ON_ONCE(!folio_buffers(folio));
3636         return block_dirty_folio(mapping, folio);
3637 }
3638
3639 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3640                                     struct file *file, sector_t *span)
3641 {
3642         return iomap_swapfile_activate(sis, file, span,
3643                                        &ext4_iomap_report_ops);
3644 }
3645
3646 static const struct address_space_operations ext4_aops = {
3647         .read_folio             = ext4_read_folio,
3648         .readahead              = ext4_readahead,
3649         .writepage              = ext4_writepage,
3650         .writepages             = ext4_writepages,
3651         .write_begin            = ext4_write_begin,
3652         .write_end              = ext4_write_end,
3653         .dirty_folio            = ext4_dirty_folio,
3654         .bmap                   = ext4_bmap,
3655         .invalidate_folio       = ext4_invalidate_folio,
3656         .release_folio          = ext4_release_folio,
3657         .direct_IO              = noop_direct_IO,
3658         .migrate_folio          = buffer_migrate_folio,
3659         .is_partially_uptodate  = block_is_partially_uptodate,
3660         .error_remove_page      = generic_error_remove_page,
3661         .swap_activate          = ext4_iomap_swap_activate,
3662 };
3663
3664 static const struct address_space_operations ext4_journalled_aops = {
3665         .read_folio             = ext4_read_folio,
3666         .readahead              = ext4_readahead,
3667         .writepage              = ext4_writepage,
3668         .writepages             = ext4_writepages,
3669         .write_begin            = ext4_write_begin,
3670         .write_end              = ext4_journalled_write_end,
3671         .dirty_folio            = ext4_journalled_dirty_folio,
3672         .bmap                   = ext4_bmap,
3673         .invalidate_folio       = ext4_journalled_invalidate_folio,
3674         .release_folio          = ext4_release_folio,
3675         .direct_IO              = noop_direct_IO,
3676         .is_partially_uptodate  = block_is_partially_uptodate,
3677         .error_remove_page      = generic_error_remove_page,
3678         .swap_activate          = ext4_iomap_swap_activate,
3679 };
3680
3681 static const struct address_space_operations ext4_da_aops = {
3682         .read_folio             = ext4_read_folio,
3683         .readahead              = ext4_readahead,
3684         .writepage              = ext4_writepage,
3685         .writepages             = ext4_writepages,
3686         .write_begin            = ext4_da_write_begin,
3687         .write_end              = ext4_da_write_end,
3688         .dirty_folio            = ext4_dirty_folio,
3689         .bmap                   = ext4_bmap,
3690         .invalidate_folio       = ext4_invalidate_folio,
3691         .release_folio          = ext4_release_folio,
3692         .direct_IO              = noop_direct_IO,
3693         .migrate_folio          = buffer_migrate_folio,
3694         .is_partially_uptodate  = block_is_partially_uptodate,
3695         .error_remove_page      = generic_error_remove_page,
3696         .swap_activate          = ext4_iomap_swap_activate,
3697 };
3698
3699 static const struct address_space_operations ext4_dax_aops = {
3700         .writepages             = ext4_dax_writepages,
3701         .direct_IO              = noop_direct_IO,
3702         .dirty_folio            = noop_dirty_folio,
3703         .bmap                   = ext4_bmap,
3704         .swap_activate          = ext4_iomap_swap_activate,
3705 };
3706
3707 void ext4_set_aops(struct inode *inode)
3708 {
3709         switch (ext4_inode_journal_mode(inode)) {
3710         case EXT4_INODE_ORDERED_DATA_MODE:
3711         case EXT4_INODE_WRITEBACK_DATA_MODE:
3712                 break;
3713         case EXT4_INODE_JOURNAL_DATA_MODE:
3714                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3715                 return;
3716         default:
3717                 BUG();
3718         }
3719         if (IS_DAX(inode))
3720                 inode->i_mapping->a_ops = &ext4_dax_aops;
3721         else if (test_opt(inode->i_sb, DELALLOC))
3722                 inode->i_mapping->a_ops = &ext4_da_aops;
3723         else
3724                 inode->i_mapping->a_ops = &ext4_aops;
3725 }
3726
3727 static int __ext4_block_zero_page_range(handle_t *handle,
3728                 struct address_space *mapping, loff_t from, loff_t length)
3729 {
3730         ext4_fsblk_t index = from >> PAGE_SHIFT;
3731         unsigned offset = from & (PAGE_SIZE-1);
3732         unsigned blocksize, pos;
3733         ext4_lblk_t iblock;
3734         struct inode *inode = mapping->host;
3735         struct buffer_head *bh;
3736         struct page *page;
3737         int err = 0;
3738
3739         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3740                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3741         if (!page)
3742                 return -ENOMEM;
3743
3744         blocksize = inode->i_sb->s_blocksize;
3745
3746         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3747
3748         if (!page_has_buffers(page))
3749                 create_empty_buffers(page, blocksize, 0);
3750
3751         /* Find the buffer that contains "offset" */
3752         bh = page_buffers(page);
3753         pos = blocksize;
3754         while (offset >= pos) {
3755                 bh = bh->b_this_page;
3756                 iblock++;
3757                 pos += blocksize;
3758         }
3759         if (buffer_freed(bh)) {
3760                 BUFFER_TRACE(bh, "freed: skip");
3761                 goto unlock;
3762         }
3763         if (!buffer_mapped(bh)) {
3764                 BUFFER_TRACE(bh, "unmapped");
3765                 ext4_get_block(inode, iblock, bh, 0);
3766                 /* unmapped? It's a hole - nothing to do */
3767                 if (!buffer_mapped(bh)) {
3768                         BUFFER_TRACE(bh, "still unmapped");
3769                         goto unlock;
3770                 }
3771         }
3772
3773         /* Ok, it's mapped. Make sure it's up-to-date */
3774         if (PageUptodate(page))
3775                 set_buffer_uptodate(bh);
3776
3777         if (!buffer_uptodate(bh)) {
3778                 err = ext4_read_bh_lock(bh, 0, true);
3779                 if (err)
3780                         goto unlock;
3781                 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3782                         /* We expect the key to be set. */
3783                         BUG_ON(!fscrypt_has_encryption_key(inode));
3784                         err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3785                                                                bh_offset(bh));
3786                         if (err) {
3787                                 clear_buffer_uptodate(bh);
3788                                 goto unlock;
3789                         }
3790                 }
3791         }
3792         if (ext4_should_journal_data(inode)) {
3793                 BUFFER_TRACE(bh, "get write access");
3794                 err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3795                                                     EXT4_JTR_NONE);
3796                 if (err)
3797                         goto unlock;
3798         }
3799         zero_user(page, offset, length);
3800         BUFFER_TRACE(bh, "zeroed end of block");
3801
3802         if (ext4_should_journal_data(inode)) {
3803                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3804         } else {
3805                 err = 0;
3806                 mark_buffer_dirty(bh);
3807                 if (ext4_should_order_data(inode))
3808                         err = ext4_jbd2_inode_add_write(handle, inode, from,
3809                                         length);
3810         }
3811
3812 unlock:
3813         unlock_page(page);
3814         put_page(page);
3815         return err;
3816 }
3817
3818 /*
3819  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3820  * starting from file offset 'from'.  The range to be zero'd must
3821  * be contained with in one block.  If the specified range exceeds
3822  * the end of the block it will be shortened to end of the block
3823  * that corresponds to 'from'
3824  */
3825 static int ext4_block_zero_page_range(handle_t *handle,
3826                 struct address_space *mapping, loff_t from, loff_t length)
3827 {
3828         struct inode *inode = mapping->host;
3829         unsigned offset = from & (PAGE_SIZE-1);
3830         unsigned blocksize = inode->i_sb->s_blocksize;
3831         unsigned max = blocksize - (offset & (blocksize - 1));
3832
3833         /*
3834          * correct length if it does not fall between
3835          * 'from' and the end of the block
3836          */
3837         if (length > max || length < 0)
3838                 length = max;
3839
3840         if (IS_DAX(inode)) {
3841                 return dax_zero_range(inode, from, length, NULL,
3842                                       &ext4_iomap_ops);
3843         }
3844         return __ext4_block_zero_page_range(handle, mapping, from, length);
3845 }
3846
3847 /*
3848  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3849  * up to the end of the block which corresponds to `from'.
3850  * This required during truncate. We need to physically zero the tail end
3851  * of that block so it doesn't yield old data if the file is later grown.
3852  */
3853 static int ext4_block_truncate_page(handle_t *handle,
3854                 struct address_space *mapping, loff_t from)
3855 {
3856         unsigned offset = from & (PAGE_SIZE-1);
3857         unsigned length;
3858         unsigned blocksize;
3859         struct inode *inode = mapping->host;
3860
3861         /* If we are processing an encrypted inode during orphan list handling */
3862         if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3863                 return 0;
3864
3865         blocksize = inode->i_sb->s_blocksize;
3866         length = blocksize - (offset & (blocksize - 1));
3867
3868         return ext4_block_zero_page_range(handle, mapping, from, length);
3869 }
3870
3871 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3872                              loff_t lstart, loff_t length)
3873 {
3874         struct super_block *sb = inode->i_sb;
3875         struct address_space *mapping = inode->i_mapping;
3876         unsigned partial_start, partial_end;
3877         ext4_fsblk_t start, end;
3878         loff_t byte_end = (lstart + length - 1);
3879         int err = 0;
3880
3881         partial_start = lstart & (sb->s_blocksize - 1);
3882         partial_end = byte_end & (sb->s_blocksize - 1);
3883
3884         start = lstart >> sb->s_blocksize_bits;
3885         end = byte_end >> sb->s_blocksize_bits;
3886
3887         /* Handle partial zero within the single block */
3888         if (start == end &&
3889             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3890                 err = ext4_block_zero_page_range(handle, mapping,
3891                                                  lstart, length);
3892                 return err;
3893         }
3894         /* Handle partial zero out on the start of the range */
3895         if (partial_start) {
3896                 err = ext4_block_zero_page_range(handle, mapping,
3897                                                  lstart, sb->s_blocksize);
3898                 if (err)
3899                         return err;
3900         }
3901         /* Handle partial zero out on the end of the range */
3902         if (partial_end != sb->s_blocksize - 1)
3903                 err = ext4_block_zero_page_range(handle, mapping,
3904                                                  byte_end - partial_end,
3905                                                  partial_end + 1);
3906         return err;
3907 }
3908
3909 int ext4_can_truncate(struct inode *inode)
3910 {
3911         if (S_ISREG(inode->i_mode))
3912                 return 1;
3913         if (S_ISDIR(inode->i_mode))
3914                 return 1;
3915         if (S_ISLNK(inode->i_mode))
3916                 return !ext4_inode_is_fast_symlink(inode);
3917         return 0;
3918 }
3919
3920 /*
3921  * We have to make sure i_disksize gets properly updated before we truncate
3922  * page cache due to hole punching or zero range. Otherwise i_disksize update
3923  * can get lost as it may have been postponed to submission of writeback but
3924  * that will never happen after we truncate page cache.
3925  */
3926 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3927                                       loff_t len)
3928 {
3929         handle_t *handle;
3930         int ret;
3931
3932         loff_t size = i_size_read(inode);
3933
3934         WARN_ON(!inode_is_locked(inode));
3935         if (offset > size || offset + len < size)
3936                 return 0;
3937
3938         if (EXT4_I(inode)->i_disksize >= size)
3939                 return 0;
3940
3941         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3942         if (IS_ERR(handle))
3943                 return PTR_ERR(handle);
3944         ext4_update_i_disksize(inode, size);
3945         ret = ext4_mark_inode_dirty(handle, inode);
3946         ext4_journal_stop(handle);
3947
3948         return ret;
3949 }
3950
3951 static void ext4_wait_dax_page(struct inode *inode)
3952 {
3953         filemap_invalidate_unlock(inode->i_mapping);
3954         schedule();
3955         filemap_invalidate_lock(inode->i_mapping);
3956 }
3957
3958 int ext4_break_layouts(struct inode *inode)
3959 {
3960         struct page *page;
3961         int error;
3962
3963         if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3964                 return -EINVAL;
3965
3966         do {
3967                 page = dax_layout_busy_page(inode->i_mapping);
3968                 if (!page)
3969                         return 0;
3970
3971                 error = ___wait_var_event(&page->_refcount,
3972                                 atomic_read(&page->_refcount) == 1,
3973                                 TASK_INTERRUPTIBLE, 0, 0,
3974                                 ext4_wait_dax_page(inode));
3975         } while (error == 0);
3976
3977         return error;
3978 }
3979
3980 /*
3981  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3982  * associated with the given offset and length
3983  *
3984  * @inode:  File inode
3985  * @offset: The offset where the hole will begin
3986  * @len:    The length of the hole
3987  *
3988  * Returns: 0 on success or negative on failure
3989  */
3990
3991 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3992 {
3993         struct inode *inode = file_inode(file);
3994         struct super_block *sb = inode->i_sb;
3995         ext4_lblk_t first_block, stop_block;
3996         struct address_space *mapping = inode->i_mapping;
3997         loff_t first_block_offset, last_block_offset, max_length;
3998         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3999         handle_t *handle;
4000         unsigned int credits;
4001         int ret = 0, ret2 = 0;
4002
4003         trace_ext4_punch_hole(inode, offset, length, 0);
4004
4005         /*
4006          * Write out all dirty pages to avoid race conditions
4007          * Then release them.
4008          */
4009         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4010                 ret = filemap_write_and_wait_range(mapping, offset,
4011                                                    offset + length - 1);
4012                 if (ret)
4013                         return ret;
4014         }
4015
4016         inode_lock(inode);
4017
4018         /* No need to punch hole beyond i_size */
4019         if (offset >= inode->i_size)
4020                 goto out_mutex;
4021
4022         /*
4023          * If the hole extends beyond i_size, set the hole
4024          * to end after the page that contains i_size
4025          */
4026         if (offset + length > inode->i_size) {
4027                 length = inode->i_size +
4028                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4029                    offset;
4030         }
4031
4032         /*
4033          * For punch hole the length + offset needs to be within one block
4034          * before last range. Adjust the length if it goes beyond that limit.
4035          */
4036         max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
4037         if (offset + length > max_length)
4038                 length = max_length - offset;
4039
4040         if (offset & (sb->s_blocksize - 1) ||
4041             (offset + length) & (sb->s_blocksize - 1)) {
4042                 /*
4043                  * Attach jinode to inode for jbd2 if we do any zeroing of
4044                  * partial block
4045                  */
4046                 ret = ext4_inode_attach_jinode(inode);
4047                 if (ret < 0)
4048                         goto out_mutex;
4049
4050         }
4051
4052         /* Wait all existing dio workers, newcomers will block on i_rwsem */
4053         inode_dio_wait(inode);
4054
4055         ret = file_modified(file);
4056         if (ret)
4057                 goto out_mutex;
4058
4059         /*
4060          * Prevent page faults from reinstantiating pages we have released from
4061          * page cache.
4062          */
4063         filemap_invalidate_lock(mapping);
4064
4065         ret = ext4_break_layouts(inode);
4066         if (ret)
4067                 goto out_dio;
4068
4069         first_block_offset = round_up(offset, sb->s_blocksize);
4070         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4071
4072         /* Now release the pages and zero block aligned part of pages*/
4073         if (last_block_offset > first_block_offset) {
4074                 ret = ext4_update_disksize_before_punch(inode, offset, length);
4075                 if (ret)
4076                         goto out_dio;
4077                 truncate_pagecache_range(inode, first_block_offset,
4078                                          last_block_offset);
4079         }
4080
4081         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4082                 credits = ext4_writepage_trans_blocks(inode);
4083         else
4084                 credits = ext4_blocks_for_truncate(inode);
4085         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4086         if (IS_ERR(handle)) {
4087                 ret = PTR_ERR(handle);
4088                 ext4_std_error(sb, ret);
4089                 goto out_dio;
4090         }
4091
4092         ret = ext4_zero_partial_blocks(handle, inode, offset,
4093                                        length);
4094         if (ret)
4095                 goto out_stop;
4096
4097         first_block = (offset + sb->s_blocksize - 1) >>
4098                 EXT4_BLOCK_SIZE_BITS(sb);
4099         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4100
4101         /* If there are blocks to remove, do it */
4102         if (stop_block > first_block) {
4103
4104                 down_write(&EXT4_I(inode)->i_data_sem);
4105                 ext4_discard_preallocations(inode, 0);
4106
4107                 ret = ext4_es_remove_extent(inode, first_block,
4108                                             stop_block - first_block);
4109                 if (ret) {
4110                         up_write(&EXT4_I(inode)->i_data_sem);
4111                         goto out_stop;
4112                 }
4113
4114                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4115                         ret = ext4_ext_remove_space(inode, first_block,
4116                                                     stop_block - 1);
4117                 else
4118                         ret = ext4_ind_remove_space(handle, inode, first_block,
4119                                                     stop_block);
4120
4121                 up_write(&EXT4_I(inode)->i_data_sem);
4122         }
4123         ext4_fc_track_range(handle, inode, first_block, stop_block);
4124         if (IS_SYNC(inode))
4125                 ext4_handle_sync(handle);
4126
4127         inode->i_mtime = inode->i_ctime = current_time(inode);
4128         ret2 = ext4_mark_inode_dirty(handle, inode);
4129         if (unlikely(ret2))
4130                 ret = ret2;
4131         if (ret >= 0)
4132                 ext4_update_inode_fsync_trans(handle, inode, 1);
4133 out_stop:
4134         ext4_journal_stop(handle);
4135 out_dio:
4136         filemap_invalidate_unlock(mapping);
4137 out_mutex:
4138         inode_unlock(inode);
4139         return ret;
4140 }
4141
4142 int ext4_inode_attach_jinode(struct inode *inode)
4143 {
4144         struct ext4_inode_info *ei = EXT4_I(inode);
4145         struct jbd2_inode *jinode;
4146
4147         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4148                 return 0;
4149
4150         jinode = jbd2_alloc_inode(GFP_KERNEL);
4151         spin_lock(&inode->i_lock);
4152         if (!ei->jinode) {
4153                 if (!jinode) {
4154                         spin_unlock(&inode->i_lock);
4155                         return -ENOMEM;
4156                 }
4157                 ei->jinode = jinode;
4158                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4159                 jinode = NULL;
4160         }
4161         spin_unlock(&inode->i_lock);
4162         if (unlikely(jinode != NULL))
4163                 jbd2_free_inode(jinode);
4164         return 0;
4165 }
4166
4167 /*
4168  * ext4_truncate()
4169  *
4170  * We block out ext4_get_block() block instantiations across the entire
4171  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4172  * simultaneously on behalf of the same inode.
4173  *
4174  * As we work through the truncate and commit bits of it to the journal there
4175  * is one core, guiding principle: the file's tree must always be consistent on
4176  * disk.  We must be able to restart the truncate after a crash.
4177  *
4178  * The file's tree may be transiently inconsistent in memory (although it
4179  * probably isn't), but whenever we close off and commit a journal transaction,
4180  * the contents of (the filesystem + the journal) must be consistent and
4181  * restartable.  It's pretty simple, really: bottom up, right to left (although
4182  * left-to-right works OK too).
4183  *
4184  * Note that at recovery time, journal replay occurs *before* the restart of
4185  * truncate against the orphan inode list.
4186  *
4187  * The committed inode has the new, desired i_size (which is the same as
4188  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4189  * that this inode's truncate did not complete and it will again call
4190  * ext4_truncate() to have another go.  So there will be instantiated blocks
4191  * to the right of the truncation point in a crashed ext4 filesystem.  But
4192  * that's fine - as long as they are linked from the inode, the post-crash
4193  * ext4_truncate() run will find them and release them.
4194  */
4195 int ext4_truncate(struct inode *inode)
4196 {
4197         struct ext4_inode_info *ei = EXT4_I(inode);
4198         unsigned int credits;
4199         int err = 0, err2;
4200         handle_t *handle;
4201         struct address_space *mapping = inode->i_mapping;
4202
4203         /*
4204          * There is a possibility that we're either freeing the inode
4205          * or it's a completely new inode. In those cases we might not
4206          * have i_rwsem locked because it's not necessary.
4207          */
4208         if (!(inode->i_state & (I_NEW|I_FREEING)))
4209                 WARN_ON(!inode_is_locked(inode));
4210         trace_ext4_truncate_enter(inode);
4211
4212         if (!ext4_can_truncate(inode))
4213                 goto out_trace;
4214
4215         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4216                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4217
4218         if (ext4_has_inline_data(inode)) {
4219                 int has_inline = 1;
4220
4221                 err = ext4_inline_data_truncate(inode, &has_inline);
4222                 if (err || has_inline)
4223                         goto out_trace;
4224         }
4225
4226         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4227         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4228                 if (ext4_inode_attach_jinode(inode) < 0)
4229                         goto out_trace;
4230         }
4231
4232         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4233                 credits = ext4_writepage_trans_blocks(inode);
4234         else
4235                 credits = ext4_blocks_for_truncate(inode);
4236
4237         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4238         if (IS_ERR(handle)) {
4239                 err = PTR_ERR(handle);
4240                 goto out_trace;
4241         }
4242
4243         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4244                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4245
4246         /*
4247          * We add the inode to the orphan list, so that if this
4248          * truncate spans multiple transactions, and we crash, we will
4249          * resume the truncate when the filesystem recovers.  It also
4250          * marks the inode dirty, to catch the new size.
4251          *
4252          * Implication: the file must always be in a sane, consistent
4253          * truncatable state while each transaction commits.
4254          */
4255         err = ext4_orphan_add(handle, inode);
4256         if (err)
4257                 goto out_stop;
4258
4259         down_write(&EXT4_I(inode)->i_data_sem);
4260
4261         ext4_discard_preallocations(inode, 0);
4262
4263         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4264                 err = ext4_ext_truncate(handle, inode);
4265         else
4266                 ext4_ind_truncate(handle, inode);
4267
4268         up_write(&ei->i_data_sem);
4269         if (err)
4270                 goto out_stop;
4271
4272         if (IS_SYNC(inode))
4273                 ext4_handle_sync(handle);
4274
4275 out_stop:
4276         /*
4277          * If this was a simple ftruncate() and the file will remain alive,
4278          * then we need to clear up the orphan record which we created above.
4279          * However, if this was a real unlink then we were called by
4280          * ext4_evict_inode(), and we allow that function to clean up the
4281          * orphan info for us.
4282          */
4283         if (inode->i_nlink)
4284                 ext4_orphan_del(handle, inode);
4285
4286         inode->i_mtime = inode->i_ctime = current_time(inode);
4287         err2 = ext4_mark_inode_dirty(handle, inode);
4288         if (unlikely(err2 && !err))
4289                 err = err2;
4290         ext4_journal_stop(handle);
4291
4292 out_trace:
4293         trace_ext4_truncate_exit(inode);
4294         return err;
4295 }
4296
4297 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4298 {
4299         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4300                 return inode_peek_iversion_raw(inode);
4301         else
4302                 return inode_peek_iversion(inode);
4303 }
4304
4305 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4306                                  struct ext4_inode_info *ei)
4307 {
4308         struct inode *inode = &(ei->vfs_inode);
4309         u64 i_blocks = READ_ONCE(inode->i_blocks);
4310         struct super_block *sb = inode->i_sb;
4311
4312         if (i_blocks <= ~0U) {
4313                 /*
4314                  * i_blocks can be represented in a 32 bit variable
4315                  * as multiple of 512 bytes
4316                  */
4317                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4318                 raw_inode->i_blocks_high = 0;
4319                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4320                 return 0;
4321         }
4322
4323         /*
4324          * This should never happen since sb->s_maxbytes should not have
4325          * allowed this, sb->s_maxbytes was set according to the huge_file
4326          * feature in ext4_fill_super().
4327          */
4328         if (!ext4_has_feature_huge_file(sb))
4329                 return -EFSCORRUPTED;
4330
4331         if (i_blocks <= 0xffffffffffffULL) {
4332                 /*
4333                  * i_blocks can be represented in a 48 bit variable
4334                  * as multiple of 512 bytes
4335                  */
4336                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4337                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4338                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4339         } else {
4340                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4341                 /* i_block is stored in file system block size */
4342                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4343                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4344                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4345         }
4346         return 0;
4347 }
4348
4349 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4350 {
4351         struct ext4_inode_info *ei = EXT4_I(inode);
4352         uid_t i_uid;
4353         gid_t i_gid;
4354         projid_t i_projid;
4355         int block;
4356         int err;
4357
4358         err = ext4_inode_blocks_set(raw_inode, ei);
4359
4360         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4361         i_uid = i_uid_read(inode);
4362         i_gid = i_gid_read(inode);
4363         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4364         if (!(test_opt(inode->i_sb, NO_UID32))) {
4365                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4366                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4367                 /*
4368                  * Fix up interoperability with old kernels. Otherwise,
4369                  * old inodes get re-used with the upper 16 bits of the
4370                  * uid/gid intact.
4371                  */
4372                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4373                         raw_inode->i_uid_high = 0;
4374                         raw_inode->i_gid_high = 0;
4375                 } else {
4376                         raw_inode->i_uid_high =
4377                                 cpu_to_le16(high_16_bits(i_uid));
4378                         raw_inode->i_gid_high =
4379                                 cpu_to_le16(high_16_bits(i_gid));
4380                 }
4381         } else {
4382                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4383                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4384                 raw_inode->i_uid_high = 0;
4385                 raw_inode->i_gid_high = 0;
4386         }
4387         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4388
4389         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4390         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4391         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4392         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4393
4394         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4395         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4396         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4397                 raw_inode->i_file_acl_high =
4398                         cpu_to_le16(ei->i_file_acl >> 32);
4399         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4400         ext4_isize_set(raw_inode, ei->i_disksize);
4401
4402         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4403         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4404                 if (old_valid_dev(inode->i_rdev)) {
4405                         raw_inode->i_block[0] =
4406                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4407                         raw_inode->i_block[1] = 0;
4408                 } else {
4409                         raw_inode->i_block[0] = 0;
4410                         raw_inode->i_block[1] =
4411                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4412                         raw_inode->i_block[2] = 0;
4413                 }
4414         } else if (!ext4_has_inline_data(inode)) {
4415                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4416                         raw_inode->i_block[block] = ei->i_data[block];
4417         }
4418
4419         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4420                 u64 ivers = ext4_inode_peek_iversion(inode);
4421
4422                 raw_inode->i_disk_version = cpu_to_le32(ivers);
4423                 if (ei->i_extra_isize) {
4424                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4425                                 raw_inode->i_version_hi =
4426                                         cpu_to_le32(ivers >> 32);
4427                         raw_inode->i_extra_isize =
4428                                 cpu_to_le16(ei->i_extra_isize);
4429                 }
4430         }
4431
4432         if (i_projid != EXT4_DEF_PROJID &&
4433             !ext4_has_feature_project(inode->i_sb))
4434                 err = err ?: -EFSCORRUPTED;
4435
4436         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4437             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4438                 raw_inode->i_projid = cpu_to_le32(i_projid);
4439
4440         ext4_inode_csum_set(inode, raw_inode, ei);
4441         return err;
4442 }
4443
4444 /*
4445  * ext4_get_inode_loc returns with an extra refcount against the inode's
4446  * underlying buffer_head on success. If we pass 'inode' and it does not
4447  * have in-inode xattr, we have all inode data in memory that is needed
4448  * to recreate the on-disk version of this inode.
4449  */
4450 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4451                                 struct inode *inode, struct ext4_iloc *iloc,
4452                                 ext4_fsblk_t *ret_block)
4453 {
4454         struct ext4_group_desc  *gdp;
4455         struct buffer_head      *bh;
4456         ext4_fsblk_t            block;
4457         struct blk_plug         plug;
4458         int                     inodes_per_block, inode_offset;
4459
4460         iloc->bh = NULL;
4461         if (ino < EXT4_ROOT_INO ||
4462             ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4463                 return -EFSCORRUPTED;
4464
4465         iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4466         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4467         if (!gdp)
4468                 return -EIO;
4469
4470         /*
4471          * Figure out the offset within the block group inode table
4472          */
4473         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4474         inode_offset = ((ino - 1) %
4475                         EXT4_INODES_PER_GROUP(sb));
4476         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4477         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4478
4479         bh = sb_getblk(sb, block);
4480         if (unlikely(!bh))
4481                 return -ENOMEM;
4482         if (ext4_buffer_uptodate(bh))
4483                 goto has_buffer;
4484
4485         lock_buffer(bh);
4486         if (ext4_buffer_uptodate(bh)) {
4487                 /* Someone brought it uptodate while we waited */
4488                 unlock_buffer(bh);
4489                 goto has_buffer;
4490         }
4491
4492         /*
4493          * If we have all information of the inode in memory and this
4494          * is the only valid inode in the block, we need not read the
4495          * block.
4496          */
4497         if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4498                 struct buffer_head *bitmap_bh;
4499                 int i, start;
4500
4501                 start = inode_offset & ~(inodes_per_block - 1);
4502
4503                 /* Is the inode bitmap in cache? */
4504                 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4505                 if (unlikely(!bitmap_bh))
4506                         goto make_io;
4507
4508                 /*
4509                  * If the inode bitmap isn't in cache then the
4510                  * optimisation may end up performing two reads instead
4511                  * of one, so skip it.
4512                  */
4513                 if (!buffer_uptodate(bitmap_bh)) {
4514                         brelse(bitmap_bh);
4515                         goto make_io;
4516                 }
4517                 for (i = start; i < start + inodes_per_block; i++) {
4518                         if (i == inode_offset)
4519                                 continue;
4520                         if (ext4_test_bit(i, bitmap_bh->b_data))
4521                                 break;
4522                 }
4523                 brelse(bitmap_bh);
4524                 if (i == start + inodes_per_block) {
4525                         struct ext4_inode *raw_inode =
4526                                 (struct ext4_inode *) (bh->b_data + iloc->offset);
4527
4528                         /* all other inodes are free, so skip I/O */
4529                         memset(bh->b_data, 0, bh->b_size);
4530                         if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4531                                 ext4_fill_raw_inode(inode, raw_inode);
4532                         set_buffer_uptodate(bh);
4533                         unlock_buffer(bh);
4534                         goto has_buffer;
4535                 }
4536         }
4537
4538 make_io:
4539         /*
4540          * If we need to do any I/O, try to pre-readahead extra
4541          * blocks from the inode table.
4542          */
4543         blk_start_plug(&plug);
4544         if (EXT4_SB(sb)->s_inode_readahead_blks) {
4545                 ext4_fsblk_t b, end, table;
4546                 unsigned num;
4547                 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4548
4549                 table = ext4_inode_table(sb, gdp);
4550                 /* s_inode_readahead_blks is always a power of 2 */
4551                 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4552                 if (table > b)
4553                         b = table;
4554                 end = b + ra_blks;
4555                 num = EXT4_INODES_PER_GROUP(sb);
4556                 if (ext4_has_group_desc_csum(sb))
4557                         num -= ext4_itable_unused_count(sb, gdp);
4558                 table += num / inodes_per_block;
4559                 if (end > table)
4560                         end = table;
4561                 while (b <= end)
4562                         ext4_sb_breadahead_unmovable(sb, b++);
4563         }
4564
4565         /*
4566          * There are other valid inodes in the buffer, this inode
4567          * has in-inode xattrs, or we don't have this inode in memory.
4568          * Read the block from disk.
4569          */
4570         trace_ext4_load_inode(sb, ino);
4571         ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4572         blk_finish_plug(&plug);
4573         wait_on_buffer(bh);
4574         ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4575         if (!buffer_uptodate(bh)) {
4576                 if (ret_block)
4577                         *ret_block = block;
4578                 brelse(bh);
4579                 return -EIO;
4580         }
4581 has_buffer:
4582         iloc->bh = bh;
4583         return 0;
4584 }
4585
4586 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4587                                         struct ext4_iloc *iloc)
4588 {
4589         ext4_fsblk_t err_blk = 0;
4590         int ret;
4591
4592         ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4593                                         &err_blk);
4594
4595         if (ret == -EIO)
4596                 ext4_error_inode_block(inode, err_blk, EIO,
4597                                         "unable to read itable block");
4598
4599         return ret;
4600 }
4601
4602 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4603 {
4604         ext4_fsblk_t err_blk = 0;
4605         int ret;
4606
4607         ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4608                                         &err_blk);
4609
4610         if (ret == -EIO)
4611                 ext4_error_inode_block(inode, err_blk, EIO,
4612                                         "unable to read itable block");
4613
4614         return ret;
4615 }
4616
4617
4618 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4619                           struct ext4_iloc *iloc)
4620 {
4621         return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4622 }
4623
4624 static bool ext4_should_enable_dax(struct inode *inode)
4625 {
4626         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4627
4628         if (test_opt2(inode->i_sb, DAX_NEVER))
4629                 return false;
4630         if (!S_ISREG(inode->i_mode))
4631                 return false;
4632         if (ext4_should_journal_data(inode))
4633                 return false;
4634         if (ext4_has_inline_data(inode))
4635                 return false;
4636         if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4637                 return false;
4638         if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4639                 return false;
4640         if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4641                 return false;
4642         if (test_opt(inode->i_sb, DAX_ALWAYS))
4643                 return true;
4644
4645         return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4646 }
4647
4648 void ext4_set_inode_flags(struct inode *inode, bool init)
4649 {
4650         unsigned int flags = EXT4_I(inode)->i_flags;
4651         unsigned int new_fl = 0;
4652
4653         WARN_ON_ONCE(IS_DAX(inode) && init);
4654
4655         if (flags & EXT4_SYNC_FL)
4656                 new_fl |= S_SYNC;
4657         if (flags & EXT4_APPEND_FL)
4658                 new_fl |= S_APPEND;
4659         if (flags & EXT4_IMMUTABLE_FL)
4660                 new_fl |= S_IMMUTABLE;
4661         if (flags & EXT4_NOATIME_FL)
4662                 new_fl |= S_NOATIME;
4663         if (flags & EXT4_DIRSYNC_FL)
4664                 new_fl |= S_DIRSYNC;
4665
4666         /* Because of the way inode_set_flags() works we must preserve S_DAX
4667          * here if already set. */
4668         new_fl |= (inode->i_flags & S_DAX);
4669         if (init && ext4_should_enable_dax(inode))
4670                 new_fl |= S_DAX;
4671
4672         if (flags & EXT4_ENCRYPT_FL)
4673                 new_fl |= S_ENCRYPTED;
4674         if (flags & EXT4_CASEFOLD_FL)
4675                 new_fl |= S_CASEFOLD;
4676         if (flags & EXT4_VERITY_FL)
4677                 new_fl |= S_VERITY;
4678         inode_set_flags(inode, new_fl,
4679                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4680                         S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4681 }
4682
4683 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4684                                   struct ext4_inode_info *ei)
4685 {
4686         blkcnt_t i_blocks ;
4687         struct inode *inode = &(ei->vfs_inode);
4688         struct super_block *sb = inode->i_sb;
4689
4690         if (ext4_has_feature_huge_file(sb)) {
4691                 /* we are using combined 48 bit field */
4692                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4693                                         le32_to_cpu(raw_inode->i_blocks_lo);
4694                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4695                         /* i_blocks represent file system block size */
4696                         return i_blocks  << (inode->i_blkbits - 9);
4697                 } else {
4698                         return i_blocks;
4699                 }
4700         } else {
4701                 return le32_to_cpu(raw_inode->i_blocks_lo);
4702         }
4703 }
4704
4705 static inline int ext4_iget_extra_inode(struct inode *inode,
4706                                          struct ext4_inode *raw_inode,
4707                                          struct ext4_inode_info *ei)
4708 {
4709         __le32 *magic = (void *)raw_inode +
4710                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4711
4712         if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
4713             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4714                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4715                 return ext4_find_inline_data_nolock(inode);
4716         } else
4717                 EXT4_I(inode)->i_inline_off = 0;
4718         return 0;
4719 }
4720
4721 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4722 {
4723         if (!ext4_has_feature_project(inode->i_sb))
4724                 return -EOPNOTSUPP;
4725         *projid = EXT4_I(inode)->i_projid;
4726         return 0;
4727 }
4728
4729 /*
4730  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4731  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4732  * set.
4733  */
4734 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4735 {
4736         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4737                 inode_set_iversion_raw(inode, val);
4738         else
4739                 inode_set_iversion_queried(inode, val);
4740 }
4741
4742 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4743                           ext4_iget_flags flags, const char *function,
4744                           unsigned int line)
4745 {
4746         struct ext4_iloc iloc;
4747         struct ext4_inode *raw_inode;
4748         struct ext4_inode_info *ei;
4749         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4750         struct inode *inode;
4751         journal_t *journal = EXT4_SB(sb)->s_journal;
4752         long ret;
4753         loff_t size;
4754         int block;
4755         uid_t i_uid;
4756         gid_t i_gid;
4757         projid_t i_projid;
4758
4759         if ((!(flags & EXT4_IGET_SPECIAL) &&
4760              ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4761               ino == le32_to_cpu(es->s_usr_quota_inum) ||
4762               ino == le32_to_cpu(es->s_grp_quota_inum) ||
4763               ino == le32_to_cpu(es->s_prj_quota_inum) ||
4764               ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4765             (ino < EXT4_ROOT_INO) ||
4766             (ino > le32_to_cpu(es->s_inodes_count))) {
4767                 if (flags & EXT4_IGET_HANDLE)
4768                         return ERR_PTR(-ESTALE);
4769                 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4770                              "inode #%lu: comm %s: iget: illegal inode #",
4771                              ino, current->comm);
4772                 return ERR_PTR(-EFSCORRUPTED);
4773         }
4774
4775         inode = iget_locked(sb, ino);
4776         if (!inode)
4777                 return ERR_PTR(-ENOMEM);
4778         if (!(inode->i_state & I_NEW))
4779                 return inode;
4780
4781         ei = EXT4_I(inode);
4782         iloc.bh = NULL;
4783
4784         ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4785         if (ret < 0)
4786                 goto bad_inode;
4787         raw_inode = ext4_raw_inode(&iloc);
4788
4789         if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4790                 ext4_error_inode(inode, function, line, 0,
4791                                  "iget: root inode unallocated");
4792                 ret = -EFSCORRUPTED;
4793                 goto bad_inode;
4794         }
4795
4796         if ((flags & EXT4_IGET_HANDLE) &&
4797             (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4798                 ret = -ESTALE;
4799                 goto bad_inode;
4800         }
4801
4802         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4803                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4804                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4805                         EXT4_INODE_SIZE(inode->i_sb) ||
4806                     (ei->i_extra_isize & 3)) {
4807                         ext4_error_inode(inode, function, line, 0,
4808                                          "iget: bad extra_isize %u "
4809                                          "(inode size %u)",
4810                                          ei->i_extra_isize,
4811                                          EXT4_INODE_SIZE(inode->i_sb));
4812                         ret = -EFSCORRUPTED;
4813                         goto bad_inode;
4814                 }
4815         } else
4816                 ei->i_extra_isize = 0;
4817
4818         /* Precompute checksum seed for inode metadata */
4819         if (ext4_has_metadata_csum(sb)) {
4820                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4821                 __u32 csum;
4822                 __le32 inum = cpu_to_le32(inode->i_ino);
4823                 __le32 gen = raw_inode->i_generation;
4824                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4825                                    sizeof(inum));
4826                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4827                                               sizeof(gen));
4828         }
4829
4830         if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4831             ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4832              (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4833                 ext4_error_inode_err(inode, function, line, 0,
4834                                 EFSBADCRC, "iget: checksum invalid");
4835                 ret = -EFSBADCRC;
4836                 goto bad_inode;
4837         }
4838
4839         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4840         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4841         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4842         if (ext4_has_feature_project(sb) &&
4843             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4844             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4845                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4846         else
4847                 i_projid = EXT4_DEF_PROJID;
4848
4849         if (!(test_opt(inode->i_sb, NO_UID32))) {
4850                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4851                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4852         }
4853         i_uid_write(inode, i_uid);
4854         i_gid_write(inode, i_gid);
4855         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4856         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4857
4858         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4859         ei->i_inline_off = 0;
4860         ei->i_dir_start_lookup = 0;
4861         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4862         /* We now have enough fields to check if the inode was active or not.
4863          * This is needed because nfsd might try to access dead inodes
4864          * the test is that same one that e2fsck uses
4865          * NeilBrown 1999oct15
4866          */
4867         if (inode->i_nlink == 0) {
4868                 if ((inode->i_mode == 0 ||
4869                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4870                     ino != EXT4_BOOT_LOADER_INO) {
4871                         /* this inode is deleted */
4872                         ret = -ESTALE;
4873                         goto bad_inode;
4874                 }
4875                 /* The only unlinked inodes we let through here have
4876                  * valid i_mode and are being read by the orphan
4877                  * recovery code: that's fine, we're about to complete
4878                  * the process of deleting those.
4879                  * OR it is the EXT4_BOOT_LOADER_INO which is
4880                  * not initialized on a new filesystem. */
4881         }
4882         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4883         ext4_set_inode_flags(inode, true);
4884         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4885         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4886         if (ext4_has_feature_64bit(sb))
4887                 ei->i_file_acl |=
4888                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4889         inode->i_size = ext4_isize(sb, raw_inode);
4890         if ((size = i_size_read(inode)) < 0) {
4891                 ext4_error_inode(inode, function, line, 0,
4892                                  "iget: bad i_size value: %lld", size);
4893                 ret = -EFSCORRUPTED;
4894                 goto bad_inode;
4895         }
4896         /*
4897          * If dir_index is not enabled but there's dir with INDEX flag set,
4898          * we'd normally treat htree data as empty space. But with metadata
4899          * checksumming that corrupts checksums so forbid that.
4900          */
4901         if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4902             ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4903                 ext4_error_inode(inode, function, line, 0,
4904                          "iget: Dir with htree data on filesystem without dir_index feature.");
4905                 ret = -EFSCORRUPTED;
4906                 goto bad_inode;
4907         }
4908         ei->i_disksize = inode->i_size;
4909 #ifdef CONFIG_QUOTA
4910         ei->i_reserved_quota = 0;
4911 #endif
4912         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4913         ei->i_block_group = iloc.block_group;
4914         ei->i_last_alloc_group = ~0;
4915         /*
4916          * NOTE! The in-memory inode i_data array is in little-endian order
4917          * even on big-endian machines: we do NOT byteswap the block numbers!
4918          */
4919         for (block = 0; block < EXT4_N_BLOCKS; block++)
4920                 ei->i_data[block] = raw_inode->i_block[block];
4921         INIT_LIST_HEAD(&ei->i_orphan);
4922         ext4_fc_init_inode(&ei->vfs_inode);
4923
4924         /*
4925          * Set transaction id's of transactions that have to be committed
4926          * to finish f[data]sync. We set them to currently running transaction
4927          * as we cannot be sure that the inode or some of its metadata isn't
4928          * part of the transaction - the inode could have been reclaimed and
4929          * now it is reread from disk.
4930          */
4931         if (journal) {
4932                 transaction_t *transaction;
4933                 tid_t tid;
4934
4935                 read_lock(&journal->j_state_lock);
4936                 if (journal->j_running_transaction)
4937                         transaction = journal->j_running_transaction;
4938                 else
4939                         transaction = journal->j_committing_transaction;
4940                 if (transaction)
4941                         tid = transaction->t_tid;
4942                 else
4943                         tid = journal->j_commit_sequence;
4944                 read_unlock(&journal->j_state_lock);
4945                 ei->i_sync_tid = tid;
4946                 ei->i_datasync_tid = tid;
4947         }
4948
4949         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4950                 if (ei->i_extra_isize == 0) {
4951                         /* The extra space is currently unused. Use it. */
4952                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4953                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4954                                             EXT4_GOOD_OLD_INODE_SIZE;
4955                 } else {
4956                         ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4957                         if (ret)
4958                                 goto bad_inode;
4959                 }
4960         }
4961
4962         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4963         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4964         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4965         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4966
4967         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4968                 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4969
4970                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4971                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4972                                 ivers |=
4973                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4974                 }
4975                 ext4_inode_set_iversion_queried(inode, ivers);
4976         }
4977
4978         ret = 0;
4979         if (ei->i_file_acl &&
4980             !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4981                 ext4_error_inode(inode, function, line, 0,
4982                                  "iget: bad extended attribute block %llu",
4983                                  ei->i_file_acl);
4984                 ret = -EFSCORRUPTED;
4985                 goto bad_inode;
4986         } else if (!ext4_has_inline_data(inode)) {
4987                 /* validate the block references in the inode */
4988                 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4989                         (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4990                         (S_ISLNK(inode->i_mode) &&
4991                         !ext4_inode_is_fast_symlink(inode)))) {
4992                         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4993                                 ret = ext4_ext_check_inode(inode);
4994                         else
4995                                 ret = ext4_ind_check_inode(inode);
4996                 }
4997         }
4998         if (ret)
4999                 goto bad_inode;
5000
5001         if (S_ISREG(inode->i_mode)) {
5002                 inode->i_op = &ext4_file_inode_operations;
5003                 inode->i_fop = &ext4_file_operations;
5004                 ext4_set_aops(inode);
5005         } else if (S_ISDIR(inode->i_mode)) {
5006                 inode->i_op = &ext4_dir_inode_operations;
5007                 inode->i_fop = &ext4_dir_operations;
5008         } else if (S_ISLNK(inode->i_mode)) {
5009                 /* VFS does not allow setting these so must be corruption */
5010                 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5011                         ext4_error_inode(inode, function, line, 0,
5012                                          "iget: immutable or append flags "
5013                                          "not allowed on symlinks");
5014                         ret = -EFSCORRUPTED;
5015                         goto bad_inode;
5016                 }
5017                 if (IS_ENCRYPTED(inode)) {
5018                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
5019                 } else if (ext4_inode_is_fast_symlink(inode)) {
5020                         inode->i_link = (char *)ei->i_data;
5021                         inode->i_op = &ext4_fast_symlink_inode_operations;
5022                         nd_terminate_link(ei->i_data, inode->i_size,
5023                                 sizeof(ei->i_data) - 1);
5024                 } else {
5025                         inode->i_op = &ext4_symlink_inode_operations;
5026                 }
5027         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5028               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5029                 inode->i_op = &ext4_special_inode_operations;
5030                 if (raw_inode->i_block[0])
5031                         init_special_inode(inode, inode->i_mode,
5032                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5033                 else
5034                         init_special_inode(inode, inode->i_mode,
5035                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5036         } else if (ino == EXT4_BOOT_LOADER_INO) {
5037                 make_bad_inode(inode);
5038         } else {
5039                 ret = -EFSCORRUPTED;
5040                 ext4_error_inode(inode, function, line, 0,
5041                                  "iget: bogus i_mode (%o)", inode->i_mode);
5042                 goto bad_inode;
5043         }
5044         if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
5045                 ext4_error_inode(inode, function, line, 0,
5046                                  "casefold flag without casefold feature");
5047         brelse(iloc.bh);
5048
5049         unlock_new_inode(inode);
5050         return inode;
5051
5052 bad_inode:
5053         brelse(iloc.bh);
5054         iget_failed(inode);
5055         return ERR_PTR(ret);
5056 }
5057
5058 static void __ext4_update_other_inode_time(struct super_block *sb,
5059                                            unsigned long orig_ino,
5060                                            unsigned long ino,
5061                                            struct ext4_inode *raw_inode)
5062 {
5063         struct inode *inode;
5064
5065         inode = find_inode_by_ino_rcu(sb, ino);
5066         if (!inode)
5067                 return;
5068
5069         if (!inode_is_dirtytime_only(inode))
5070                 return;
5071
5072         spin_lock(&inode->i_lock);
5073         if (inode_is_dirtytime_only(inode)) {
5074                 struct ext4_inode_info  *ei = EXT4_I(inode);
5075
5076                 inode->i_state &= ~I_DIRTY_TIME;
5077                 spin_unlock(&inode->i_lock);
5078
5079                 spin_lock(&ei->i_raw_lock);
5080                 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5081                 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5082                 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5083                 ext4_inode_csum_set(inode, raw_inode, ei);
5084                 spin_unlock(&ei->i_raw_lock);
5085                 trace_ext4_other_inode_update_time(inode, orig_ino);
5086                 return;
5087         }
5088         spin_unlock(&inode->i_lock);
5089 }
5090
5091 /*
5092  * Opportunistically update the other time fields for other inodes in
5093  * the same inode table block.
5094  */
5095 static void ext4_update_other_inodes_time(struct super_block *sb,
5096                                           unsigned long orig_ino, char *buf)
5097 {
5098         unsigned long ino;
5099         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5100         int inode_size = EXT4_INODE_SIZE(sb);
5101
5102         /*
5103          * Calculate the first inode in the inode table block.  Inode
5104          * numbers are one-based.  That is, the first inode in a block
5105          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5106          */
5107         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5108         rcu_read_lock();
5109         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5110                 if (ino == orig_ino)
5111                         continue;
5112                 __ext4_update_other_inode_time(sb, orig_ino, ino,
5113                                                (struct ext4_inode *)buf);
5114         }
5115         rcu_read_unlock();
5116 }
5117
5118 /*
5119  * Post the struct inode info into an on-disk inode location in the
5120  * buffer-cache.  This gobbles the caller's reference to the
5121  * buffer_head in the inode location struct.
5122  *
5123  * The caller must have write access to iloc->bh.
5124  */
5125 static int ext4_do_update_inode(handle_t *handle,
5126                                 struct inode *inode,
5127                                 struct ext4_iloc *iloc)
5128 {
5129         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5130         struct ext4_inode_info *ei = EXT4_I(inode);
5131         struct buffer_head *bh = iloc->bh;
5132         struct super_block *sb = inode->i_sb;
5133         int err;
5134         int need_datasync = 0, set_large_file = 0;
5135
5136         spin_lock(&ei->i_raw_lock);
5137
5138         /*
5139          * For fields not tracked in the in-memory inode, initialise them
5140          * to zero for new inodes.
5141          */
5142         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5143                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5144
5145         if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5146                 need_datasync = 1;
5147         if (ei->i_disksize > 0x7fffffffULL) {
5148                 if (!ext4_has_feature_large_file(sb) ||
5149                     EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5150                         set_large_file = 1;
5151         }
5152
5153         err = ext4_fill_raw_inode(inode, raw_inode);
5154         spin_unlock(&ei->i_raw_lock);
5155         if (err) {
5156                 EXT4_ERROR_INODE(inode, "corrupted inode contents");
5157                 goto out_brelse;
5158         }
5159
5160         if (inode->i_sb->s_flags & SB_LAZYTIME)
5161                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5162                                               bh->b_data);
5163
5164         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5165         err = ext4_handle_dirty_metadata(handle, NULL, bh);
5166         if (err)
5167                 goto out_error;
5168         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5169         if (set_large_file) {
5170                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5171                 err = ext4_journal_get_write_access(handle, sb,
5172                                                     EXT4_SB(sb)->s_sbh,
5173                                                     EXT4_JTR_NONE);
5174                 if (err)
5175                         goto out_error;
5176                 lock_buffer(EXT4_SB(sb)->s_sbh);
5177                 ext4_set_feature_large_file(sb);
5178                 ext4_superblock_csum_set(sb);
5179                 unlock_buffer(EXT4_SB(sb)->s_sbh);
5180                 ext4_handle_sync(handle);
5181                 err = ext4_handle_dirty_metadata(handle, NULL,
5182                                                  EXT4_SB(sb)->s_sbh);
5183         }
5184         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5185 out_error:
5186         ext4_std_error(inode->i_sb, err);
5187 out_brelse:
5188         brelse(bh);
5189         return err;
5190 }
5191
5192 /*
5193  * ext4_write_inode()
5194  *
5195  * We are called from a few places:
5196  *
5197  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5198  *   Here, there will be no transaction running. We wait for any running
5199  *   transaction to commit.
5200  *
5201  * - Within flush work (sys_sync(), kupdate and such).
5202  *   We wait on commit, if told to.
5203  *
5204  * - Within iput_final() -> write_inode_now()
5205  *   We wait on commit, if told to.
5206  *
5207  * In all cases it is actually safe for us to return without doing anything,
5208  * because the inode has been copied into a raw inode buffer in
5209  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5210  * writeback.
5211  *
5212  * Note that we are absolutely dependent upon all inode dirtiers doing the
5213  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5214  * which we are interested.
5215  *
5216  * It would be a bug for them to not do this.  The code:
5217  *
5218  *      mark_inode_dirty(inode)
5219  *      stuff();
5220  *      inode->i_size = expr;
5221  *
5222  * is in error because write_inode() could occur while `stuff()' is running,
5223  * and the new i_size will be lost.  Plus the inode will no longer be on the
5224  * superblock's dirty inode list.
5225  */
5226 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5227 {
5228         int err;
5229
5230         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5231             sb_rdonly(inode->i_sb))
5232                 return 0;
5233
5234         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5235                 return -EIO;
5236
5237         if (EXT4_SB(inode->i_sb)->s_journal) {
5238                 if (ext4_journal_current_handle()) {
5239                         ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5240                         dump_stack();
5241                         return -EIO;
5242                 }
5243
5244                 /*
5245                  * No need to force transaction in WB_SYNC_NONE mode. Also
5246                  * ext4_sync_fs() will force the commit after everything is
5247                  * written.
5248                  */
5249                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5250                         return 0;
5251
5252                 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5253                                                 EXT4_I(inode)->i_sync_tid);
5254         } else {
5255                 struct ext4_iloc iloc;
5256
5257                 err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5258                 if (err)
5259                         return err;
5260                 /*
5261                  * sync(2) will flush the whole buffer cache. No need to do
5262                  * it here separately for each inode.
5263                  */
5264                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5265                         sync_dirty_buffer(iloc.bh);
5266                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5267                         ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5268                                                "IO error syncing inode");
5269                         err = -EIO;
5270                 }
5271                 brelse(iloc.bh);
5272         }
5273         return err;
5274 }
5275
5276 /*
5277  * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5278  * buffers that are attached to a folio straddling i_size and are undergoing
5279  * commit. In that case we have to wait for commit to finish and try again.
5280  */
5281 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5282 {
5283         unsigned offset;
5284         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5285         tid_t commit_tid = 0;
5286         int ret;
5287
5288         offset = inode->i_size & (PAGE_SIZE - 1);
5289         /*
5290          * If the folio is fully truncated, we don't need to wait for any commit
5291          * (and we even should not as __ext4_journalled_invalidate_folio() may
5292          * strip all buffers from the folio but keep the folio dirty which can then
5293          * confuse e.g. concurrent ext4_writepage() seeing dirty folio without
5294          * buffers). Also we don't need to wait for any commit if all buffers in
5295          * the folio remain valid. This is most beneficial for the common case of
5296          * blocksize == PAGESIZE.
5297          */
5298         if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5299                 return;
5300         while (1) {
5301                 struct folio *folio = filemap_lock_folio(inode->i_mapping,
5302                                       inode->i_size >> PAGE_SHIFT);
5303                 if (!folio)
5304                         return;
5305                 ret = __ext4_journalled_invalidate_folio(folio, offset,
5306                                                 folio_size(folio) - offset);
5307                 folio_unlock(folio);
5308                 folio_put(folio);
5309                 if (ret != -EBUSY)
5310                         return;
5311                 commit_tid = 0;
5312                 read_lock(&journal->j_state_lock);
5313                 if (journal->j_committing_transaction)
5314                         commit_tid = journal->j_committing_transaction->t_tid;
5315                 read_unlock(&journal->j_state_lock);
5316                 if (commit_tid)
5317                         jbd2_log_wait_commit(journal, commit_tid);
5318         }
5319 }
5320
5321 /*
5322  * ext4_setattr()
5323  *
5324  * Called from notify_change.
5325  *
5326  * We want to trap VFS attempts to truncate the file as soon as
5327  * possible.  In particular, we want to make sure that when the VFS
5328  * shrinks i_size, we put the inode on the orphan list and modify
5329  * i_disksize immediately, so that during the subsequent flushing of
5330  * dirty pages and freeing of disk blocks, we can guarantee that any
5331  * commit will leave the blocks being flushed in an unused state on
5332  * disk.  (On recovery, the inode will get truncated and the blocks will
5333  * be freed, so we have a strong guarantee that no future commit will
5334  * leave these blocks visible to the user.)
5335  *
5336  * Another thing we have to assure is that if we are in ordered mode
5337  * and inode is still attached to the committing transaction, we must
5338  * we start writeout of all the dirty pages which are being truncated.
5339  * This way we are sure that all the data written in the previous
5340  * transaction are already on disk (truncate waits for pages under
5341  * writeback).
5342  *
5343  * Called with inode->i_rwsem down.
5344  */
5345 int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5346                  struct iattr *attr)
5347 {
5348         struct inode *inode = d_inode(dentry);
5349         int error, rc = 0;
5350         int orphan = 0;
5351         const unsigned int ia_valid = attr->ia_valid;
5352         bool inc_ivers = true;
5353
5354         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5355                 return -EIO;
5356
5357         if (unlikely(IS_IMMUTABLE(inode)))
5358                 return -EPERM;
5359
5360         if (unlikely(IS_APPEND(inode) &&
5361                      (ia_valid & (ATTR_MODE | ATTR_UID |
5362                                   ATTR_GID | ATTR_TIMES_SET))))
5363                 return -EPERM;
5364
5365         error = setattr_prepare(mnt_userns, dentry, attr);
5366         if (error)
5367                 return error;
5368
5369         error = fscrypt_prepare_setattr(dentry, attr);
5370         if (error)
5371                 return error;
5372
5373         error = fsverity_prepare_setattr(dentry, attr);
5374         if (error)
5375                 return error;
5376
5377         if (is_quota_modification(mnt_userns, inode, attr)) {
5378                 error = dquot_initialize(inode);
5379                 if (error)
5380                         return error;
5381         }
5382
5383         if (i_uid_needs_update(mnt_userns, attr, inode) ||
5384             i_gid_needs_update(mnt_userns, attr, inode)) {
5385                 handle_t *handle;
5386
5387                 /* (user+group)*(old+new) structure, inode write (sb,
5388                  * inode block, ? - but truncate inode update has it) */
5389                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5390                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5391                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5392                 if (IS_ERR(handle)) {
5393                         error = PTR_ERR(handle);
5394                         goto err_out;
5395                 }
5396
5397                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5398                  * counts xattr inode references.
5399                  */
5400                 down_read(&EXT4_I(inode)->xattr_sem);
5401                 error = dquot_transfer(mnt_userns, inode, attr);
5402                 up_read(&EXT4_I(inode)->xattr_sem);
5403
5404                 if (error) {
5405                         ext4_journal_stop(handle);
5406                         return error;
5407                 }
5408                 /* Update corresponding info in inode so that everything is in
5409                  * one transaction */
5410                 i_uid_update(mnt_userns, attr, inode);
5411                 i_gid_update(mnt_userns, attr, inode);
5412                 error = ext4_mark_inode_dirty(handle, inode);
5413                 ext4_journal_stop(handle);
5414                 if (unlikely(error)) {
5415                         return error;
5416                 }
5417         }
5418
5419         if (attr->ia_valid & ATTR_SIZE) {
5420                 handle_t *handle;
5421                 loff_t oldsize = inode->i_size;
5422                 loff_t old_disksize;
5423                 int shrink = (attr->ia_size < inode->i_size);
5424
5425                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5426                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5427
5428                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5429                                 return -EFBIG;
5430                         }
5431                 }
5432                 if (!S_ISREG(inode->i_mode)) {
5433                         return -EINVAL;
5434                 }
5435
5436                 if (attr->ia_size == inode->i_size)
5437                         inc_ivers = false;
5438
5439                 if (shrink) {
5440                         if (ext4_should_order_data(inode)) {
5441                                 error = ext4_begin_ordered_truncate(inode,
5442                                                             attr->ia_size);
5443                                 if (error)
5444                                         goto err_out;
5445                         }
5446                         /*
5447                          * Blocks are going to be removed from the inode. Wait
5448                          * for dio in flight.
5449                          */
5450                         inode_dio_wait(inode);
5451                 }
5452
5453                 filemap_invalidate_lock(inode->i_mapping);
5454
5455                 rc = ext4_break_layouts(inode);
5456                 if (rc) {
5457                         filemap_invalidate_unlock(inode->i_mapping);
5458                         goto err_out;
5459                 }
5460
5461                 if (attr->ia_size != inode->i_size) {
5462                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5463                         if (IS_ERR(handle)) {
5464                                 error = PTR_ERR(handle);
5465                                 goto out_mmap_sem;
5466                         }
5467                         if (ext4_handle_valid(handle) && shrink) {
5468                                 error = ext4_orphan_add(handle, inode);
5469                                 orphan = 1;
5470                         }
5471                         /*
5472                          * Update c/mtime on truncate up, ext4_truncate() will
5473                          * update c/mtime in shrink case below
5474                          */
5475                         if (!shrink) {
5476                                 inode->i_mtime = current_time(inode);
5477                                 inode->i_ctime = inode->i_mtime;
5478                         }
5479
5480                         if (shrink)
5481                                 ext4_fc_track_range(handle, inode,
5482                                         (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5483                                         inode->i_sb->s_blocksize_bits,
5484                                         EXT_MAX_BLOCKS - 1);
5485                         else
5486                                 ext4_fc_track_range(
5487                                         handle, inode,
5488                                         (oldsize > 0 ? oldsize - 1 : oldsize) >>
5489                                         inode->i_sb->s_blocksize_bits,
5490                                         (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5491                                         inode->i_sb->s_blocksize_bits);
5492
5493                         down_write(&EXT4_I(inode)->i_data_sem);
5494                         old_disksize = EXT4_I(inode)->i_disksize;
5495                         EXT4_I(inode)->i_disksize = attr->ia_size;
5496                         rc = ext4_mark_inode_dirty(handle, inode);
5497                         if (!error)
5498                                 error = rc;
5499                         /*
5500                          * We have to update i_size under i_data_sem together
5501                          * with i_disksize to avoid races with writeback code
5502                          * running ext4_wb_update_i_disksize().
5503                          */
5504                         if (!error)
5505                                 i_size_write(inode, attr->ia_size);
5506                         else
5507                                 EXT4_I(inode)->i_disksize = old_disksize;
5508                         up_write(&EXT4_I(inode)->i_data_sem);
5509                         ext4_journal_stop(handle);
5510                         if (error)
5511                                 goto out_mmap_sem;
5512                         if (!shrink) {
5513                                 pagecache_isize_extended(inode, oldsize,
5514                                                          inode->i_size);
5515                         } else if (ext4_should_journal_data(inode)) {
5516                                 ext4_wait_for_tail_page_commit(inode);
5517                         }
5518                 }
5519
5520                 /*
5521                  * Truncate pagecache after we've waited for commit
5522                  * in data=journal mode to make pages freeable.
5523                  */
5524                 truncate_pagecache(inode, inode->i_size);
5525                 /*
5526                  * Call ext4_truncate() even if i_size didn't change to
5527                  * truncate possible preallocated blocks.
5528                  */
5529                 if (attr->ia_size <= oldsize) {
5530                         rc = ext4_truncate(inode);
5531                         if (rc)
5532                                 error = rc;
5533                 }
5534 out_mmap_sem:
5535                 filemap_invalidate_unlock(inode->i_mapping);
5536         }
5537
5538         if (!error) {
5539                 if (inc_ivers)
5540                         inode_inc_iversion(inode);
5541                 setattr_copy(mnt_userns, inode, attr);
5542                 mark_inode_dirty(inode);
5543         }
5544
5545         /*
5546          * If the call to ext4_truncate failed to get a transaction handle at
5547          * all, we need to clean up the in-core orphan list manually.
5548          */
5549         if (orphan && inode->i_nlink)
5550                 ext4_orphan_del(NULL, inode);
5551
5552         if (!error && (ia_valid & ATTR_MODE))
5553                 rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5554
5555 err_out:
5556         if  (error)
5557                 ext4_std_error(inode->i_sb, error);
5558         if (!error)
5559                 error = rc;
5560         return error;
5561 }
5562
5563 u32 ext4_dio_alignment(struct inode *inode)
5564 {
5565         if (fsverity_active(inode))
5566                 return 0;
5567         if (ext4_should_journal_data(inode))
5568                 return 0;
5569         if (ext4_has_inline_data(inode))
5570                 return 0;
5571         if (IS_ENCRYPTED(inode)) {
5572                 if (!fscrypt_dio_supported(inode))
5573                         return 0;
5574                 return i_blocksize(inode);
5575         }
5576         return 1; /* use the iomap defaults */
5577 }
5578
5579 int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path,
5580                  struct kstat *stat, u32 request_mask, unsigned int query_flags)
5581 {
5582         struct inode *inode = d_inode(path->dentry);
5583         struct ext4_inode *raw_inode;
5584         struct ext4_inode_info *ei = EXT4_I(inode);
5585         unsigned int flags;
5586
5587         if ((request_mask & STATX_BTIME) &&
5588             EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5589                 stat->result_mask |= STATX_BTIME;
5590                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5591                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5592         }
5593
5594         /*
5595          * Return the DIO alignment restrictions if requested.  We only return
5596          * this information when requested, since on encrypted files it might
5597          * take a fair bit of work to get if the file wasn't opened recently.
5598          */
5599         if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5600                 u32 dio_align = ext4_dio_alignment(inode);
5601
5602                 stat->result_mask |= STATX_DIOALIGN;
5603                 if (dio_align == 1) {
5604                         struct block_device *bdev = inode->i_sb->s_bdev;
5605
5606                         /* iomap defaults */
5607                         stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5608                         stat->dio_offset_align = bdev_logical_block_size(bdev);
5609                 } else {
5610                         stat->dio_mem_align = dio_align;
5611                         stat->dio_offset_align = dio_align;
5612                 }
5613         }
5614
5615         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5616         if (flags & EXT4_APPEND_FL)
5617                 stat->attributes |= STATX_ATTR_APPEND;
5618         if (flags & EXT4_COMPR_FL)
5619                 stat->attributes |= STATX_ATTR_COMPRESSED;
5620         if (flags & EXT4_ENCRYPT_FL)
5621                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5622         if (flags & EXT4_IMMUTABLE_FL)
5623                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5624         if (flags & EXT4_NODUMP_FL)
5625                 stat->attributes |= STATX_ATTR_NODUMP;
5626         if (flags & EXT4_VERITY_FL)
5627                 stat->attributes |= STATX_ATTR_VERITY;
5628
5629         stat->attributes_mask |= (STATX_ATTR_APPEND |
5630                                   STATX_ATTR_COMPRESSED |
5631                                   STATX_ATTR_ENCRYPTED |
5632                                   STATX_ATTR_IMMUTABLE |
5633                                   STATX_ATTR_NODUMP |
5634                                   STATX_ATTR_VERITY);
5635
5636         generic_fillattr(mnt_userns, inode, stat);
5637         return 0;
5638 }
5639
5640 int ext4_file_getattr(struct user_namespace *mnt_userns,
5641                       const struct path *path, struct kstat *stat,
5642                       u32 request_mask, unsigned int query_flags)
5643 {
5644         struct inode *inode = d_inode(path->dentry);
5645         u64 delalloc_blocks;
5646
5647         ext4_getattr(mnt_userns, path, stat, request_mask, query_flags);
5648
5649         /*
5650          * If there is inline data in the inode, the inode will normally not
5651          * have data blocks allocated (it may have an external xattr block).
5652          * Report at least one sector for such files, so tools like tar, rsync,
5653          * others don't incorrectly think the file is completely sparse.
5654          */
5655         if (unlikely(ext4_has_inline_data(inode)))
5656                 stat->blocks += (stat->size + 511) >> 9;
5657
5658         /*
5659          * We can't update i_blocks if the block allocation is delayed
5660          * otherwise in the case of system crash before the real block
5661          * allocation is done, we will have i_blocks inconsistent with
5662          * on-disk file blocks.
5663          * We always keep i_blocks updated together with real
5664          * allocation. But to not confuse with user, stat
5665          * will return the blocks that include the delayed allocation
5666          * blocks for this file.
5667          */
5668         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5669                                    EXT4_I(inode)->i_reserved_data_blocks);
5670         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5671         return 0;
5672 }
5673
5674 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5675                                    int pextents)
5676 {
5677         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5678                 return ext4_ind_trans_blocks(inode, lblocks);
5679         return ext4_ext_index_trans_blocks(inode, pextents);
5680 }
5681
5682 /*
5683  * Account for index blocks, block groups bitmaps and block group
5684  * descriptor blocks if modify datablocks and index blocks
5685  * worse case, the indexs blocks spread over different block groups
5686  *
5687  * If datablocks are discontiguous, they are possible to spread over
5688  * different block groups too. If they are contiguous, with flexbg,
5689  * they could still across block group boundary.
5690  *
5691  * Also account for superblock, inode, quota and xattr blocks
5692  */
5693 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5694                                   int pextents)
5695 {
5696         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5697         int gdpblocks;
5698         int idxblocks;
5699         int ret = 0;
5700
5701         /*
5702          * How many index blocks need to touch to map @lblocks logical blocks
5703          * to @pextents physical extents?
5704          */
5705         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5706
5707         ret = idxblocks;
5708
5709         /*
5710          * Now let's see how many group bitmaps and group descriptors need
5711          * to account
5712          */
5713         groups = idxblocks + pextents;
5714         gdpblocks = groups;
5715         if (groups > ngroups)
5716                 groups = ngroups;
5717         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5718                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5719
5720         /* bitmaps and block group descriptor blocks */
5721         ret += groups + gdpblocks;
5722
5723         /* Blocks for super block, inode, quota and xattr blocks */
5724         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5725
5726         return ret;
5727 }
5728
5729 /*
5730  * Calculate the total number of credits to reserve to fit
5731  * the modification of a single pages into a single transaction,
5732  * which may include multiple chunks of block allocations.
5733  *
5734  * This could be called via ext4_write_begin()
5735  *
5736  * We need to consider the worse case, when
5737  * one new block per extent.
5738  */
5739 int ext4_writepage_trans_blocks(struct inode *inode)
5740 {
5741         int bpp = ext4_journal_blocks_per_page(inode);
5742         int ret;
5743
5744         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5745
5746         /* Account for data blocks for journalled mode */
5747         if (ext4_should_journal_data(inode))
5748                 ret += bpp;
5749         return ret;
5750 }
5751
5752 /*
5753  * Calculate the journal credits for a chunk of data modification.
5754  *
5755  * This is called from DIO, fallocate or whoever calling
5756  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5757  *
5758  * journal buffers for data blocks are not included here, as DIO
5759  * and fallocate do no need to journal data buffers.
5760  */
5761 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5762 {
5763         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5764 }
5765
5766 /*
5767  * The caller must have previously called ext4_reserve_inode_write().
5768  * Give this, we know that the caller already has write access to iloc->bh.
5769  */
5770 int ext4_mark_iloc_dirty(handle_t *handle,
5771                          struct inode *inode, struct ext4_iloc *iloc)
5772 {
5773         int err = 0;
5774
5775         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5776                 put_bh(iloc->bh);
5777                 return -EIO;
5778         }
5779         ext4_fc_track_inode(handle, inode);
5780
5781         /* the do_update_inode consumes one bh->b_count */
5782         get_bh(iloc->bh);
5783
5784         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5785         err = ext4_do_update_inode(handle, inode, iloc);
5786         put_bh(iloc->bh);
5787         return err;
5788 }
5789
5790 /*
5791  * On success, We end up with an outstanding reference count against
5792  * iloc->bh.  This _must_ be cleaned up later.
5793  */
5794
5795 int
5796 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5797                          struct ext4_iloc *iloc)
5798 {
5799         int err;
5800
5801         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5802                 return -EIO;
5803
5804         err = ext4_get_inode_loc(inode, iloc);
5805         if (!err) {
5806                 BUFFER_TRACE(iloc->bh, "get_write_access");
5807                 err = ext4_journal_get_write_access(handle, inode->i_sb,
5808                                                     iloc->bh, EXT4_JTR_NONE);
5809                 if (err) {
5810                         brelse(iloc->bh);
5811                         iloc->bh = NULL;
5812                 }
5813         }
5814         ext4_std_error(inode->i_sb, err);
5815         return err;
5816 }
5817
5818 static int __ext4_expand_extra_isize(struct inode *inode,
5819                                      unsigned int new_extra_isize,
5820                                      struct ext4_iloc *iloc,
5821                                      handle_t *handle, int *no_expand)
5822 {
5823         struct ext4_inode *raw_inode;
5824         struct ext4_xattr_ibody_header *header;
5825         unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5826         struct ext4_inode_info *ei = EXT4_I(inode);
5827         int error;
5828
5829         /* this was checked at iget time, but double check for good measure */
5830         if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5831             (ei->i_extra_isize & 3)) {
5832                 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5833                                  ei->i_extra_isize,
5834                                  EXT4_INODE_SIZE(inode->i_sb));
5835                 return -EFSCORRUPTED;
5836         }
5837         if ((new_extra_isize < ei->i_extra_isize) ||
5838             (new_extra_isize < 4) ||
5839             (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5840                 return -EINVAL; /* Should never happen */
5841
5842         raw_inode = ext4_raw_inode(iloc);
5843
5844         header = IHDR(inode, raw_inode);
5845
5846         /* No extended attributes present */
5847         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5848             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5849                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5850                        EXT4_I(inode)->i_extra_isize, 0,
5851                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5852                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5853                 return 0;
5854         }
5855
5856         /* try to expand with EAs present */
5857         error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5858                                            raw_inode, handle);
5859         if (error) {
5860                 /*
5861                  * Inode size expansion failed; don't try again
5862                  */
5863                 *no_expand = 1;
5864         }
5865
5866         return error;
5867 }
5868
5869 /*
5870  * Expand an inode by new_extra_isize bytes.
5871  * Returns 0 on success or negative error number on failure.
5872  */
5873 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5874                                           unsigned int new_extra_isize,
5875                                           struct ext4_iloc iloc,
5876                                           handle_t *handle)
5877 {
5878         int no_expand;
5879         int error;
5880
5881         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5882                 return -EOVERFLOW;
5883
5884         /*
5885          * In nojournal mode, we can immediately attempt to expand
5886          * the inode.  When journaled, we first need to obtain extra
5887          * buffer credits since we may write into the EA block
5888          * with this same handle. If journal_extend fails, then it will
5889          * only result in a minor loss of functionality for that inode.
5890          * If this is felt to be critical, then e2fsck should be run to
5891          * force a large enough s_min_extra_isize.
5892          */
5893         if (ext4_journal_extend(handle,
5894                                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5895                 return -ENOSPC;
5896
5897         if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5898                 return -EBUSY;
5899
5900         error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5901                                           handle, &no_expand);
5902         ext4_write_unlock_xattr(inode, &no_expand);
5903
5904         return error;
5905 }
5906
5907 int ext4_expand_extra_isize(struct inode *inode,
5908                             unsigned int new_extra_isize,
5909                             struct ext4_iloc *iloc)
5910 {
5911         handle_t *handle;
5912         int no_expand;
5913         int error, rc;
5914
5915         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5916                 brelse(iloc->bh);
5917                 return -EOVERFLOW;
5918         }
5919
5920         handle = ext4_journal_start(inode, EXT4_HT_INODE,
5921                                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5922         if (IS_ERR(handle)) {
5923                 error = PTR_ERR(handle);
5924                 brelse(iloc->bh);
5925                 return error;
5926         }
5927
5928         ext4_write_lock_xattr(inode, &no_expand);
5929
5930         BUFFER_TRACE(iloc->bh, "get_write_access");
5931         error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5932                                               EXT4_JTR_NONE);
5933         if (error) {
5934                 brelse(iloc->bh);
5935                 goto out_unlock;
5936         }
5937
5938         error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5939                                           handle, &no_expand);
5940
5941         rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5942         if (!error)
5943                 error = rc;
5944
5945 out_unlock:
5946         ext4_write_unlock_xattr(inode, &no_expand);
5947         ext4_journal_stop(handle);
5948         return error;
5949 }
5950
5951 /*
5952  * What we do here is to mark the in-core inode as clean with respect to inode
5953  * dirtiness (it may still be data-dirty).
5954  * This means that the in-core inode may be reaped by prune_icache
5955  * without having to perform any I/O.  This is a very good thing,
5956  * because *any* task may call prune_icache - even ones which
5957  * have a transaction open against a different journal.
5958  *
5959  * Is this cheating?  Not really.  Sure, we haven't written the
5960  * inode out, but prune_icache isn't a user-visible syncing function.
5961  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5962  * we start and wait on commits.
5963  */
5964 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5965                                 const char *func, unsigned int line)
5966 {
5967         struct ext4_iloc iloc;
5968         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5969         int err;
5970
5971         might_sleep();
5972         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5973         err = ext4_reserve_inode_write(handle, inode, &iloc);
5974         if (err)
5975                 goto out;
5976
5977         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5978                 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5979                                                iloc, handle);
5980
5981         err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5982 out:
5983         if (unlikely(err))
5984                 ext4_error_inode_err(inode, func, line, 0, err,
5985                                         "mark_inode_dirty error");
5986         return err;
5987 }
5988
5989 /*
5990  * ext4_dirty_inode() is called from __mark_inode_dirty()
5991  *
5992  * We're really interested in the case where a file is being extended.
5993  * i_size has been changed by generic_commit_write() and we thus need
5994  * to include the updated inode in the current transaction.
5995  *
5996  * Also, dquot_alloc_block() will always dirty the inode when blocks
5997  * are allocated to the file.
5998  *
5999  * If the inode is marked synchronous, we don't honour that here - doing
6000  * so would cause a commit on atime updates, which we don't bother doing.
6001  * We handle synchronous inodes at the highest possible level.
6002  */
6003 void ext4_dirty_inode(struct inode *inode, int flags)
6004 {
6005         handle_t *handle;
6006
6007         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6008         if (IS_ERR(handle))
6009                 return;
6010         ext4_mark_inode_dirty(handle, inode);
6011         ext4_journal_stop(handle);
6012 }
6013
6014 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6015 {
6016         journal_t *journal;
6017         handle_t *handle;
6018         int err;
6019         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6020
6021         /*
6022          * We have to be very careful here: changing a data block's
6023          * journaling status dynamically is dangerous.  If we write a
6024          * data block to the journal, change the status and then delete
6025          * that block, we risk forgetting to revoke the old log record
6026          * from the journal and so a subsequent replay can corrupt data.
6027          * So, first we make sure that the journal is empty and that
6028          * nobody is changing anything.
6029          */
6030
6031         journal = EXT4_JOURNAL(inode);
6032         if (!journal)
6033                 return 0;
6034         if (is_journal_aborted(journal))
6035                 return -EROFS;
6036
6037         /* Wait for all existing dio workers */
6038         inode_dio_wait(inode);
6039
6040         /*
6041          * Before flushing the journal and switching inode's aops, we have
6042          * to flush all dirty data the inode has. There can be outstanding
6043          * delayed allocations, there can be unwritten extents created by
6044          * fallocate or buffered writes in dioread_nolock mode covered by
6045          * dirty data which can be converted only after flushing the dirty
6046          * data (and journalled aops don't know how to handle these cases).
6047          */
6048         if (val) {
6049                 filemap_invalidate_lock(inode->i_mapping);
6050                 err = filemap_write_and_wait(inode->i_mapping);
6051                 if (err < 0) {
6052                         filemap_invalidate_unlock(inode->i_mapping);
6053                         return err;
6054                 }
6055         }
6056
6057         percpu_down_write(&sbi->s_writepages_rwsem);
6058         jbd2_journal_lock_updates(journal);
6059
6060         /*
6061          * OK, there are no updates running now, and all cached data is
6062          * synced to disk.  We are now in a completely consistent state
6063          * which doesn't have anything in the journal, and we know that
6064          * no filesystem updates are running, so it is safe to modify
6065          * the inode's in-core data-journaling state flag now.
6066          */
6067
6068         if (val)
6069                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6070         else {
6071                 err = jbd2_journal_flush(journal, 0);
6072                 if (err < 0) {
6073                         jbd2_journal_unlock_updates(journal);
6074                         percpu_up_write(&sbi->s_writepages_rwsem);
6075                         return err;
6076                 }
6077                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6078         }
6079         ext4_set_aops(inode);
6080
6081         jbd2_journal_unlock_updates(journal);
6082         percpu_up_write(&sbi->s_writepages_rwsem);
6083
6084         if (val)
6085                 filemap_invalidate_unlock(inode->i_mapping);
6086
6087         /* Finally we can mark the inode as dirty. */
6088
6089         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6090         if (IS_ERR(handle))
6091                 return PTR_ERR(handle);
6092
6093         ext4_fc_mark_ineligible(inode->i_sb,
6094                 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6095         err = ext4_mark_inode_dirty(handle, inode);
6096         ext4_handle_sync(handle);
6097         ext4_journal_stop(handle);
6098         ext4_std_error(inode->i_sb, err);
6099
6100         return err;
6101 }
6102
6103 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6104                             struct buffer_head *bh)
6105 {
6106         return !buffer_mapped(bh);
6107 }
6108
6109 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6110 {
6111         struct vm_area_struct *vma = vmf->vma;
6112         struct page *page = vmf->page;
6113         loff_t size;
6114         unsigned long len;
6115         int err;
6116         vm_fault_t ret;
6117         struct file *file = vma->vm_file;
6118         struct inode *inode = file_inode(file);
6119         struct address_space *mapping = inode->i_mapping;
6120         handle_t *handle;
6121         get_block_t *get_block;
6122         int retries = 0;
6123
6124         if (unlikely(IS_IMMUTABLE(inode)))
6125                 return VM_FAULT_SIGBUS;
6126
6127         sb_start_pagefault(inode->i_sb);
6128         file_update_time(vma->vm_file);
6129
6130         filemap_invalidate_lock_shared(mapping);
6131
6132         err = ext4_convert_inline_data(inode);
6133         if (err)
6134                 goto out_ret;
6135
6136         /*
6137          * On data journalling we skip straight to the transaction handle:
6138          * there's no delalloc; page truncated will be checked later; the
6139          * early return w/ all buffers mapped (calculates size/len) can't
6140          * be used; and there's no dioread_nolock, so only ext4_get_block.
6141          */
6142         if (ext4_should_journal_data(inode))
6143                 goto retry_alloc;
6144
6145         /* Delalloc case is easy... */
6146         if (test_opt(inode->i_sb, DELALLOC) &&
6147             !ext4_nonda_switch(inode->i_sb)) {
6148                 do {
6149                         err = block_page_mkwrite(vma, vmf,
6150                                                    ext4_da_get_block_prep);
6151                 } while (err == -ENOSPC &&
6152                        ext4_should_retry_alloc(inode->i_sb, &retries));
6153                 goto out_ret;
6154         }
6155
6156         lock_page(page);
6157         size = i_size_read(inode);
6158         /* Page got truncated from under us? */
6159         if (page->mapping != mapping || page_offset(page) > size) {
6160                 unlock_page(page);
6161                 ret = VM_FAULT_NOPAGE;
6162                 goto out;
6163         }
6164
6165         if (page->index == size >> PAGE_SHIFT)
6166                 len = size & ~PAGE_MASK;
6167         else
6168                 len = PAGE_SIZE;
6169         /*
6170          * Return if we have all the buffers mapped. This avoids the need to do
6171          * journal_start/journal_stop which can block and take a long time
6172          *
6173          * This cannot be done for data journalling, as we have to add the
6174          * inode to the transaction's list to writeprotect pages on commit.
6175          */
6176         if (page_has_buffers(page)) {
6177                 if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page),
6178                                             0, len, NULL,
6179                                             ext4_bh_unmapped)) {
6180                         /* Wait so that we don't change page under IO */
6181                         wait_for_stable_page(page);
6182                         ret = VM_FAULT_LOCKED;
6183                         goto out;
6184                 }
6185         }
6186         unlock_page(page);
6187         /* OK, we need to fill the hole... */
6188         if (ext4_should_dioread_nolock(inode))
6189                 get_block = ext4_get_block_unwritten;
6190         else
6191                 get_block = ext4_get_block;
6192 retry_alloc:
6193         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6194                                     ext4_writepage_trans_blocks(inode));
6195         if (IS_ERR(handle)) {
6196                 ret = VM_FAULT_SIGBUS;
6197                 goto out;
6198         }
6199         /*
6200          * Data journalling can't use block_page_mkwrite() because it
6201          * will set_buffer_dirty() before do_journal_get_write_access()
6202          * thus might hit warning messages for dirty metadata buffers.
6203          */
6204         if (!ext4_should_journal_data(inode)) {
6205                 err = block_page_mkwrite(vma, vmf, get_block);
6206         } else {
6207                 lock_page(page);
6208                 size = i_size_read(inode);
6209                 /* Page got truncated from under us? */
6210                 if (page->mapping != mapping || page_offset(page) > size) {
6211                         ret = VM_FAULT_NOPAGE;
6212                         goto out_error;
6213                 }
6214
6215                 if (page->index == size >> PAGE_SHIFT)
6216                         len = size & ~PAGE_MASK;
6217                 else
6218                         len = PAGE_SIZE;
6219
6220                 err = __block_write_begin(page, 0, len, ext4_get_block);
6221                 if (!err) {
6222                         ret = VM_FAULT_SIGBUS;
6223                         if (ext4_walk_page_buffers(handle, inode,
6224                                         page_buffers(page), 0, len, NULL,
6225                                         do_journal_get_write_access))
6226                                 goto out_error;
6227                         if (ext4_walk_page_buffers(handle, inode,
6228                                         page_buffers(page), 0, len, NULL,
6229                                         write_end_fn))
6230                                 goto out_error;
6231                         if (ext4_jbd2_inode_add_write(handle, inode,
6232                                                       page_offset(page), len))
6233                                 goto out_error;
6234                         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6235                 } else {
6236                         unlock_page(page);
6237                 }
6238         }
6239         ext4_journal_stop(handle);
6240         if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6241                 goto retry_alloc;
6242 out_ret:
6243         ret = block_page_mkwrite_return(err);
6244 out:
6245         filemap_invalidate_unlock_shared(mapping);
6246         sb_end_pagefault(inode->i_sb);
6247         return ret;
6248 out_error:
6249         unlock_page(page);
6250         ext4_journal_stop(handle);
6251         goto out;
6252 }