ext4: fix another off-by-one fsmap error on 1k block filesystems
[platform/kernel/linux-starfive.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      (jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
44
45 #include "ext4_jbd2.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "truncate.h"
49
50 #include <trace/events/ext4.h>
51
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53                               struct ext4_inode_info *ei)
54 {
55         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56         __u32 csum;
57         __u16 dummy_csum = 0;
58         int offset = offsetof(struct ext4_inode, i_checksum_lo);
59         unsigned int csum_size = sizeof(dummy_csum);
60
61         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63         offset += csum_size;
64         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65                            EXT4_GOOD_OLD_INODE_SIZE - offset);
66
67         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68                 offset = offsetof(struct ext4_inode, i_checksum_hi);
69                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70                                    EXT4_GOOD_OLD_INODE_SIZE,
71                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
72                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74                                            csum_size);
75                         offset += csum_size;
76                 }
77                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
79         }
80
81         return csum;
82 }
83
84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85                                   struct ext4_inode_info *ei)
86 {
87         __u32 provided, calculated;
88
89         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90             cpu_to_le32(EXT4_OS_LINUX) ||
91             !ext4_has_metadata_csum(inode->i_sb))
92                 return 1;
93
94         provided = le16_to_cpu(raw->i_checksum_lo);
95         calculated = ext4_inode_csum(inode, raw, ei);
96         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99         else
100                 calculated &= 0xFFFF;
101
102         return provided == calculated;
103 }
104
105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106                          struct ext4_inode_info *ei)
107 {
108         __u32 csum;
109
110         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111             cpu_to_le32(EXT4_OS_LINUX) ||
112             !ext4_has_metadata_csum(inode->i_sb))
113                 return;
114
115         csum = ext4_inode_csum(inode, raw, ei);
116         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120 }
121
122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
123                                               loff_t new_size)
124 {
125         trace_ext4_begin_ordered_truncate(inode, new_size);
126         /*
127          * If jinode is zero, then we never opened the file for
128          * writing, so there's no need to call
129          * jbd2_journal_begin_ordered_truncate() since there's no
130          * outstanding writes we need to flush.
131          */
132         if (!EXT4_I(inode)->jinode)
133                 return 0;
134         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135                                                    EXT4_I(inode)->jinode,
136                                                    new_size);
137 }
138
139 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
141                                   int pextents);
142
143 /*
144  * Test whether an inode is a fast symlink.
145  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
146  */
147 int ext4_inode_is_fast_symlink(struct inode *inode)
148 {
149         if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
150                 int ea_blocks = EXT4_I(inode)->i_file_acl ?
151                                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152
153                 if (ext4_has_inline_data(inode))
154                         return 0;
155
156                 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157         }
158         return S_ISLNK(inode->i_mode) && inode->i_size &&
159                (inode->i_size < EXT4_N_BLOCKS * 4);
160 }
161
162 /*
163  * Called at the last iput() if i_nlink is zero.
164  */
165 void ext4_evict_inode(struct inode *inode)
166 {
167         handle_t *handle;
168         int err;
169         /*
170          * Credits for final inode cleanup and freeing:
171          * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
172          * (xattr block freeing), bitmap, group descriptor (inode freeing)
173          */
174         int extra_credits = 6;
175         struct ext4_xattr_inode_array *ea_inode_array = NULL;
176         bool freeze_protected = false;
177
178         trace_ext4_evict_inode(inode);
179
180         if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
181                 ext4_evict_ea_inode(inode);
182         if (inode->i_nlink) {
183                 /*
184                  * When journalling data dirty buffers are tracked only in the
185                  * journal. So although mm thinks everything is clean and
186                  * ready for reaping the inode might still have some pages to
187                  * write in the running transaction or waiting to be
188                  * checkpointed. Thus calling jbd2_journal_invalidate_folio()
189                  * (via truncate_inode_pages()) to discard these buffers can
190                  * cause data loss. Also even if we did not discard these
191                  * buffers, we would have no way to find them after the inode
192                  * is reaped and thus user could see stale data if he tries to
193                  * read them before the transaction is checkpointed. So be
194                  * careful and force everything to disk here... We use
195                  * ei->i_datasync_tid to store the newest transaction
196                  * containing inode's data.
197                  *
198                  * Note that directories do not have this problem because they
199                  * don't use page cache.
200                  */
201                 if (inode->i_ino != EXT4_JOURNAL_INO &&
202                     ext4_should_journal_data(inode) &&
203                     S_ISREG(inode->i_mode) && inode->i_data.nrpages) {
204                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
205                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
206
207                         jbd2_complete_transaction(journal, commit_tid);
208                         filemap_write_and_wait(&inode->i_data);
209                 }
210                 truncate_inode_pages_final(&inode->i_data);
211
212                 goto no_delete;
213         }
214
215         if (is_bad_inode(inode))
216                 goto no_delete;
217         dquot_initialize(inode);
218
219         if (ext4_should_order_data(inode))
220                 ext4_begin_ordered_truncate(inode, 0);
221         truncate_inode_pages_final(&inode->i_data);
222
223         /*
224          * For inodes with journalled data, transaction commit could have
225          * dirtied the inode. And for inodes with dioread_nolock, unwritten
226          * extents converting worker could merge extents and also have dirtied
227          * the inode. Flush worker is ignoring it because of I_FREEING flag but
228          * we still need to remove the inode from the writeback lists.
229          */
230         if (!list_empty_careful(&inode->i_io_list))
231                 inode_io_list_del(inode);
232
233         /*
234          * Protect us against freezing - iput() caller didn't have to have any
235          * protection against it. When we are in a running transaction though,
236          * we are already protected against freezing and we cannot grab further
237          * protection due to lock ordering constraints.
238          */
239         if (!ext4_journal_current_handle()) {
240                 sb_start_intwrite(inode->i_sb);
241                 freeze_protected = true;
242         }
243
244         if (!IS_NOQUOTA(inode))
245                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
246
247         /*
248          * Block bitmap, group descriptor, and inode are accounted in both
249          * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
250          */
251         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
252                          ext4_blocks_for_truncate(inode) + extra_credits - 3);
253         if (IS_ERR(handle)) {
254                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
255                 /*
256                  * If we're going to skip the normal cleanup, we still need to
257                  * make sure that the in-core orphan linked list is properly
258                  * cleaned up.
259                  */
260                 ext4_orphan_del(NULL, inode);
261                 if (freeze_protected)
262                         sb_end_intwrite(inode->i_sb);
263                 goto no_delete;
264         }
265
266         if (IS_SYNC(inode))
267                 ext4_handle_sync(handle);
268
269         /*
270          * Set inode->i_size to 0 before calling ext4_truncate(). We need
271          * special handling of symlinks here because i_size is used to
272          * determine whether ext4_inode_info->i_data contains symlink data or
273          * block mappings. Setting i_size to 0 will remove its fast symlink
274          * status. Erase i_data so that it becomes a valid empty block map.
275          */
276         if (ext4_inode_is_fast_symlink(inode))
277                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
278         inode->i_size = 0;
279         err = ext4_mark_inode_dirty(handle, inode);
280         if (err) {
281                 ext4_warning(inode->i_sb,
282                              "couldn't mark inode dirty (err %d)", err);
283                 goto stop_handle;
284         }
285         if (inode->i_blocks) {
286                 err = ext4_truncate(inode);
287                 if (err) {
288                         ext4_error_err(inode->i_sb, -err,
289                                        "couldn't truncate inode %lu (err %d)",
290                                        inode->i_ino, err);
291                         goto stop_handle;
292                 }
293         }
294
295         /* Remove xattr references. */
296         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
297                                       extra_credits);
298         if (err) {
299                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
300 stop_handle:
301                 ext4_journal_stop(handle);
302                 ext4_orphan_del(NULL, inode);
303                 if (freeze_protected)
304                         sb_end_intwrite(inode->i_sb);
305                 ext4_xattr_inode_array_free(ea_inode_array);
306                 goto no_delete;
307         }
308
309         /*
310          * Kill off the orphan record which ext4_truncate created.
311          * AKPM: I think this can be inside the above `if'.
312          * Note that ext4_orphan_del() has to be able to cope with the
313          * deletion of a non-existent orphan - this is because we don't
314          * know if ext4_truncate() actually created an orphan record.
315          * (Well, we could do this if we need to, but heck - it works)
316          */
317         ext4_orphan_del(handle, inode);
318         EXT4_I(inode)->i_dtime  = (__u32)ktime_get_real_seconds();
319
320         /*
321          * One subtle ordering requirement: if anything has gone wrong
322          * (transaction abort, IO errors, whatever), then we can still
323          * do these next steps (the fs will already have been marked as
324          * having errors), but we can't free the inode if the mark_dirty
325          * fails.
326          */
327         if (ext4_mark_inode_dirty(handle, inode))
328                 /* If that failed, just do the required in-core inode clear. */
329                 ext4_clear_inode(inode);
330         else
331                 ext4_free_inode(handle, inode);
332         ext4_journal_stop(handle);
333         if (freeze_protected)
334                 sb_end_intwrite(inode->i_sb);
335         ext4_xattr_inode_array_free(ea_inode_array);
336         return;
337 no_delete:
338         /*
339          * Check out some where else accidentally dirty the evicting inode,
340          * which may probably cause inode use-after-free issues later.
341          */
342         WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
343
344         if (!list_empty(&EXT4_I(inode)->i_fc_list))
345                 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
346         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
347 }
348
349 #ifdef CONFIG_QUOTA
350 qsize_t *ext4_get_reserved_space(struct inode *inode)
351 {
352         return &EXT4_I(inode)->i_reserved_quota;
353 }
354 #endif
355
356 /*
357  * Called with i_data_sem down, which is important since we can call
358  * ext4_discard_preallocations() from here.
359  */
360 void ext4_da_update_reserve_space(struct inode *inode,
361                                         int used, int quota_claim)
362 {
363         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
364         struct ext4_inode_info *ei = EXT4_I(inode);
365
366         spin_lock(&ei->i_block_reservation_lock);
367         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
368         if (unlikely(used > ei->i_reserved_data_blocks)) {
369                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
370                          "with only %d reserved data blocks",
371                          __func__, inode->i_ino, used,
372                          ei->i_reserved_data_blocks);
373                 WARN_ON(1);
374                 used = ei->i_reserved_data_blocks;
375         }
376
377         /* Update per-inode reservations */
378         ei->i_reserved_data_blocks -= used;
379         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
380
381         spin_unlock(&ei->i_block_reservation_lock);
382
383         /* Update quota subsystem for data blocks */
384         if (quota_claim)
385                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
386         else {
387                 /*
388                  * We did fallocate with an offset that is already delayed
389                  * allocated. So on delayed allocated writeback we should
390                  * not re-claim the quota for fallocated blocks.
391                  */
392                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
393         }
394
395         /*
396          * If we have done all the pending block allocations and if
397          * there aren't any writers on the inode, we can discard the
398          * inode's preallocations.
399          */
400         if ((ei->i_reserved_data_blocks == 0) &&
401             !inode_is_open_for_write(inode))
402                 ext4_discard_preallocations(inode, 0);
403 }
404
405 static int __check_block_validity(struct inode *inode, const char *func,
406                                 unsigned int line,
407                                 struct ext4_map_blocks *map)
408 {
409         if (ext4_has_feature_journal(inode->i_sb) &&
410             (inode->i_ino ==
411              le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
412                 return 0;
413         if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
414                 ext4_error_inode(inode, func, line, map->m_pblk,
415                                  "lblock %lu mapped to illegal pblock %llu "
416                                  "(length %d)", (unsigned long) map->m_lblk,
417                                  map->m_pblk, map->m_len);
418                 return -EFSCORRUPTED;
419         }
420         return 0;
421 }
422
423 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
424                        ext4_lblk_t len)
425 {
426         int ret;
427
428         if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
429                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
430
431         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
432         if (ret > 0)
433                 ret = 0;
434
435         return ret;
436 }
437
438 #define check_block_validity(inode, map)        \
439         __check_block_validity((inode), __func__, __LINE__, (map))
440
441 #ifdef ES_AGGRESSIVE_TEST
442 static void ext4_map_blocks_es_recheck(handle_t *handle,
443                                        struct inode *inode,
444                                        struct ext4_map_blocks *es_map,
445                                        struct ext4_map_blocks *map,
446                                        int flags)
447 {
448         int retval;
449
450         map->m_flags = 0;
451         /*
452          * There is a race window that the result is not the same.
453          * e.g. xfstests #223 when dioread_nolock enables.  The reason
454          * is that we lookup a block mapping in extent status tree with
455          * out taking i_data_sem.  So at the time the unwritten extent
456          * could be converted.
457          */
458         down_read(&EXT4_I(inode)->i_data_sem);
459         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
460                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
461         } else {
462                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
463         }
464         up_read((&EXT4_I(inode)->i_data_sem));
465
466         /*
467          * We don't check m_len because extent will be collpased in status
468          * tree.  So the m_len might not equal.
469          */
470         if (es_map->m_lblk != map->m_lblk ||
471             es_map->m_flags != map->m_flags ||
472             es_map->m_pblk != map->m_pblk) {
473                 printk("ES cache assertion failed for inode: %lu "
474                        "es_cached ex [%d/%d/%llu/%x] != "
475                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
476                        inode->i_ino, es_map->m_lblk, es_map->m_len,
477                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
478                        map->m_len, map->m_pblk, map->m_flags,
479                        retval, flags);
480         }
481 }
482 #endif /* ES_AGGRESSIVE_TEST */
483
484 /*
485  * The ext4_map_blocks() function tries to look up the requested blocks,
486  * and returns if the blocks are already mapped.
487  *
488  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
489  * and store the allocated blocks in the result buffer head and mark it
490  * mapped.
491  *
492  * If file type is extents based, it will call ext4_ext_map_blocks(),
493  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
494  * based files
495  *
496  * On success, it returns the number of blocks being mapped or allocated.  if
497  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
498  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
499  *
500  * It returns 0 if plain look up failed (blocks have not been allocated), in
501  * that case, @map is returned as unmapped but we still do fill map->m_len to
502  * indicate the length of a hole starting at map->m_lblk.
503  *
504  * It returns the error in case of allocation failure.
505  */
506 int ext4_map_blocks(handle_t *handle, struct inode *inode,
507                     struct ext4_map_blocks *map, int flags)
508 {
509         struct extent_status es;
510         int retval;
511         int ret = 0;
512 #ifdef ES_AGGRESSIVE_TEST
513         struct ext4_map_blocks orig_map;
514
515         memcpy(&orig_map, map, sizeof(*map));
516 #endif
517
518         map->m_flags = 0;
519         ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
520                   flags, map->m_len, (unsigned long) map->m_lblk);
521
522         /*
523          * ext4_map_blocks returns an int, and m_len is an unsigned int
524          */
525         if (unlikely(map->m_len > INT_MAX))
526                 map->m_len = INT_MAX;
527
528         /* We can handle the block number less than EXT_MAX_BLOCKS */
529         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
530                 return -EFSCORRUPTED;
531
532         /* Lookup extent status tree firstly */
533         if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
534             ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
535                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
536                         map->m_pblk = ext4_es_pblock(&es) +
537                                         map->m_lblk - es.es_lblk;
538                         map->m_flags |= ext4_es_is_written(&es) ?
539                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
540                         retval = es.es_len - (map->m_lblk - es.es_lblk);
541                         if (retval > map->m_len)
542                                 retval = map->m_len;
543                         map->m_len = retval;
544                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
545                         map->m_pblk = 0;
546                         retval = es.es_len - (map->m_lblk - es.es_lblk);
547                         if (retval > map->m_len)
548                                 retval = map->m_len;
549                         map->m_len = retval;
550                         retval = 0;
551                 } else {
552                         BUG();
553                 }
554
555                 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
556                         return retval;
557 #ifdef ES_AGGRESSIVE_TEST
558                 ext4_map_blocks_es_recheck(handle, inode, map,
559                                            &orig_map, flags);
560 #endif
561                 goto found;
562         }
563         /*
564          * In the query cache no-wait mode, nothing we can do more if we
565          * cannot find extent in the cache.
566          */
567         if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
568                 return 0;
569
570         /*
571          * Try to see if we can get the block without requesting a new
572          * file system block.
573          */
574         down_read(&EXT4_I(inode)->i_data_sem);
575         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
576                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
577         } else {
578                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
579         }
580         if (retval > 0) {
581                 unsigned int status;
582
583                 if (unlikely(retval != map->m_len)) {
584                         ext4_warning(inode->i_sb,
585                                      "ES len assertion failed for inode "
586                                      "%lu: retval %d != map->m_len %d",
587                                      inode->i_ino, retval, map->m_len);
588                         WARN_ON(1);
589                 }
590
591                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
592                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
593                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
594                     !(status & EXTENT_STATUS_WRITTEN) &&
595                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
596                                        map->m_lblk + map->m_len - 1))
597                         status |= EXTENT_STATUS_DELAYED;
598                 ret = ext4_es_insert_extent(inode, map->m_lblk,
599                                             map->m_len, map->m_pblk, status);
600                 if (ret < 0)
601                         retval = ret;
602         }
603         up_read((&EXT4_I(inode)->i_data_sem));
604
605 found:
606         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
607                 ret = check_block_validity(inode, map);
608                 if (ret != 0)
609                         return ret;
610         }
611
612         /* If it is only a block(s) look up */
613         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
614                 return retval;
615
616         /*
617          * Returns if the blocks have already allocated
618          *
619          * Note that if blocks have been preallocated
620          * ext4_ext_get_block() returns the create = 0
621          * with buffer head unmapped.
622          */
623         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
624                 /*
625                  * If we need to convert extent to unwritten
626                  * we continue and do the actual work in
627                  * ext4_ext_map_blocks()
628                  */
629                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
630                         return retval;
631
632         /*
633          * Here we clear m_flags because after allocating an new extent,
634          * it will be set again.
635          */
636         map->m_flags &= ~EXT4_MAP_FLAGS;
637
638         /*
639          * New blocks allocate and/or writing to unwritten extent
640          * will possibly result in updating i_data, so we take
641          * the write lock of i_data_sem, and call get_block()
642          * with create == 1 flag.
643          */
644         down_write(&EXT4_I(inode)->i_data_sem);
645
646         /*
647          * We need to check for EXT4 here because migrate
648          * could have changed the inode type in between
649          */
650         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
651                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
652         } else {
653                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
654
655                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
656                         /*
657                          * We allocated new blocks which will result in
658                          * i_data's format changing.  Force the migrate
659                          * to fail by clearing migrate flags
660                          */
661                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
662                 }
663
664                 /*
665                  * Update reserved blocks/metadata blocks after successful
666                  * block allocation which had been deferred till now. We don't
667                  * support fallocate for non extent files. So we can update
668                  * reserve space here.
669                  */
670                 if ((retval > 0) &&
671                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
672                         ext4_da_update_reserve_space(inode, retval, 1);
673         }
674
675         if (retval > 0) {
676                 unsigned int status;
677
678                 if (unlikely(retval != map->m_len)) {
679                         ext4_warning(inode->i_sb,
680                                      "ES len assertion failed for inode "
681                                      "%lu: retval %d != map->m_len %d",
682                                      inode->i_ino, retval, map->m_len);
683                         WARN_ON(1);
684                 }
685
686                 /*
687                  * We have to zeroout blocks before inserting them into extent
688                  * status tree. Otherwise someone could look them up there and
689                  * use them before they are really zeroed. We also have to
690                  * unmap metadata before zeroing as otherwise writeback can
691                  * overwrite zeros with stale data from block device.
692                  */
693                 if (flags & EXT4_GET_BLOCKS_ZERO &&
694                     map->m_flags & EXT4_MAP_MAPPED &&
695                     map->m_flags & EXT4_MAP_NEW) {
696                         ret = ext4_issue_zeroout(inode, map->m_lblk,
697                                                  map->m_pblk, map->m_len);
698                         if (ret) {
699                                 retval = ret;
700                                 goto out_sem;
701                         }
702                 }
703
704                 /*
705                  * If the extent has been zeroed out, we don't need to update
706                  * extent status tree.
707                  */
708                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
709                     ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
710                         if (ext4_es_is_written(&es))
711                                 goto out_sem;
712                 }
713                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
714                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
715                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
716                     !(status & EXTENT_STATUS_WRITTEN) &&
717                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
718                                        map->m_lblk + map->m_len - 1))
719                         status |= EXTENT_STATUS_DELAYED;
720                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
721                                             map->m_pblk, status);
722                 if (ret < 0) {
723                         retval = ret;
724                         goto out_sem;
725                 }
726         }
727
728 out_sem:
729         up_write((&EXT4_I(inode)->i_data_sem));
730         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
731                 ret = check_block_validity(inode, map);
732                 if (ret != 0)
733                         return ret;
734
735                 /*
736                  * Inodes with freshly allocated blocks where contents will be
737                  * visible after transaction commit must be on transaction's
738                  * ordered data list.
739                  */
740                 if (map->m_flags & EXT4_MAP_NEW &&
741                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
742                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
743                     !ext4_is_quota_file(inode) &&
744                     ext4_should_order_data(inode)) {
745                         loff_t start_byte =
746                                 (loff_t)map->m_lblk << inode->i_blkbits;
747                         loff_t length = (loff_t)map->m_len << inode->i_blkbits;
748
749                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
750                                 ret = ext4_jbd2_inode_add_wait(handle, inode,
751                                                 start_byte, length);
752                         else
753                                 ret = ext4_jbd2_inode_add_write(handle, inode,
754                                                 start_byte, length);
755                         if (ret)
756                                 return ret;
757                 }
758         }
759         if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
760                                 map->m_flags & EXT4_MAP_MAPPED))
761                 ext4_fc_track_range(handle, inode, map->m_lblk,
762                                         map->m_lblk + map->m_len - 1);
763         if (retval < 0)
764                 ext_debug(inode, "failed with err %d\n", retval);
765         return retval;
766 }
767
768 /*
769  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
770  * we have to be careful as someone else may be manipulating b_state as well.
771  */
772 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
773 {
774         unsigned long old_state;
775         unsigned long new_state;
776
777         flags &= EXT4_MAP_FLAGS;
778
779         /* Dummy buffer_head? Set non-atomically. */
780         if (!bh->b_page) {
781                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
782                 return;
783         }
784         /*
785          * Someone else may be modifying b_state. Be careful! This is ugly but
786          * once we get rid of using bh as a container for mapping information
787          * to pass to / from get_block functions, this can go away.
788          */
789         do {
790                 old_state = READ_ONCE(bh->b_state);
791                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
792         } while (unlikely(
793                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
794 }
795
796 static int _ext4_get_block(struct inode *inode, sector_t iblock,
797                            struct buffer_head *bh, int flags)
798 {
799         struct ext4_map_blocks map;
800         int ret = 0;
801
802         if (ext4_has_inline_data(inode))
803                 return -ERANGE;
804
805         map.m_lblk = iblock;
806         map.m_len = bh->b_size >> inode->i_blkbits;
807
808         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
809                               flags);
810         if (ret > 0) {
811                 map_bh(bh, inode->i_sb, map.m_pblk);
812                 ext4_update_bh_state(bh, map.m_flags);
813                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
814                 ret = 0;
815         } else if (ret == 0) {
816                 /* hole case, need to fill in bh->b_size */
817                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
818         }
819         return ret;
820 }
821
822 int ext4_get_block(struct inode *inode, sector_t iblock,
823                    struct buffer_head *bh, int create)
824 {
825         return _ext4_get_block(inode, iblock, bh,
826                                create ? EXT4_GET_BLOCKS_CREATE : 0);
827 }
828
829 /*
830  * Get block function used when preparing for buffered write if we require
831  * creating an unwritten extent if blocks haven't been allocated.  The extent
832  * will be converted to written after the IO is complete.
833  */
834 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
835                              struct buffer_head *bh_result, int create)
836 {
837         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
838                    inode->i_ino, create);
839         return _ext4_get_block(inode, iblock, bh_result,
840                                EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
841 }
842
843 /* Maximum number of blocks we map for direct IO at once. */
844 #define DIO_MAX_BLOCKS 4096
845
846 /*
847  * `handle' can be NULL if create is zero
848  */
849 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
850                                 ext4_lblk_t block, int map_flags)
851 {
852         struct ext4_map_blocks map;
853         struct buffer_head *bh;
854         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
855         bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
856         int err;
857
858         ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
859                     || handle != NULL || create == 0);
860         ASSERT(create == 0 || !nowait);
861
862         map.m_lblk = block;
863         map.m_len = 1;
864         err = ext4_map_blocks(handle, inode, &map, map_flags);
865
866         if (err == 0)
867                 return create ? ERR_PTR(-ENOSPC) : NULL;
868         if (err < 0)
869                 return ERR_PTR(err);
870
871         if (nowait)
872                 return sb_find_get_block(inode->i_sb, map.m_pblk);
873
874         bh = sb_getblk(inode->i_sb, map.m_pblk);
875         if (unlikely(!bh))
876                 return ERR_PTR(-ENOMEM);
877         if (map.m_flags & EXT4_MAP_NEW) {
878                 ASSERT(create != 0);
879                 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
880                             || (handle != NULL));
881
882                 /*
883                  * Now that we do not always journal data, we should
884                  * keep in mind whether this should always journal the
885                  * new buffer as metadata.  For now, regular file
886                  * writes use ext4_get_block instead, so it's not a
887                  * problem.
888                  */
889                 lock_buffer(bh);
890                 BUFFER_TRACE(bh, "call get_create_access");
891                 err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
892                                                      EXT4_JTR_NONE);
893                 if (unlikely(err)) {
894                         unlock_buffer(bh);
895                         goto errout;
896                 }
897                 if (!buffer_uptodate(bh)) {
898                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
899                         set_buffer_uptodate(bh);
900                 }
901                 unlock_buffer(bh);
902                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
903                 err = ext4_handle_dirty_metadata(handle, inode, bh);
904                 if (unlikely(err))
905                         goto errout;
906         } else
907                 BUFFER_TRACE(bh, "not a new buffer");
908         return bh;
909 errout:
910         brelse(bh);
911         return ERR_PTR(err);
912 }
913
914 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
915                                ext4_lblk_t block, int map_flags)
916 {
917         struct buffer_head *bh;
918         int ret;
919
920         bh = ext4_getblk(handle, inode, block, map_flags);
921         if (IS_ERR(bh))
922                 return bh;
923         if (!bh || ext4_buffer_uptodate(bh))
924                 return bh;
925
926         ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
927         if (ret) {
928                 put_bh(bh);
929                 return ERR_PTR(ret);
930         }
931         return bh;
932 }
933
934 /* Read a contiguous batch of blocks. */
935 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
936                      bool wait, struct buffer_head **bhs)
937 {
938         int i, err;
939
940         for (i = 0; i < bh_count; i++) {
941                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
942                 if (IS_ERR(bhs[i])) {
943                         err = PTR_ERR(bhs[i]);
944                         bh_count = i;
945                         goto out_brelse;
946                 }
947         }
948
949         for (i = 0; i < bh_count; i++)
950                 /* Note that NULL bhs[i] is valid because of holes. */
951                 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
952                         ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
953
954         if (!wait)
955                 return 0;
956
957         for (i = 0; i < bh_count; i++)
958                 if (bhs[i])
959                         wait_on_buffer(bhs[i]);
960
961         for (i = 0; i < bh_count; i++) {
962                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
963                         err = -EIO;
964                         goto out_brelse;
965                 }
966         }
967         return 0;
968
969 out_brelse:
970         for (i = 0; i < bh_count; i++) {
971                 brelse(bhs[i]);
972                 bhs[i] = NULL;
973         }
974         return err;
975 }
976
977 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
978                            struct buffer_head *head,
979                            unsigned from,
980                            unsigned to,
981                            int *partial,
982                            int (*fn)(handle_t *handle, struct inode *inode,
983                                      struct buffer_head *bh))
984 {
985         struct buffer_head *bh;
986         unsigned block_start, block_end;
987         unsigned blocksize = head->b_size;
988         int err, ret = 0;
989         struct buffer_head *next;
990
991         for (bh = head, block_start = 0;
992              ret == 0 && (bh != head || !block_start);
993              block_start = block_end, bh = next) {
994                 next = bh->b_this_page;
995                 block_end = block_start + blocksize;
996                 if (block_end <= from || block_start >= to) {
997                         if (partial && !buffer_uptodate(bh))
998                                 *partial = 1;
999                         continue;
1000                 }
1001                 err = (*fn)(handle, inode, bh);
1002                 if (!ret)
1003                         ret = err;
1004         }
1005         return ret;
1006 }
1007
1008 /*
1009  * To preserve ordering, it is essential that the hole instantiation and
1010  * the data write be encapsulated in a single transaction.  We cannot
1011  * close off a transaction and start a new one between the ext4_get_block()
1012  * and the commit_write().  So doing the jbd2_journal_start at the start of
1013  * prepare_write() is the right place.
1014  *
1015  * Also, this function can nest inside ext4_writepage().  In that case, we
1016  * *know* that ext4_writepage() has generated enough buffer credits to do the
1017  * whole page.  So we won't block on the journal in that case, which is good,
1018  * because the caller may be PF_MEMALLOC.
1019  *
1020  * By accident, ext4 can be reentered when a transaction is open via
1021  * quota file writes.  If we were to commit the transaction while thus
1022  * reentered, there can be a deadlock - we would be holding a quota
1023  * lock, and the commit would never complete if another thread had a
1024  * transaction open and was blocking on the quota lock - a ranking
1025  * violation.
1026  *
1027  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1028  * will _not_ run commit under these circumstances because handle->h_ref
1029  * is elevated.  We'll still have enough credits for the tiny quotafile
1030  * write.
1031  */
1032 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1033                                 struct buffer_head *bh)
1034 {
1035         int dirty = buffer_dirty(bh);
1036         int ret;
1037
1038         if (!buffer_mapped(bh) || buffer_freed(bh))
1039                 return 0;
1040         /*
1041          * __block_write_begin() could have dirtied some buffers. Clean
1042          * the dirty bit as jbd2_journal_get_write_access() could complain
1043          * otherwise about fs integrity issues. Setting of the dirty bit
1044          * by __block_write_begin() isn't a real problem here as we clear
1045          * the bit before releasing a page lock and thus writeback cannot
1046          * ever write the buffer.
1047          */
1048         if (dirty)
1049                 clear_buffer_dirty(bh);
1050         BUFFER_TRACE(bh, "get write access");
1051         ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1052                                             EXT4_JTR_NONE);
1053         if (!ret && dirty)
1054                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1055         return ret;
1056 }
1057
1058 #ifdef CONFIG_FS_ENCRYPTION
1059 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1060                                   get_block_t *get_block)
1061 {
1062         unsigned from = pos & (PAGE_SIZE - 1);
1063         unsigned to = from + len;
1064         struct inode *inode = page->mapping->host;
1065         unsigned block_start, block_end;
1066         sector_t block;
1067         int err = 0;
1068         unsigned blocksize = inode->i_sb->s_blocksize;
1069         unsigned bbits;
1070         struct buffer_head *bh, *head, *wait[2];
1071         int nr_wait = 0;
1072         int i;
1073
1074         BUG_ON(!PageLocked(page));
1075         BUG_ON(from > PAGE_SIZE);
1076         BUG_ON(to > PAGE_SIZE);
1077         BUG_ON(from > to);
1078
1079         if (!page_has_buffers(page))
1080                 create_empty_buffers(page, blocksize, 0);
1081         head = page_buffers(page);
1082         bbits = ilog2(blocksize);
1083         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1084
1085         for (bh = head, block_start = 0; bh != head || !block_start;
1086             block++, block_start = block_end, bh = bh->b_this_page) {
1087                 block_end = block_start + blocksize;
1088                 if (block_end <= from || block_start >= to) {
1089                         if (PageUptodate(page)) {
1090                                 set_buffer_uptodate(bh);
1091                         }
1092                         continue;
1093                 }
1094                 if (buffer_new(bh))
1095                         clear_buffer_new(bh);
1096                 if (!buffer_mapped(bh)) {
1097                         WARN_ON(bh->b_size != blocksize);
1098                         err = get_block(inode, block, bh, 1);
1099                         if (err)
1100                                 break;
1101                         if (buffer_new(bh)) {
1102                                 if (PageUptodate(page)) {
1103                                         clear_buffer_new(bh);
1104                                         set_buffer_uptodate(bh);
1105                                         mark_buffer_dirty(bh);
1106                                         continue;
1107                                 }
1108                                 if (block_end > to || block_start < from)
1109                                         zero_user_segments(page, to, block_end,
1110                                                            block_start, from);
1111                                 continue;
1112                         }
1113                 }
1114                 if (PageUptodate(page)) {
1115                         set_buffer_uptodate(bh);
1116                         continue;
1117                 }
1118                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1119                     !buffer_unwritten(bh) &&
1120                     (block_start < from || block_end > to)) {
1121                         ext4_read_bh_lock(bh, 0, false);
1122                         wait[nr_wait++] = bh;
1123                 }
1124         }
1125         /*
1126          * If we issued read requests, let them complete.
1127          */
1128         for (i = 0; i < nr_wait; i++) {
1129                 wait_on_buffer(wait[i]);
1130                 if (!buffer_uptodate(wait[i]))
1131                         err = -EIO;
1132         }
1133         if (unlikely(err)) {
1134                 page_zero_new_buffers(page, from, to);
1135         } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1136                 for (i = 0; i < nr_wait; i++) {
1137                         int err2;
1138
1139                         err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1140                                                                 bh_offset(wait[i]));
1141                         if (err2) {
1142                                 clear_buffer_uptodate(wait[i]);
1143                                 err = err2;
1144                         }
1145                 }
1146         }
1147
1148         return err;
1149 }
1150 #endif
1151
1152 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1153                             loff_t pos, unsigned len,
1154                             struct page **pagep, void **fsdata)
1155 {
1156         struct inode *inode = mapping->host;
1157         int ret, needed_blocks;
1158         handle_t *handle;
1159         int retries = 0;
1160         struct page *page;
1161         pgoff_t index;
1162         unsigned from, to;
1163
1164         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1165                 return -EIO;
1166
1167         trace_ext4_write_begin(inode, pos, len);
1168         /*
1169          * Reserve one block more for addition to orphan list in case
1170          * we allocate blocks but write fails for some reason
1171          */
1172         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1173         index = pos >> PAGE_SHIFT;
1174         from = pos & (PAGE_SIZE - 1);
1175         to = from + len;
1176
1177         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1178                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1179                                                     pagep);
1180                 if (ret < 0)
1181                         return ret;
1182                 if (ret == 1)
1183                         return 0;
1184         }
1185
1186         /*
1187          * grab_cache_page_write_begin() can take a long time if the
1188          * system is thrashing due to memory pressure, or if the page
1189          * is being written back.  So grab it first before we start
1190          * the transaction handle.  This also allows us to allocate
1191          * the page (if needed) without using GFP_NOFS.
1192          */
1193 retry_grab:
1194         page = grab_cache_page_write_begin(mapping, index);
1195         if (!page)
1196                 return -ENOMEM;
1197         /*
1198          * The same as page allocation, we prealloc buffer heads before
1199          * starting the handle.
1200          */
1201         if (!page_has_buffers(page))
1202                 create_empty_buffers(page, inode->i_sb->s_blocksize, 0);
1203
1204         unlock_page(page);
1205
1206 retry_journal:
1207         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1208         if (IS_ERR(handle)) {
1209                 put_page(page);
1210                 return PTR_ERR(handle);
1211         }
1212
1213         lock_page(page);
1214         if (page->mapping != mapping) {
1215                 /* The page got truncated from under us */
1216                 unlock_page(page);
1217                 put_page(page);
1218                 ext4_journal_stop(handle);
1219                 goto retry_grab;
1220         }
1221         /* In case writeback began while the page was unlocked */
1222         wait_for_stable_page(page);
1223
1224 #ifdef CONFIG_FS_ENCRYPTION
1225         if (ext4_should_dioread_nolock(inode))
1226                 ret = ext4_block_write_begin(page, pos, len,
1227                                              ext4_get_block_unwritten);
1228         else
1229                 ret = ext4_block_write_begin(page, pos, len,
1230                                              ext4_get_block);
1231 #else
1232         if (ext4_should_dioread_nolock(inode))
1233                 ret = __block_write_begin(page, pos, len,
1234                                           ext4_get_block_unwritten);
1235         else
1236                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1237 #endif
1238         if (!ret && ext4_should_journal_data(inode)) {
1239                 ret = ext4_walk_page_buffers(handle, inode,
1240                                              page_buffers(page), from, to, NULL,
1241                                              do_journal_get_write_access);
1242         }
1243
1244         if (ret) {
1245                 bool extended = (pos + len > inode->i_size) &&
1246                                 !ext4_verity_in_progress(inode);
1247
1248                 unlock_page(page);
1249                 /*
1250                  * __block_write_begin may have instantiated a few blocks
1251                  * outside i_size.  Trim these off again. Don't need
1252                  * i_size_read because we hold i_rwsem.
1253                  *
1254                  * Add inode to orphan list in case we crash before
1255                  * truncate finishes
1256                  */
1257                 if (extended && ext4_can_truncate(inode))
1258                         ext4_orphan_add(handle, inode);
1259
1260                 ext4_journal_stop(handle);
1261                 if (extended) {
1262                         ext4_truncate_failed_write(inode);
1263                         /*
1264                          * If truncate failed early the inode might
1265                          * still be on the orphan list; we need to
1266                          * make sure the inode is removed from the
1267                          * orphan list in that case.
1268                          */
1269                         if (inode->i_nlink)
1270                                 ext4_orphan_del(NULL, inode);
1271                 }
1272
1273                 if (ret == -ENOSPC &&
1274                     ext4_should_retry_alloc(inode->i_sb, &retries))
1275                         goto retry_journal;
1276                 put_page(page);
1277                 return ret;
1278         }
1279         *pagep = page;
1280         return ret;
1281 }
1282
1283 /* For write_end() in data=journal mode */
1284 static int write_end_fn(handle_t *handle, struct inode *inode,
1285                         struct buffer_head *bh)
1286 {
1287         int ret;
1288         if (!buffer_mapped(bh) || buffer_freed(bh))
1289                 return 0;
1290         set_buffer_uptodate(bh);
1291         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1292         clear_buffer_meta(bh);
1293         clear_buffer_prio(bh);
1294         return ret;
1295 }
1296
1297 /*
1298  * We need to pick up the new inode size which generic_commit_write gave us
1299  * `file' can be NULL - eg, when called from page_symlink().
1300  *
1301  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1302  * buffers are managed internally.
1303  */
1304 static int ext4_write_end(struct file *file,
1305                           struct address_space *mapping,
1306                           loff_t pos, unsigned len, unsigned copied,
1307                           struct page *page, void *fsdata)
1308 {
1309         handle_t *handle = ext4_journal_current_handle();
1310         struct inode *inode = mapping->host;
1311         loff_t old_size = inode->i_size;
1312         int ret = 0, ret2;
1313         int i_size_changed = 0;
1314         bool verity = ext4_verity_in_progress(inode);
1315
1316         trace_ext4_write_end(inode, pos, len, copied);
1317
1318         if (ext4_has_inline_data(inode) &&
1319             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1320                 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1321
1322         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1323         /*
1324          * it's important to update i_size while still holding page lock:
1325          * page writeout could otherwise come in and zero beyond i_size.
1326          *
1327          * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1328          * blocks are being written past EOF, so skip the i_size update.
1329          */
1330         if (!verity)
1331                 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1332         unlock_page(page);
1333         put_page(page);
1334
1335         if (old_size < pos && !verity)
1336                 pagecache_isize_extended(inode, old_size, pos);
1337         /*
1338          * Don't mark the inode dirty under page lock. First, it unnecessarily
1339          * makes the holding time of page lock longer. Second, it forces lock
1340          * ordering of page lock and transaction start for journaling
1341          * filesystems.
1342          */
1343         if (i_size_changed)
1344                 ret = ext4_mark_inode_dirty(handle, inode);
1345
1346         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1347                 /* if we have allocated more blocks and copied
1348                  * less. We will have blocks allocated outside
1349                  * inode->i_size. So truncate them
1350                  */
1351                 ext4_orphan_add(handle, inode);
1352
1353         ret2 = ext4_journal_stop(handle);
1354         if (!ret)
1355                 ret = ret2;
1356
1357         if (pos + len > inode->i_size && !verity) {
1358                 ext4_truncate_failed_write(inode);
1359                 /*
1360                  * If truncate failed early the inode might still be
1361                  * on the orphan list; we need to make sure the inode
1362                  * is removed from the orphan list in that case.
1363                  */
1364                 if (inode->i_nlink)
1365                         ext4_orphan_del(NULL, inode);
1366         }
1367
1368         return ret ? ret : copied;
1369 }
1370
1371 /*
1372  * This is a private version of page_zero_new_buffers() which doesn't
1373  * set the buffer to be dirty, since in data=journalled mode we need
1374  * to call ext4_handle_dirty_metadata() instead.
1375  */
1376 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1377                                             struct inode *inode,
1378                                             struct page *page,
1379                                             unsigned from, unsigned to)
1380 {
1381         unsigned int block_start = 0, block_end;
1382         struct buffer_head *head, *bh;
1383
1384         bh = head = page_buffers(page);
1385         do {
1386                 block_end = block_start + bh->b_size;
1387                 if (buffer_new(bh)) {
1388                         if (block_end > from && block_start < to) {
1389                                 if (!PageUptodate(page)) {
1390                                         unsigned start, size;
1391
1392                                         start = max(from, block_start);
1393                                         size = min(to, block_end) - start;
1394
1395                                         zero_user(page, start, size);
1396                                         write_end_fn(handle, inode, bh);
1397                                 }
1398                                 clear_buffer_new(bh);
1399                         }
1400                 }
1401                 block_start = block_end;
1402                 bh = bh->b_this_page;
1403         } while (bh != head);
1404 }
1405
1406 static int ext4_journalled_write_end(struct file *file,
1407                                      struct address_space *mapping,
1408                                      loff_t pos, unsigned len, unsigned copied,
1409                                      struct page *page, void *fsdata)
1410 {
1411         handle_t *handle = ext4_journal_current_handle();
1412         struct inode *inode = mapping->host;
1413         loff_t old_size = inode->i_size;
1414         int ret = 0, ret2;
1415         int partial = 0;
1416         unsigned from, to;
1417         int size_changed = 0;
1418         bool verity = ext4_verity_in_progress(inode);
1419
1420         trace_ext4_journalled_write_end(inode, pos, len, copied);
1421         from = pos & (PAGE_SIZE - 1);
1422         to = from + len;
1423
1424         BUG_ON(!ext4_handle_valid(handle));
1425
1426         if (ext4_has_inline_data(inode))
1427                 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1428
1429         if (unlikely(copied < len) && !PageUptodate(page)) {
1430                 copied = 0;
1431                 ext4_journalled_zero_new_buffers(handle, inode, page, from, to);
1432         } else {
1433                 if (unlikely(copied < len))
1434                         ext4_journalled_zero_new_buffers(handle, inode, page,
1435                                                          from + copied, to);
1436                 ret = ext4_walk_page_buffers(handle, inode, page_buffers(page),
1437                                              from, from + copied, &partial,
1438                                              write_end_fn);
1439                 if (!partial)
1440                         SetPageUptodate(page);
1441         }
1442         if (!verity)
1443                 size_changed = ext4_update_inode_size(inode, pos + copied);
1444         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1445         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1446         unlock_page(page);
1447         put_page(page);
1448
1449         if (old_size < pos && !verity)
1450                 pagecache_isize_extended(inode, old_size, pos);
1451
1452         if (size_changed) {
1453                 ret2 = ext4_mark_inode_dirty(handle, inode);
1454                 if (!ret)
1455                         ret = ret2;
1456         }
1457
1458         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1459                 /* if we have allocated more blocks and copied
1460                  * less. We will have blocks allocated outside
1461                  * inode->i_size. So truncate them
1462                  */
1463                 ext4_orphan_add(handle, inode);
1464
1465         ret2 = ext4_journal_stop(handle);
1466         if (!ret)
1467                 ret = ret2;
1468         if (pos + len > inode->i_size && !verity) {
1469                 ext4_truncate_failed_write(inode);
1470                 /*
1471                  * If truncate failed early the inode might still be
1472                  * on the orphan list; we need to make sure the inode
1473                  * is removed from the orphan list in that case.
1474                  */
1475                 if (inode->i_nlink)
1476                         ext4_orphan_del(NULL, inode);
1477         }
1478
1479         return ret ? ret : copied;
1480 }
1481
1482 /*
1483  * Reserve space for a single cluster
1484  */
1485 static int ext4_da_reserve_space(struct inode *inode)
1486 {
1487         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1488         struct ext4_inode_info *ei = EXT4_I(inode);
1489         int ret;
1490
1491         /*
1492          * We will charge metadata quota at writeout time; this saves
1493          * us from metadata over-estimation, though we may go over by
1494          * a small amount in the end.  Here we just reserve for data.
1495          */
1496         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1497         if (ret)
1498                 return ret;
1499
1500         spin_lock(&ei->i_block_reservation_lock);
1501         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1502                 spin_unlock(&ei->i_block_reservation_lock);
1503                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1504                 return -ENOSPC;
1505         }
1506         ei->i_reserved_data_blocks++;
1507         trace_ext4_da_reserve_space(inode);
1508         spin_unlock(&ei->i_block_reservation_lock);
1509
1510         return 0;       /* success */
1511 }
1512
1513 void ext4_da_release_space(struct inode *inode, int to_free)
1514 {
1515         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1516         struct ext4_inode_info *ei = EXT4_I(inode);
1517
1518         if (!to_free)
1519                 return;         /* Nothing to release, exit */
1520
1521         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1522
1523         trace_ext4_da_release_space(inode, to_free);
1524         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1525                 /*
1526                  * if there aren't enough reserved blocks, then the
1527                  * counter is messed up somewhere.  Since this
1528                  * function is called from invalidate page, it's
1529                  * harmless to return without any action.
1530                  */
1531                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1532                          "ino %lu, to_free %d with only %d reserved "
1533                          "data blocks", inode->i_ino, to_free,
1534                          ei->i_reserved_data_blocks);
1535                 WARN_ON(1);
1536                 to_free = ei->i_reserved_data_blocks;
1537         }
1538         ei->i_reserved_data_blocks -= to_free;
1539
1540         /* update fs dirty data blocks counter */
1541         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1542
1543         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1544
1545         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1546 }
1547
1548 /*
1549  * Delayed allocation stuff
1550  */
1551
1552 struct mpage_da_data {
1553         struct inode *inode;
1554         struct writeback_control *wbc;
1555
1556         pgoff_t first_page;     /* The first page to write */
1557         pgoff_t next_page;      /* Current page to examine */
1558         pgoff_t last_page;      /* Last page to examine */
1559         /*
1560          * Extent to map - this can be after first_page because that can be
1561          * fully mapped. We somewhat abuse m_flags to store whether the extent
1562          * is delalloc or unwritten.
1563          */
1564         struct ext4_map_blocks map;
1565         struct ext4_io_submit io_submit;        /* IO submission data */
1566         unsigned int do_map:1;
1567         unsigned int scanned_until_end:1;
1568 };
1569
1570 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1571                                        bool invalidate)
1572 {
1573         unsigned nr, i;
1574         pgoff_t index, end;
1575         struct folio_batch fbatch;
1576         struct inode *inode = mpd->inode;
1577         struct address_space *mapping = inode->i_mapping;
1578
1579         /* This is necessary when next_page == 0. */
1580         if (mpd->first_page >= mpd->next_page)
1581                 return;
1582
1583         mpd->scanned_until_end = 0;
1584         index = mpd->first_page;
1585         end   = mpd->next_page - 1;
1586         if (invalidate) {
1587                 ext4_lblk_t start, last;
1588                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1589                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1590
1591                 /*
1592                  * avoid racing with extent status tree scans made by
1593                  * ext4_insert_delayed_block()
1594                  */
1595                 down_write(&EXT4_I(inode)->i_data_sem);
1596                 ext4_es_remove_extent(inode, start, last - start + 1);
1597                 up_write(&EXT4_I(inode)->i_data_sem);
1598         }
1599
1600         folio_batch_init(&fbatch);
1601         while (index <= end) {
1602                 nr = filemap_get_folios(mapping, &index, end, &fbatch);
1603                 if (nr == 0)
1604                         break;
1605                 for (i = 0; i < nr; i++) {
1606                         struct folio *folio = fbatch.folios[i];
1607
1608                         if (folio->index < mpd->first_page)
1609                                 continue;
1610                         if (folio->index + folio_nr_pages(folio) - 1 > end)
1611                                 continue;
1612                         BUG_ON(!folio_test_locked(folio));
1613                         BUG_ON(folio_test_writeback(folio));
1614                         if (invalidate) {
1615                                 if (folio_mapped(folio))
1616                                         folio_clear_dirty_for_io(folio);
1617                                 block_invalidate_folio(folio, 0,
1618                                                 folio_size(folio));
1619                                 folio_clear_uptodate(folio);
1620                         }
1621                         folio_unlock(folio);
1622                 }
1623                 folio_batch_release(&fbatch);
1624         }
1625 }
1626
1627 static void ext4_print_free_blocks(struct inode *inode)
1628 {
1629         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1630         struct super_block *sb = inode->i_sb;
1631         struct ext4_inode_info *ei = EXT4_I(inode);
1632
1633         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1634                EXT4_C2B(EXT4_SB(inode->i_sb),
1635                         ext4_count_free_clusters(sb)));
1636         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1637         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1638                (long long) EXT4_C2B(EXT4_SB(sb),
1639                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1640         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1641                (long long) EXT4_C2B(EXT4_SB(sb),
1642                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1643         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1644         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1645                  ei->i_reserved_data_blocks);
1646         return;
1647 }
1648
1649 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode,
1650                                       struct buffer_head *bh)
1651 {
1652         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1653 }
1654
1655 /*
1656  * ext4_insert_delayed_block - adds a delayed block to the extents status
1657  *                             tree, incrementing the reserved cluster/block
1658  *                             count or making a pending reservation
1659  *                             where needed
1660  *
1661  * @inode - file containing the newly added block
1662  * @lblk - logical block to be added
1663  *
1664  * Returns 0 on success, negative error code on failure.
1665  */
1666 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1667 {
1668         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1669         int ret;
1670         bool allocated = false;
1671         bool reserved = false;
1672
1673         /*
1674          * If the cluster containing lblk is shared with a delayed,
1675          * written, or unwritten extent in a bigalloc file system, it's
1676          * already been accounted for and does not need to be reserved.
1677          * A pending reservation must be made for the cluster if it's
1678          * shared with a written or unwritten extent and doesn't already
1679          * have one.  Written and unwritten extents can be purged from the
1680          * extents status tree if the system is under memory pressure, so
1681          * it's necessary to examine the extent tree if a search of the
1682          * extents status tree doesn't get a match.
1683          */
1684         if (sbi->s_cluster_ratio == 1) {
1685                 ret = ext4_da_reserve_space(inode);
1686                 if (ret != 0)   /* ENOSPC */
1687                         goto errout;
1688                 reserved = true;
1689         } else {   /* bigalloc */
1690                 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1691                         if (!ext4_es_scan_clu(inode,
1692                                               &ext4_es_is_mapped, lblk)) {
1693                                 ret = ext4_clu_mapped(inode,
1694                                                       EXT4_B2C(sbi, lblk));
1695                                 if (ret < 0)
1696                                         goto errout;
1697                                 if (ret == 0) {
1698                                         ret = ext4_da_reserve_space(inode);
1699                                         if (ret != 0)   /* ENOSPC */
1700                                                 goto errout;
1701                                         reserved = true;
1702                                 } else {
1703                                         allocated = true;
1704                                 }
1705                         } else {
1706                                 allocated = true;
1707                         }
1708                 }
1709         }
1710
1711         ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1712         if (ret && reserved)
1713                 ext4_da_release_space(inode, 1);
1714
1715 errout:
1716         return ret;
1717 }
1718
1719 /*
1720  * This function is grabs code from the very beginning of
1721  * ext4_map_blocks, but assumes that the caller is from delayed write
1722  * time. This function looks up the requested blocks and sets the
1723  * buffer delay bit under the protection of i_data_sem.
1724  */
1725 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1726                               struct ext4_map_blocks *map,
1727                               struct buffer_head *bh)
1728 {
1729         struct extent_status es;
1730         int retval;
1731         sector_t invalid_block = ~((sector_t) 0xffff);
1732 #ifdef ES_AGGRESSIVE_TEST
1733         struct ext4_map_blocks orig_map;
1734
1735         memcpy(&orig_map, map, sizeof(*map));
1736 #endif
1737
1738         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1739                 invalid_block = ~0;
1740
1741         map->m_flags = 0;
1742         ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1743                   (unsigned long) map->m_lblk);
1744
1745         /* Lookup extent status tree firstly */
1746         if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1747                 if (ext4_es_is_hole(&es)) {
1748                         retval = 0;
1749                         down_read(&EXT4_I(inode)->i_data_sem);
1750                         goto add_delayed;
1751                 }
1752
1753                 /*
1754                  * Delayed extent could be allocated by fallocate.
1755                  * So we need to check it.
1756                  */
1757                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1758                         map_bh(bh, inode->i_sb, invalid_block);
1759                         set_buffer_new(bh);
1760                         set_buffer_delay(bh);
1761                         return 0;
1762                 }
1763
1764                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1765                 retval = es.es_len - (iblock - es.es_lblk);
1766                 if (retval > map->m_len)
1767                         retval = map->m_len;
1768                 map->m_len = retval;
1769                 if (ext4_es_is_written(&es))
1770                         map->m_flags |= EXT4_MAP_MAPPED;
1771                 else if (ext4_es_is_unwritten(&es))
1772                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1773                 else
1774                         BUG();
1775
1776 #ifdef ES_AGGRESSIVE_TEST
1777                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1778 #endif
1779                 return retval;
1780         }
1781
1782         /*
1783          * Try to see if we can get the block without requesting a new
1784          * file system block.
1785          */
1786         down_read(&EXT4_I(inode)->i_data_sem);
1787         if (ext4_has_inline_data(inode))
1788                 retval = 0;
1789         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1790                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1791         else
1792                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1793
1794 add_delayed:
1795         if (retval == 0) {
1796                 int ret;
1797
1798                 /*
1799                  * XXX: __block_prepare_write() unmaps passed block,
1800                  * is it OK?
1801                  */
1802
1803                 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1804                 if (ret != 0) {
1805                         retval = ret;
1806                         goto out_unlock;
1807                 }
1808
1809                 map_bh(bh, inode->i_sb, invalid_block);
1810                 set_buffer_new(bh);
1811                 set_buffer_delay(bh);
1812         } else if (retval > 0) {
1813                 int ret;
1814                 unsigned int status;
1815
1816                 if (unlikely(retval != map->m_len)) {
1817                         ext4_warning(inode->i_sb,
1818                                      "ES len assertion failed for inode "
1819                                      "%lu: retval %d != map->m_len %d",
1820                                      inode->i_ino, retval, map->m_len);
1821                         WARN_ON(1);
1822                 }
1823
1824                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1825                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1826                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1827                                             map->m_pblk, status);
1828                 if (ret != 0)
1829                         retval = ret;
1830         }
1831
1832 out_unlock:
1833         up_read((&EXT4_I(inode)->i_data_sem));
1834
1835         return retval;
1836 }
1837
1838 /*
1839  * This is a special get_block_t callback which is used by
1840  * ext4_da_write_begin().  It will either return mapped block or
1841  * reserve space for a single block.
1842  *
1843  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1844  * We also have b_blocknr = -1 and b_bdev initialized properly
1845  *
1846  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1847  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1848  * initialized properly.
1849  */
1850 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1851                            struct buffer_head *bh, int create)
1852 {
1853         struct ext4_map_blocks map;
1854         int ret = 0;
1855
1856         BUG_ON(create == 0);
1857         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1858
1859         map.m_lblk = iblock;
1860         map.m_len = 1;
1861
1862         /*
1863          * first, we need to know whether the block is allocated already
1864          * preallocated blocks are unmapped but should treated
1865          * the same as allocated blocks.
1866          */
1867         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1868         if (ret <= 0)
1869                 return ret;
1870
1871         map_bh(bh, inode->i_sb, map.m_pblk);
1872         ext4_update_bh_state(bh, map.m_flags);
1873
1874         if (buffer_unwritten(bh)) {
1875                 /* A delayed write to unwritten bh should be marked
1876                  * new and mapped.  Mapped ensures that we don't do
1877                  * get_block multiple times when we write to the same
1878                  * offset and new ensures that we do proper zero out
1879                  * for partial write.
1880                  */
1881                 set_buffer_new(bh);
1882                 set_buffer_mapped(bh);
1883         }
1884         return 0;
1885 }
1886
1887 static int __ext4_journalled_writepage(struct page *page,
1888                                        unsigned int len)
1889 {
1890         struct address_space *mapping = page->mapping;
1891         struct inode *inode = mapping->host;
1892         handle_t *handle = NULL;
1893         int ret = 0, err = 0;
1894         int inline_data = ext4_has_inline_data(inode);
1895         struct buffer_head *inode_bh = NULL;
1896         loff_t size;
1897
1898         ClearPageChecked(page);
1899
1900         if (inline_data) {
1901                 BUG_ON(page->index != 0);
1902                 BUG_ON(len > ext4_get_max_inline_size(inode));
1903                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1904                 if (inode_bh == NULL)
1905                         goto out;
1906         }
1907         /*
1908          * We need to release the page lock before we start the
1909          * journal, so grab a reference so the page won't disappear
1910          * out from under us.
1911          */
1912         get_page(page);
1913         unlock_page(page);
1914
1915         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1916                                     ext4_writepage_trans_blocks(inode));
1917         if (IS_ERR(handle)) {
1918                 ret = PTR_ERR(handle);
1919                 put_page(page);
1920                 goto out_no_pagelock;
1921         }
1922         BUG_ON(!ext4_handle_valid(handle));
1923
1924         lock_page(page);
1925         put_page(page);
1926         size = i_size_read(inode);
1927         if (page->mapping != mapping || page_offset(page) > size) {
1928                 /* The page got truncated from under us */
1929                 ext4_journal_stop(handle);
1930                 ret = 0;
1931                 goto out;
1932         }
1933
1934         if (inline_data) {
1935                 ret = ext4_mark_inode_dirty(handle, inode);
1936         } else {
1937                 struct buffer_head *page_bufs = page_buffers(page);
1938
1939                 if (page->index == size >> PAGE_SHIFT)
1940                         len = size & ~PAGE_MASK;
1941                 else
1942                         len = PAGE_SIZE;
1943
1944                 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1945                                              NULL, do_journal_get_write_access);
1946
1947                 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1948                                              NULL, write_end_fn);
1949         }
1950         if (ret == 0)
1951                 ret = err;
1952         err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1953         if (ret == 0)
1954                 ret = err;
1955         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1956         err = ext4_journal_stop(handle);
1957         if (!ret)
1958                 ret = err;
1959
1960         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1961 out:
1962         unlock_page(page);
1963 out_no_pagelock:
1964         brelse(inode_bh);
1965         return ret;
1966 }
1967
1968 /*
1969  * Note that we don't need to start a transaction unless we're journaling data
1970  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1971  * need to file the inode to the transaction's list in ordered mode because if
1972  * we are writing back data added by write(), the inode is already there and if
1973  * we are writing back data modified via mmap(), no one guarantees in which
1974  * transaction the data will hit the disk. In case we are journaling data, we
1975  * cannot start transaction directly because transaction start ranks above page
1976  * lock so we have to do some magic.
1977  *
1978  * This function can get called via...
1979  *   - ext4_writepages after taking page lock (have journal handle)
1980  *   - journal_submit_inode_data_buffers (no journal handle)
1981  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1982  *   - grab_page_cache when doing write_begin (have journal handle)
1983  *
1984  * We don't do any block allocation in this function. If we have page with
1985  * multiple blocks we need to write those buffer_heads that are mapped. This
1986  * is important for mmaped based write. So if we do with blocksize 1K
1987  * truncate(f, 1024);
1988  * a = mmap(f, 0, 4096);
1989  * a[0] = 'a';
1990  * truncate(f, 4096);
1991  * we have in the page first buffer_head mapped via page_mkwrite call back
1992  * but other buffer_heads would be unmapped but dirty (dirty done via the
1993  * do_wp_page). So writepage should write the first block. If we modify
1994  * the mmap area beyond 1024 we will again get a page_fault and the
1995  * page_mkwrite callback will do the block allocation and mark the
1996  * buffer_heads mapped.
1997  *
1998  * We redirty the page if we have any buffer_heads that is either delay or
1999  * unwritten in the page.
2000  *
2001  * We can get recursively called as show below.
2002  *
2003  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2004  *              ext4_writepage()
2005  *
2006  * But since we don't do any block allocation we should not deadlock.
2007  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2008  */
2009 static int ext4_writepage(struct page *page,
2010                           struct writeback_control *wbc)
2011 {
2012         struct folio *folio = page_folio(page);
2013         int ret = 0;
2014         loff_t size;
2015         unsigned int len;
2016         struct buffer_head *page_bufs = NULL;
2017         struct inode *inode = page->mapping->host;
2018         struct ext4_io_submit io_submit;
2019         bool keep_towrite = false;
2020
2021         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2022                 folio_invalidate(folio, 0, folio_size(folio));
2023                 folio_unlock(folio);
2024                 return -EIO;
2025         }
2026
2027         trace_ext4_writepage(page);
2028         size = i_size_read(inode);
2029         if (page->index == size >> PAGE_SHIFT &&
2030             !ext4_verity_in_progress(inode))
2031                 len = size & ~PAGE_MASK;
2032         else
2033                 len = PAGE_SIZE;
2034
2035         /* Should never happen but for bugs in other kernel subsystems */
2036         if (!page_has_buffers(page)) {
2037                 ext4_warning_inode(inode,
2038                    "page %lu does not have buffers attached", page->index);
2039                 ClearPageDirty(page);
2040                 unlock_page(page);
2041                 return 0;
2042         }
2043
2044         page_bufs = page_buffers(page);
2045         /*
2046          * We cannot do block allocation or other extent handling in this
2047          * function. If there are buffers needing that, we have to redirty
2048          * the page. But we may reach here when we do a journal commit via
2049          * journal_submit_inode_data_buffers() and in that case we must write
2050          * allocated buffers to achieve data=ordered mode guarantees.
2051          *
2052          * Also, if there is only one buffer per page (the fs block
2053          * size == the page size), if one buffer needs block
2054          * allocation or needs to modify the extent tree to clear the
2055          * unwritten flag, we know that the page can't be written at
2056          * all, so we might as well refuse the write immediately.
2057          * Unfortunately if the block size != page size, we can't as
2058          * easily detect this case using ext4_walk_page_buffers(), but
2059          * for the extremely common case, this is an optimization that
2060          * skips a useless round trip through ext4_bio_write_page().
2061          */
2062         if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL,
2063                                    ext4_bh_delay_or_unwritten)) {
2064                 redirty_page_for_writepage(wbc, page);
2065                 if ((current->flags & PF_MEMALLOC) ||
2066                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2067                         /*
2068                          * For memory cleaning there's no point in writing only
2069                          * some buffers. So just bail out. Warn if we came here
2070                          * from direct reclaim.
2071                          */
2072                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2073                                                         == PF_MEMALLOC);
2074                         unlock_page(page);
2075                         return 0;
2076                 }
2077                 keep_towrite = true;
2078         }
2079
2080         if (PageChecked(page) && ext4_should_journal_data(inode))
2081                 /*
2082                  * It's mmapped pagecache.  Add buffers and journal it.  There
2083                  * doesn't seem much point in redirtying the page here.
2084                  */
2085                 return __ext4_journalled_writepage(page, len);
2086
2087         ext4_io_submit_init(&io_submit, wbc);
2088         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2089         if (!io_submit.io_end) {
2090                 redirty_page_for_writepage(wbc, page);
2091                 unlock_page(page);
2092                 return -ENOMEM;
2093         }
2094         ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite);
2095         ext4_io_submit(&io_submit);
2096         /* Drop io_end reference we got from init */
2097         ext4_put_io_end_defer(io_submit.io_end);
2098         return ret;
2099 }
2100
2101 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2102 {
2103         int len;
2104         loff_t size;
2105         int err;
2106
2107         BUG_ON(page->index != mpd->first_page);
2108         clear_page_dirty_for_io(page);
2109         /*
2110          * We have to be very careful here!  Nothing protects writeback path
2111          * against i_size changes and the page can be writeably mapped into
2112          * page tables. So an application can be growing i_size and writing
2113          * data through mmap while writeback runs. clear_page_dirty_for_io()
2114          * write-protects our page in page tables and the page cannot get
2115          * written to again until we release page lock. So only after
2116          * clear_page_dirty_for_io() we are safe to sample i_size for
2117          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2118          * on the barrier provided by TestClearPageDirty in
2119          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2120          * after page tables are updated.
2121          */
2122         size = i_size_read(mpd->inode);
2123         if (page->index == size >> PAGE_SHIFT &&
2124             !ext4_verity_in_progress(mpd->inode))
2125                 len = size & ~PAGE_MASK;
2126         else
2127                 len = PAGE_SIZE;
2128         err = ext4_bio_write_page(&mpd->io_submit, page, len, false);
2129         if (!err)
2130                 mpd->wbc->nr_to_write--;
2131         mpd->first_page++;
2132
2133         return err;
2134 }
2135
2136 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2137
2138 /*
2139  * mballoc gives us at most this number of blocks...
2140  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2141  * The rest of mballoc seems to handle chunks up to full group size.
2142  */
2143 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2144
2145 /*
2146  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2147  *
2148  * @mpd - extent of blocks
2149  * @lblk - logical number of the block in the file
2150  * @bh - buffer head we want to add to the extent
2151  *
2152  * The function is used to collect contig. blocks in the same state. If the
2153  * buffer doesn't require mapping for writeback and we haven't started the
2154  * extent of buffers to map yet, the function returns 'true' immediately - the
2155  * caller can write the buffer right away. Otherwise the function returns true
2156  * if the block has been added to the extent, false if the block couldn't be
2157  * added.
2158  */
2159 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2160                                    struct buffer_head *bh)
2161 {
2162         struct ext4_map_blocks *map = &mpd->map;
2163
2164         /* Buffer that doesn't need mapping for writeback? */
2165         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2166             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2167                 /* So far no extent to map => we write the buffer right away */
2168                 if (map->m_len == 0)
2169                         return true;
2170                 return false;
2171         }
2172
2173         /* First block in the extent? */
2174         if (map->m_len == 0) {
2175                 /* We cannot map unless handle is started... */
2176                 if (!mpd->do_map)
2177                         return false;
2178                 map->m_lblk = lblk;
2179                 map->m_len = 1;
2180                 map->m_flags = bh->b_state & BH_FLAGS;
2181                 return true;
2182         }
2183
2184         /* Don't go larger than mballoc is willing to allocate */
2185         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2186                 return false;
2187
2188         /* Can we merge the block to our big extent? */
2189         if (lblk == map->m_lblk + map->m_len &&
2190             (bh->b_state & BH_FLAGS) == map->m_flags) {
2191                 map->m_len++;
2192                 return true;
2193         }
2194         return false;
2195 }
2196
2197 /*
2198  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2199  *
2200  * @mpd - extent of blocks for mapping
2201  * @head - the first buffer in the page
2202  * @bh - buffer we should start processing from
2203  * @lblk - logical number of the block in the file corresponding to @bh
2204  *
2205  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2206  * the page for IO if all buffers in this page were mapped and there's no
2207  * accumulated extent of buffers to map or add buffers in the page to the
2208  * extent of buffers to map. The function returns 1 if the caller can continue
2209  * by processing the next page, 0 if it should stop adding buffers to the
2210  * extent to map because we cannot extend it anymore. It can also return value
2211  * < 0 in case of error during IO submission.
2212  */
2213 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2214                                    struct buffer_head *head,
2215                                    struct buffer_head *bh,
2216                                    ext4_lblk_t lblk)
2217 {
2218         struct inode *inode = mpd->inode;
2219         int err;
2220         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2221                                                         >> inode->i_blkbits;
2222
2223         if (ext4_verity_in_progress(inode))
2224                 blocks = EXT_MAX_BLOCKS;
2225
2226         do {
2227                 BUG_ON(buffer_locked(bh));
2228
2229                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2230                         /* Found extent to map? */
2231                         if (mpd->map.m_len)
2232                                 return 0;
2233                         /* Buffer needs mapping and handle is not started? */
2234                         if (!mpd->do_map)
2235                                 return 0;
2236                         /* Everything mapped so far and we hit EOF */
2237                         break;
2238                 }
2239         } while (lblk++, (bh = bh->b_this_page) != head);
2240         /* So far everything mapped? Submit the page for IO. */
2241         if (mpd->map.m_len == 0) {
2242                 err = mpage_submit_page(mpd, head->b_page);
2243                 if (err < 0)
2244                         return err;
2245         }
2246         if (lblk >= blocks) {
2247                 mpd->scanned_until_end = 1;
2248                 return 0;
2249         }
2250         return 1;
2251 }
2252
2253 /*
2254  * mpage_process_page - update page buffers corresponding to changed extent and
2255  *                     may submit fully mapped page for IO
2256  *
2257  * @mpd         - description of extent to map, on return next extent to map
2258  * @m_lblk      - logical block mapping.
2259  * @m_pblk      - corresponding physical mapping.
2260  * @map_bh      - determines on return whether this page requires any further
2261  *                mapping or not.
2262  * Scan given page buffers corresponding to changed extent and update buffer
2263  * state according to new extent state.
2264  * We map delalloc buffers to their physical location, clear unwritten bits.
2265  * If the given page is not fully mapped, we update @map to the next extent in
2266  * the given page that needs mapping & return @map_bh as true.
2267  */
2268 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2269                               ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2270                               bool *map_bh)
2271 {
2272         struct buffer_head *head, *bh;
2273         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2274         ext4_lblk_t lblk = *m_lblk;
2275         ext4_fsblk_t pblock = *m_pblk;
2276         int err = 0;
2277         int blkbits = mpd->inode->i_blkbits;
2278         ssize_t io_end_size = 0;
2279         struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2280
2281         bh = head = page_buffers(page);
2282         do {
2283                 if (lblk < mpd->map.m_lblk)
2284                         continue;
2285                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2286                         /*
2287                          * Buffer after end of mapped extent.
2288                          * Find next buffer in the page to map.
2289                          */
2290                         mpd->map.m_len = 0;
2291                         mpd->map.m_flags = 0;
2292                         io_end_vec->size += io_end_size;
2293
2294                         err = mpage_process_page_bufs(mpd, head, bh, lblk);
2295                         if (err > 0)
2296                                 err = 0;
2297                         if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2298                                 io_end_vec = ext4_alloc_io_end_vec(io_end);
2299                                 if (IS_ERR(io_end_vec)) {
2300                                         err = PTR_ERR(io_end_vec);
2301                                         goto out;
2302                                 }
2303                                 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2304                         }
2305                         *map_bh = true;
2306                         goto out;
2307                 }
2308                 if (buffer_delay(bh)) {
2309                         clear_buffer_delay(bh);
2310                         bh->b_blocknr = pblock++;
2311                 }
2312                 clear_buffer_unwritten(bh);
2313                 io_end_size += (1 << blkbits);
2314         } while (lblk++, (bh = bh->b_this_page) != head);
2315
2316         io_end_vec->size += io_end_size;
2317         *map_bh = false;
2318 out:
2319         *m_lblk = lblk;
2320         *m_pblk = pblock;
2321         return err;
2322 }
2323
2324 /*
2325  * mpage_map_buffers - update buffers corresponding to changed extent and
2326  *                     submit fully mapped pages for IO
2327  *
2328  * @mpd - description of extent to map, on return next extent to map
2329  *
2330  * Scan buffers corresponding to changed extent (we expect corresponding pages
2331  * to be already locked) and update buffer state according to new extent state.
2332  * We map delalloc buffers to their physical location, clear unwritten bits,
2333  * and mark buffers as uninit when we perform writes to unwritten extents
2334  * and do extent conversion after IO is finished. If the last page is not fully
2335  * mapped, we update @map to the next extent in the last page that needs
2336  * mapping. Otherwise we submit the page for IO.
2337  */
2338 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2339 {
2340         struct folio_batch fbatch;
2341         unsigned nr, i;
2342         struct inode *inode = mpd->inode;
2343         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2344         pgoff_t start, end;
2345         ext4_lblk_t lblk;
2346         ext4_fsblk_t pblock;
2347         int err;
2348         bool map_bh = false;
2349
2350         start = mpd->map.m_lblk >> bpp_bits;
2351         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2352         lblk = start << bpp_bits;
2353         pblock = mpd->map.m_pblk;
2354
2355         folio_batch_init(&fbatch);
2356         while (start <= end) {
2357                 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2358                 if (nr == 0)
2359                         break;
2360                 for (i = 0; i < nr; i++) {
2361                         struct page *page = &fbatch.folios[i]->page;
2362
2363                         err = mpage_process_page(mpd, page, &lblk, &pblock,
2364                                                  &map_bh);
2365                         /*
2366                          * If map_bh is true, means page may require further bh
2367                          * mapping, or maybe the page was submitted for IO.
2368                          * So we return to call further extent mapping.
2369                          */
2370                         if (err < 0 || map_bh)
2371                                 goto out;
2372                         /* Page fully mapped - let IO run! */
2373                         err = mpage_submit_page(mpd, page);
2374                         if (err < 0)
2375                                 goto out;
2376                 }
2377                 folio_batch_release(&fbatch);
2378         }
2379         /* Extent fully mapped and matches with page boundary. We are done. */
2380         mpd->map.m_len = 0;
2381         mpd->map.m_flags = 0;
2382         return 0;
2383 out:
2384         folio_batch_release(&fbatch);
2385         return err;
2386 }
2387
2388 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2389 {
2390         struct inode *inode = mpd->inode;
2391         struct ext4_map_blocks *map = &mpd->map;
2392         int get_blocks_flags;
2393         int err, dioread_nolock;
2394
2395         trace_ext4_da_write_pages_extent(inode, map);
2396         /*
2397          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2398          * to convert an unwritten extent to be initialized (in the case
2399          * where we have written into one or more preallocated blocks).  It is
2400          * possible that we're going to need more metadata blocks than
2401          * previously reserved. However we must not fail because we're in
2402          * writeback and there is nothing we can do about it so it might result
2403          * in data loss.  So use reserved blocks to allocate metadata if
2404          * possible.
2405          *
2406          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2407          * the blocks in question are delalloc blocks.  This indicates
2408          * that the blocks and quotas has already been checked when
2409          * the data was copied into the page cache.
2410          */
2411         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2412                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2413                            EXT4_GET_BLOCKS_IO_SUBMIT;
2414         dioread_nolock = ext4_should_dioread_nolock(inode);
2415         if (dioread_nolock)
2416                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2417         if (map->m_flags & BIT(BH_Delay))
2418                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2419
2420         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2421         if (err < 0)
2422                 return err;
2423         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2424                 if (!mpd->io_submit.io_end->handle &&
2425                     ext4_handle_valid(handle)) {
2426                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2427                         handle->h_rsv_handle = NULL;
2428                 }
2429                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2430         }
2431
2432         BUG_ON(map->m_len == 0);
2433         return 0;
2434 }
2435
2436 /*
2437  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2438  *                               mpd->len and submit pages underlying it for IO
2439  *
2440  * @handle - handle for journal operations
2441  * @mpd - extent to map
2442  * @give_up_on_write - we set this to true iff there is a fatal error and there
2443  *                     is no hope of writing the data. The caller should discard
2444  *                     dirty pages to avoid infinite loops.
2445  *
2446  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2447  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2448  * them to initialized or split the described range from larger unwritten
2449  * extent. Note that we need not map all the described range since allocation
2450  * can return less blocks or the range is covered by more unwritten extents. We
2451  * cannot map more because we are limited by reserved transaction credits. On
2452  * the other hand we always make sure that the last touched page is fully
2453  * mapped so that it can be written out (and thus forward progress is
2454  * guaranteed). After mapping we submit all mapped pages for IO.
2455  */
2456 static int mpage_map_and_submit_extent(handle_t *handle,
2457                                        struct mpage_da_data *mpd,
2458                                        bool *give_up_on_write)
2459 {
2460         struct inode *inode = mpd->inode;
2461         struct ext4_map_blocks *map = &mpd->map;
2462         int err;
2463         loff_t disksize;
2464         int progress = 0;
2465         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2466         struct ext4_io_end_vec *io_end_vec;
2467
2468         io_end_vec = ext4_alloc_io_end_vec(io_end);
2469         if (IS_ERR(io_end_vec))
2470                 return PTR_ERR(io_end_vec);
2471         io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2472         do {
2473                 err = mpage_map_one_extent(handle, mpd);
2474                 if (err < 0) {
2475                         struct super_block *sb = inode->i_sb;
2476
2477                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2478                             ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2479                                 goto invalidate_dirty_pages;
2480                         /*
2481                          * Let the uper layers retry transient errors.
2482                          * In the case of ENOSPC, if ext4_count_free_blocks()
2483                          * is non-zero, a commit should free up blocks.
2484                          */
2485                         if ((err == -ENOMEM) ||
2486                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2487                                 if (progress)
2488                                         goto update_disksize;
2489                                 return err;
2490                         }
2491                         ext4_msg(sb, KERN_CRIT,
2492                                  "Delayed block allocation failed for "
2493                                  "inode %lu at logical offset %llu with"
2494                                  " max blocks %u with error %d",
2495                                  inode->i_ino,
2496                                  (unsigned long long)map->m_lblk,
2497                                  (unsigned)map->m_len, -err);
2498                         ext4_msg(sb, KERN_CRIT,
2499                                  "This should not happen!! Data will "
2500                                  "be lost\n");
2501                         if (err == -ENOSPC)
2502                                 ext4_print_free_blocks(inode);
2503                 invalidate_dirty_pages:
2504                         *give_up_on_write = true;
2505                         return err;
2506                 }
2507                 progress = 1;
2508                 /*
2509                  * Update buffer state, submit mapped pages, and get us new
2510                  * extent to map
2511                  */
2512                 err = mpage_map_and_submit_buffers(mpd);
2513                 if (err < 0)
2514                         goto update_disksize;
2515         } while (map->m_len);
2516
2517 update_disksize:
2518         /*
2519          * Update on-disk size after IO is submitted.  Races with
2520          * truncate are avoided by checking i_size under i_data_sem.
2521          */
2522         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2523         if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2524                 int err2;
2525                 loff_t i_size;
2526
2527                 down_write(&EXT4_I(inode)->i_data_sem);
2528                 i_size = i_size_read(inode);
2529                 if (disksize > i_size)
2530                         disksize = i_size;
2531                 if (disksize > EXT4_I(inode)->i_disksize)
2532                         EXT4_I(inode)->i_disksize = disksize;
2533                 up_write(&EXT4_I(inode)->i_data_sem);
2534                 err2 = ext4_mark_inode_dirty(handle, inode);
2535                 if (err2) {
2536                         ext4_error_err(inode->i_sb, -err2,
2537                                        "Failed to mark inode %lu dirty",
2538                                        inode->i_ino);
2539                 }
2540                 if (!err)
2541                         err = err2;
2542         }
2543         return err;
2544 }
2545
2546 /*
2547  * Calculate the total number of credits to reserve for one writepages
2548  * iteration. This is called from ext4_writepages(). We map an extent of
2549  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2550  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2551  * bpp - 1 blocks in bpp different extents.
2552  */
2553 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2554 {
2555         int bpp = ext4_journal_blocks_per_page(inode);
2556
2557         return ext4_meta_trans_blocks(inode,
2558                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2559 }
2560
2561 /*
2562  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2563  *                               and underlying extent to map
2564  *
2565  * @mpd - where to look for pages
2566  *
2567  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2568  * IO immediately. When we find a page which isn't mapped we start accumulating
2569  * extent of buffers underlying these pages that needs mapping (formed by
2570  * either delayed or unwritten buffers). We also lock the pages containing
2571  * these buffers. The extent found is returned in @mpd structure (starting at
2572  * mpd->lblk with length mpd->len blocks).
2573  *
2574  * Note that this function can attach bios to one io_end structure which are
2575  * neither logically nor physically contiguous. Although it may seem as an
2576  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2577  * case as we need to track IO to all buffers underlying a page in one io_end.
2578  */
2579 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2580 {
2581         struct address_space *mapping = mpd->inode->i_mapping;
2582         struct pagevec pvec;
2583         unsigned int nr_pages;
2584         long left = mpd->wbc->nr_to_write;
2585         pgoff_t index = mpd->first_page;
2586         pgoff_t end = mpd->last_page;
2587         xa_mark_t tag;
2588         int i, err = 0;
2589         int blkbits = mpd->inode->i_blkbits;
2590         ext4_lblk_t lblk;
2591         struct buffer_head *head;
2592
2593         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2594                 tag = PAGECACHE_TAG_TOWRITE;
2595         else
2596                 tag = PAGECACHE_TAG_DIRTY;
2597
2598         pagevec_init(&pvec);
2599         mpd->map.m_len = 0;
2600         mpd->next_page = index;
2601         while (index <= end) {
2602                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2603                                 tag);
2604                 if (nr_pages == 0)
2605                         break;
2606
2607                 for (i = 0; i < nr_pages; i++) {
2608                         struct page *page = pvec.pages[i];
2609
2610                         /*
2611                          * Accumulated enough dirty pages? This doesn't apply
2612                          * to WB_SYNC_ALL mode. For integrity sync we have to
2613                          * keep going because someone may be concurrently
2614                          * dirtying pages, and we might have synced a lot of
2615                          * newly appeared dirty pages, but have not synced all
2616                          * of the old dirty pages.
2617                          */
2618                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2619                                 goto out;
2620
2621                         /* If we can't merge this page, we are done. */
2622                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2623                                 goto out;
2624
2625                         lock_page(page);
2626                         /*
2627                          * If the page is no longer dirty, or its mapping no
2628                          * longer corresponds to inode we are writing (which
2629                          * means it has been truncated or invalidated), or the
2630                          * page is already under writeback and we are not doing
2631                          * a data integrity writeback, skip the page
2632                          */
2633                         if (!PageDirty(page) ||
2634                             (PageWriteback(page) &&
2635                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2636                             unlikely(page->mapping != mapping)) {
2637                                 unlock_page(page);
2638                                 continue;
2639                         }
2640
2641                         wait_on_page_writeback(page);
2642                         BUG_ON(PageWriteback(page));
2643
2644                         /*
2645                          * Should never happen but for buggy code in
2646                          * other subsystems that call
2647                          * set_page_dirty() without properly warning
2648                          * the file system first.  See [1] for more
2649                          * information.
2650                          *
2651                          * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2652                          */
2653                         if (!page_has_buffers(page)) {
2654                                 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", page->index);
2655                                 ClearPageDirty(page);
2656                                 unlock_page(page);
2657                                 continue;
2658                         }
2659
2660                         if (mpd->map.m_len == 0)
2661                                 mpd->first_page = page->index;
2662                         mpd->next_page = page->index + 1;
2663                         /* Add all dirty buffers to mpd */
2664                         lblk = ((ext4_lblk_t)page->index) <<
2665                                 (PAGE_SHIFT - blkbits);
2666                         head = page_buffers(page);
2667                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2668                         if (err <= 0)
2669                                 goto out;
2670                         err = 0;
2671                         left--;
2672                 }
2673                 pagevec_release(&pvec);
2674                 cond_resched();
2675         }
2676         mpd->scanned_until_end = 1;
2677         return 0;
2678 out:
2679         pagevec_release(&pvec);
2680         return err;
2681 }
2682
2683 static int ext4_writepages(struct address_space *mapping,
2684                            struct writeback_control *wbc)
2685 {
2686         pgoff_t writeback_index = 0;
2687         long nr_to_write = wbc->nr_to_write;
2688         int range_whole = 0;
2689         int cycled = 1;
2690         handle_t *handle = NULL;
2691         struct mpage_da_data mpd;
2692         struct inode *inode = mapping->host;
2693         int needed_blocks, rsv_blocks = 0, ret = 0;
2694         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2695         struct blk_plug plug;
2696         bool give_up_on_write = false;
2697
2698         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2699                 return -EIO;
2700
2701         percpu_down_read(&sbi->s_writepages_rwsem);
2702         trace_ext4_writepages(inode, wbc);
2703
2704         /*
2705          * No pages to write? This is mainly a kludge to avoid starting
2706          * a transaction for special inodes like journal inode on last iput()
2707          * because that could violate lock ordering on umount
2708          */
2709         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2710                 goto out_writepages;
2711
2712         if (ext4_should_journal_data(inode)) {
2713                 ret = generic_writepages(mapping, wbc);
2714                 goto out_writepages;
2715         }
2716
2717         /*
2718          * If the filesystem has aborted, it is read-only, so return
2719          * right away instead of dumping stack traces later on that
2720          * will obscure the real source of the problem.  We test
2721          * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2722          * the latter could be true if the filesystem is mounted
2723          * read-only, and in that case, ext4_writepages should
2724          * *never* be called, so if that ever happens, we would want
2725          * the stack trace.
2726          */
2727         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2728                      ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2729                 ret = -EROFS;
2730                 goto out_writepages;
2731         }
2732
2733         /*
2734          * If we have inline data and arrive here, it means that
2735          * we will soon create the block for the 1st page, so
2736          * we'd better clear the inline data here.
2737          */
2738         if (ext4_has_inline_data(inode)) {
2739                 /* Just inode will be modified... */
2740                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2741                 if (IS_ERR(handle)) {
2742                         ret = PTR_ERR(handle);
2743                         goto out_writepages;
2744                 }
2745                 BUG_ON(ext4_test_inode_state(inode,
2746                                 EXT4_STATE_MAY_INLINE_DATA));
2747                 ext4_destroy_inline_data(handle, inode);
2748                 ext4_journal_stop(handle);
2749         }
2750
2751         if (ext4_should_dioread_nolock(inode)) {
2752                 /*
2753                  * We may need to convert up to one extent per block in
2754                  * the page and we may dirty the inode.
2755                  */
2756                 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2757                                                 PAGE_SIZE >> inode->i_blkbits);
2758         }
2759
2760         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2761                 range_whole = 1;
2762
2763         if (wbc->range_cyclic) {
2764                 writeback_index = mapping->writeback_index;
2765                 if (writeback_index)
2766                         cycled = 0;
2767                 mpd.first_page = writeback_index;
2768                 mpd.last_page = -1;
2769         } else {
2770                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2771                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2772         }
2773
2774         mpd.inode = inode;
2775         mpd.wbc = wbc;
2776         ext4_io_submit_init(&mpd.io_submit, wbc);
2777 retry:
2778         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2779                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2780         blk_start_plug(&plug);
2781
2782         /*
2783          * First writeback pages that don't need mapping - we can avoid
2784          * starting a transaction unnecessarily and also avoid being blocked
2785          * in the block layer on device congestion while having transaction
2786          * started.
2787          */
2788         mpd.do_map = 0;
2789         mpd.scanned_until_end = 0;
2790         mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2791         if (!mpd.io_submit.io_end) {
2792                 ret = -ENOMEM;
2793                 goto unplug;
2794         }
2795         ret = mpage_prepare_extent_to_map(&mpd);
2796         /* Unlock pages we didn't use */
2797         mpage_release_unused_pages(&mpd, false);
2798         /* Submit prepared bio */
2799         ext4_io_submit(&mpd.io_submit);
2800         ext4_put_io_end_defer(mpd.io_submit.io_end);
2801         mpd.io_submit.io_end = NULL;
2802         if (ret < 0)
2803                 goto unplug;
2804
2805         while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2806                 /* For each extent of pages we use new io_end */
2807                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2808                 if (!mpd.io_submit.io_end) {
2809                         ret = -ENOMEM;
2810                         break;
2811                 }
2812
2813                 /*
2814                  * We have two constraints: We find one extent to map and we
2815                  * must always write out whole page (makes a difference when
2816                  * blocksize < pagesize) so that we don't block on IO when we
2817                  * try to write out the rest of the page. Journalled mode is
2818                  * not supported by delalloc.
2819                  */
2820                 BUG_ON(ext4_should_journal_data(inode));
2821                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2822
2823                 /* start a new transaction */
2824                 handle = ext4_journal_start_with_reserve(inode,
2825                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2826                 if (IS_ERR(handle)) {
2827                         ret = PTR_ERR(handle);
2828                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2829                                "%ld pages, ino %lu; err %d", __func__,
2830                                 wbc->nr_to_write, inode->i_ino, ret);
2831                         /* Release allocated io_end */
2832                         ext4_put_io_end(mpd.io_submit.io_end);
2833                         mpd.io_submit.io_end = NULL;
2834                         break;
2835                 }
2836                 mpd.do_map = 1;
2837
2838                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2839                 ret = mpage_prepare_extent_to_map(&mpd);
2840                 if (!ret && mpd.map.m_len)
2841                         ret = mpage_map_and_submit_extent(handle, &mpd,
2842                                         &give_up_on_write);
2843                 /*
2844                  * Caution: If the handle is synchronous,
2845                  * ext4_journal_stop() can wait for transaction commit
2846                  * to finish which may depend on writeback of pages to
2847                  * complete or on page lock to be released.  In that
2848                  * case, we have to wait until after we have
2849                  * submitted all the IO, released page locks we hold,
2850                  * and dropped io_end reference (for extent conversion
2851                  * to be able to complete) before stopping the handle.
2852                  */
2853                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2854                         ext4_journal_stop(handle);
2855                         handle = NULL;
2856                         mpd.do_map = 0;
2857                 }
2858                 /* Unlock pages we didn't use */
2859                 mpage_release_unused_pages(&mpd, give_up_on_write);
2860                 /* Submit prepared bio */
2861                 ext4_io_submit(&mpd.io_submit);
2862
2863                 /*
2864                  * Drop our io_end reference we got from init. We have
2865                  * to be careful and use deferred io_end finishing if
2866                  * we are still holding the transaction as we can
2867                  * release the last reference to io_end which may end
2868                  * up doing unwritten extent conversion.
2869                  */
2870                 if (handle) {
2871                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2872                         ext4_journal_stop(handle);
2873                 } else
2874                         ext4_put_io_end(mpd.io_submit.io_end);
2875                 mpd.io_submit.io_end = NULL;
2876
2877                 if (ret == -ENOSPC && sbi->s_journal) {
2878                         /*
2879                          * Commit the transaction which would
2880                          * free blocks released in the transaction
2881                          * and try again
2882                          */
2883                         jbd2_journal_force_commit_nested(sbi->s_journal);
2884                         ret = 0;
2885                         continue;
2886                 }
2887                 /* Fatal error - ENOMEM, EIO... */
2888                 if (ret)
2889                         break;
2890         }
2891 unplug:
2892         blk_finish_plug(&plug);
2893         if (!ret && !cycled && wbc->nr_to_write > 0) {
2894                 cycled = 1;
2895                 mpd.last_page = writeback_index - 1;
2896                 mpd.first_page = 0;
2897                 goto retry;
2898         }
2899
2900         /* Update index */
2901         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2902                 /*
2903                  * Set the writeback_index so that range_cyclic
2904                  * mode will write it back later
2905                  */
2906                 mapping->writeback_index = mpd.first_page;
2907
2908 out_writepages:
2909         trace_ext4_writepages_result(inode, wbc, ret,
2910                                      nr_to_write - wbc->nr_to_write);
2911         percpu_up_read(&sbi->s_writepages_rwsem);
2912         return ret;
2913 }
2914
2915 static int ext4_dax_writepages(struct address_space *mapping,
2916                                struct writeback_control *wbc)
2917 {
2918         int ret;
2919         long nr_to_write = wbc->nr_to_write;
2920         struct inode *inode = mapping->host;
2921         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2922
2923         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2924                 return -EIO;
2925
2926         percpu_down_read(&sbi->s_writepages_rwsem);
2927         trace_ext4_writepages(inode, wbc);
2928
2929         ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2930         trace_ext4_writepages_result(inode, wbc, ret,
2931                                      nr_to_write - wbc->nr_to_write);
2932         percpu_up_read(&sbi->s_writepages_rwsem);
2933         return ret;
2934 }
2935
2936 static int ext4_nonda_switch(struct super_block *sb)
2937 {
2938         s64 free_clusters, dirty_clusters;
2939         struct ext4_sb_info *sbi = EXT4_SB(sb);
2940
2941         /*
2942          * switch to non delalloc mode if we are running low
2943          * on free block. The free block accounting via percpu
2944          * counters can get slightly wrong with percpu_counter_batch getting
2945          * accumulated on each CPU without updating global counters
2946          * Delalloc need an accurate free block accounting. So switch
2947          * to non delalloc when we are near to error range.
2948          */
2949         free_clusters =
2950                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2951         dirty_clusters =
2952                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2953         /*
2954          * Start pushing delalloc when 1/2 of free blocks are dirty.
2955          */
2956         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2957                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2958
2959         if (2 * free_clusters < 3 * dirty_clusters ||
2960             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2961                 /*
2962                  * free block count is less than 150% of dirty blocks
2963                  * or free blocks is less than watermark
2964                  */
2965                 return 1;
2966         }
2967         return 0;
2968 }
2969
2970 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2971                                loff_t pos, unsigned len,
2972                                struct page **pagep, void **fsdata)
2973 {
2974         int ret, retries = 0;
2975         struct page *page;
2976         pgoff_t index;
2977         struct inode *inode = mapping->host;
2978
2979         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2980                 return -EIO;
2981
2982         index = pos >> PAGE_SHIFT;
2983
2984         if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
2985                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2986                 return ext4_write_begin(file, mapping, pos,
2987                                         len, pagep, fsdata);
2988         }
2989         *fsdata = (void *)0;
2990         trace_ext4_da_write_begin(inode, pos, len);
2991
2992         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2993                 ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
2994                                                       pagep, fsdata);
2995                 if (ret < 0)
2996                         return ret;
2997                 if (ret == 1)
2998                         return 0;
2999         }
3000
3001 retry:
3002         page = grab_cache_page_write_begin(mapping, index);
3003         if (!page)
3004                 return -ENOMEM;
3005
3006         /* In case writeback began while the page was unlocked */
3007         wait_for_stable_page(page);
3008
3009 #ifdef CONFIG_FS_ENCRYPTION
3010         ret = ext4_block_write_begin(page, pos, len,
3011                                      ext4_da_get_block_prep);
3012 #else
3013         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3014 #endif
3015         if (ret < 0) {
3016                 unlock_page(page);
3017                 put_page(page);
3018                 /*
3019                  * block_write_begin may have instantiated a few blocks
3020                  * outside i_size.  Trim these off again. Don't need
3021                  * i_size_read because we hold inode lock.
3022                  */
3023                 if (pos + len > inode->i_size)
3024                         ext4_truncate_failed_write(inode);
3025
3026                 if (ret == -ENOSPC &&
3027                     ext4_should_retry_alloc(inode->i_sb, &retries))
3028                         goto retry;
3029                 return ret;
3030         }
3031
3032         *pagep = page;
3033         return ret;
3034 }
3035
3036 /*
3037  * Check if we should update i_disksize
3038  * when write to the end of file but not require block allocation
3039  */
3040 static int ext4_da_should_update_i_disksize(struct page *page,
3041                                             unsigned long offset)
3042 {
3043         struct buffer_head *bh;
3044         struct inode *inode = page->mapping->host;
3045         unsigned int idx;
3046         int i;
3047
3048         bh = page_buffers(page);
3049         idx = offset >> inode->i_blkbits;
3050
3051         for (i = 0; i < idx; i++)
3052                 bh = bh->b_this_page;
3053
3054         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3055                 return 0;
3056         return 1;
3057 }
3058
3059 static int ext4_da_write_end(struct file *file,
3060                              struct address_space *mapping,
3061                              loff_t pos, unsigned len, unsigned copied,
3062                              struct page *page, void *fsdata)
3063 {
3064         struct inode *inode = mapping->host;
3065         loff_t new_i_size;
3066         unsigned long start, end;
3067         int write_mode = (int)(unsigned long)fsdata;
3068
3069         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3070                 return ext4_write_end(file, mapping, pos,
3071                                       len, copied, page, fsdata);
3072
3073         trace_ext4_da_write_end(inode, pos, len, copied);
3074
3075         if (write_mode != CONVERT_INLINE_DATA &&
3076             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3077             ext4_has_inline_data(inode))
3078                 return ext4_write_inline_data_end(inode, pos, len, copied, page);
3079
3080         start = pos & (PAGE_SIZE - 1);
3081         end = start + copied - 1;
3082
3083         /*
3084          * Since we are holding inode lock, we are sure i_disksize <=
3085          * i_size. We also know that if i_disksize < i_size, there are
3086          * delalloc writes pending in the range upto i_size. If the end of
3087          * the current write is <= i_size, there's no need to touch
3088          * i_disksize since writeback will push i_disksize upto i_size
3089          * eventually. If the end of the current write is > i_size and
3090          * inside an allocated block (ext4_da_should_update_i_disksize()
3091          * check), we need to update i_disksize here as neither
3092          * ext4_writepage() nor certain ext4_writepages() paths not
3093          * allocating blocks update i_disksize.
3094          *
3095          * Note that we defer inode dirtying to generic_write_end() /
3096          * ext4_da_write_inline_data_end().
3097          */
3098         new_i_size = pos + copied;
3099         if (copied && new_i_size > inode->i_size &&
3100             ext4_da_should_update_i_disksize(page, end))
3101                 ext4_update_i_disksize(inode, new_i_size);
3102
3103         return generic_write_end(file, mapping, pos, len, copied, page, fsdata);
3104 }
3105
3106 /*
3107  * Force all delayed allocation blocks to be allocated for a given inode.
3108  */
3109 int ext4_alloc_da_blocks(struct inode *inode)
3110 {
3111         trace_ext4_alloc_da_blocks(inode);
3112
3113         if (!EXT4_I(inode)->i_reserved_data_blocks)
3114                 return 0;
3115
3116         /*
3117          * We do something simple for now.  The filemap_flush() will
3118          * also start triggering a write of the data blocks, which is
3119          * not strictly speaking necessary (and for users of
3120          * laptop_mode, not even desirable).  However, to do otherwise
3121          * would require replicating code paths in:
3122          *
3123          * ext4_writepages() ->
3124          *    write_cache_pages() ---> (via passed in callback function)
3125          *        __mpage_da_writepage() -->
3126          *           mpage_add_bh_to_extent()
3127          *           mpage_da_map_blocks()
3128          *
3129          * The problem is that write_cache_pages(), located in
3130          * mm/page-writeback.c, marks pages clean in preparation for
3131          * doing I/O, which is not desirable if we're not planning on
3132          * doing I/O at all.
3133          *
3134          * We could call write_cache_pages(), and then redirty all of
3135          * the pages by calling redirty_page_for_writepage() but that
3136          * would be ugly in the extreme.  So instead we would need to
3137          * replicate parts of the code in the above functions,
3138          * simplifying them because we wouldn't actually intend to
3139          * write out the pages, but rather only collect contiguous
3140          * logical block extents, call the multi-block allocator, and
3141          * then update the buffer heads with the block allocations.
3142          *
3143          * For now, though, we'll cheat by calling filemap_flush(),
3144          * which will map the blocks, and start the I/O, but not
3145          * actually wait for the I/O to complete.
3146          */
3147         return filemap_flush(inode->i_mapping);
3148 }
3149
3150 /*
3151  * bmap() is special.  It gets used by applications such as lilo and by
3152  * the swapper to find the on-disk block of a specific piece of data.
3153  *
3154  * Naturally, this is dangerous if the block concerned is still in the
3155  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3156  * filesystem and enables swap, then they may get a nasty shock when the
3157  * data getting swapped to that swapfile suddenly gets overwritten by
3158  * the original zero's written out previously to the journal and
3159  * awaiting writeback in the kernel's buffer cache.
3160  *
3161  * So, if we see any bmap calls here on a modified, data-journaled file,
3162  * take extra steps to flush any blocks which might be in the cache.
3163  */
3164 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3165 {
3166         struct inode *inode = mapping->host;
3167         journal_t *journal;
3168         sector_t ret = 0;
3169         int err;
3170
3171         inode_lock_shared(inode);
3172         /*
3173          * We can get here for an inline file via the FIBMAP ioctl
3174          */
3175         if (ext4_has_inline_data(inode))
3176                 goto out;
3177
3178         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3179                         test_opt(inode->i_sb, DELALLOC)) {
3180                 /*
3181                  * With delalloc we want to sync the file
3182                  * so that we can make sure we allocate
3183                  * blocks for file
3184                  */
3185                 filemap_write_and_wait(mapping);
3186         }
3187
3188         if (EXT4_JOURNAL(inode) &&
3189             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3190                 /*
3191                  * This is a REALLY heavyweight approach, but the use of
3192                  * bmap on dirty files is expected to be extremely rare:
3193                  * only if we run lilo or swapon on a freshly made file
3194                  * do we expect this to happen.
3195                  *
3196                  * (bmap requires CAP_SYS_RAWIO so this does not
3197                  * represent an unprivileged user DOS attack --- we'd be
3198                  * in trouble if mortal users could trigger this path at
3199                  * will.)
3200                  *
3201                  * NB. EXT4_STATE_JDATA is not set on files other than
3202                  * regular files.  If somebody wants to bmap a directory
3203                  * or symlink and gets confused because the buffer
3204                  * hasn't yet been flushed to disk, they deserve
3205                  * everything they get.
3206                  */
3207
3208                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3209                 journal = EXT4_JOURNAL(inode);
3210                 jbd2_journal_lock_updates(journal);
3211                 err = jbd2_journal_flush(journal, 0);
3212                 jbd2_journal_unlock_updates(journal);
3213
3214                 if (err)
3215                         goto out;
3216         }
3217
3218         ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3219
3220 out:
3221         inode_unlock_shared(inode);
3222         return ret;
3223 }
3224
3225 static int ext4_read_folio(struct file *file, struct folio *folio)
3226 {
3227         struct page *page = &folio->page;
3228         int ret = -EAGAIN;
3229         struct inode *inode = page->mapping->host;
3230
3231         trace_ext4_readpage(page);
3232
3233         if (ext4_has_inline_data(inode))
3234                 ret = ext4_readpage_inline(inode, page);
3235
3236         if (ret == -EAGAIN)
3237                 return ext4_mpage_readpages(inode, NULL, page);
3238
3239         return ret;
3240 }
3241
3242 static void ext4_readahead(struct readahead_control *rac)
3243 {
3244         struct inode *inode = rac->mapping->host;
3245
3246         /* If the file has inline data, no need to do readahead. */
3247         if (ext4_has_inline_data(inode))
3248                 return;
3249
3250         ext4_mpage_readpages(inode, rac, NULL);
3251 }
3252
3253 static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3254                                 size_t length)
3255 {
3256         trace_ext4_invalidate_folio(folio, offset, length);
3257
3258         /* No journalling happens on data buffers when this function is used */
3259         WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3260
3261         block_invalidate_folio(folio, offset, length);
3262 }
3263
3264 static int __ext4_journalled_invalidate_folio(struct folio *folio,
3265                                             size_t offset, size_t length)
3266 {
3267         journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3268
3269         trace_ext4_journalled_invalidate_folio(folio, offset, length);
3270
3271         /*
3272          * If it's a full truncate we just forget about the pending dirtying
3273          */
3274         if (offset == 0 && length == folio_size(folio))
3275                 folio_clear_checked(folio);
3276
3277         return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3278 }
3279
3280 /* Wrapper for aops... */
3281 static void ext4_journalled_invalidate_folio(struct folio *folio,
3282                                            size_t offset,
3283                                            size_t length)
3284 {
3285         WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3286 }
3287
3288 static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3289 {
3290         journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3291
3292         trace_ext4_releasepage(&folio->page);
3293
3294         /* Page has dirty journalled data -> cannot release */
3295         if (folio_test_checked(folio))
3296                 return false;
3297         if (journal)
3298                 return jbd2_journal_try_to_free_buffers(journal, folio);
3299         else
3300                 return try_to_free_buffers(folio);
3301 }
3302
3303 static bool ext4_inode_datasync_dirty(struct inode *inode)
3304 {
3305         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3306
3307         if (journal) {
3308                 if (jbd2_transaction_committed(journal,
3309                         EXT4_I(inode)->i_datasync_tid))
3310                         return false;
3311                 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3312                         return !list_empty(&EXT4_I(inode)->i_fc_list);
3313                 return true;
3314         }
3315
3316         /* Any metadata buffers to write? */
3317         if (!list_empty(&inode->i_mapping->private_list))
3318                 return true;
3319         return inode->i_state & I_DIRTY_DATASYNC;
3320 }
3321
3322 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3323                            struct ext4_map_blocks *map, loff_t offset,
3324                            loff_t length, unsigned int flags)
3325 {
3326         u8 blkbits = inode->i_blkbits;
3327
3328         /*
3329          * Writes that span EOF might trigger an I/O size update on completion,
3330          * so consider them to be dirty for the purpose of O_DSYNC, even if
3331          * there is no other metadata changes being made or are pending.
3332          */
3333         iomap->flags = 0;
3334         if (ext4_inode_datasync_dirty(inode) ||
3335             offset + length > i_size_read(inode))
3336                 iomap->flags |= IOMAP_F_DIRTY;
3337
3338         if (map->m_flags & EXT4_MAP_NEW)
3339                 iomap->flags |= IOMAP_F_NEW;
3340
3341         if (flags & IOMAP_DAX)
3342                 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3343         else
3344                 iomap->bdev = inode->i_sb->s_bdev;
3345         iomap->offset = (u64) map->m_lblk << blkbits;
3346         iomap->length = (u64) map->m_len << blkbits;
3347
3348         if ((map->m_flags & EXT4_MAP_MAPPED) &&
3349             !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3350                 iomap->flags |= IOMAP_F_MERGED;
3351
3352         /*
3353          * Flags passed to ext4_map_blocks() for direct I/O writes can result
3354          * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3355          * set. In order for any allocated unwritten extents to be converted
3356          * into written extents correctly within the ->end_io() handler, we
3357          * need to ensure that the iomap->type is set appropriately. Hence, the
3358          * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3359          * been set first.
3360          */
3361         if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3362                 iomap->type = IOMAP_UNWRITTEN;
3363                 iomap->addr = (u64) map->m_pblk << blkbits;
3364                 if (flags & IOMAP_DAX)
3365                         iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3366         } else if (map->m_flags & EXT4_MAP_MAPPED) {
3367                 iomap->type = IOMAP_MAPPED;
3368                 iomap->addr = (u64) map->m_pblk << blkbits;
3369                 if (flags & IOMAP_DAX)
3370                         iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3371         } else {
3372                 iomap->type = IOMAP_HOLE;
3373                 iomap->addr = IOMAP_NULL_ADDR;
3374         }
3375 }
3376
3377 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3378                             unsigned int flags)
3379 {
3380         handle_t *handle;
3381         u8 blkbits = inode->i_blkbits;
3382         int ret, dio_credits, m_flags = 0, retries = 0;
3383
3384         /*
3385          * Trim the mapping request to the maximum value that we can map at
3386          * once for direct I/O.
3387          */
3388         if (map->m_len > DIO_MAX_BLOCKS)
3389                 map->m_len = DIO_MAX_BLOCKS;
3390         dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3391
3392 retry:
3393         /*
3394          * Either we allocate blocks and then don't get an unwritten extent, so
3395          * in that case we have reserved enough credits. Or, the blocks are
3396          * already allocated and unwritten. In that case, the extent conversion
3397          * fits into the credits as well.
3398          */
3399         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3400         if (IS_ERR(handle))
3401                 return PTR_ERR(handle);
3402
3403         /*
3404          * DAX and direct I/O are the only two operations that are currently
3405          * supported with IOMAP_WRITE.
3406          */
3407         WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3408         if (flags & IOMAP_DAX)
3409                 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3410         /*
3411          * We use i_size instead of i_disksize here because delalloc writeback
3412          * can complete at any point during the I/O and subsequently push the
3413          * i_disksize out to i_size. This could be beyond where direct I/O is
3414          * happening and thus expose allocated blocks to direct I/O reads.
3415          */
3416         else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3417                 m_flags = EXT4_GET_BLOCKS_CREATE;
3418         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3419                 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3420
3421         ret = ext4_map_blocks(handle, inode, map, m_flags);
3422
3423         /*
3424          * We cannot fill holes in indirect tree based inodes as that could
3425          * expose stale data in the case of a crash. Use the magic error code
3426          * to fallback to buffered I/O.
3427          */
3428         if (!m_flags && !ret)
3429                 ret = -ENOTBLK;
3430
3431         ext4_journal_stop(handle);
3432         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3433                 goto retry;
3434
3435         return ret;
3436 }
3437
3438
3439 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3440                 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3441 {
3442         int ret;
3443         struct ext4_map_blocks map;
3444         u8 blkbits = inode->i_blkbits;
3445
3446         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3447                 return -EINVAL;
3448
3449         if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3450                 return -ERANGE;
3451
3452         /*
3453          * Calculate the first and last logical blocks respectively.
3454          */
3455         map.m_lblk = offset >> blkbits;
3456         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3457                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3458
3459         if (flags & IOMAP_WRITE) {
3460                 /*
3461                  * We check here if the blocks are already allocated, then we
3462                  * don't need to start a journal txn and we can directly return
3463                  * the mapping information. This could boost performance
3464                  * especially in multi-threaded overwrite requests.
3465                  */
3466                 if (offset + length <= i_size_read(inode)) {
3467                         ret = ext4_map_blocks(NULL, inode, &map, 0);
3468                         if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3469                                 goto out;
3470                 }
3471                 ret = ext4_iomap_alloc(inode, &map, flags);
3472         } else {
3473                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3474         }
3475
3476         if (ret < 0)
3477                 return ret;
3478 out:
3479         /*
3480          * When inline encryption is enabled, sometimes I/O to an encrypted file
3481          * has to be broken up to guarantee DUN contiguity.  Handle this by
3482          * limiting the length of the mapping returned.
3483          */
3484         map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3485
3486         ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3487
3488         return 0;
3489 }
3490
3491 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3492                 loff_t length, unsigned flags, struct iomap *iomap,
3493                 struct iomap *srcmap)
3494 {
3495         int ret;
3496
3497         /*
3498          * Even for writes we don't need to allocate blocks, so just pretend
3499          * we are reading to save overhead of starting a transaction.
3500          */
3501         flags &= ~IOMAP_WRITE;
3502         ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3503         WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3504         return ret;
3505 }
3506
3507 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3508                           ssize_t written, unsigned flags, struct iomap *iomap)
3509 {
3510         /*
3511          * Check to see whether an error occurred while writing out the data to
3512          * the allocated blocks. If so, return the magic error code so that we
3513          * fallback to buffered I/O and attempt to complete the remainder of
3514          * the I/O. Any blocks that may have been allocated in preparation for
3515          * the direct I/O will be reused during buffered I/O.
3516          */
3517         if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3518                 return -ENOTBLK;
3519
3520         return 0;
3521 }
3522
3523 const struct iomap_ops ext4_iomap_ops = {
3524         .iomap_begin            = ext4_iomap_begin,
3525         .iomap_end              = ext4_iomap_end,
3526 };
3527
3528 const struct iomap_ops ext4_iomap_overwrite_ops = {
3529         .iomap_begin            = ext4_iomap_overwrite_begin,
3530         .iomap_end              = ext4_iomap_end,
3531 };
3532
3533 static bool ext4_iomap_is_delalloc(struct inode *inode,
3534                                    struct ext4_map_blocks *map)
3535 {
3536         struct extent_status es;
3537         ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3538
3539         ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3540                                   map->m_lblk, end, &es);
3541
3542         if (!es.es_len || es.es_lblk > end)
3543                 return false;
3544
3545         if (es.es_lblk > map->m_lblk) {
3546                 map->m_len = es.es_lblk - map->m_lblk;
3547                 return false;
3548         }
3549
3550         offset = map->m_lblk - es.es_lblk;
3551         map->m_len = es.es_len - offset;
3552
3553         return true;
3554 }
3555
3556 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3557                                    loff_t length, unsigned int flags,
3558                                    struct iomap *iomap, struct iomap *srcmap)
3559 {
3560         int ret;
3561         bool delalloc = false;
3562         struct ext4_map_blocks map;
3563         u8 blkbits = inode->i_blkbits;
3564
3565         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3566                 return -EINVAL;
3567
3568         if (ext4_has_inline_data(inode)) {
3569                 ret = ext4_inline_data_iomap(inode, iomap);
3570                 if (ret != -EAGAIN) {
3571                         if (ret == 0 && offset >= iomap->length)
3572                                 ret = -ENOENT;
3573                         return ret;
3574                 }
3575         }
3576
3577         /*
3578          * Calculate the first and last logical block respectively.
3579          */
3580         map.m_lblk = offset >> blkbits;
3581         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3582                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3583
3584         /*
3585          * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3586          * So handle it here itself instead of querying ext4_map_blocks().
3587          * Since ext4_map_blocks() will warn about it and will return
3588          * -EIO error.
3589          */
3590         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3591                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3592
3593                 if (offset >= sbi->s_bitmap_maxbytes) {
3594                         map.m_flags = 0;
3595                         goto set_iomap;
3596                 }
3597         }
3598
3599         ret = ext4_map_blocks(NULL, inode, &map, 0);
3600         if (ret < 0)
3601                 return ret;
3602         if (ret == 0)
3603                 delalloc = ext4_iomap_is_delalloc(inode, &map);
3604
3605 set_iomap:
3606         ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3607         if (delalloc && iomap->type == IOMAP_HOLE)
3608                 iomap->type = IOMAP_DELALLOC;
3609
3610         return 0;
3611 }
3612
3613 const struct iomap_ops ext4_iomap_report_ops = {
3614         .iomap_begin = ext4_iomap_begin_report,
3615 };
3616
3617 /*
3618  * Whenever the folio is being dirtied, corresponding buffers should already
3619  * be attached to the transaction (we take care of this in ext4_page_mkwrite()
3620  * and ext4_write_begin()). However we cannot move buffers to dirty transaction
3621  * lists here because ->dirty_folio is called under VFS locks and the folio
3622  * is not necessarily locked.
3623  *
3624  * We cannot just dirty the folio and leave attached buffers clean, because the
3625  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3626  * or jbddirty because all the journalling code will explode.
3627  *
3628  * So what we do is to mark the folio "pending dirty" and next time writepage
3629  * is called, propagate that into the buffers appropriately.
3630  */
3631 static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3632                 struct folio *folio)
3633 {
3634         WARN_ON_ONCE(!folio_buffers(folio));
3635         folio_set_checked(folio);
3636         return filemap_dirty_folio(mapping, folio);
3637 }
3638
3639 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3640 {
3641         WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3642         WARN_ON_ONCE(!folio_buffers(folio));
3643         return block_dirty_folio(mapping, folio);
3644 }
3645
3646 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3647                                     struct file *file, sector_t *span)
3648 {
3649         return iomap_swapfile_activate(sis, file, span,
3650                                        &ext4_iomap_report_ops);
3651 }
3652
3653 static const struct address_space_operations ext4_aops = {
3654         .read_folio             = ext4_read_folio,
3655         .readahead              = ext4_readahead,
3656         .writepage              = ext4_writepage,
3657         .writepages             = ext4_writepages,
3658         .write_begin            = ext4_write_begin,
3659         .write_end              = ext4_write_end,
3660         .dirty_folio            = ext4_dirty_folio,
3661         .bmap                   = ext4_bmap,
3662         .invalidate_folio       = ext4_invalidate_folio,
3663         .release_folio          = ext4_release_folio,
3664         .direct_IO              = noop_direct_IO,
3665         .migrate_folio          = buffer_migrate_folio,
3666         .is_partially_uptodate  = block_is_partially_uptodate,
3667         .error_remove_page      = generic_error_remove_page,
3668         .swap_activate          = ext4_iomap_swap_activate,
3669 };
3670
3671 static const struct address_space_operations ext4_journalled_aops = {
3672         .read_folio             = ext4_read_folio,
3673         .readahead              = ext4_readahead,
3674         .writepage              = ext4_writepage,
3675         .writepages             = ext4_writepages,
3676         .write_begin            = ext4_write_begin,
3677         .write_end              = ext4_journalled_write_end,
3678         .dirty_folio            = ext4_journalled_dirty_folio,
3679         .bmap                   = ext4_bmap,
3680         .invalidate_folio       = ext4_journalled_invalidate_folio,
3681         .release_folio          = ext4_release_folio,
3682         .direct_IO              = noop_direct_IO,
3683         .is_partially_uptodate  = block_is_partially_uptodate,
3684         .error_remove_page      = generic_error_remove_page,
3685         .swap_activate          = ext4_iomap_swap_activate,
3686 };
3687
3688 static const struct address_space_operations ext4_da_aops = {
3689         .read_folio             = ext4_read_folio,
3690         .readahead              = ext4_readahead,
3691         .writepage              = ext4_writepage,
3692         .writepages             = ext4_writepages,
3693         .write_begin            = ext4_da_write_begin,
3694         .write_end              = ext4_da_write_end,
3695         .dirty_folio            = ext4_dirty_folio,
3696         .bmap                   = ext4_bmap,
3697         .invalidate_folio       = ext4_invalidate_folio,
3698         .release_folio          = ext4_release_folio,
3699         .direct_IO              = noop_direct_IO,
3700         .migrate_folio          = buffer_migrate_folio,
3701         .is_partially_uptodate  = block_is_partially_uptodate,
3702         .error_remove_page      = generic_error_remove_page,
3703         .swap_activate          = ext4_iomap_swap_activate,
3704 };
3705
3706 static const struct address_space_operations ext4_dax_aops = {
3707         .writepages             = ext4_dax_writepages,
3708         .direct_IO              = noop_direct_IO,
3709         .dirty_folio            = noop_dirty_folio,
3710         .bmap                   = ext4_bmap,
3711         .swap_activate          = ext4_iomap_swap_activate,
3712 };
3713
3714 void ext4_set_aops(struct inode *inode)
3715 {
3716         switch (ext4_inode_journal_mode(inode)) {
3717         case EXT4_INODE_ORDERED_DATA_MODE:
3718         case EXT4_INODE_WRITEBACK_DATA_MODE:
3719                 break;
3720         case EXT4_INODE_JOURNAL_DATA_MODE:
3721                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3722                 return;
3723         default:
3724                 BUG();
3725         }
3726         if (IS_DAX(inode))
3727                 inode->i_mapping->a_ops = &ext4_dax_aops;
3728         else if (test_opt(inode->i_sb, DELALLOC))
3729                 inode->i_mapping->a_ops = &ext4_da_aops;
3730         else
3731                 inode->i_mapping->a_ops = &ext4_aops;
3732 }
3733
3734 static int __ext4_block_zero_page_range(handle_t *handle,
3735                 struct address_space *mapping, loff_t from, loff_t length)
3736 {
3737         ext4_fsblk_t index = from >> PAGE_SHIFT;
3738         unsigned offset = from & (PAGE_SIZE-1);
3739         unsigned blocksize, pos;
3740         ext4_lblk_t iblock;
3741         struct inode *inode = mapping->host;
3742         struct buffer_head *bh;
3743         struct page *page;
3744         int err = 0;
3745
3746         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3747                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3748         if (!page)
3749                 return -ENOMEM;
3750
3751         blocksize = inode->i_sb->s_blocksize;
3752
3753         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3754
3755         if (!page_has_buffers(page))
3756                 create_empty_buffers(page, blocksize, 0);
3757
3758         /* Find the buffer that contains "offset" */
3759         bh = page_buffers(page);
3760         pos = blocksize;
3761         while (offset >= pos) {
3762                 bh = bh->b_this_page;
3763                 iblock++;
3764                 pos += blocksize;
3765         }
3766         if (buffer_freed(bh)) {
3767                 BUFFER_TRACE(bh, "freed: skip");
3768                 goto unlock;
3769         }
3770         if (!buffer_mapped(bh)) {
3771                 BUFFER_TRACE(bh, "unmapped");
3772                 ext4_get_block(inode, iblock, bh, 0);
3773                 /* unmapped? It's a hole - nothing to do */
3774                 if (!buffer_mapped(bh)) {
3775                         BUFFER_TRACE(bh, "still unmapped");
3776                         goto unlock;
3777                 }
3778         }
3779
3780         /* Ok, it's mapped. Make sure it's up-to-date */
3781         if (PageUptodate(page))
3782                 set_buffer_uptodate(bh);
3783
3784         if (!buffer_uptodate(bh)) {
3785                 err = ext4_read_bh_lock(bh, 0, true);
3786                 if (err)
3787                         goto unlock;
3788                 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3789                         /* We expect the key to be set. */
3790                         BUG_ON(!fscrypt_has_encryption_key(inode));
3791                         err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3792                                                                bh_offset(bh));
3793                         if (err) {
3794                                 clear_buffer_uptodate(bh);
3795                                 goto unlock;
3796                         }
3797                 }
3798         }
3799         if (ext4_should_journal_data(inode)) {
3800                 BUFFER_TRACE(bh, "get write access");
3801                 err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3802                                                     EXT4_JTR_NONE);
3803                 if (err)
3804                         goto unlock;
3805         }
3806         zero_user(page, offset, length);
3807         BUFFER_TRACE(bh, "zeroed end of block");
3808
3809         if (ext4_should_journal_data(inode)) {
3810                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3811         } else {
3812                 err = 0;
3813                 mark_buffer_dirty(bh);
3814                 if (ext4_should_order_data(inode))
3815                         err = ext4_jbd2_inode_add_write(handle, inode, from,
3816                                         length);
3817         }
3818
3819 unlock:
3820         unlock_page(page);
3821         put_page(page);
3822         return err;
3823 }
3824
3825 /*
3826  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3827  * starting from file offset 'from'.  The range to be zero'd must
3828  * be contained with in one block.  If the specified range exceeds
3829  * the end of the block it will be shortened to end of the block
3830  * that corresponds to 'from'
3831  */
3832 static int ext4_block_zero_page_range(handle_t *handle,
3833                 struct address_space *mapping, loff_t from, loff_t length)
3834 {
3835         struct inode *inode = mapping->host;
3836         unsigned offset = from & (PAGE_SIZE-1);
3837         unsigned blocksize = inode->i_sb->s_blocksize;
3838         unsigned max = blocksize - (offset & (blocksize - 1));
3839
3840         /*
3841          * correct length if it does not fall between
3842          * 'from' and the end of the block
3843          */
3844         if (length > max || length < 0)
3845                 length = max;
3846
3847         if (IS_DAX(inode)) {
3848                 return dax_zero_range(inode, from, length, NULL,
3849                                       &ext4_iomap_ops);
3850         }
3851         return __ext4_block_zero_page_range(handle, mapping, from, length);
3852 }
3853
3854 /*
3855  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3856  * up to the end of the block which corresponds to `from'.
3857  * This required during truncate. We need to physically zero the tail end
3858  * of that block so it doesn't yield old data if the file is later grown.
3859  */
3860 static int ext4_block_truncate_page(handle_t *handle,
3861                 struct address_space *mapping, loff_t from)
3862 {
3863         unsigned offset = from & (PAGE_SIZE-1);
3864         unsigned length;
3865         unsigned blocksize;
3866         struct inode *inode = mapping->host;
3867
3868         /* If we are processing an encrypted inode during orphan list handling */
3869         if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3870                 return 0;
3871
3872         blocksize = inode->i_sb->s_blocksize;
3873         length = blocksize - (offset & (blocksize - 1));
3874
3875         return ext4_block_zero_page_range(handle, mapping, from, length);
3876 }
3877
3878 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3879                              loff_t lstart, loff_t length)
3880 {
3881         struct super_block *sb = inode->i_sb;
3882         struct address_space *mapping = inode->i_mapping;
3883         unsigned partial_start, partial_end;
3884         ext4_fsblk_t start, end;
3885         loff_t byte_end = (lstart + length - 1);
3886         int err = 0;
3887
3888         partial_start = lstart & (sb->s_blocksize - 1);
3889         partial_end = byte_end & (sb->s_blocksize - 1);
3890
3891         start = lstart >> sb->s_blocksize_bits;
3892         end = byte_end >> sb->s_blocksize_bits;
3893
3894         /* Handle partial zero within the single block */
3895         if (start == end &&
3896             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3897                 err = ext4_block_zero_page_range(handle, mapping,
3898                                                  lstart, length);
3899                 return err;
3900         }
3901         /* Handle partial zero out on the start of the range */
3902         if (partial_start) {
3903                 err = ext4_block_zero_page_range(handle, mapping,
3904                                                  lstart, sb->s_blocksize);
3905                 if (err)
3906                         return err;
3907         }
3908         /* Handle partial zero out on the end of the range */
3909         if (partial_end != sb->s_blocksize - 1)
3910                 err = ext4_block_zero_page_range(handle, mapping,
3911                                                  byte_end - partial_end,
3912                                                  partial_end + 1);
3913         return err;
3914 }
3915
3916 int ext4_can_truncate(struct inode *inode)
3917 {
3918         if (S_ISREG(inode->i_mode))
3919                 return 1;
3920         if (S_ISDIR(inode->i_mode))
3921                 return 1;
3922         if (S_ISLNK(inode->i_mode))
3923                 return !ext4_inode_is_fast_symlink(inode);
3924         return 0;
3925 }
3926
3927 /*
3928  * We have to make sure i_disksize gets properly updated before we truncate
3929  * page cache due to hole punching or zero range. Otherwise i_disksize update
3930  * can get lost as it may have been postponed to submission of writeback but
3931  * that will never happen after we truncate page cache.
3932  */
3933 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3934                                       loff_t len)
3935 {
3936         handle_t *handle;
3937         int ret;
3938
3939         loff_t size = i_size_read(inode);
3940
3941         WARN_ON(!inode_is_locked(inode));
3942         if (offset > size || offset + len < size)
3943                 return 0;
3944
3945         if (EXT4_I(inode)->i_disksize >= size)
3946                 return 0;
3947
3948         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3949         if (IS_ERR(handle))
3950                 return PTR_ERR(handle);
3951         ext4_update_i_disksize(inode, size);
3952         ret = ext4_mark_inode_dirty(handle, inode);
3953         ext4_journal_stop(handle);
3954
3955         return ret;
3956 }
3957
3958 static void ext4_wait_dax_page(struct inode *inode)
3959 {
3960         filemap_invalidate_unlock(inode->i_mapping);
3961         schedule();
3962         filemap_invalidate_lock(inode->i_mapping);
3963 }
3964
3965 int ext4_break_layouts(struct inode *inode)
3966 {
3967         struct page *page;
3968         int error;
3969
3970         if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3971                 return -EINVAL;
3972
3973         do {
3974                 page = dax_layout_busy_page(inode->i_mapping);
3975                 if (!page)
3976                         return 0;
3977
3978                 error = ___wait_var_event(&page->_refcount,
3979                                 atomic_read(&page->_refcount) == 1,
3980                                 TASK_INTERRUPTIBLE, 0, 0,
3981                                 ext4_wait_dax_page(inode));
3982         } while (error == 0);
3983
3984         return error;
3985 }
3986
3987 /*
3988  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3989  * associated with the given offset and length
3990  *
3991  * @inode:  File inode
3992  * @offset: The offset where the hole will begin
3993  * @len:    The length of the hole
3994  *
3995  * Returns: 0 on success or negative on failure
3996  */
3997
3998 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3999 {
4000         struct inode *inode = file_inode(file);
4001         struct super_block *sb = inode->i_sb;
4002         ext4_lblk_t first_block, stop_block;
4003         struct address_space *mapping = inode->i_mapping;
4004         loff_t first_block_offset, last_block_offset, max_length;
4005         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4006         handle_t *handle;
4007         unsigned int credits;
4008         int ret = 0, ret2 = 0;
4009
4010         trace_ext4_punch_hole(inode, offset, length, 0);
4011
4012         /*
4013          * Write out all dirty pages to avoid race conditions
4014          * Then release them.
4015          */
4016         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4017                 ret = filemap_write_and_wait_range(mapping, offset,
4018                                                    offset + length - 1);
4019                 if (ret)
4020                         return ret;
4021         }
4022
4023         inode_lock(inode);
4024
4025         /* No need to punch hole beyond i_size */
4026         if (offset >= inode->i_size)
4027                 goto out_mutex;
4028
4029         /*
4030          * If the hole extends beyond i_size, set the hole
4031          * to end after the page that contains i_size
4032          */
4033         if (offset + length > inode->i_size) {
4034                 length = inode->i_size +
4035                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4036                    offset;
4037         }
4038
4039         /*
4040          * For punch hole the length + offset needs to be within one block
4041          * before last range. Adjust the length if it goes beyond that limit.
4042          */
4043         max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
4044         if (offset + length > max_length)
4045                 length = max_length - offset;
4046
4047         if (offset & (sb->s_blocksize - 1) ||
4048             (offset + length) & (sb->s_blocksize - 1)) {
4049                 /*
4050                  * Attach jinode to inode for jbd2 if we do any zeroing of
4051                  * partial block
4052                  */
4053                 ret = ext4_inode_attach_jinode(inode);
4054                 if (ret < 0)
4055                         goto out_mutex;
4056
4057         }
4058
4059         /* Wait all existing dio workers, newcomers will block on i_rwsem */
4060         inode_dio_wait(inode);
4061
4062         ret = file_modified(file);
4063         if (ret)
4064                 goto out_mutex;
4065
4066         /*
4067          * Prevent page faults from reinstantiating pages we have released from
4068          * page cache.
4069          */
4070         filemap_invalidate_lock(mapping);
4071
4072         ret = ext4_break_layouts(inode);
4073         if (ret)
4074                 goto out_dio;
4075
4076         first_block_offset = round_up(offset, sb->s_blocksize);
4077         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4078
4079         /* Now release the pages and zero block aligned part of pages*/
4080         if (last_block_offset > first_block_offset) {
4081                 ret = ext4_update_disksize_before_punch(inode, offset, length);
4082                 if (ret)
4083                         goto out_dio;
4084                 truncate_pagecache_range(inode, first_block_offset,
4085                                          last_block_offset);
4086         }
4087
4088         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4089                 credits = ext4_writepage_trans_blocks(inode);
4090         else
4091                 credits = ext4_blocks_for_truncate(inode);
4092         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4093         if (IS_ERR(handle)) {
4094                 ret = PTR_ERR(handle);
4095                 ext4_std_error(sb, ret);
4096                 goto out_dio;
4097         }
4098
4099         ret = ext4_zero_partial_blocks(handle, inode, offset,
4100                                        length);
4101         if (ret)
4102                 goto out_stop;
4103
4104         first_block = (offset + sb->s_blocksize - 1) >>
4105                 EXT4_BLOCK_SIZE_BITS(sb);
4106         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4107
4108         /* If there are blocks to remove, do it */
4109         if (stop_block > first_block) {
4110
4111                 down_write(&EXT4_I(inode)->i_data_sem);
4112                 ext4_discard_preallocations(inode, 0);
4113
4114                 ret = ext4_es_remove_extent(inode, first_block,
4115                                             stop_block - first_block);
4116                 if (ret) {
4117                         up_write(&EXT4_I(inode)->i_data_sem);
4118                         goto out_stop;
4119                 }
4120
4121                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4122                         ret = ext4_ext_remove_space(inode, first_block,
4123                                                     stop_block - 1);
4124                 else
4125                         ret = ext4_ind_remove_space(handle, inode, first_block,
4126                                                     stop_block);
4127
4128                 up_write(&EXT4_I(inode)->i_data_sem);
4129         }
4130         ext4_fc_track_range(handle, inode, first_block, stop_block);
4131         if (IS_SYNC(inode))
4132                 ext4_handle_sync(handle);
4133
4134         inode->i_mtime = inode->i_ctime = current_time(inode);
4135         ret2 = ext4_mark_inode_dirty(handle, inode);
4136         if (unlikely(ret2))
4137                 ret = ret2;
4138         if (ret >= 0)
4139                 ext4_update_inode_fsync_trans(handle, inode, 1);
4140 out_stop:
4141         ext4_journal_stop(handle);
4142 out_dio:
4143         filemap_invalidate_unlock(mapping);
4144 out_mutex:
4145         inode_unlock(inode);
4146         return ret;
4147 }
4148
4149 int ext4_inode_attach_jinode(struct inode *inode)
4150 {
4151         struct ext4_inode_info *ei = EXT4_I(inode);
4152         struct jbd2_inode *jinode;
4153
4154         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4155                 return 0;
4156
4157         jinode = jbd2_alloc_inode(GFP_KERNEL);
4158         spin_lock(&inode->i_lock);
4159         if (!ei->jinode) {
4160                 if (!jinode) {
4161                         spin_unlock(&inode->i_lock);
4162                         return -ENOMEM;
4163                 }
4164                 ei->jinode = jinode;
4165                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4166                 jinode = NULL;
4167         }
4168         spin_unlock(&inode->i_lock);
4169         if (unlikely(jinode != NULL))
4170                 jbd2_free_inode(jinode);
4171         return 0;
4172 }
4173
4174 /*
4175  * ext4_truncate()
4176  *
4177  * We block out ext4_get_block() block instantiations across the entire
4178  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4179  * simultaneously on behalf of the same inode.
4180  *
4181  * As we work through the truncate and commit bits of it to the journal there
4182  * is one core, guiding principle: the file's tree must always be consistent on
4183  * disk.  We must be able to restart the truncate after a crash.
4184  *
4185  * The file's tree may be transiently inconsistent in memory (although it
4186  * probably isn't), but whenever we close off and commit a journal transaction,
4187  * the contents of (the filesystem + the journal) must be consistent and
4188  * restartable.  It's pretty simple, really: bottom up, right to left (although
4189  * left-to-right works OK too).
4190  *
4191  * Note that at recovery time, journal replay occurs *before* the restart of
4192  * truncate against the orphan inode list.
4193  *
4194  * The committed inode has the new, desired i_size (which is the same as
4195  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4196  * that this inode's truncate did not complete and it will again call
4197  * ext4_truncate() to have another go.  So there will be instantiated blocks
4198  * to the right of the truncation point in a crashed ext4 filesystem.  But
4199  * that's fine - as long as they are linked from the inode, the post-crash
4200  * ext4_truncate() run will find them and release them.
4201  */
4202 int ext4_truncate(struct inode *inode)
4203 {
4204         struct ext4_inode_info *ei = EXT4_I(inode);
4205         unsigned int credits;
4206         int err = 0, err2;
4207         handle_t *handle;
4208         struct address_space *mapping = inode->i_mapping;
4209
4210         /*
4211          * There is a possibility that we're either freeing the inode
4212          * or it's a completely new inode. In those cases we might not
4213          * have i_rwsem locked because it's not necessary.
4214          */
4215         if (!(inode->i_state & (I_NEW|I_FREEING)))
4216                 WARN_ON(!inode_is_locked(inode));
4217         trace_ext4_truncate_enter(inode);
4218
4219         if (!ext4_can_truncate(inode))
4220                 goto out_trace;
4221
4222         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4223                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4224
4225         if (ext4_has_inline_data(inode)) {
4226                 int has_inline = 1;
4227
4228                 err = ext4_inline_data_truncate(inode, &has_inline);
4229                 if (err || has_inline)
4230                         goto out_trace;
4231         }
4232
4233         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4234         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4235                 err = ext4_inode_attach_jinode(inode);
4236                 if (err)
4237                         goto out_trace;
4238         }
4239
4240         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4241                 credits = ext4_writepage_trans_blocks(inode);
4242         else
4243                 credits = ext4_blocks_for_truncate(inode);
4244
4245         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4246         if (IS_ERR(handle)) {
4247                 err = PTR_ERR(handle);
4248                 goto out_trace;
4249         }
4250
4251         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4252                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4253
4254         /*
4255          * We add the inode to the orphan list, so that if this
4256          * truncate spans multiple transactions, and we crash, we will
4257          * resume the truncate when the filesystem recovers.  It also
4258          * marks the inode dirty, to catch the new size.
4259          *
4260          * Implication: the file must always be in a sane, consistent
4261          * truncatable state while each transaction commits.
4262          */
4263         err = ext4_orphan_add(handle, inode);
4264         if (err)
4265                 goto out_stop;
4266
4267         down_write(&EXT4_I(inode)->i_data_sem);
4268
4269         ext4_discard_preallocations(inode, 0);
4270
4271         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4272                 err = ext4_ext_truncate(handle, inode);
4273         else
4274                 ext4_ind_truncate(handle, inode);
4275
4276         up_write(&ei->i_data_sem);
4277         if (err)
4278                 goto out_stop;
4279
4280         if (IS_SYNC(inode))
4281                 ext4_handle_sync(handle);
4282
4283 out_stop:
4284         /*
4285          * If this was a simple ftruncate() and the file will remain alive,
4286          * then we need to clear up the orphan record which we created above.
4287          * However, if this was a real unlink then we were called by
4288          * ext4_evict_inode(), and we allow that function to clean up the
4289          * orphan info for us.
4290          */
4291         if (inode->i_nlink)
4292                 ext4_orphan_del(handle, inode);
4293
4294         inode->i_mtime = inode->i_ctime = current_time(inode);
4295         err2 = ext4_mark_inode_dirty(handle, inode);
4296         if (unlikely(err2 && !err))
4297                 err = err2;
4298         ext4_journal_stop(handle);
4299
4300 out_trace:
4301         trace_ext4_truncate_exit(inode);
4302         return err;
4303 }
4304
4305 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4306 {
4307         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4308                 return inode_peek_iversion_raw(inode);
4309         else
4310                 return inode_peek_iversion(inode);
4311 }
4312
4313 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4314                                  struct ext4_inode_info *ei)
4315 {
4316         struct inode *inode = &(ei->vfs_inode);
4317         u64 i_blocks = READ_ONCE(inode->i_blocks);
4318         struct super_block *sb = inode->i_sb;
4319
4320         if (i_blocks <= ~0U) {
4321                 /*
4322                  * i_blocks can be represented in a 32 bit variable
4323                  * as multiple of 512 bytes
4324                  */
4325                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4326                 raw_inode->i_blocks_high = 0;
4327                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4328                 return 0;
4329         }
4330
4331         /*
4332          * This should never happen since sb->s_maxbytes should not have
4333          * allowed this, sb->s_maxbytes was set according to the huge_file
4334          * feature in ext4_fill_super().
4335          */
4336         if (!ext4_has_feature_huge_file(sb))
4337                 return -EFSCORRUPTED;
4338
4339         if (i_blocks <= 0xffffffffffffULL) {
4340                 /*
4341                  * i_blocks can be represented in a 48 bit variable
4342                  * as multiple of 512 bytes
4343                  */
4344                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4345                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4346                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4347         } else {
4348                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4349                 /* i_block is stored in file system block size */
4350                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4351                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4352                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4353         }
4354         return 0;
4355 }
4356
4357 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4358 {
4359         struct ext4_inode_info *ei = EXT4_I(inode);
4360         uid_t i_uid;
4361         gid_t i_gid;
4362         projid_t i_projid;
4363         int block;
4364         int err;
4365
4366         err = ext4_inode_blocks_set(raw_inode, ei);
4367
4368         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4369         i_uid = i_uid_read(inode);
4370         i_gid = i_gid_read(inode);
4371         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4372         if (!(test_opt(inode->i_sb, NO_UID32))) {
4373                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4374                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4375                 /*
4376                  * Fix up interoperability with old kernels. Otherwise,
4377                  * old inodes get re-used with the upper 16 bits of the
4378                  * uid/gid intact.
4379                  */
4380                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4381                         raw_inode->i_uid_high = 0;
4382                         raw_inode->i_gid_high = 0;
4383                 } else {
4384                         raw_inode->i_uid_high =
4385                                 cpu_to_le16(high_16_bits(i_uid));
4386                         raw_inode->i_gid_high =
4387                                 cpu_to_le16(high_16_bits(i_gid));
4388                 }
4389         } else {
4390                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4391                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4392                 raw_inode->i_uid_high = 0;
4393                 raw_inode->i_gid_high = 0;
4394         }
4395         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4396
4397         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4398         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4399         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4400         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4401
4402         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4403         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4404         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4405                 raw_inode->i_file_acl_high =
4406                         cpu_to_le16(ei->i_file_acl >> 32);
4407         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4408         ext4_isize_set(raw_inode, ei->i_disksize);
4409
4410         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4411         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4412                 if (old_valid_dev(inode->i_rdev)) {
4413                         raw_inode->i_block[0] =
4414                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4415                         raw_inode->i_block[1] = 0;
4416                 } else {
4417                         raw_inode->i_block[0] = 0;
4418                         raw_inode->i_block[1] =
4419                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4420                         raw_inode->i_block[2] = 0;
4421                 }
4422         } else if (!ext4_has_inline_data(inode)) {
4423                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4424                         raw_inode->i_block[block] = ei->i_data[block];
4425         }
4426
4427         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4428                 u64 ivers = ext4_inode_peek_iversion(inode);
4429
4430                 raw_inode->i_disk_version = cpu_to_le32(ivers);
4431                 if (ei->i_extra_isize) {
4432                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4433                                 raw_inode->i_version_hi =
4434                                         cpu_to_le32(ivers >> 32);
4435                         raw_inode->i_extra_isize =
4436                                 cpu_to_le16(ei->i_extra_isize);
4437                 }
4438         }
4439
4440         if (i_projid != EXT4_DEF_PROJID &&
4441             !ext4_has_feature_project(inode->i_sb))
4442                 err = err ?: -EFSCORRUPTED;
4443
4444         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4445             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4446                 raw_inode->i_projid = cpu_to_le32(i_projid);
4447
4448         ext4_inode_csum_set(inode, raw_inode, ei);
4449         return err;
4450 }
4451
4452 /*
4453  * ext4_get_inode_loc returns with an extra refcount against the inode's
4454  * underlying buffer_head on success. If we pass 'inode' and it does not
4455  * have in-inode xattr, we have all inode data in memory that is needed
4456  * to recreate the on-disk version of this inode.
4457  */
4458 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4459                                 struct inode *inode, struct ext4_iloc *iloc,
4460                                 ext4_fsblk_t *ret_block)
4461 {
4462         struct ext4_group_desc  *gdp;
4463         struct buffer_head      *bh;
4464         ext4_fsblk_t            block;
4465         struct blk_plug         plug;
4466         int                     inodes_per_block, inode_offset;
4467
4468         iloc->bh = NULL;
4469         if (ino < EXT4_ROOT_INO ||
4470             ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4471                 return -EFSCORRUPTED;
4472
4473         iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4474         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4475         if (!gdp)
4476                 return -EIO;
4477
4478         /*
4479          * Figure out the offset within the block group inode table
4480          */
4481         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4482         inode_offset = ((ino - 1) %
4483                         EXT4_INODES_PER_GROUP(sb));
4484         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4485
4486         block = ext4_inode_table(sb, gdp);
4487         if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4488             (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4489                 ext4_error(sb, "Invalid inode table block %llu in "
4490                            "block_group %u", block, iloc->block_group);
4491                 return -EFSCORRUPTED;
4492         }
4493         block += (inode_offset / inodes_per_block);
4494
4495         bh = sb_getblk(sb, block);
4496         if (unlikely(!bh))
4497                 return -ENOMEM;
4498         if (ext4_buffer_uptodate(bh))
4499                 goto has_buffer;
4500
4501         lock_buffer(bh);
4502         if (ext4_buffer_uptodate(bh)) {
4503                 /* Someone brought it uptodate while we waited */
4504                 unlock_buffer(bh);
4505                 goto has_buffer;
4506         }
4507
4508         /*
4509          * If we have all information of the inode in memory and this
4510          * is the only valid inode in the block, we need not read the
4511          * block.
4512          */
4513         if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4514                 struct buffer_head *bitmap_bh;
4515                 int i, start;
4516
4517                 start = inode_offset & ~(inodes_per_block - 1);
4518
4519                 /* Is the inode bitmap in cache? */
4520                 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4521                 if (unlikely(!bitmap_bh))
4522                         goto make_io;
4523
4524                 /*
4525                  * If the inode bitmap isn't in cache then the
4526                  * optimisation may end up performing two reads instead
4527                  * of one, so skip it.
4528                  */
4529                 if (!buffer_uptodate(bitmap_bh)) {
4530                         brelse(bitmap_bh);
4531                         goto make_io;
4532                 }
4533                 for (i = start; i < start + inodes_per_block; i++) {
4534                         if (i == inode_offset)
4535                                 continue;
4536                         if (ext4_test_bit(i, bitmap_bh->b_data))
4537                                 break;
4538                 }
4539                 brelse(bitmap_bh);
4540                 if (i == start + inodes_per_block) {
4541                         struct ext4_inode *raw_inode =
4542                                 (struct ext4_inode *) (bh->b_data + iloc->offset);
4543
4544                         /* all other inodes are free, so skip I/O */
4545                         memset(bh->b_data, 0, bh->b_size);
4546                         if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4547                                 ext4_fill_raw_inode(inode, raw_inode);
4548                         set_buffer_uptodate(bh);
4549                         unlock_buffer(bh);
4550                         goto has_buffer;
4551                 }
4552         }
4553
4554 make_io:
4555         /*
4556          * If we need to do any I/O, try to pre-readahead extra
4557          * blocks from the inode table.
4558          */
4559         blk_start_plug(&plug);
4560         if (EXT4_SB(sb)->s_inode_readahead_blks) {
4561                 ext4_fsblk_t b, end, table;
4562                 unsigned num;
4563                 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4564
4565                 table = ext4_inode_table(sb, gdp);
4566                 /* s_inode_readahead_blks is always a power of 2 */
4567                 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4568                 if (table > b)
4569                         b = table;
4570                 end = b + ra_blks;
4571                 num = EXT4_INODES_PER_GROUP(sb);
4572                 if (ext4_has_group_desc_csum(sb))
4573                         num -= ext4_itable_unused_count(sb, gdp);
4574                 table += num / inodes_per_block;
4575                 if (end > table)
4576                         end = table;
4577                 while (b <= end)
4578                         ext4_sb_breadahead_unmovable(sb, b++);
4579         }
4580
4581         /*
4582          * There are other valid inodes in the buffer, this inode
4583          * has in-inode xattrs, or we don't have this inode in memory.
4584          * Read the block from disk.
4585          */
4586         trace_ext4_load_inode(sb, ino);
4587         ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4588         blk_finish_plug(&plug);
4589         wait_on_buffer(bh);
4590         ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4591         if (!buffer_uptodate(bh)) {
4592                 if (ret_block)
4593                         *ret_block = block;
4594                 brelse(bh);
4595                 return -EIO;
4596         }
4597 has_buffer:
4598         iloc->bh = bh;
4599         return 0;
4600 }
4601
4602 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4603                                         struct ext4_iloc *iloc)
4604 {
4605         ext4_fsblk_t err_blk = 0;
4606         int ret;
4607
4608         ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4609                                         &err_blk);
4610
4611         if (ret == -EIO)
4612                 ext4_error_inode_block(inode, err_blk, EIO,
4613                                         "unable to read itable block");
4614
4615         return ret;
4616 }
4617
4618 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4619 {
4620         ext4_fsblk_t err_blk = 0;
4621         int ret;
4622
4623         ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4624                                         &err_blk);
4625
4626         if (ret == -EIO)
4627                 ext4_error_inode_block(inode, err_blk, EIO,
4628                                         "unable to read itable block");
4629
4630         return ret;
4631 }
4632
4633
4634 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4635                           struct ext4_iloc *iloc)
4636 {
4637         return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4638 }
4639
4640 static bool ext4_should_enable_dax(struct inode *inode)
4641 {
4642         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4643
4644         if (test_opt2(inode->i_sb, DAX_NEVER))
4645                 return false;
4646         if (!S_ISREG(inode->i_mode))
4647                 return false;
4648         if (ext4_should_journal_data(inode))
4649                 return false;
4650         if (ext4_has_inline_data(inode))
4651                 return false;
4652         if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4653                 return false;
4654         if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4655                 return false;
4656         if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4657                 return false;
4658         if (test_opt(inode->i_sb, DAX_ALWAYS))
4659                 return true;
4660
4661         return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4662 }
4663
4664 void ext4_set_inode_flags(struct inode *inode, bool init)
4665 {
4666         unsigned int flags = EXT4_I(inode)->i_flags;
4667         unsigned int new_fl = 0;
4668
4669         WARN_ON_ONCE(IS_DAX(inode) && init);
4670
4671         if (flags & EXT4_SYNC_FL)
4672                 new_fl |= S_SYNC;
4673         if (flags & EXT4_APPEND_FL)
4674                 new_fl |= S_APPEND;
4675         if (flags & EXT4_IMMUTABLE_FL)
4676                 new_fl |= S_IMMUTABLE;
4677         if (flags & EXT4_NOATIME_FL)
4678                 new_fl |= S_NOATIME;
4679         if (flags & EXT4_DIRSYNC_FL)
4680                 new_fl |= S_DIRSYNC;
4681
4682         /* Because of the way inode_set_flags() works we must preserve S_DAX
4683          * here if already set. */
4684         new_fl |= (inode->i_flags & S_DAX);
4685         if (init && ext4_should_enable_dax(inode))
4686                 new_fl |= S_DAX;
4687
4688         if (flags & EXT4_ENCRYPT_FL)
4689                 new_fl |= S_ENCRYPTED;
4690         if (flags & EXT4_CASEFOLD_FL)
4691                 new_fl |= S_CASEFOLD;
4692         if (flags & EXT4_VERITY_FL)
4693                 new_fl |= S_VERITY;
4694         inode_set_flags(inode, new_fl,
4695                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4696                         S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4697 }
4698
4699 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4700                                   struct ext4_inode_info *ei)
4701 {
4702         blkcnt_t i_blocks ;
4703         struct inode *inode = &(ei->vfs_inode);
4704         struct super_block *sb = inode->i_sb;
4705
4706         if (ext4_has_feature_huge_file(sb)) {
4707                 /* we are using combined 48 bit field */
4708                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4709                                         le32_to_cpu(raw_inode->i_blocks_lo);
4710                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4711                         /* i_blocks represent file system block size */
4712                         return i_blocks  << (inode->i_blkbits - 9);
4713                 } else {
4714                         return i_blocks;
4715                 }
4716         } else {
4717                 return le32_to_cpu(raw_inode->i_blocks_lo);
4718         }
4719 }
4720
4721 static inline int ext4_iget_extra_inode(struct inode *inode,
4722                                          struct ext4_inode *raw_inode,
4723                                          struct ext4_inode_info *ei)
4724 {
4725         __le32 *magic = (void *)raw_inode +
4726                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4727
4728         if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
4729             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4730                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4731                 return ext4_find_inline_data_nolock(inode);
4732         } else
4733                 EXT4_I(inode)->i_inline_off = 0;
4734         return 0;
4735 }
4736
4737 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4738 {
4739         if (!ext4_has_feature_project(inode->i_sb))
4740                 return -EOPNOTSUPP;
4741         *projid = EXT4_I(inode)->i_projid;
4742         return 0;
4743 }
4744
4745 /*
4746  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4747  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4748  * set.
4749  */
4750 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4751 {
4752         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4753                 inode_set_iversion_raw(inode, val);
4754         else
4755                 inode_set_iversion_queried(inode, val);
4756 }
4757
4758 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4759                           ext4_iget_flags flags, const char *function,
4760                           unsigned int line)
4761 {
4762         struct ext4_iloc iloc;
4763         struct ext4_inode *raw_inode;
4764         struct ext4_inode_info *ei;
4765         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4766         struct inode *inode;
4767         journal_t *journal = EXT4_SB(sb)->s_journal;
4768         long ret;
4769         loff_t size;
4770         int block;
4771         uid_t i_uid;
4772         gid_t i_gid;
4773         projid_t i_projid;
4774
4775         if ((!(flags & EXT4_IGET_SPECIAL) &&
4776              ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4777               ino == le32_to_cpu(es->s_usr_quota_inum) ||
4778               ino == le32_to_cpu(es->s_grp_quota_inum) ||
4779               ino == le32_to_cpu(es->s_prj_quota_inum) ||
4780               ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4781             (ino < EXT4_ROOT_INO) ||
4782             (ino > le32_to_cpu(es->s_inodes_count))) {
4783                 if (flags & EXT4_IGET_HANDLE)
4784                         return ERR_PTR(-ESTALE);
4785                 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4786                              "inode #%lu: comm %s: iget: illegal inode #",
4787                              ino, current->comm);
4788                 return ERR_PTR(-EFSCORRUPTED);
4789         }
4790
4791         inode = iget_locked(sb, ino);
4792         if (!inode)
4793                 return ERR_PTR(-ENOMEM);
4794         if (!(inode->i_state & I_NEW))
4795                 return inode;
4796
4797         ei = EXT4_I(inode);
4798         iloc.bh = NULL;
4799
4800         ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4801         if (ret < 0)
4802                 goto bad_inode;
4803         raw_inode = ext4_raw_inode(&iloc);
4804
4805         if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4806                 ext4_error_inode(inode, function, line, 0,
4807                                  "iget: root inode unallocated");
4808                 ret = -EFSCORRUPTED;
4809                 goto bad_inode;
4810         }
4811
4812         if ((flags & EXT4_IGET_HANDLE) &&
4813             (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4814                 ret = -ESTALE;
4815                 goto bad_inode;
4816         }
4817
4818         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4819                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4820                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4821                         EXT4_INODE_SIZE(inode->i_sb) ||
4822                     (ei->i_extra_isize & 3)) {
4823                         ext4_error_inode(inode, function, line, 0,
4824                                          "iget: bad extra_isize %u "
4825                                          "(inode size %u)",
4826                                          ei->i_extra_isize,
4827                                          EXT4_INODE_SIZE(inode->i_sb));
4828                         ret = -EFSCORRUPTED;
4829                         goto bad_inode;
4830                 }
4831         } else
4832                 ei->i_extra_isize = 0;
4833
4834         /* Precompute checksum seed for inode metadata */
4835         if (ext4_has_metadata_csum(sb)) {
4836                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4837                 __u32 csum;
4838                 __le32 inum = cpu_to_le32(inode->i_ino);
4839                 __le32 gen = raw_inode->i_generation;
4840                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4841                                    sizeof(inum));
4842                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4843                                               sizeof(gen));
4844         }
4845
4846         if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4847             ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4848              (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4849                 ext4_error_inode_err(inode, function, line, 0,
4850                                 EFSBADCRC, "iget: checksum invalid");
4851                 ret = -EFSBADCRC;
4852                 goto bad_inode;
4853         }
4854
4855         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4856         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4857         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4858         if (ext4_has_feature_project(sb) &&
4859             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4860             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4861                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4862         else
4863                 i_projid = EXT4_DEF_PROJID;
4864
4865         if (!(test_opt(inode->i_sb, NO_UID32))) {
4866                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4867                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4868         }
4869         i_uid_write(inode, i_uid);
4870         i_gid_write(inode, i_gid);
4871         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4872         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4873
4874         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4875         ei->i_inline_off = 0;
4876         ei->i_dir_start_lookup = 0;
4877         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4878         /* We now have enough fields to check if the inode was active or not.
4879          * This is needed because nfsd might try to access dead inodes
4880          * the test is that same one that e2fsck uses
4881          * NeilBrown 1999oct15
4882          */
4883         if (inode->i_nlink == 0) {
4884                 if ((inode->i_mode == 0 ||
4885                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4886                     ino != EXT4_BOOT_LOADER_INO) {
4887                         /* this inode is deleted */
4888                         ret = -ESTALE;
4889                         goto bad_inode;
4890                 }
4891                 /* The only unlinked inodes we let through here have
4892                  * valid i_mode and are being read by the orphan
4893                  * recovery code: that's fine, we're about to complete
4894                  * the process of deleting those.
4895                  * OR it is the EXT4_BOOT_LOADER_INO which is
4896                  * not initialized on a new filesystem. */
4897         }
4898         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4899         ext4_set_inode_flags(inode, true);
4900         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4901         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4902         if (ext4_has_feature_64bit(sb))
4903                 ei->i_file_acl |=
4904                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4905         inode->i_size = ext4_isize(sb, raw_inode);
4906         if ((size = i_size_read(inode)) < 0) {
4907                 ext4_error_inode(inode, function, line, 0,
4908                                  "iget: bad i_size value: %lld", size);
4909                 ret = -EFSCORRUPTED;
4910                 goto bad_inode;
4911         }
4912         /*
4913          * If dir_index is not enabled but there's dir with INDEX flag set,
4914          * we'd normally treat htree data as empty space. But with metadata
4915          * checksumming that corrupts checksums so forbid that.
4916          */
4917         if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4918             ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4919                 ext4_error_inode(inode, function, line, 0,
4920                          "iget: Dir with htree data on filesystem without dir_index feature.");
4921                 ret = -EFSCORRUPTED;
4922                 goto bad_inode;
4923         }
4924         ei->i_disksize = inode->i_size;
4925 #ifdef CONFIG_QUOTA
4926         ei->i_reserved_quota = 0;
4927 #endif
4928         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4929         ei->i_block_group = iloc.block_group;
4930         ei->i_last_alloc_group = ~0;
4931         /*
4932          * NOTE! The in-memory inode i_data array is in little-endian order
4933          * even on big-endian machines: we do NOT byteswap the block numbers!
4934          */
4935         for (block = 0; block < EXT4_N_BLOCKS; block++)
4936                 ei->i_data[block] = raw_inode->i_block[block];
4937         INIT_LIST_HEAD(&ei->i_orphan);
4938         ext4_fc_init_inode(&ei->vfs_inode);
4939
4940         /*
4941          * Set transaction id's of transactions that have to be committed
4942          * to finish f[data]sync. We set them to currently running transaction
4943          * as we cannot be sure that the inode or some of its metadata isn't
4944          * part of the transaction - the inode could have been reclaimed and
4945          * now it is reread from disk.
4946          */
4947         if (journal) {
4948                 transaction_t *transaction;
4949                 tid_t tid;
4950
4951                 read_lock(&journal->j_state_lock);
4952                 if (journal->j_running_transaction)
4953                         transaction = journal->j_running_transaction;
4954                 else
4955                         transaction = journal->j_committing_transaction;
4956                 if (transaction)
4957                         tid = transaction->t_tid;
4958                 else
4959                         tid = journal->j_commit_sequence;
4960                 read_unlock(&journal->j_state_lock);
4961                 ei->i_sync_tid = tid;
4962                 ei->i_datasync_tid = tid;
4963         }
4964
4965         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4966                 if (ei->i_extra_isize == 0) {
4967                         /* The extra space is currently unused. Use it. */
4968                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4969                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4970                                             EXT4_GOOD_OLD_INODE_SIZE;
4971                 } else {
4972                         ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4973                         if (ret)
4974                                 goto bad_inode;
4975                 }
4976         }
4977
4978         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4979         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4980         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4981         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4982
4983         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4984                 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4985
4986                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4987                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4988                                 ivers |=
4989                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4990                 }
4991                 ext4_inode_set_iversion_queried(inode, ivers);
4992         }
4993
4994         ret = 0;
4995         if (ei->i_file_acl &&
4996             !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4997                 ext4_error_inode(inode, function, line, 0,
4998                                  "iget: bad extended attribute block %llu",
4999                                  ei->i_file_acl);
5000                 ret = -EFSCORRUPTED;
5001                 goto bad_inode;
5002         } else if (!ext4_has_inline_data(inode)) {
5003                 /* validate the block references in the inode */
5004                 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
5005                         (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5006                         (S_ISLNK(inode->i_mode) &&
5007                         !ext4_inode_is_fast_symlink(inode)))) {
5008                         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5009                                 ret = ext4_ext_check_inode(inode);
5010                         else
5011                                 ret = ext4_ind_check_inode(inode);
5012                 }
5013         }
5014         if (ret)
5015                 goto bad_inode;
5016
5017         if (S_ISREG(inode->i_mode)) {
5018                 inode->i_op = &ext4_file_inode_operations;
5019                 inode->i_fop = &ext4_file_operations;
5020                 ext4_set_aops(inode);
5021         } else if (S_ISDIR(inode->i_mode)) {
5022                 inode->i_op = &ext4_dir_inode_operations;
5023                 inode->i_fop = &ext4_dir_operations;
5024         } else if (S_ISLNK(inode->i_mode)) {
5025                 /* VFS does not allow setting these so must be corruption */
5026                 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5027                         ext4_error_inode(inode, function, line, 0,
5028                                          "iget: immutable or append flags "
5029                                          "not allowed on symlinks");
5030                         ret = -EFSCORRUPTED;
5031                         goto bad_inode;
5032                 }
5033                 if (IS_ENCRYPTED(inode)) {
5034                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
5035                 } else if (ext4_inode_is_fast_symlink(inode)) {
5036                         inode->i_link = (char *)ei->i_data;
5037                         inode->i_op = &ext4_fast_symlink_inode_operations;
5038                         nd_terminate_link(ei->i_data, inode->i_size,
5039                                 sizeof(ei->i_data) - 1);
5040                 } else {
5041                         inode->i_op = &ext4_symlink_inode_operations;
5042                 }
5043         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5044               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5045                 inode->i_op = &ext4_special_inode_operations;
5046                 if (raw_inode->i_block[0])
5047                         init_special_inode(inode, inode->i_mode,
5048                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5049                 else
5050                         init_special_inode(inode, inode->i_mode,
5051                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5052         } else if (ino == EXT4_BOOT_LOADER_INO) {
5053                 make_bad_inode(inode);
5054         } else {
5055                 ret = -EFSCORRUPTED;
5056                 ext4_error_inode(inode, function, line, 0,
5057                                  "iget: bogus i_mode (%o)", inode->i_mode);
5058                 goto bad_inode;
5059         }
5060         if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
5061                 ext4_error_inode(inode, function, line, 0,
5062                                  "casefold flag without casefold feature");
5063         if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD)) {
5064                 ext4_error_inode(inode, function, line, 0,
5065                                  "bad inode without EXT4_IGET_BAD flag");
5066                 ret = -EUCLEAN;
5067                 goto bad_inode;
5068         }
5069
5070         brelse(iloc.bh);
5071         unlock_new_inode(inode);
5072         return inode;
5073
5074 bad_inode:
5075         brelse(iloc.bh);
5076         iget_failed(inode);
5077         return ERR_PTR(ret);
5078 }
5079
5080 static void __ext4_update_other_inode_time(struct super_block *sb,
5081                                            unsigned long orig_ino,
5082                                            unsigned long ino,
5083                                            struct ext4_inode *raw_inode)
5084 {
5085         struct inode *inode;
5086
5087         inode = find_inode_by_ino_rcu(sb, ino);
5088         if (!inode)
5089                 return;
5090
5091         if (!inode_is_dirtytime_only(inode))
5092                 return;
5093
5094         spin_lock(&inode->i_lock);
5095         if (inode_is_dirtytime_only(inode)) {
5096                 struct ext4_inode_info  *ei = EXT4_I(inode);
5097
5098                 inode->i_state &= ~I_DIRTY_TIME;
5099                 spin_unlock(&inode->i_lock);
5100
5101                 spin_lock(&ei->i_raw_lock);
5102                 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5103                 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5104                 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5105                 ext4_inode_csum_set(inode, raw_inode, ei);
5106                 spin_unlock(&ei->i_raw_lock);
5107                 trace_ext4_other_inode_update_time(inode, orig_ino);
5108                 return;
5109         }
5110         spin_unlock(&inode->i_lock);
5111 }
5112
5113 /*
5114  * Opportunistically update the other time fields for other inodes in
5115  * the same inode table block.
5116  */
5117 static void ext4_update_other_inodes_time(struct super_block *sb,
5118                                           unsigned long orig_ino, char *buf)
5119 {
5120         unsigned long ino;
5121         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5122         int inode_size = EXT4_INODE_SIZE(sb);
5123
5124         /*
5125          * Calculate the first inode in the inode table block.  Inode
5126          * numbers are one-based.  That is, the first inode in a block
5127          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5128          */
5129         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5130         rcu_read_lock();
5131         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5132                 if (ino == orig_ino)
5133                         continue;
5134                 __ext4_update_other_inode_time(sb, orig_ino, ino,
5135                                                (struct ext4_inode *)buf);
5136         }
5137         rcu_read_unlock();
5138 }
5139
5140 /*
5141  * Post the struct inode info into an on-disk inode location in the
5142  * buffer-cache.  This gobbles the caller's reference to the
5143  * buffer_head in the inode location struct.
5144  *
5145  * The caller must have write access to iloc->bh.
5146  */
5147 static int ext4_do_update_inode(handle_t *handle,
5148                                 struct inode *inode,
5149                                 struct ext4_iloc *iloc)
5150 {
5151         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5152         struct ext4_inode_info *ei = EXT4_I(inode);
5153         struct buffer_head *bh = iloc->bh;
5154         struct super_block *sb = inode->i_sb;
5155         int err;
5156         int need_datasync = 0, set_large_file = 0;
5157
5158         spin_lock(&ei->i_raw_lock);
5159
5160         /*
5161          * For fields not tracked in the in-memory inode, initialise them
5162          * to zero for new inodes.
5163          */
5164         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5165                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5166
5167         if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5168                 need_datasync = 1;
5169         if (ei->i_disksize > 0x7fffffffULL) {
5170                 if (!ext4_has_feature_large_file(sb) ||
5171                     EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5172                         set_large_file = 1;
5173         }
5174
5175         err = ext4_fill_raw_inode(inode, raw_inode);
5176         spin_unlock(&ei->i_raw_lock);
5177         if (err) {
5178                 EXT4_ERROR_INODE(inode, "corrupted inode contents");
5179                 goto out_brelse;
5180         }
5181
5182         if (inode->i_sb->s_flags & SB_LAZYTIME)
5183                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5184                                               bh->b_data);
5185
5186         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5187         err = ext4_handle_dirty_metadata(handle, NULL, bh);
5188         if (err)
5189                 goto out_error;
5190         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5191         if (set_large_file) {
5192                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5193                 err = ext4_journal_get_write_access(handle, sb,
5194                                                     EXT4_SB(sb)->s_sbh,
5195                                                     EXT4_JTR_NONE);
5196                 if (err)
5197                         goto out_error;
5198                 lock_buffer(EXT4_SB(sb)->s_sbh);
5199                 ext4_set_feature_large_file(sb);
5200                 ext4_superblock_csum_set(sb);
5201                 unlock_buffer(EXT4_SB(sb)->s_sbh);
5202                 ext4_handle_sync(handle);
5203                 err = ext4_handle_dirty_metadata(handle, NULL,
5204                                                  EXT4_SB(sb)->s_sbh);
5205         }
5206         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5207 out_error:
5208         ext4_std_error(inode->i_sb, err);
5209 out_brelse:
5210         brelse(bh);
5211         return err;
5212 }
5213
5214 /*
5215  * ext4_write_inode()
5216  *
5217  * We are called from a few places:
5218  *
5219  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5220  *   Here, there will be no transaction running. We wait for any running
5221  *   transaction to commit.
5222  *
5223  * - Within flush work (sys_sync(), kupdate and such).
5224  *   We wait on commit, if told to.
5225  *
5226  * - Within iput_final() -> write_inode_now()
5227  *   We wait on commit, if told to.
5228  *
5229  * In all cases it is actually safe for us to return without doing anything,
5230  * because the inode has been copied into a raw inode buffer in
5231  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5232  * writeback.
5233  *
5234  * Note that we are absolutely dependent upon all inode dirtiers doing the
5235  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5236  * which we are interested.
5237  *
5238  * It would be a bug for them to not do this.  The code:
5239  *
5240  *      mark_inode_dirty(inode)
5241  *      stuff();
5242  *      inode->i_size = expr;
5243  *
5244  * is in error because write_inode() could occur while `stuff()' is running,
5245  * and the new i_size will be lost.  Plus the inode will no longer be on the
5246  * superblock's dirty inode list.
5247  */
5248 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5249 {
5250         int err;
5251
5252         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5253             sb_rdonly(inode->i_sb))
5254                 return 0;
5255
5256         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5257                 return -EIO;
5258
5259         if (EXT4_SB(inode->i_sb)->s_journal) {
5260                 if (ext4_journal_current_handle()) {
5261                         ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5262                         dump_stack();
5263                         return -EIO;
5264                 }
5265
5266                 /*
5267                  * No need to force transaction in WB_SYNC_NONE mode. Also
5268                  * ext4_sync_fs() will force the commit after everything is
5269                  * written.
5270                  */
5271                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5272                         return 0;
5273
5274                 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5275                                                 EXT4_I(inode)->i_sync_tid);
5276         } else {
5277                 struct ext4_iloc iloc;
5278
5279                 err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5280                 if (err)
5281                         return err;
5282                 /*
5283                  * sync(2) will flush the whole buffer cache. No need to do
5284                  * it here separately for each inode.
5285                  */
5286                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5287                         sync_dirty_buffer(iloc.bh);
5288                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5289                         ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5290                                                "IO error syncing inode");
5291                         err = -EIO;
5292                 }
5293                 brelse(iloc.bh);
5294         }
5295         return err;
5296 }
5297
5298 /*
5299  * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5300  * buffers that are attached to a folio straddling i_size and are undergoing
5301  * commit. In that case we have to wait for commit to finish and try again.
5302  */
5303 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5304 {
5305         unsigned offset;
5306         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5307         tid_t commit_tid = 0;
5308         int ret;
5309
5310         offset = inode->i_size & (PAGE_SIZE - 1);
5311         /*
5312          * If the folio is fully truncated, we don't need to wait for any commit
5313          * (and we even should not as __ext4_journalled_invalidate_folio() may
5314          * strip all buffers from the folio but keep the folio dirty which can then
5315          * confuse e.g. concurrent ext4_writepage() seeing dirty folio without
5316          * buffers). Also we don't need to wait for any commit if all buffers in
5317          * the folio remain valid. This is most beneficial for the common case of
5318          * blocksize == PAGESIZE.
5319          */
5320         if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5321                 return;
5322         while (1) {
5323                 struct folio *folio = filemap_lock_folio(inode->i_mapping,
5324                                       inode->i_size >> PAGE_SHIFT);
5325                 if (!folio)
5326                         return;
5327                 ret = __ext4_journalled_invalidate_folio(folio, offset,
5328                                                 folio_size(folio) - offset);
5329                 folio_unlock(folio);
5330                 folio_put(folio);
5331                 if (ret != -EBUSY)
5332                         return;
5333                 commit_tid = 0;
5334                 read_lock(&journal->j_state_lock);
5335                 if (journal->j_committing_transaction)
5336                         commit_tid = journal->j_committing_transaction->t_tid;
5337                 read_unlock(&journal->j_state_lock);
5338                 if (commit_tid)
5339                         jbd2_log_wait_commit(journal, commit_tid);
5340         }
5341 }
5342
5343 /*
5344  * ext4_setattr()
5345  *
5346  * Called from notify_change.
5347  *
5348  * We want to trap VFS attempts to truncate the file as soon as
5349  * possible.  In particular, we want to make sure that when the VFS
5350  * shrinks i_size, we put the inode on the orphan list and modify
5351  * i_disksize immediately, so that during the subsequent flushing of
5352  * dirty pages and freeing of disk blocks, we can guarantee that any
5353  * commit will leave the blocks being flushed in an unused state on
5354  * disk.  (On recovery, the inode will get truncated and the blocks will
5355  * be freed, so we have a strong guarantee that no future commit will
5356  * leave these blocks visible to the user.)
5357  *
5358  * Another thing we have to assure is that if we are in ordered mode
5359  * and inode is still attached to the committing transaction, we must
5360  * we start writeout of all the dirty pages which are being truncated.
5361  * This way we are sure that all the data written in the previous
5362  * transaction are already on disk (truncate waits for pages under
5363  * writeback).
5364  *
5365  * Called with inode->i_rwsem down.
5366  */
5367 int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5368                  struct iattr *attr)
5369 {
5370         struct inode *inode = d_inode(dentry);
5371         int error, rc = 0;
5372         int orphan = 0;
5373         const unsigned int ia_valid = attr->ia_valid;
5374         bool inc_ivers = true;
5375
5376         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5377                 return -EIO;
5378
5379         if (unlikely(IS_IMMUTABLE(inode)))
5380                 return -EPERM;
5381
5382         if (unlikely(IS_APPEND(inode) &&
5383                      (ia_valid & (ATTR_MODE | ATTR_UID |
5384                                   ATTR_GID | ATTR_TIMES_SET))))
5385                 return -EPERM;
5386
5387         error = setattr_prepare(mnt_userns, dentry, attr);
5388         if (error)
5389                 return error;
5390
5391         error = fscrypt_prepare_setattr(dentry, attr);
5392         if (error)
5393                 return error;
5394
5395         error = fsverity_prepare_setattr(dentry, attr);
5396         if (error)
5397                 return error;
5398
5399         if (is_quota_modification(mnt_userns, inode, attr)) {
5400                 error = dquot_initialize(inode);
5401                 if (error)
5402                         return error;
5403         }
5404
5405         if (i_uid_needs_update(mnt_userns, attr, inode) ||
5406             i_gid_needs_update(mnt_userns, attr, inode)) {
5407                 handle_t *handle;
5408
5409                 /* (user+group)*(old+new) structure, inode write (sb,
5410                  * inode block, ? - but truncate inode update has it) */
5411                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5412                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5413                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5414                 if (IS_ERR(handle)) {
5415                         error = PTR_ERR(handle);
5416                         goto err_out;
5417                 }
5418
5419                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5420                  * counts xattr inode references.
5421                  */
5422                 down_read(&EXT4_I(inode)->xattr_sem);
5423                 error = dquot_transfer(mnt_userns, inode, attr);
5424                 up_read(&EXT4_I(inode)->xattr_sem);
5425
5426                 if (error) {
5427                         ext4_journal_stop(handle);
5428                         return error;
5429                 }
5430                 /* Update corresponding info in inode so that everything is in
5431                  * one transaction */
5432                 i_uid_update(mnt_userns, attr, inode);
5433                 i_gid_update(mnt_userns, attr, inode);
5434                 error = ext4_mark_inode_dirty(handle, inode);
5435                 ext4_journal_stop(handle);
5436                 if (unlikely(error)) {
5437                         return error;
5438                 }
5439         }
5440
5441         if (attr->ia_valid & ATTR_SIZE) {
5442                 handle_t *handle;
5443                 loff_t oldsize = inode->i_size;
5444                 loff_t old_disksize;
5445                 int shrink = (attr->ia_size < inode->i_size);
5446
5447                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5448                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5449
5450                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5451                                 return -EFBIG;
5452                         }
5453                 }
5454                 if (!S_ISREG(inode->i_mode)) {
5455                         return -EINVAL;
5456                 }
5457
5458                 if (attr->ia_size == inode->i_size)
5459                         inc_ivers = false;
5460
5461                 if (shrink) {
5462                         if (ext4_should_order_data(inode)) {
5463                                 error = ext4_begin_ordered_truncate(inode,
5464                                                             attr->ia_size);
5465                                 if (error)
5466                                         goto err_out;
5467                         }
5468                         /*
5469                          * Blocks are going to be removed from the inode. Wait
5470                          * for dio in flight.
5471                          */
5472                         inode_dio_wait(inode);
5473                 }
5474
5475                 filemap_invalidate_lock(inode->i_mapping);
5476
5477                 rc = ext4_break_layouts(inode);
5478                 if (rc) {
5479                         filemap_invalidate_unlock(inode->i_mapping);
5480                         goto err_out;
5481                 }
5482
5483                 if (attr->ia_size != inode->i_size) {
5484                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5485                         if (IS_ERR(handle)) {
5486                                 error = PTR_ERR(handle);
5487                                 goto out_mmap_sem;
5488                         }
5489                         if (ext4_handle_valid(handle) && shrink) {
5490                                 error = ext4_orphan_add(handle, inode);
5491                                 orphan = 1;
5492                         }
5493                         /*
5494                          * Update c/mtime on truncate up, ext4_truncate() will
5495                          * update c/mtime in shrink case below
5496                          */
5497                         if (!shrink) {
5498                                 inode->i_mtime = current_time(inode);
5499                                 inode->i_ctime = inode->i_mtime;
5500                         }
5501
5502                         if (shrink)
5503                                 ext4_fc_track_range(handle, inode,
5504                                         (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5505                                         inode->i_sb->s_blocksize_bits,
5506                                         EXT_MAX_BLOCKS - 1);
5507                         else
5508                                 ext4_fc_track_range(
5509                                         handle, inode,
5510                                         (oldsize > 0 ? oldsize - 1 : oldsize) >>
5511                                         inode->i_sb->s_blocksize_bits,
5512                                         (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5513                                         inode->i_sb->s_blocksize_bits);
5514
5515                         down_write(&EXT4_I(inode)->i_data_sem);
5516                         old_disksize = EXT4_I(inode)->i_disksize;
5517                         EXT4_I(inode)->i_disksize = attr->ia_size;
5518                         rc = ext4_mark_inode_dirty(handle, inode);
5519                         if (!error)
5520                                 error = rc;
5521                         /*
5522                          * We have to update i_size under i_data_sem together
5523                          * with i_disksize to avoid races with writeback code
5524                          * running ext4_wb_update_i_disksize().
5525                          */
5526                         if (!error)
5527                                 i_size_write(inode, attr->ia_size);
5528                         else
5529                                 EXT4_I(inode)->i_disksize = old_disksize;
5530                         up_write(&EXT4_I(inode)->i_data_sem);
5531                         ext4_journal_stop(handle);
5532                         if (error)
5533                                 goto out_mmap_sem;
5534                         if (!shrink) {
5535                                 pagecache_isize_extended(inode, oldsize,
5536                                                          inode->i_size);
5537                         } else if (ext4_should_journal_data(inode)) {
5538                                 ext4_wait_for_tail_page_commit(inode);
5539                         }
5540                 }
5541
5542                 /*
5543                  * Truncate pagecache after we've waited for commit
5544                  * in data=journal mode to make pages freeable.
5545                  */
5546                 truncate_pagecache(inode, inode->i_size);
5547                 /*
5548                  * Call ext4_truncate() even if i_size didn't change to
5549                  * truncate possible preallocated blocks.
5550                  */
5551                 if (attr->ia_size <= oldsize) {
5552                         rc = ext4_truncate(inode);
5553                         if (rc)
5554                                 error = rc;
5555                 }
5556 out_mmap_sem:
5557                 filemap_invalidate_unlock(inode->i_mapping);
5558         }
5559
5560         if (!error) {
5561                 if (inc_ivers)
5562                         inode_inc_iversion(inode);
5563                 setattr_copy(mnt_userns, inode, attr);
5564                 mark_inode_dirty(inode);
5565         }
5566
5567         /*
5568          * If the call to ext4_truncate failed to get a transaction handle at
5569          * all, we need to clean up the in-core orphan list manually.
5570          */
5571         if (orphan && inode->i_nlink)
5572                 ext4_orphan_del(NULL, inode);
5573
5574         if (!error && (ia_valid & ATTR_MODE))
5575                 rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5576
5577 err_out:
5578         if  (error)
5579                 ext4_std_error(inode->i_sb, error);
5580         if (!error)
5581                 error = rc;
5582         return error;
5583 }
5584
5585 u32 ext4_dio_alignment(struct inode *inode)
5586 {
5587         if (fsverity_active(inode))
5588                 return 0;
5589         if (ext4_should_journal_data(inode))
5590                 return 0;
5591         if (ext4_has_inline_data(inode))
5592                 return 0;
5593         if (IS_ENCRYPTED(inode)) {
5594                 if (!fscrypt_dio_supported(inode))
5595                         return 0;
5596                 return i_blocksize(inode);
5597         }
5598         return 1; /* use the iomap defaults */
5599 }
5600
5601 int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path,
5602                  struct kstat *stat, u32 request_mask, unsigned int query_flags)
5603 {
5604         struct inode *inode = d_inode(path->dentry);
5605         struct ext4_inode *raw_inode;
5606         struct ext4_inode_info *ei = EXT4_I(inode);
5607         unsigned int flags;
5608
5609         if ((request_mask & STATX_BTIME) &&
5610             EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5611                 stat->result_mask |= STATX_BTIME;
5612                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5613                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5614         }
5615
5616         /*
5617          * Return the DIO alignment restrictions if requested.  We only return
5618          * this information when requested, since on encrypted files it might
5619          * take a fair bit of work to get if the file wasn't opened recently.
5620          */
5621         if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5622                 u32 dio_align = ext4_dio_alignment(inode);
5623
5624                 stat->result_mask |= STATX_DIOALIGN;
5625                 if (dio_align == 1) {
5626                         struct block_device *bdev = inode->i_sb->s_bdev;
5627
5628                         /* iomap defaults */
5629                         stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5630                         stat->dio_offset_align = bdev_logical_block_size(bdev);
5631                 } else {
5632                         stat->dio_mem_align = dio_align;
5633                         stat->dio_offset_align = dio_align;
5634                 }
5635         }
5636
5637         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5638         if (flags & EXT4_APPEND_FL)
5639                 stat->attributes |= STATX_ATTR_APPEND;
5640         if (flags & EXT4_COMPR_FL)
5641                 stat->attributes |= STATX_ATTR_COMPRESSED;
5642         if (flags & EXT4_ENCRYPT_FL)
5643                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5644         if (flags & EXT4_IMMUTABLE_FL)
5645                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5646         if (flags & EXT4_NODUMP_FL)
5647                 stat->attributes |= STATX_ATTR_NODUMP;
5648         if (flags & EXT4_VERITY_FL)
5649                 stat->attributes |= STATX_ATTR_VERITY;
5650
5651         stat->attributes_mask |= (STATX_ATTR_APPEND |
5652                                   STATX_ATTR_COMPRESSED |
5653                                   STATX_ATTR_ENCRYPTED |
5654                                   STATX_ATTR_IMMUTABLE |
5655                                   STATX_ATTR_NODUMP |
5656                                   STATX_ATTR_VERITY);
5657
5658         generic_fillattr(mnt_userns, inode, stat);
5659         return 0;
5660 }
5661
5662 int ext4_file_getattr(struct user_namespace *mnt_userns,
5663                       const struct path *path, struct kstat *stat,
5664                       u32 request_mask, unsigned int query_flags)
5665 {
5666         struct inode *inode = d_inode(path->dentry);
5667         u64 delalloc_blocks;
5668
5669         ext4_getattr(mnt_userns, path, stat, request_mask, query_flags);
5670
5671         /*
5672          * If there is inline data in the inode, the inode will normally not
5673          * have data blocks allocated (it may have an external xattr block).
5674          * Report at least one sector for such files, so tools like tar, rsync,
5675          * others don't incorrectly think the file is completely sparse.
5676          */
5677         if (unlikely(ext4_has_inline_data(inode)))
5678                 stat->blocks += (stat->size + 511) >> 9;
5679
5680         /*
5681          * We can't update i_blocks if the block allocation is delayed
5682          * otherwise in the case of system crash before the real block
5683          * allocation is done, we will have i_blocks inconsistent with
5684          * on-disk file blocks.
5685          * We always keep i_blocks updated together with real
5686          * allocation. But to not confuse with user, stat
5687          * will return the blocks that include the delayed allocation
5688          * blocks for this file.
5689          */
5690         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5691                                    EXT4_I(inode)->i_reserved_data_blocks);
5692         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5693         return 0;
5694 }
5695
5696 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5697                                    int pextents)
5698 {
5699         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5700                 return ext4_ind_trans_blocks(inode, lblocks);
5701         return ext4_ext_index_trans_blocks(inode, pextents);
5702 }
5703
5704 /*
5705  * Account for index blocks, block groups bitmaps and block group
5706  * descriptor blocks if modify datablocks and index blocks
5707  * worse case, the indexs blocks spread over different block groups
5708  *
5709  * If datablocks are discontiguous, they are possible to spread over
5710  * different block groups too. If they are contiguous, with flexbg,
5711  * they could still across block group boundary.
5712  *
5713  * Also account for superblock, inode, quota and xattr blocks
5714  */
5715 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5716                                   int pextents)
5717 {
5718         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5719         int gdpblocks;
5720         int idxblocks;
5721         int ret = 0;
5722
5723         /*
5724          * How many index blocks need to touch to map @lblocks logical blocks
5725          * to @pextents physical extents?
5726          */
5727         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5728
5729         ret = idxblocks;
5730
5731         /*
5732          * Now let's see how many group bitmaps and group descriptors need
5733          * to account
5734          */
5735         groups = idxblocks + pextents;
5736         gdpblocks = groups;
5737         if (groups > ngroups)
5738                 groups = ngroups;
5739         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5740                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5741
5742         /* bitmaps and block group descriptor blocks */
5743         ret += groups + gdpblocks;
5744
5745         /* Blocks for super block, inode, quota and xattr blocks */
5746         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5747
5748         return ret;
5749 }
5750
5751 /*
5752  * Calculate the total number of credits to reserve to fit
5753  * the modification of a single pages into a single transaction,
5754  * which may include multiple chunks of block allocations.
5755  *
5756  * This could be called via ext4_write_begin()
5757  *
5758  * We need to consider the worse case, when
5759  * one new block per extent.
5760  */
5761 int ext4_writepage_trans_blocks(struct inode *inode)
5762 {
5763         int bpp = ext4_journal_blocks_per_page(inode);
5764         int ret;
5765
5766         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5767
5768         /* Account for data blocks for journalled mode */
5769         if (ext4_should_journal_data(inode))
5770                 ret += bpp;
5771         return ret;
5772 }
5773
5774 /*
5775  * Calculate the journal credits for a chunk of data modification.
5776  *
5777  * This is called from DIO, fallocate or whoever calling
5778  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5779  *
5780  * journal buffers for data blocks are not included here, as DIO
5781  * and fallocate do no need to journal data buffers.
5782  */
5783 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5784 {
5785         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5786 }
5787
5788 /*
5789  * The caller must have previously called ext4_reserve_inode_write().
5790  * Give this, we know that the caller already has write access to iloc->bh.
5791  */
5792 int ext4_mark_iloc_dirty(handle_t *handle,
5793                          struct inode *inode, struct ext4_iloc *iloc)
5794 {
5795         int err = 0;
5796
5797         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5798                 put_bh(iloc->bh);
5799                 return -EIO;
5800         }
5801         ext4_fc_track_inode(handle, inode);
5802
5803         /* the do_update_inode consumes one bh->b_count */
5804         get_bh(iloc->bh);
5805
5806         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5807         err = ext4_do_update_inode(handle, inode, iloc);
5808         put_bh(iloc->bh);
5809         return err;
5810 }
5811
5812 /*
5813  * On success, We end up with an outstanding reference count against
5814  * iloc->bh.  This _must_ be cleaned up later.
5815  */
5816
5817 int
5818 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5819                          struct ext4_iloc *iloc)
5820 {
5821         int err;
5822
5823         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5824                 return -EIO;
5825
5826         err = ext4_get_inode_loc(inode, iloc);
5827         if (!err) {
5828                 BUFFER_TRACE(iloc->bh, "get_write_access");
5829                 err = ext4_journal_get_write_access(handle, inode->i_sb,
5830                                                     iloc->bh, EXT4_JTR_NONE);
5831                 if (err) {
5832                         brelse(iloc->bh);
5833                         iloc->bh = NULL;
5834                 }
5835         }
5836         ext4_std_error(inode->i_sb, err);
5837         return err;
5838 }
5839
5840 static int __ext4_expand_extra_isize(struct inode *inode,
5841                                      unsigned int new_extra_isize,
5842                                      struct ext4_iloc *iloc,
5843                                      handle_t *handle, int *no_expand)
5844 {
5845         struct ext4_inode *raw_inode;
5846         struct ext4_xattr_ibody_header *header;
5847         unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5848         struct ext4_inode_info *ei = EXT4_I(inode);
5849         int error;
5850
5851         /* this was checked at iget time, but double check for good measure */
5852         if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5853             (ei->i_extra_isize & 3)) {
5854                 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5855                                  ei->i_extra_isize,
5856                                  EXT4_INODE_SIZE(inode->i_sb));
5857                 return -EFSCORRUPTED;
5858         }
5859         if ((new_extra_isize < ei->i_extra_isize) ||
5860             (new_extra_isize < 4) ||
5861             (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5862                 return -EINVAL; /* Should never happen */
5863
5864         raw_inode = ext4_raw_inode(iloc);
5865
5866         header = IHDR(inode, raw_inode);
5867
5868         /* No extended attributes present */
5869         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5870             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5871                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5872                        EXT4_I(inode)->i_extra_isize, 0,
5873                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5874                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5875                 return 0;
5876         }
5877
5878         /*
5879          * We may need to allocate external xattr block so we need quotas
5880          * initialized. Here we can be called with various locks held so we
5881          * cannot affort to initialize quotas ourselves. So just bail.
5882          */
5883         if (dquot_initialize_needed(inode))
5884                 return -EAGAIN;
5885
5886         /* try to expand with EAs present */
5887         error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5888                                            raw_inode, handle);
5889         if (error) {
5890                 /*
5891                  * Inode size expansion failed; don't try again
5892                  */
5893                 *no_expand = 1;
5894         }
5895
5896         return error;
5897 }
5898
5899 /*
5900  * Expand an inode by new_extra_isize bytes.
5901  * Returns 0 on success or negative error number on failure.
5902  */
5903 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5904                                           unsigned int new_extra_isize,
5905                                           struct ext4_iloc iloc,
5906                                           handle_t *handle)
5907 {
5908         int no_expand;
5909         int error;
5910
5911         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5912                 return -EOVERFLOW;
5913
5914         /*
5915          * In nojournal mode, we can immediately attempt to expand
5916          * the inode.  When journaled, we first need to obtain extra
5917          * buffer credits since we may write into the EA block
5918          * with this same handle. If journal_extend fails, then it will
5919          * only result in a minor loss of functionality for that inode.
5920          * If this is felt to be critical, then e2fsck should be run to
5921          * force a large enough s_min_extra_isize.
5922          */
5923         if (ext4_journal_extend(handle,
5924                                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5925                 return -ENOSPC;
5926
5927         if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5928                 return -EBUSY;
5929
5930         error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5931                                           handle, &no_expand);
5932         ext4_write_unlock_xattr(inode, &no_expand);
5933
5934         return error;
5935 }
5936
5937 int ext4_expand_extra_isize(struct inode *inode,
5938                             unsigned int new_extra_isize,
5939                             struct ext4_iloc *iloc)
5940 {
5941         handle_t *handle;
5942         int no_expand;
5943         int error, rc;
5944
5945         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5946                 brelse(iloc->bh);
5947                 return -EOVERFLOW;
5948         }
5949
5950         handle = ext4_journal_start(inode, EXT4_HT_INODE,
5951                                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5952         if (IS_ERR(handle)) {
5953                 error = PTR_ERR(handle);
5954                 brelse(iloc->bh);
5955                 return error;
5956         }
5957
5958         ext4_write_lock_xattr(inode, &no_expand);
5959
5960         BUFFER_TRACE(iloc->bh, "get_write_access");
5961         error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5962                                               EXT4_JTR_NONE);
5963         if (error) {
5964                 brelse(iloc->bh);
5965                 goto out_unlock;
5966         }
5967
5968         error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5969                                           handle, &no_expand);
5970
5971         rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5972         if (!error)
5973                 error = rc;
5974
5975 out_unlock:
5976         ext4_write_unlock_xattr(inode, &no_expand);
5977         ext4_journal_stop(handle);
5978         return error;
5979 }
5980
5981 /*
5982  * What we do here is to mark the in-core inode as clean with respect to inode
5983  * dirtiness (it may still be data-dirty).
5984  * This means that the in-core inode may be reaped by prune_icache
5985  * without having to perform any I/O.  This is a very good thing,
5986  * because *any* task may call prune_icache - even ones which
5987  * have a transaction open against a different journal.
5988  *
5989  * Is this cheating?  Not really.  Sure, we haven't written the
5990  * inode out, but prune_icache isn't a user-visible syncing function.
5991  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5992  * we start and wait on commits.
5993  */
5994 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5995                                 const char *func, unsigned int line)
5996 {
5997         struct ext4_iloc iloc;
5998         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5999         int err;
6000
6001         might_sleep();
6002         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6003         err = ext4_reserve_inode_write(handle, inode, &iloc);
6004         if (err)
6005                 goto out;
6006
6007         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6008                 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6009                                                iloc, handle);
6010
6011         err = ext4_mark_iloc_dirty(handle, inode, &iloc);
6012 out:
6013         if (unlikely(err))
6014                 ext4_error_inode_err(inode, func, line, 0, err,
6015                                         "mark_inode_dirty error");
6016         return err;
6017 }
6018
6019 /*
6020  * ext4_dirty_inode() is called from __mark_inode_dirty()
6021  *
6022  * We're really interested in the case where a file is being extended.
6023  * i_size has been changed by generic_commit_write() and we thus need
6024  * to include the updated inode in the current transaction.
6025  *
6026  * Also, dquot_alloc_block() will always dirty the inode when blocks
6027  * are allocated to the file.
6028  *
6029  * If the inode is marked synchronous, we don't honour that here - doing
6030  * so would cause a commit on atime updates, which we don't bother doing.
6031  * We handle synchronous inodes at the highest possible level.
6032  */
6033 void ext4_dirty_inode(struct inode *inode, int flags)
6034 {
6035         handle_t *handle;
6036
6037         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6038         if (IS_ERR(handle))
6039                 return;
6040         ext4_mark_inode_dirty(handle, inode);
6041         ext4_journal_stop(handle);
6042 }
6043
6044 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6045 {
6046         journal_t *journal;
6047         handle_t *handle;
6048         int err;
6049         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6050
6051         /*
6052          * We have to be very careful here: changing a data block's
6053          * journaling status dynamically is dangerous.  If we write a
6054          * data block to the journal, change the status and then delete
6055          * that block, we risk forgetting to revoke the old log record
6056          * from the journal and so a subsequent replay can corrupt data.
6057          * So, first we make sure that the journal is empty and that
6058          * nobody is changing anything.
6059          */
6060
6061         journal = EXT4_JOURNAL(inode);
6062         if (!journal)
6063                 return 0;
6064         if (is_journal_aborted(journal))
6065                 return -EROFS;
6066
6067         /* Wait for all existing dio workers */
6068         inode_dio_wait(inode);
6069
6070         /*
6071          * Before flushing the journal and switching inode's aops, we have
6072          * to flush all dirty data the inode has. There can be outstanding
6073          * delayed allocations, there can be unwritten extents created by
6074          * fallocate or buffered writes in dioread_nolock mode covered by
6075          * dirty data which can be converted only after flushing the dirty
6076          * data (and journalled aops don't know how to handle these cases).
6077          */
6078         if (val) {
6079                 filemap_invalidate_lock(inode->i_mapping);
6080                 err = filemap_write_and_wait(inode->i_mapping);
6081                 if (err < 0) {
6082                         filemap_invalidate_unlock(inode->i_mapping);
6083                         return err;
6084                 }
6085         }
6086
6087         percpu_down_write(&sbi->s_writepages_rwsem);
6088         jbd2_journal_lock_updates(journal);
6089
6090         /*
6091          * OK, there are no updates running now, and all cached data is
6092          * synced to disk.  We are now in a completely consistent state
6093          * which doesn't have anything in the journal, and we know that
6094          * no filesystem updates are running, so it is safe to modify
6095          * the inode's in-core data-journaling state flag now.
6096          */
6097
6098         if (val)
6099                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6100         else {
6101                 err = jbd2_journal_flush(journal, 0);
6102                 if (err < 0) {
6103                         jbd2_journal_unlock_updates(journal);
6104                         percpu_up_write(&sbi->s_writepages_rwsem);
6105                         return err;
6106                 }
6107                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6108         }
6109         ext4_set_aops(inode);
6110
6111         jbd2_journal_unlock_updates(journal);
6112         percpu_up_write(&sbi->s_writepages_rwsem);
6113
6114         if (val)
6115                 filemap_invalidate_unlock(inode->i_mapping);
6116
6117         /* Finally we can mark the inode as dirty. */
6118
6119         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6120         if (IS_ERR(handle))
6121                 return PTR_ERR(handle);
6122
6123         ext4_fc_mark_ineligible(inode->i_sb,
6124                 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6125         err = ext4_mark_inode_dirty(handle, inode);
6126         ext4_handle_sync(handle);
6127         ext4_journal_stop(handle);
6128         ext4_std_error(inode->i_sb, err);
6129
6130         return err;
6131 }
6132
6133 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6134                             struct buffer_head *bh)
6135 {
6136         return !buffer_mapped(bh);
6137 }
6138
6139 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6140 {
6141         struct vm_area_struct *vma = vmf->vma;
6142         struct page *page = vmf->page;
6143         loff_t size;
6144         unsigned long len;
6145         int err;
6146         vm_fault_t ret;
6147         struct file *file = vma->vm_file;
6148         struct inode *inode = file_inode(file);
6149         struct address_space *mapping = inode->i_mapping;
6150         handle_t *handle;
6151         get_block_t *get_block;
6152         int retries = 0;
6153
6154         if (unlikely(IS_IMMUTABLE(inode)))
6155                 return VM_FAULT_SIGBUS;
6156
6157         sb_start_pagefault(inode->i_sb);
6158         file_update_time(vma->vm_file);
6159
6160         filemap_invalidate_lock_shared(mapping);
6161
6162         err = ext4_convert_inline_data(inode);
6163         if (err)
6164                 goto out_ret;
6165
6166         /*
6167          * On data journalling we skip straight to the transaction handle:
6168          * there's no delalloc; page truncated will be checked later; the
6169          * early return w/ all buffers mapped (calculates size/len) can't
6170          * be used; and there's no dioread_nolock, so only ext4_get_block.
6171          */
6172         if (ext4_should_journal_data(inode))
6173                 goto retry_alloc;
6174
6175         /* Delalloc case is easy... */
6176         if (test_opt(inode->i_sb, DELALLOC) &&
6177             !ext4_nonda_switch(inode->i_sb)) {
6178                 do {
6179                         err = block_page_mkwrite(vma, vmf,
6180                                                    ext4_da_get_block_prep);
6181                 } while (err == -ENOSPC &&
6182                        ext4_should_retry_alloc(inode->i_sb, &retries));
6183                 goto out_ret;
6184         }
6185
6186         lock_page(page);
6187         size = i_size_read(inode);
6188         /* Page got truncated from under us? */
6189         if (page->mapping != mapping || page_offset(page) > size) {
6190                 unlock_page(page);
6191                 ret = VM_FAULT_NOPAGE;
6192                 goto out;
6193         }
6194
6195         if (page->index == size >> PAGE_SHIFT)
6196                 len = size & ~PAGE_MASK;
6197         else
6198                 len = PAGE_SIZE;
6199         /*
6200          * Return if we have all the buffers mapped. This avoids the need to do
6201          * journal_start/journal_stop which can block and take a long time
6202          *
6203          * This cannot be done for data journalling, as we have to add the
6204          * inode to the transaction's list to writeprotect pages on commit.
6205          */
6206         if (page_has_buffers(page)) {
6207                 if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page),
6208                                             0, len, NULL,
6209                                             ext4_bh_unmapped)) {
6210                         /* Wait so that we don't change page under IO */
6211                         wait_for_stable_page(page);
6212                         ret = VM_FAULT_LOCKED;
6213                         goto out;
6214                 }
6215         }
6216         unlock_page(page);
6217         /* OK, we need to fill the hole... */
6218         if (ext4_should_dioread_nolock(inode))
6219                 get_block = ext4_get_block_unwritten;
6220         else
6221                 get_block = ext4_get_block;
6222 retry_alloc:
6223         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6224                                     ext4_writepage_trans_blocks(inode));
6225         if (IS_ERR(handle)) {
6226                 ret = VM_FAULT_SIGBUS;
6227                 goto out;
6228         }
6229         /*
6230          * Data journalling can't use block_page_mkwrite() because it
6231          * will set_buffer_dirty() before do_journal_get_write_access()
6232          * thus might hit warning messages for dirty metadata buffers.
6233          */
6234         if (!ext4_should_journal_data(inode)) {
6235                 err = block_page_mkwrite(vma, vmf, get_block);
6236         } else {
6237                 lock_page(page);
6238                 size = i_size_read(inode);
6239                 /* Page got truncated from under us? */
6240                 if (page->mapping != mapping || page_offset(page) > size) {
6241                         ret = VM_FAULT_NOPAGE;
6242                         goto out_error;
6243                 }
6244
6245                 if (page->index == size >> PAGE_SHIFT)
6246                         len = size & ~PAGE_MASK;
6247                 else
6248                         len = PAGE_SIZE;
6249
6250                 err = __block_write_begin(page, 0, len, ext4_get_block);
6251                 if (!err) {
6252                         ret = VM_FAULT_SIGBUS;
6253                         if (ext4_walk_page_buffers(handle, inode,
6254                                         page_buffers(page), 0, len, NULL,
6255                                         do_journal_get_write_access))
6256                                 goto out_error;
6257                         if (ext4_walk_page_buffers(handle, inode,
6258                                         page_buffers(page), 0, len, NULL,
6259                                         write_end_fn))
6260                                 goto out_error;
6261                         if (ext4_jbd2_inode_add_write(handle, inode,
6262                                                       page_offset(page), len))
6263                                 goto out_error;
6264                         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6265                 } else {
6266                         unlock_page(page);
6267                 }
6268         }
6269         ext4_journal_stop(handle);
6270         if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6271                 goto retry_alloc;
6272 out_ret:
6273         ret = block_page_mkwrite_return(err);
6274 out:
6275         filemap_invalidate_unlock_shared(mapping);
6276         sb_end_pagefault(inode->i_sb);
6277         return ret;
6278 out_error:
6279         unlock_page(page);
6280         ext4_journal_stop(handle);
6281         goto out;
6282 }