ext4: add block plug for .writepages
[platform/adaptation/renesas_rcar/renesas_kernel.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/module.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/jbd2.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static inline int ext4_begin_ordered_truncate(struct inode *inode,
52                                               loff_t new_size)
53 {
54         trace_ext4_begin_ordered_truncate(inode, new_size);
55         /*
56          * If jinode is zero, then we never opened the file for
57          * writing, so there's no need to call
58          * jbd2_journal_begin_ordered_truncate() since there's no
59          * outstanding writes we need to flush.
60          */
61         if (!EXT4_I(inode)->jinode)
62                 return 0;
63         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
64                                                    EXT4_I(inode)->jinode,
65                                                    new_size);
66 }
67
68 static void ext4_invalidatepage(struct page *page, unsigned long offset);
69 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
70                                    struct buffer_head *bh_result, int create);
71 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
72 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
73 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
74 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
75
76 /*
77  * Test whether an inode is a fast symlink.
78  */
79 static int ext4_inode_is_fast_symlink(struct inode *inode)
80 {
81         int ea_blocks = EXT4_I(inode)->i_file_acl ?
82                 (inode->i_sb->s_blocksize >> 9) : 0;
83
84         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
85 }
86
87 /*
88  * Restart the transaction associated with *handle.  This does a commit,
89  * so before we call here everything must be consistently dirtied against
90  * this transaction.
91  */
92 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
93                                  int nblocks)
94 {
95         int ret;
96
97         /*
98          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
99          * moment, get_block can be called only for blocks inside i_size since
100          * page cache has been already dropped and writes are blocked by
101          * i_mutex. So we can safely drop the i_data_sem here.
102          */
103         BUG_ON(EXT4_JOURNAL(inode) == NULL);
104         jbd_debug(2, "restarting handle %p\n", handle);
105         up_write(&EXT4_I(inode)->i_data_sem);
106         ret = ext4_journal_restart(handle, nblocks);
107         down_write(&EXT4_I(inode)->i_data_sem);
108         ext4_discard_preallocations(inode);
109
110         return ret;
111 }
112
113 /*
114  * Called at the last iput() if i_nlink is zero.
115  */
116 void ext4_evict_inode(struct inode *inode)
117 {
118         handle_t *handle;
119         int err;
120
121         trace_ext4_evict_inode(inode);
122
123         ext4_ioend_wait(inode);
124
125         if (inode->i_nlink) {
126                 /*
127                  * When journalling data dirty buffers are tracked only in the
128                  * journal. So although mm thinks everything is clean and
129                  * ready for reaping the inode might still have some pages to
130                  * write in the running transaction or waiting to be
131                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
132                  * (via truncate_inode_pages()) to discard these buffers can
133                  * cause data loss. Also even if we did not discard these
134                  * buffers, we would have no way to find them after the inode
135                  * is reaped and thus user could see stale data if he tries to
136                  * read them before the transaction is checkpointed. So be
137                  * careful and force everything to disk here... We use
138                  * ei->i_datasync_tid to store the newest transaction
139                  * containing inode's data.
140                  *
141                  * Note that directories do not have this problem because they
142                  * don't use page cache.
143                  */
144                 if (ext4_should_journal_data(inode) &&
145                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
146                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
147                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
148
149                         jbd2_log_start_commit(journal, commit_tid);
150                         jbd2_log_wait_commit(journal, commit_tid);
151                         filemap_write_and_wait(&inode->i_data);
152                 }
153                 truncate_inode_pages(&inode->i_data, 0);
154                 goto no_delete;
155         }
156
157         if (!is_bad_inode(inode))
158                 dquot_initialize(inode);
159
160         if (ext4_should_order_data(inode))
161                 ext4_begin_ordered_truncate(inode, 0);
162         truncate_inode_pages(&inode->i_data, 0);
163
164         if (is_bad_inode(inode))
165                 goto no_delete;
166
167         handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
168         if (IS_ERR(handle)) {
169                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
170                 /*
171                  * If we're going to skip the normal cleanup, we still need to
172                  * make sure that the in-core orphan linked list is properly
173                  * cleaned up.
174                  */
175                 ext4_orphan_del(NULL, inode);
176                 goto no_delete;
177         }
178
179         if (IS_SYNC(inode))
180                 ext4_handle_sync(handle);
181         inode->i_size = 0;
182         err = ext4_mark_inode_dirty(handle, inode);
183         if (err) {
184                 ext4_warning(inode->i_sb,
185                              "couldn't mark inode dirty (err %d)", err);
186                 goto stop_handle;
187         }
188         if (inode->i_blocks)
189                 ext4_truncate(inode);
190
191         /*
192          * ext4_ext_truncate() doesn't reserve any slop when it
193          * restarts journal transactions; therefore there may not be
194          * enough credits left in the handle to remove the inode from
195          * the orphan list and set the dtime field.
196          */
197         if (!ext4_handle_has_enough_credits(handle, 3)) {
198                 err = ext4_journal_extend(handle, 3);
199                 if (err > 0)
200                         err = ext4_journal_restart(handle, 3);
201                 if (err != 0) {
202                         ext4_warning(inode->i_sb,
203                                      "couldn't extend journal (err %d)", err);
204                 stop_handle:
205                         ext4_journal_stop(handle);
206                         ext4_orphan_del(NULL, inode);
207                         goto no_delete;
208                 }
209         }
210
211         /*
212          * Kill off the orphan record which ext4_truncate created.
213          * AKPM: I think this can be inside the above `if'.
214          * Note that ext4_orphan_del() has to be able to cope with the
215          * deletion of a non-existent orphan - this is because we don't
216          * know if ext4_truncate() actually created an orphan record.
217          * (Well, we could do this if we need to, but heck - it works)
218          */
219         ext4_orphan_del(handle, inode);
220         EXT4_I(inode)->i_dtime  = get_seconds();
221
222         /*
223          * One subtle ordering requirement: if anything has gone wrong
224          * (transaction abort, IO errors, whatever), then we can still
225          * do these next steps (the fs will already have been marked as
226          * having errors), but we can't free the inode if the mark_dirty
227          * fails.
228          */
229         if (ext4_mark_inode_dirty(handle, inode))
230                 /* If that failed, just do the required in-core inode clear. */
231                 ext4_clear_inode(inode);
232         else
233                 ext4_free_inode(handle, inode);
234         ext4_journal_stop(handle);
235         return;
236 no_delete:
237         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
238 }
239
240 #ifdef CONFIG_QUOTA
241 qsize_t *ext4_get_reserved_space(struct inode *inode)
242 {
243         return &EXT4_I(inode)->i_reserved_quota;
244 }
245 #endif
246
247 /*
248  * Calculate the number of metadata blocks need to reserve
249  * to allocate a block located at @lblock
250  */
251 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
252 {
253         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
254                 return ext4_ext_calc_metadata_amount(inode, lblock);
255
256         return ext4_ind_calc_metadata_amount(inode, lblock);
257 }
258
259 /*
260  * Called with i_data_sem down, which is important since we can call
261  * ext4_discard_preallocations() from here.
262  */
263 void ext4_da_update_reserve_space(struct inode *inode,
264                                         int used, int quota_claim)
265 {
266         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
267         struct ext4_inode_info *ei = EXT4_I(inode);
268
269         spin_lock(&ei->i_block_reservation_lock);
270         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
271         if (unlikely(used > ei->i_reserved_data_blocks)) {
272                 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
273                          "with only %d reserved data blocks\n",
274                          __func__, inode->i_ino, used,
275                          ei->i_reserved_data_blocks);
276                 WARN_ON(1);
277                 used = ei->i_reserved_data_blocks;
278         }
279
280         /* Update per-inode reservations */
281         ei->i_reserved_data_blocks -= used;
282         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
283         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
284                            used + ei->i_allocated_meta_blocks);
285         ei->i_allocated_meta_blocks = 0;
286
287         if (ei->i_reserved_data_blocks == 0) {
288                 /*
289                  * We can release all of the reserved metadata blocks
290                  * only when we have written all of the delayed
291                  * allocation blocks.
292                  */
293                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
294                                    ei->i_reserved_meta_blocks);
295                 ei->i_reserved_meta_blocks = 0;
296                 ei->i_da_metadata_calc_len = 0;
297         }
298         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
299
300         /* Update quota subsystem for data blocks */
301         if (quota_claim)
302                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
303         else {
304                 /*
305                  * We did fallocate with an offset that is already delayed
306                  * allocated. So on delayed allocated writeback we should
307                  * not re-claim the quota for fallocated blocks.
308                  */
309                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
310         }
311
312         /*
313          * If we have done all the pending block allocations and if
314          * there aren't any writers on the inode, we can discard the
315          * inode's preallocations.
316          */
317         if ((ei->i_reserved_data_blocks == 0) &&
318             (atomic_read(&inode->i_writecount) == 0))
319                 ext4_discard_preallocations(inode);
320 }
321
322 static int __check_block_validity(struct inode *inode, const char *func,
323                                 unsigned int line,
324                                 struct ext4_map_blocks *map)
325 {
326         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
327                                    map->m_len)) {
328                 ext4_error_inode(inode, func, line, map->m_pblk,
329                                  "lblock %lu mapped to illegal pblock "
330                                  "(length %d)", (unsigned long) map->m_lblk,
331                                  map->m_len);
332                 return -EIO;
333         }
334         return 0;
335 }
336
337 #define check_block_validity(inode, map)        \
338         __check_block_validity((inode), __func__, __LINE__, (map))
339
340 /*
341  * Return the number of contiguous dirty pages in a given inode
342  * starting at page frame idx.
343  */
344 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
345                                     unsigned int max_pages)
346 {
347         struct address_space *mapping = inode->i_mapping;
348         pgoff_t index;
349         struct pagevec pvec;
350         pgoff_t num = 0;
351         int i, nr_pages, done = 0;
352
353         if (max_pages == 0)
354                 return 0;
355         pagevec_init(&pvec, 0);
356         while (!done) {
357                 index = idx;
358                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
359                                               PAGECACHE_TAG_DIRTY,
360                                               (pgoff_t)PAGEVEC_SIZE);
361                 if (nr_pages == 0)
362                         break;
363                 for (i = 0; i < nr_pages; i++) {
364                         struct page *page = pvec.pages[i];
365                         struct buffer_head *bh, *head;
366
367                         lock_page(page);
368                         if (unlikely(page->mapping != mapping) ||
369                             !PageDirty(page) ||
370                             PageWriteback(page) ||
371                             page->index != idx) {
372                                 done = 1;
373                                 unlock_page(page);
374                                 break;
375                         }
376                         if (page_has_buffers(page)) {
377                                 bh = head = page_buffers(page);
378                                 do {
379                                         if (!buffer_delay(bh) &&
380                                             !buffer_unwritten(bh))
381                                                 done = 1;
382                                         bh = bh->b_this_page;
383                                 } while (!done && (bh != head));
384                         }
385                         unlock_page(page);
386                         if (done)
387                                 break;
388                         idx++;
389                         num++;
390                         if (num >= max_pages) {
391                                 done = 1;
392                                 break;
393                         }
394                 }
395                 pagevec_release(&pvec);
396         }
397         return num;
398 }
399
400 /*
401  * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
402  */
403 static void set_buffers_da_mapped(struct inode *inode,
404                                    struct ext4_map_blocks *map)
405 {
406         struct address_space *mapping = inode->i_mapping;
407         struct pagevec pvec;
408         int i, nr_pages;
409         pgoff_t index, end;
410
411         index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
412         end = (map->m_lblk + map->m_len - 1) >>
413                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
414
415         pagevec_init(&pvec, 0);
416         while (index <= end) {
417                 nr_pages = pagevec_lookup(&pvec, mapping, index,
418                                           min(end - index + 1,
419                                               (pgoff_t)PAGEVEC_SIZE));
420                 if (nr_pages == 0)
421                         break;
422                 for (i = 0; i < nr_pages; i++) {
423                         struct page *page = pvec.pages[i];
424                         struct buffer_head *bh, *head;
425
426                         if (unlikely(page->mapping != mapping) ||
427                             !PageDirty(page))
428                                 break;
429
430                         if (page_has_buffers(page)) {
431                                 bh = head = page_buffers(page);
432                                 do {
433                                         set_buffer_da_mapped(bh);
434                                         bh = bh->b_this_page;
435                                 } while (bh != head);
436                         }
437                         index++;
438                 }
439                 pagevec_release(&pvec);
440         }
441 }
442
443 /*
444  * The ext4_map_blocks() function tries to look up the requested blocks,
445  * and returns if the blocks are already mapped.
446  *
447  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
448  * and store the allocated blocks in the result buffer head and mark it
449  * mapped.
450  *
451  * If file type is extents based, it will call ext4_ext_map_blocks(),
452  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
453  * based files
454  *
455  * On success, it returns the number of blocks being mapped or allocate.
456  * if create==0 and the blocks are pre-allocated and uninitialized block,
457  * the result buffer head is unmapped. If the create ==1, it will make sure
458  * the buffer head is mapped.
459  *
460  * It returns 0 if plain look up failed (blocks have not been allocated), in
461  * that case, buffer head is unmapped
462  *
463  * It returns the error in case of allocation failure.
464  */
465 int ext4_map_blocks(handle_t *handle, struct inode *inode,
466                     struct ext4_map_blocks *map, int flags)
467 {
468         int retval;
469
470         map->m_flags = 0;
471         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
472                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
473                   (unsigned long) map->m_lblk);
474         /*
475          * Try to see if we can get the block without requesting a new
476          * file system block.
477          */
478         down_read((&EXT4_I(inode)->i_data_sem));
479         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
480                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
481         } else {
482                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
483         }
484         up_read((&EXT4_I(inode)->i_data_sem));
485
486         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
487                 int ret = check_block_validity(inode, map);
488                 if (ret != 0)
489                         return ret;
490         }
491
492         /* If it is only a block(s) look up */
493         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
494                 return retval;
495
496         /*
497          * Returns if the blocks have already allocated
498          *
499          * Note that if blocks have been preallocated
500          * ext4_ext_get_block() returns the create = 0
501          * with buffer head unmapped.
502          */
503         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
504                 return retval;
505
506         /*
507          * When we call get_blocks without the create flag, the
508          * BH_Unwritten flag could have gotten set if the blocks
509          * requested were part of a uninitialized extent.  We need to
510          * clear this flag now that we are committed to convert all or
511          * part of the uninitialized extent to be an initialized
512          * extent.  This is because we need to avoid the combination
513          * of BH_Unwritten and BH_Mapped flags being simultaneously
514          * set on the buffer_head.
515          */
516         map->m_flags &= ~EXT4_MAP_UNWRITTEN;
517
518         /*
519          * New blocks allocate and/or writing to uninitialized extent
520          * will possibly result in updating i_data, so we take
521          * the write lock of i_data_sem, and call get_blocks()
522          * with create == 1 flag.
523          */
524         down_write((&EXT4_I(inode)->i_data_sem));
525
526         /*
527          * if the caller is from delayed allocation writeout path
528          * we have already reserved fs blocks for allocation
529          * let the underlying get_block() function know to
530          * avoid double accounting
531          */
532         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
533                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
534         /*
535          * We need to check for EXT4 here because migrate
536          * could have changed the inode type in between
537          */
538         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
539                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
540         } else {
541                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
542
543                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
544                         /*
545                          * We allocated new blocks which will result in
546                          * i_data's format changing.  Force the migrate
547                          * to fail by clearing migrate flags
548                          */
549                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
550                 }
551
552                 /*
553                  * Update reserved blocks/metadata blocks after successful
554                  * block allocation which had been deferred till now. We don't
555                  * support fallocate for non extent files. So we can update
556                  * reserve space here.
557                  */
558                 if ((retval > 0) &&
559                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
560                         ext4_da_update_reserve_space(inode, retval, 1);
561         }
562         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
563                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
564
565                 /* If we have successfully mapped the delayed allocated blocks,
566                  * set the BH_Da_Mapped bit on them. Its important to do this
567                  * under the protection of i_data_sem.
568                  */
569                 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
570                         set_buffers_da_mapped(inode, map);
571         }
572
573         up_write((&EXT4_I(inode)->i_data_sem));
574         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
575                 int ret = check_block_validity(inode, map);
576                 if (ret != 0)
577                         return ret;
578         }
579         return retval;
580 }
581
582 /* Maximum number of blocks we map for direct IO at once. */
583 #define DIO_MAX_BLOCKS 4096
584
585 static int _ext4_get_block(struct inode *inode, sector_t iblock,
586                            struct buffer_head *bh, int flags)
587 {
588         handle_t *handle = ext4_journal_current_handle();
589         struct ext4_map_blocks map;
590         int ret = 0, started = 0;
591         int dio_credits;
592
593         map.m_lblk = iblock;
594         map.m_len = bh->b_size >> inode->i_blkbits;
595
596         if (flags && !handle) {
597                 /* Direct IO write... */
598                 if (map.m_len > DIO_MAX_BLOCKS)
599                         map.m_len = DIO_MAX_BLOCKS;
600                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
601                 handle = ext4_journal_start(inode, dio_credits);
602                 if (IS_ERR(handle)) {
603                         ret = PTR_ERR(handle);
604                         return ret;
605                 }
606                 started = 1;
607         }
608
609         ret = ext4_map_blocks(handle, inode, &map, flags);
610         if (ret > 0) {
611                 map_bh(bh, inode->i_sb, map.m_pblk);
612                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
613                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
614                 ret = 0;
615         }
616         if (started)
617                 ext4_journal_stop(handle);
618         return ret;
619 }
620
621 int ext4_get_block(struct inode *inode, sector_t iblock,
622                    struct buffer_head *bh, int create)
623 {
624         return _ext4_get_block(inode, iblock, bh,
625                                create ? EXT4_GET_BLOCKS_CREATE : 0);
626 }
627
628 /*
629  * `handle' can be NULL if create is zero
630  */
631 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
632                                 ext4_lblk_t block, int create, int *errp)
633 {
634         struct ext4_map_blocks map;
635         struct buffer_head *bh;
636         int fatal = 0, err;
637
638         J_ASSERT(handle != NULL || create == 0);
639
640         map.m_lblk = block;
641         map.m_len = 1;
642         err = ext4_map_blocks(handle, inode, &map,
643                               create ? EXT4_GET_BLOCKS_CREATE : 0);
644
645         if (err < 0)
646                 *errp = err;
647         if (err <= 0)
648                 return NULL;
649         *errp = 0;
650
651         bh = sb_getblk(inode->i_sb, map.m_pblk);
652         if (!bh) {
653                 *errp = -EIO;
654                 return NULL;
655         }
656         if (map.m_flags & EXT4_MAP_NEW) {
657                 J_ASSERT(create != 0);
658                 J_ASSERT(handle != NULL);
659
660                 /*
661                  * Now that we do not always journal data, we should
662                  * keep in mind whether this should always journal the
663                  * new buffer as metadata.  For now, regular file
664                  * writes use ext4_get_block instead, so it's not a
665                  * problem.
666                  */
667                 lock_buffer(bh);
668                 BUFFER_TRACE(bh, "call get_create_access");
669                 fatal = ext4_journal_get_create_access(handle, bh);
670                 if (!fatal && !buffer_uptodate(bh)) {
671                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
672                         set_buffer_uptodate(bh);
673                 }
674                 unlock_buffer(bh);
675                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
676                 err = ext4_handle_dirty_metadata(handle, inode, bh);
677                 if (!fatal)
678                         fatal = err;
679         } else {
680                 BUFFER_TRACE(bh, "not a new buffer");
681         }
682         if (fatal) {
683                 *errp = fatal;
684                 brelse(bh);
685                 bh = NULL;
686         }
687         return bh;
688 }
689
690 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
691                                ext4_lblk_t block, int create, int *err)
692 {
693         struct buffer_head *bh;
694
695         bh = ext4_getblk(handle, inode, block, create, err);
696         if (!bh)
697                 return bh;
698         if (buffer_uptodate(bh))
699                 return bh;
700         ll_rw_block(READ_META, 1, &bh);
701         wait_on_buffer(bh);
702         if (buffer_uptodate(bh))
703                 return bh;
704         put_bh(bh);
705         *err = -EIO;
706         return NULL;
707 }
708
709 static int walk_page_buffers(handle_t *handle,
710                              struct buffer_head *head,
711                              unsigned from,
712                              unsigned to,
713                              int *partial,
714                              int (*fn)(handle_t *handle,
715                                        struct buffer_head *bh))
716 {
717         struct buffer_head *bh;
718         unsigned block_start, block_end;
719         unsigned blocksize = head->b_size;
720         int err, ret = 0;
721         struct buffer_head *next;
722
723         for (bh = head, block_start = 0;
724              ret == 0 && (bh != head || !block_start);
725              block_start = block_end, bh = next) {
726                 next = bh->b_this_page;
727                 block_end = block_start + blocksize;
728                 if (block_end <= from || block_start >= to) {
729                         if (partial && !buffer_uptodate(bh))
730                                 *partial = 1;
731                         continue;
732                 }
733                 err = (*fn)(handle, bh);
734                 if (!ret)
735                         ret = err;
736         }
737         return ret;
738 }
739
740 /*
741  * To preserve ordering, it is essential that the hole instantiation and
742  * the data write be encapsulated in a single transaction.  We cannot
743  * close off a transaction and start a new one between the ext4_get_block()
744  * and the commit_write().  So doing the jbd2_journal_start at the start of
745  * prepare_write() is the right place.
746  *
747  * Also, this function can nest inside ext4_writepage() ->
748  * block_write_full_page(). In that case, we *know* that ext4_writepage()
749  * has generated enough buffer credits to do the whole page.  So we won't
750  * block on the journal in that case, which is good, because the caller may
751  * be PF_MEMALLOC.
752  *
753  * By accident, ext4 can be reentered when a transaction is open via
754  * quota file writes.  If we were to commit the transaction while thus
755  * reentered, there can be a deadlock - we would be holding a quota
756  * lock, and the commit would never complete if another thread had a
757  * transaction open and was blocking on the quota lock - a ranking
758  * violation.
759  *
760  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
761  * will _not_ run commit under these circumstances because handle->h_ref
762  * is elevated.  We'll still have enough credits for the tiny quotafile
763  * write.
764  */
765 static int do_journal_get_write_access(handle_t *handle,
766                                        struct buffer_head *bh)
767 {
768         int dirty = buffer_dirty(bh);
769         int ret;
770
771         if (!buffer_mapped(bh) || buffer_freed(bh))
772                 return 0;
773         /*
774          * __block_write_begin() could have dirtied some buffers. Clean
775          * the dirty bit as jbd2_journal_get_write_access() could complain
776          * otherwise about fs integrity issues. Setting of the dirty bit
777          * by __block_write_begin() isn't a real problem here as we clear
778          * the bit before releasing a page lock and thus writeback cannot
779          * ever write the buffer.
780          */
781         if (dirty)
782                 clear_buffer_dirty(bh);
783         ret = ext4_journal_get_write_access(handle, bh);
784         if (!ret && dirty)
785                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
786         return ret;
787 }
788
789 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
790                    struct buffer_head *bh_result, int create);
791 static int ext4_write_begin(struct file *file, struct address_space *mapping,
792                             loff_t pos, unsigned len, unsigned flags,
793                             struct page **pagep, void **fsdata)
794 {
795         struct inode *inode = mapping->host;
796         int ret, needed_blocks;
797         handle_t *handle;
798         int retries = 0;
799         struct page *page;
800         pgoff_t index;
801         unsigned from, to;
802
803         trace_ext4_write_begin(inode, pos, len, flags);
804         /*
805          * Reserve one block more for addition to orphan list in case
806          * we allocate blocks but write fails for some reason
807          */
808         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
809         index = pos >> PAGE_CACHE_SHIFT;
810         from = pos & (PAGE_CACHE_SIZE - 1);
811         to = from + len;
812
813 retry:
814         handle = ext4_journal_start(inode, needed_blocks);
815         if (IS_ERR(handle)) {
816                 ret = PTR_ERR(handle);
817                 goto out;
818         }
819
820         /* We cannot recurse into the filesystem as the transaction is already
821          * started */
822         flags |= AOP_FLAG_NOFS;
823
824         page = grab_cache_page_write_begin(mapping, index, flags);
825         if (!page) {
826                 ext4_journal_stop(handle);
827                 ret = -ENOMEM;
828                 goto out;
829         }
830         *pagep = page;
831
832         if (ext4_should_dioread_nolock(inode))
833                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
834         else
835                 ret = __block_write_begin(page, pos, len, ext4_get_block);
836
837         if (!ret && ext4_should_journal_data(inode)) {
838                 ret = walk_page_buffers(handle, page_buffers(page),
839                                 from, to, NULL, do_journal_get_write_access);
840         }
841
842         if (ret) {
843                 unlock_page(page);
844                 page_cache_release(page);
845                 /*
846                  * __block_write_begin may have instantiated a few blocks
847                  * outside i_size.  Trim these off again. Don't need
848                  * i_size_read because we hold i_mutex.
849                  *
850                  * Add inode to orphan list in case we crash before
851                  * truncate finishes
852                  */
853                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
854                         ext4_orphan_add(handle, inode);
855
856                 ext4_journal_stop(handle);
857                 if (pos + len > inode->i_size) {
858                         ext4_truncate_failed_write(inode);
859                         /*
860                          * If truncate failed early the inode might
861                          * still be on the orphan list; we need to
862                          * make sure the inode is removed from the
863                          * orphan list in that case.
864                          */
865                         if (inode->i_nlink)
866                                 ext4_orphan_del(NULL, inode);
867                 }
868         }
869
870         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
871                 goto retry;
872 out:
873         return ret;
874 }
875
876 /* For write_end() in data=journal mode */
877 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
878 {
879         if (!buffer_mapped(bh) || buffer_freed(bh))
880                 return 0;
881         set_buffer_uptodate(bh);
882         return ext4_handle_dirty_metadata(handle, NULL, bh);
883 }
884
885 static int ext4_generic_write_end(struct file *file,
886                                   struct address_space *mapping,
887                                   loff_t pos, unsigned len, unsigned copied,
888                                   struct page *page, void *fsdata)
889 {
890         int i_size_changed = 0;
891         struct inode *inode = mapping->host;
892         handle_t *handle = ext4_journal_current_handle();
893
894         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
895
896         /*
897          * No need to use i_size_read() here, the i_size
898          * cannot change under us because we hold i_mutex.
899          *
900          * But it's important to update i_size while still holding page lock:
901          * page writeout could otherwise come in and zero beyond i_size.
902          */
903         if (pos + copied > inode->i_size) {
904                 i_size_write(inode, pos + copied);
905                 i_size_changed = 1;
906         }
907
908         if (pos + copied >  EXT4_I(inode)->i_disksize) {
909                 /* We need to mark inode dirty even if
910                  * new_i_size is less that inode->i_size
911                  * bu greater than i_disksize.(hint delalloc)
912                  */
913                 ext4_update_i_disksize(inode, (pos + copied));
914                 i_size_changed = 1;
915         }
916         unlock_page(page);
917         page_cache_release(page);
918
919         /*
920          * Don't mark the inode dirty under page lock. First, it unnecessarily
921          * makes the holding time of page lock longer. Second, it forces lock
922          * ordering of page lock and transaction start for journaling
923          * filesystems.
924          */
925         if (i_size_changed)
926                 ext4_mark_inode_dirty(handle, inode);
927
928         return copied;
929 }
930
931 /*
932  * We need to pick up the new inode size which generic_commit_write gave us
933  * `file' can be NULL - eg, when called from page_symlink().
934  *
935  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
936  * buffers are managed internally.
937  */
938 static int ext4_ordered_write_end(struct file *file,
939                                   struct address_space *mapping,
940                                   loff_t pos, unsigned len, unsigned copied,
941                                   struct page *page, void *fsdata)
942 {
943         handle_t *handle = ext4_journal_current_handle();
944         struct inode *inode = mapping->host;
945         int ret = 0, ret2;
946
947         trace_ext4_ordered_write_end(inode, pos, len, copied);
948         ret = ext4_jbd2_file_inode(handle, inode);
949
950         if (ret == 0) {
951                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
952                                                         page, fsdata);
953                 copied = ret2;
954                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
955                         /* if we have allocated more blocks and copied
956                          * less. We will have blocks allocated outside
957                          * inode->i_size. So truncate them
958                          */
959                         ext4_orphan_add(handle, inode);
960                 if (ret2 < 0)
961                         ret = ret2;
962         }
963         ret2 = ext4_journal_stop(handle);
964         if (!ret)
965                 ret = ret2;
966
967         if (pos + len > inode->i_size) {
968                 ext4_truncate_failed_write(inode);
969                 /*
970                  * If truncate failed early the inode might still be
971                  * on the orphan list; we need to make sure the inode
972                  * is removed from the orphan list in that case.
973                  */
974                 if (inode->i_nlink)
975                         ext4_orphan_del(NULL, inode);
976         }
977
978
979         return ret ? ret : copied;
980 }
981
982 static int ext4_writeback_write_end(struct file *file,
983                                     struct address_space *mapping,
984                                     loff_t pos, unsigned len, unsigned copied,
985                                     struct page *page, void *fsdata)
986 {
987         handle_t *handle = ext4_journal_current_handle();
988         struct inode *inode = mapping->host;
989         int ret = 0, ret2;
990
991         trace_ext4_writeback_write_end(inode, pos, len, copied);
992         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
993                                                         page, fsdata);
994         copied = ret2;
995         if (pos + len > inode->i_size && ext4_can_truncate(inode))
996                 /* if we have allocated more blocks and copied
997                  * less. We will have blocks allocated outside
998                  * inode->i_size. So truncate them
999                  */
1000                 ext4_orphan_add(handle, inode);
1001
1002         if (ret2 < 0)
1003                 ret = ret2;
1004
1005         ret2 = ext4_journal_stop(handle);
1006         if (!ret)
1007                 ret = ret2;
1008
1009         if (pos + len > inode->i_size) {
1010                 ext4_truncate_failed_write(inode);
1011                 /*
1012                  * If truncate failed early the inode might still be
1013                  * on the orphan list; we need to make sure the inode
1014                  * is removed from the orphan list in that case.
1015                  */
1016                 if (inode->i_nlink)
1017                         ext4_orphan_del(NULL, inode);
1018         }
1019
1020         return ret ? ret : copied;
1021 }
1022
1023 static int ext4_journalled_write_end(struct file *file,
1024                                      struct address_space *mapping,
1025                                      loff_t pos, unsigned len, unsigned copied,
1026                                      struct page *page, void *fsdata)
1027 {
1028         handle_t *handle = ext4_journal_current_handle();
1029         struct inode *inode = mapping->host;
1030         int ret = 0, ret2;
1031         int partial = 0;
1032         unsigned from, to;
1033         loff_t new_i_size;
1034
1035         trace_ext4_journalled_write_end(inode, pos, len, copied);
1036         from = pos & (PAGE_CACHE_SIZE - 1);
1037         to = from + len;
1038
1039         BUG_ON(!ext4_handle_valid(handle));
1040
1041         if (copied < len) {
1042                 if (!PageUptodate(page))
1043                         copied = 0;
1044                 page_zero_new_buffers(page, from+copied, to);
1045         }
1046
1047         ret = walk_page_buffers(handle, page_buffers(page), from,
1048                                 to, &partial, write_end_fn);
1049         if (!partial)
1050                 SetPageUptodate(page);
1051         new_i_size = pos + copied;
1052         if (new_i_size > inode->i_size)
1053                 i_size_write(inode, pos+copied);
1054         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1055         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1056         if (new_i_size > EXT4_I(inode)->i_disksize) {
1057                 ext4_update_i_disksize(inode, new_i_size);
1058                 ret2 = ext4_mark_inode_dirty(handle, inode);
1059                 if (!ret)
1060                         ret = ret2;
1061         }
1062
1063         unlock_page(page);
1064         page_cache_release(page);
1065         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1066                 /* if we have allocated more blocks and copied
1067                  * less. We will have blocks allocated outside
1068                  * inode->i_size. So truncate them
1069                  */
1070                 ext4_orphan_add(handle, inode);
1071
1072         ret2 = ext4_journal_stop(handle);
1073         if (!ret)
1074                 ret = ret2;
1075         if (pos + len > inode->i_size) {
1076                 ext4_truncate_failed_write(inode);
1077                 /*
1078                  * If truncate failed early the inode might still be
1079                  * on the orphan list; we need to make sure the inode
1080                  * is removed from the orphan list in that case.
1081                  */
1082                 if (inode->i_nlink)
1083                         ext4_orphan_del(NULL, inode);
1084         }
1085
1086         return ret ? ret : copied;
1087 }
1088
1089 /*
1090  * Reserve a single cluster located at lblock
1091  */
1092 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1093 {
1094         int retries = 0;
1095         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1096         struct ext4_inode_info *ei = EXT4_I(inode);
1097         unsigned int md_needed;
1098         int ret;
1099
1100         /*
1101          * recalculate the amount of metadata blocks to reserve
1102          * in order to allocate nrblocks
1103          * worse case is one extent per block
1104          */
1105 repeat:
1106         spin_lock(&ei->i_block_reservation_lock);
1107         md_needed = EXT4_NUM_B2C(sbi,
1108                                  ext4_calc_metadata_amount(inode, lblock));
1109         trace_ext4_da_reserve_space(inode, md_needed);
1110         spin_unlock(&ei->i_block_reservation_lock);
1111
1112         /*
1113          * We will charge metadata quota at writeout time; this saves
1114          * us from metadata over-estimation, though we may go over by
1115          * a small amount in the end.  Here we just reserve for data.
1116          */
1117         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1118         if (ret)
1119                 return ret;
1120         /*
1121          * We do still charge estimated metadata to the sb though;
1122          * we cannot afford to run out of free blocks.
1123          */
1124         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1125                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1126                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1127                         yield();
1128                         goto repeat;
1129                 }
1130                 return -ENOSPC;
1131         }
1132         spin_lock(&ei->i_block_reservation_lock);
1133         ei->i_reserved_data_blocks++;
1134         ei->i_reserved_meta_blocks += md_needed;
1135         spin_unlock(&ei->i_block_reservation_lock);
1136
1137         return 0;       /* success */
1138 }
1139
1140 static void ext4_da_release_space(struct inode *inode, int to_free)
1141 {
1142         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1143         struct ext4_inode_info *ei = EXT4_I(inode);
1144
1145         if (!to_free)
1146                 return;         /* Nothing to release, exit */
1147
1148         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1149
1150         trace_ext4_da_release_space(inode, to_free);
1151         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1152                 /*
1153                  * if there aren't enough reserved blocks, then the
1154                  * counter is messed up somewhere.  Since this
1155                  * function is called from invalidate page, it's
1156                  * harmless to return without any action.
1157                  */
1158                 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1159                          "ino %lu, to_free %d with only %d reserved "
1160                          "data blocks\n", inode->i_ino, to_free,
1161                          ei->i_reserved_data_blocks);
1162                 WARN_ON(1);
1163                 to_free = ei->i_reserved_data_blocks;
1164         }
1165         ei->i_reserved_data_blocks -= to_free;
1166
1167         if (ei->i_reserved_data_blocks == 0) {
1168                 /*
1169                  * We can release all of the reserved metadata blocks
1170                  * only when we have written all of the delayed
1171                  * allocation blocks.
1172                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1173                  * i_reserved_data_blocks, etc. refer to number of clusters.
1174                  */
1175                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1176                                    ei->i_reserved_meta_blocks);
1177                 ei->i_reserved_meta_blocks = 0;
1178                 ei->i_da_metadata_calc_len = 0;
1179         }
1180
1181         /* update fs dirty data blocks counter */
1182         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1183
1184         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1185
1186         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1187 }
1188
1189 static void ext4_da_page_release_reservation(struct page *page,
1190                                              unsigned long offset)
1191 {
1192         int to_release = 0;
1193         struct buffer_head *head, *bh;
1194         unsigned int curr_off = 0;
1195         struct inode *inode = page->mapping->host;
1196         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1197         int num_clusters;
1198
1199         head = page_buffers(page);
1200         bh = head;
1201         do {
1202                 unsigned int next_off = curr_off + bh->b_size;
1203
1204                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1205                         to_release++;
1206                         clear_buffer_delay(bh);
1207                         clear_buffer_da_mapped(bh);
1208                 }
1209                 curr_off = next_off;
1210         } while ((bh = bh->b_this_page) != head);
1211
1212         /* If we have released all the blocks belonging to a cluster, then we
1213          * need to release the reserved space for that cluster. */
1214         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1215         while (num_clusters > 0) {
1216                 ext4_fsblk_t lblk;
1217                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1218                         ((num_clusters - 1) << sbi->s_cluster_bits);
1219                 if (sbi->s_cluster_ratio == 1 ||
1220                     !ext4_find_delalloc_cluster(inode, lblk, 1))
1221                         ext4_da_release_space(inode, 1);
1222
1223                 num_clusters--;
1224         }
1225 }
1226
1227 /*
1228  * Delayed allocation stuff
1229  */
1230
1231 /*
1232  * mpage_da_submit_io - walks through extent of pages and try to write
1233  * them with writepage() call back
1234  *
1235  * @mpd->inode: inode
1236  * @mpd->first_page: first page of the extent
1237  * @mpd->next_page: page after the last page of the extent
1238  *
1239  * By the time mpage_da_submit_io() is called we expect all blocks
1240  * to be allocated. this may be wrong if allocation failed.
1241  *
1242  * As pages are already locked by write_cache_pages(), we can't use it
1243  */
1244 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1245                               struct ext4_map_blocks *map)
1246 {
1247         struct pagevec pvec;
1248         unsigned long index, end;
1249         int ret = 0, err, nr_pages, i;
1250         struct inode *inode = mpd->inode;
1251         struct address_space *mapping = inode->i_mapping;
1252         loff_t size = i_size_read(inode);
1253         unsigned int len, block_start;
1254         struct buffer_head *bh, *page_bufs = NULL;
1255         int journal_data = ext4_should_journal_data(inode);
1256         sector_t pblock = 0, cur_logical = 0;
1257         struct ext4_io_submit io_submit;
1258
1259         BUG_ON(mpd->next_page <= mpd->first_page);
1260         memset(&io_submit, 0, sizeof(io_submit));
1261         /*
1262          * We need to start from the first_page to the next_page - 1
1263          * to make sure we also write the mapped dirty buffer_heads.
1264          * If we look at mpd->b_blocknr we would only be looking
1265          * at the currently mapped buffer_heads.
1266          */
1267         index = mpd->first_page;
1268         end = mpd->next_page - 1;
1269
1270         pagevec_init(&pvec, 0);
1271         while (index <= end) {
1272                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1273                 if (nr_pages == 0)
1274                         break;
1275                 for (i = 0; i < nr_pages; i++) {
1276                         int commit_write = 0, skip_page = 0;
1277                         struct page *page = pvec.pages[i];
1278
1279                         index = page->index;
1280                         if (index > end)
1281                                 break;
1282
1283                         if (index == size >> PAGE_CACHE_SHIFT)
1284                                 len = size & ~PAGE_CACHE_MASK;
1285                         else
1286                                 len = PAGE_CACHE_SIZE;
1287                         if (map) {
1288                                 cur_logical = index << (PAGE_CACHE_SHIFT -
1289                                                         inode->i_blkbits);
1290                                 pblock = map->m_pblk + (cur_logical -
1291                                                         map->m_lblk);
1292                         }
1293                         index++;
1294
1295                         BUG_ON(!PageLocked(page));
1296                         BUG_ON(PageWriteback(page));
1297
1298                         /*
1299                          * If the page does not have buffers (for
1300                          * whatever reason), try to create them using
1301                          * __block_write_begin.  If this fails,
1302                          * skip the page and move on.
1303                          */
1304                         if (!page_has_buffers(page)) {
1305                                 if (__block_write_begin(page, 0, len,
1306                                                 noalloc_get_block_write)) {
1307                                 skip_page:
1308                                         unlock_page(page);
1309                                         continue;
1310                                 }
1311                                 commit_write = 1;
1312                         }
1313
1314                         bh = page_bufs = page_buffers(page);
1315                         block_start = 0;
1316                         do {
1317                                 if (!bh)
1318                                         goto skip_page;
1319                                 if (map && (cur_logical >= map->m_lblk) &&
1320                                     (cur_logical <= (map->m_lblk +
1321                                                      (map->m_len - 1)))) {
1322                                         if (buffer_delay(bh)) {
1323                                                 clear_buffer_delay(bh);
1324                                                 bh->b_blocknr = pblock;
1325                                         }
1326                                         if (buffer_da_mapped(bh))
1327                                                 clear_buffer_da_mapped(bh);
1328                                         if (buffer_unwritten(bh) ||
1329                                             buffer_mapped(bh))
1330                                                 BUG_ON(bh->b_blocknr != pblock);
1331                                         if (map->m_flags & EXT4_MAP_UNINIT)
1332                                                 set_buffer_uninit(bh);
1333                                         clear_buffer_unwritten(bh);
1334                                 }
1335
1336                                 /* skip page if block allocation undone */
1337                                 if (buffer_delay(bh) || buffer_unwritten(bh))
1338                                         skip_page = 1;
1339                                 bh = bh->b_this_page;
1340                                 block_start += bh->b_size;
1341                                 cur_logical++;
1342                                 pblock++;
1343                         } while (bh != page_bufs);
1344
1345                         if (skip_page)
1346                                 goto skip_page;
1347
1348                         if (commit_write)
1349                                 /* mark the buffer_heads as dirty & uptodate */
1350                                 block_commit_write(page, 0, len);
1351
1352                         clear_page_dirty_for_io(page);
1353                         /*
1354                          * Delalloc doesn't support data journalling,
1355                          * but eventually maybe we'll lift this
1356                          * restriction.
1357                          */
1358                         if (unlikely(journal_data && PageChecked(page)))
1359                                 err = __ext4_journalled_writepage(page, len);
1360                         else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1361                                 err = ext4_bio_write_page(&io_submit, page,
1362                                                           len, mpd->wbc);
1363                         else if (buffer_uninit(page_bufs)) {
1364                                 ext4_set_bh_endio(page_bufs, inode);
1365                                 err = block_write_full_page_endio(page,
1366                                         noalloc_get_block_write,
1367                                         mpd->wbc, ext4_end_io_buffer_write);
1368                         } else
1369                                 err = block_write_full_page(page,
1370                                         noalloc_get_block_write, mpd->wbc);
1371
1372                         if (!err)
1373                                 mpd->pages_written++;
1374                         /*
1375                          * In error case, we have to continue because
1376                          * remaining pages are still locked
1377                          */
1378                         if (ret == 0)
1379                                 ret = err;
1380                 }
1381                 pagevec_release(&pvec);
1382         }
1383         ext4_io_submit(&io_submit);
1384         return ret;
1385 }
1386
1387 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1388 {
1389         int nr_pages, i;
1390         pgoff_t index, end;
1391         struct pagevec pvec;
1392         struct inode *inode = mpd->inode;
1393         struct address_space *mapping = inode->i_mapping;
1394
1395         index = mpd->first_page;
1396         end   = mpd->next_page - 1;
1397         while (index <= end) {
1398                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1399                 if (nr_pages == 0)
1400                         break;
1401                 for (i = 0; i < nr_pages; i++) {
1402                         struct page *page = pvec.pages[i];
1403                         if (page->index > end)
1404                                 break;
1405                         BUG_ON(!PageLocked(page));
1406                         BUG_ON(PageWriteback(page));
1407                         block_invalidatepage(page, 0);
1408                         ClearPageUptodate(page);
1409                         unlock_page(page);
1410                 }
1411                 index = pvec.pages[nr_pages - 1]->index + 1;
1412                 pagevec_release(&pvec);
1413         }
1414         return;
1415 }
1416
1417 static void ext4_print_free_blocks(struct inode *inode)
1418 {
1419         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1420         printk(KERN_CRIT "Total free blocks count %lld\n",
1421                EXT4_C2B(EXT4_SB(inode->i_sb),
1422                         ext4_count_free_clusters(inode->i_sb)));
1423         printk(KERN_CRIT "Free/Dirty block details\n");
1424         printk(KERN_CRIT "free_blocks=%lld\n",
1425                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1426                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1427         printk(KERN_CRIT "dirty_blocks=%lld\n",
1428                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1429                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1430         printk(KERN_CRIT "Block reservation details\n");
1431         printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
1432                EXT4_I(inode)->i_reserved_data_blocks);
1433         printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
1434                EXT4_I(inode)->i_reserved_meta_blocks);
1435         return;
1436 }
1437
1438 /*
1439  * mpage_da_map_and_submit - go through given space, map them
1440  *       if necessary, and then submit them for I/O
1441  *
1442  * @mpd - bh describing space
1443  *
1444  * The function skips space we know is already mapped to disk blocks.
1445  *
1446  */
1447 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1448 {
1449         int err, blks, get_blocks_flags;
1450         struct ext4_map_blocks map, *mapp = NULL;
1451         sector_t next = mpd->b_blocknr;
1452         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1453         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1454         handle_t *handle = NULL;
1455
1456         /*
1457          * If the blocks are mapped already, or we couldn't accumulate
1458          * any blocks, then proceed immediately to the submission stage.
1459          */
1460         if ((mpd->b_size == 0) ||
1461             ((mpd->b_state  & (1 << BH_Mapped)) &&
1462              !(mpd->b_state & (1 << BH_Delay)) &&
1463              !(mpd->b_state & (1 << BH_Unwritten))))
1464                 goto submit_io;
1465
1466         handle = ext4_journal_current_handle();
1467         BUG_ON(!handle);
1468
1469         /*
1470          * Call ext4_map_blocks() to allocate any delayed allocation
1471          * blocks, or to convert an uninitialized extent to be
1472          * initialized (in the case where we have written into
1473          * one or more preallocated blocks).
1474          *
1475          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1476          * indicate that we are on the delayed allocation path.  This
1477          * affects functions in many different parts of the allocation
1478          * call path.  This flag exists primarily because we don't
1479          * want to change *many* call functions, so ext4_map_blocks()
1480          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1481          * inode's allocation semaphore is taken.
1482          *
1483          * If the blocks in questions were delalloc blocks, set
1484          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1485          * variables are updated after the blocks have been allocated.
1486          */
1487         map.m_lblk = next;
1488         map.m_len = max_blocks;
1489         get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1490         if (ext4_should_dioread_nolock(mpd->inode))
1491                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1492         if (mpd->b_state & (1 << BH_Delay))
1493                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1494
1495         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1496         if (blks < 0) {
1497                 struct super_block *sb = mpd->inode->i_sb;
1498
1499                 err = blks;
1500                 /*
1501                  * If get block returns EAGAIN or ENOSPC and there
1502                  * appears to be free blocks we will just let
1503                  * mpage_da_submit_io() unlock all of the pages.
1504                  */
1505                 if (err == -EAGAIN)
1506                         goto submit_io;
1507
1508                 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1509                         mpd->retval = err;
1510                         goto submit_io;
1511                 }
1512
1513                 /*
1514                  * get block failure will cause us to loop in
1515                  * writepages, because a_ops->writepage won't be able
1516                  * to make progress. The page will be redirtied by
1517                  * writepage and writepages will again try to write
1518                  * the same.
1519                  */
1520                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1521                         ext4_msg(sb, KERN_CRIT,
1522                                  "delayed block allocation failed for inode %lu "
1523                                  "at logical offset %llu with max blocks %zd "
1524                                  "with error %d", mpd->inode->i_ino,
1525                                  (unsigned long long) next,
1526                                  mpd->b_size >> mpd->inode->i_blkbits, err);
1527                         ext4_msg(sb, KERN_CRIT,
1528                                 "This should not happen!! Data will be lost\n");
1529                         if (err == -ENOSPC)
1530                                 ext4_print_free_blocks(mpd->inode);
1531                 }
1532                 /* invalidate all the pages */
1533                 ext4_da_block_invalidatepages(mpd);
1534
1535                 /* Mark this page range as having been completed */
1536                 mpd->io_done = 1;
1537                 return;
1538         }
1539         BUG_ON(blks == 0);
1540
1541         mapp = &map;
1542         if (map.m_flags & EXT4_MAP_NEW) {
1543                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1544                 int i;
1545
1546                 for (i = 0; i < map.m_len; i++)
1547                         unmap_underlying_metadata(bdev, map.m_pblk + i);
1548
1549                 if (ext4_should_order_data(mpd->inode)) {
1550                         err = ext4_jbd2_file_inode(handle, mpd->inode);
1551                         if (err)
1552                                 /* Only if the journal is aborted */
1553                                 return;
1554                 }
1555         }
1556
1557         /*
1558          * Update on-disk size along with block allocation.
1559          */
1560         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1561         if (disksize > i_size_read(mpd->inode))
1562                 disksize = i_size_read(mpd->inode);
1563         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1564                 ext4_update_i_disksize(mpd->inode, disksize);
1565                 err = ext4_mark_inode_dirty(handle, mpd->inode);
1566                 if (err)
1567                         ext4_error(mpd->inode->i_sb,
1568                                    "Failed to mark inode %lu dirty",
1569                                    mpd->inode->i_ino);
1570         }
1571
1572 submit_io:
1573         mpage_da_submit_io(mpd, mapp);
1574         mpd->io_done = 1;
1575 }
1576
1577 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1578                 (1 << BH_Delay) | (1 << BH_Unwritten))
1579
1580 /*
1581  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1582  *
1583  * @mpd->lbh - extent of blocks
1584  * @logical - logical number of the block in the file
1585  * @bh - bh of the block (used to access block's state)
1586  *
1587  * the function is used to collect contig. blocks in same state
1588  */
1589 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1590                                    sector_t logical, size_t b_size,
1591                                    unsigned long b_state)
1592 {
1593         sector_t next;
1594         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1595
1596         /*
1597          * XXX Don't go larger than mballoc is willing to allocate
1598          * This is a stopgap solution.  We eventually need to fold
1599          * mpage_da_submit_io() into this function and then call
1600          * ext4_map_blocks() multiple times in a loop
1601          */
1602         if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1603                 goto flush_it;
1604
1605         /* check if thereserved journal credits might overflow */
1606         if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1607                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1608                         /*
1609                          * With non-extent format we are limited by the journal
1610                          * credit available.  Total credit needed to insert
1611                          * nrblocks contiguous blocks is dependent on the
1612                          * nrblocks.  So limit nrblocks.
1613                          */
1614                         goto flush_it;
1615                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1616                                 EXT4_MAX_TRANS_DATA) {
1617                         /*
1618                          * Adding the new buffer_head would make it cross the
1619                          * allowed limit for which we have journal credit
1620                          * reserved. So limit the new bh->b_size
1621                          */
1622                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1623                                                 mpd->inode->i_blkbits;
1624                         /* we will do mpage_da_submit_io in the next loop */
1625                 }
1626         }
1627         /*
1628          * First block in the extent
1629          */
1630         if (mpd->b_size == 0) {
1631                 mpd->b_blocknr = logical;
1632                 mpd->b_size = b_size;
1633                 mpd->b_state = b_state & BH_FLAGS;
1634                 return;
1635         }
1636
1637         next = mpd->b_blocknr + nrblocks;
1638         /*
1639          * Can we merge the block to our big extent?
1640          */
1641         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1642                 mpd->b_size += b_size;
1643                 return;
1644         }
1645
1646 flush_it:
1647         /*
1648          * We couldn't merge the block to our extent, so we
1649          * need to flush current  extent and start new one
1650          */
1651         mpage_da_map_and_submit(mpd);
1652         return;
1653 }
1654
1655 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1656 {
1657         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1658 }
1659
1660 /*
1661  * This function is grabs code from the very beginning of
1662  * ext4_map_blocks, but assumes that the caller is from delayed write
1663  * time. This function looks up the requested blocks and sets the
1664  * buffer delay bit under the protection of i_data_sem.
1665  */
1666 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1667                               struct ext4_map_blocks *map,
1668                               struct buffer_head *bh)
1669 {
1670         int retval;
1671         sector_t invalid_block = ~((sector_t) 0xffff);
1672
1673         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1674                 invalid_block = ~0;
1675
1676         map->m_flags = 0;
1677         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1678                   "logical block %lu\n", inode->i_ino, map->m_len,
1679                   (unsigned long) map->m_lblk);
1680         /*
1681          * Try to see if we can get the block without requesting a new
1682          * file system block.
1683          */
1684         down_read((&EXT4_I(inode)->i_data_sem));
1685         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1686                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1687         else
1688                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1689
1690         if (retval == 0) {
1691                 /*
1692                  * XXX: __block_prepare_write() unmaps passed block,
1693                  * is it OK?
1694                  */
1695                 /* If the block was allocated from previously allocated cluster,
1696                  * then we dont need to reserve it again. */
1697                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1698                         retval = ext4_da_reserve_space(inode, iblock);
1699                         if (retval)
1700                                 /* not enough space to reserve */
1701                                 goto out_unlock;
1702                 }
1703
1704                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1705                  * and it should not appear on the bh->b_state.
1706                  */
1707                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1708
1709                 map_bh(bh, inode->i_sb, invalid_block);
1710                 set_buffer_new(bh);
1711                 set_buffer_delay(bh);
1712         }
1713
1714 out_unlock:
1715         up_read((&EXT4_I(inode)->i_data_sem));
1716
1717         return retval;
1718 }
1719
1720 /*
1721  * This is a special get_blocks_t callback which is used by
1722  * ext4_da_write_begin().  It will either return mapped block or
1723  * reserve space for a single block.
1724  *
1725  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1726  * We also have b_blocknr = -1 and b_bdev initialized properly
1727  *
1728  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1729  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1730  * initialized properly.
1731  */
1732 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1733                                   struct buffer_head *bh, int create)
1734 {
1735         struct ext4_map_blocks map;
1736         int ret = 0;
1737
1738         BUG_ON(create == 0);
1739         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1740
1741         map.m_lblk = iblock;
1742         map.m_len = 1;
1743
1744         /*
1745          * first, we need to know whether the block is allocated already
1746          * preallocated blocks are unmapped but should treated
1747          * the same as allocated blocks.
1748          */
1749         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1750         if (ret <= 0)
1751                 return ret;
1752
1753         map_bh(bh, inode->i_sb, map.m_pblk);
1754         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1755
1756         if (buffer_unwritten(bh)) {
1757                 /* A delayed write to unwritten bh should be marked
1758                  * new and mapped.  Mapped ensures that we don't do
1759                  * get_block multiple times when we write to the same
1760                  * offset and new ensures that we do proper zero out
1761                  * for partial write.
1762                  */
1763                 set_buffer_new(bh);
1764                 set_buffer_mapped(bh);
1765         }
1766         return 0;
1767 }
1768
1769 /*
1770  * This function is used as a standard get_block_t calback function
1771  * when there is no desire to allocate any blocks.  It is used as a
1772  * callback function for block_write_begin() and block_write_full_page().
1773  * These functions should only try to map a single block at a time.
1774  *
1775  * Since this function doesn't do block allocations even if the caller
1776  * requests it by passing in create=1, it is critically important that
1777  * any caller checks to make sure that any buffer heads are returned
1778  * by this function are either all already mapped or marked for
1779  * delayed allocation before calling  block_write_full_page().  Otherwise,
1780  * b_blocknr could be left unitialized, and the page write functions will
1781  * be taken by surprise.
1782  */
1783 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1784                                    struct buffer_head *bh_result, int create)
1785 {
1786         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1787         return _ext4_get_block(inode, iblock, bh_result, 0);
1788 }
1789
1790 static int bget_one(handle_t *handle, struct buffer_head *bh)
1791 {
1792         get_bh(bh);
1793         return 0;
1794 }
1795
1796 static int bput_one(handle_t *handle, struct buffer_head *bh)
1797 {
1798         put_bh(bh);
1799         return 0;
1800 }
1801
1802 static int __ext4_journalled_writepage(struct page *page,
1803                                        unsigned int len)
1804 {
1805         struct address_space *mapping = page->mapping;
1806         struct inode *inode = mapping->host;
1807         struct buffer_head *page_bufs;
1808         handle_t *handle = NULL;
1809         int ret = 0;
1810         int err;
1811
1812         ClearPageChecked(page);
1813         page_bufs = page_buffers(page);
1814         BUG_ON(!page_bufs);
1815         walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1816         /* As soon as we unlock the page, it can go away, but we have
1817          * references to buffers so we are safe */
1818         unlock_page(page);
1819
1820         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1821         if (IS_ERR(handle)) {
1822                 ret = PTR_ERR(handle);
1823                 goto out;
1824         }
1825
1826         BUG_ON(!ext4_handle_valid(handle));
1827
1828         ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1829                                 do_journal_get_write_access);
1830
1831         err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1832                                 write_end_fn);
1833         if (ret == 0)
1834                 ret = err;
1835         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1836         err = ext4_journal_stop(handle);
1837         if (!ret)
1838                 ret = err;
1839
1840         walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1841         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1842 out:
1843         return ret;
1844 }
1845
1846 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1847 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1848
1849 /*
1850  * Note that we don't need to start a transaction unless we're journaling data
1851  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1852  * need to file the inode to the transaction's list in ordered mode because if
1853  * we are writing back data added by write(), the inode is already there and if
1854  * we are writing back data modified via mmap(), no one guarantees in which
1855  * transaction the data will hit the disk. In case we are journaling data, we
1856  * cannot start transaction directly because transaction start ranks above page
1857  * lock so we have to do some magic.
1858  *
1859  * This function can get called via...
1860  *   - ext4_da_writepages after taking page lock (have journal handle)
1861  *   - journal_submit_inode_data_buffers (no journal handle)
1862  *   - shrink_page_list via pdflush (no journal handle)
1863  *   - grab_page_cache when doing write_begin (have journal handle)
1864  *
1865  * We don't do any block allocation in this function. If we have page with
1866  * multiple blocks we need to write those buffer_heads that are mapped. This
1867  * is important for mmaped based write. So if we do with blocksize 1K
1868  * truncate(f, 1024);
1869  * a = mmap(f, 0, 4096);
1870  * a[0] = 'a';
1871  * truncate(f, 4096);
1872  * we have in the page first buffer_head mapped via page_mkwrite call back
1873  * but other bufer_heads would be unmapped but dirty(dirty done via the
1874  * do_wp_page). So writepage should write the first block. If we modify
1875  * the mmap area beyond 1024 we will again get a page_fault and the
1876  * page_mkwrite callback will do the block allocation and mark the
1877  * buffer_heads mapped.
1878  *
1879  * We redirty the page if we have any buffer_heads that is either delay or
1880  * unwritten in the page.
1881  *
1882  * We can get recursively called as show below.
1883  *
1884  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1885  *              ext4_writepage()
1886  *
1887  * But since we don't do any block allocation we should not deadlock.
1888  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1889  */
1890 static int ext4_writepage(struct page *page,
1891                           struct writeback_control *wbc)
1892 {
1893         int ret = 0, commit_write = 0;
1894         loff_t size;
1895         unsigned int len;
1896         struct buffer_head *page_bufs = NULL;
1897         struct inode *inode = page->mapping->host;
1898
1899         trace_ext4_writepage(page);
1900         size = i_size_read(inode);
1901         if (page->index == size >> PAGE_CACHE_SHIFT)
1902                 len = size & ~PAGE_CACHE_MASK;
1903         else
1904                 len = PAGE_CACHE_SIZE;
1905
1906         /*
1907          * If the page does not have buffers (for whatever reason),
1908          * try to create them using __block_write_begin.  If this
1909          * fails, redirty the page and move on.
1910          */
1911         if (!page_has_buffers(page)) {
1912                 if (__block_write_begin(page, 0, len,
1913                                         noalloc_get_block_write)) {
1914                 redirty_page:
1915                         redirty_page_for_writepage(wbc, page);
1916                         unlock_page(page);
1917                         return 0;
1918                 }
1919                 commit_write = 1;
1920         }
1921         page_bufs = page_buffers(page);
1922         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1923                               ext4_bh_delay_or_unwritten)) {
1924                 /*
1925                  * We don't want to do block allocation, so redirty
1926                  * the page and return.  We may reach here when we do
1927                  * a journal commit via journal_submit_inode_data_buffers.
1928                  * We can also reach here via shrink_page_list
1929                  */
1930                 goto redirty_page;
1931         }
1932         if (commit_write)
1933                 /* now mark the buffer_heads as dirty and uptodate */
1934                 block_commit_write(page, 0, len);
1935
1936         if (PageChecked(page) && ext4_should_journal_data(inode))
1937                 /*
1938                  * It's mmapped pagecache.  Add buffers and journal it.  There
1939                  * doesn't seem much point in redirtying the page here.
1940                  */
1941                 return __ext4_journalled_writepage(page, len);
1942
1943         if (buffer_uninit(page_bufs)) {
1944                 ext4_set_bh_endio(page_bufs, inode);
1945                 ret = block_write_full_page_endio(page, noalloc_get_block_write,
1946                                             wbc, ext4_end_io_buffer_write);
1947         } else
1948                 ret = block_write_full_page(page, noalloc_get_block_write,
1949                                             wbc);
1950
1951         return ret;
1952 }
1953
1954 /*
1955  * This is called via ext4_da_writepages() to
1956  * calculate the total number of credits to reserve to fit
1957  * a single extent allocation into a single transaction,
1958  * ext4_da_writpeages() will loop calling this before
1959  * the block allocation.
1960  */
1961
1962 static int ext4_da_writepages_trans_blocks(struct inode *inode)
1963 {
1964         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
1965
1966         /*
1967          * With non-extent format the journal credit needed to
1968          * insert nrblocks contiguous block is dependent on
1969          * number of contiguous block. So we will limit
1970          * number of contiguous block to a sane value
1971          */
1972         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
1973             (max_blocks > EXT4_MAX_TRANS_DATA))
1974                 max_blocks = EXT4_MAX_TRANS_DATA;
1975
1976         return ext4_chunk_trans_blocks(inode, max_blocks);
1977 }
1978
1979 /*
1980  * write_cache_pages_da - walk the list of dirty pages of the given
1981  * address space and accumulate pages that need writing, and call
1982  * mpage_da_map_and_submit to map a single contiguous memory region
1983  * and then write them.
1984  */
1985 static int write_cache_pages_da(struct address_space *mapping,
1986                                 struct writeback_control *wbc,
1987                                 struct mpage_da_data *mpd,
1988                                 pgoff_t *done_index)
1989 {
1990         struct buffer_head      *bh, *head;
1991         struct inode            *inode = mapping->host;
1992         struct pagevec          pvec;
1993         unsigned int            nr_pages;
1994         sector_t                logical;
1995         pgoff_t                 index, end;
1996         long                    nr_to_write = wbc->nr_to_write;
1997         int                     i, tag, ret = 0;
1998
1999         memset(mpd, 0, sizeof(struct mpage_da_data));
2000         mpd->wbc = wbc;
2001         mpd->inode = inode;
2002         pagevec_init(&pvec, 0);
2003         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2004         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2005
2006         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2007                 tag = PAGECACHE_TAG_TOWRITE;
2008         else
2009                 tag = PAGECACHE_TAG_DIRTY;
2010
2011         *done_index = index;
2012         while (index <= end) {
2013                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2014                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2015                 if (nr_pages == 0)
2016                         return 0;
2017
2018                 for (i = 0; i < nr_pages; i++) {
2019                         struct page *page = pvec.pages[i];
2020
2021                         /*
2022                          * At this point, the page may be truncated or
2023                          * invalidated (changing page->mapping to NULL), or
2024                          * even swizzled back from swapper_space to tmpfs file
2025                          * mapping. However, page->index will not change
2026                          * because we have a reference on the page.
2027                          */
2028                         if (page->index > end)
2029                                 goto out;
2030
2031                         *done_index = page->index + 1;
2032
2033                         /*
2034                          * If we can't merge this page, and we have
2035                          * accumulated an contiguous region, write it
2036                          */
2037                         if ((mpd->next_page != page->index) &&
2038                             (mpd->next_page != mpd->first_page)) {
2039                                 mpage_da_map_and_submit(mpd);
2040                                 goto ret_extent_tail;
2041                         }
2042
2043                         lock_page(page);
2044
2045                         /*
2046                          * If the page is no longer dirty, or its
2047                          * mapping no longer corresponds to inode we
2048                          * are writing (which means it has been
2049                          * truncated or invalidated), or the page is
2050                          * already under writeback and we are not
2051                          * doing a data integrity writeback, skip the page
2052                          */
2053                         if (!PageDirty(page) ||
2054                             (PageWriteback(page) &&
2055                              (wbc->sync_mode == WB_SYNC_NONE)) ||
2056                             unlikely(page->mapping != mapping)) {
2057                                 unlock_page(page);
2058                                 continue;
2059                         }
2060
2061                         wait_on_page_writeback(page);
2062                         BUG_ON(PageWriteback(page));
2063
2064                         if (mpd->next_page != page->index)
2065                                 mpd->first_page = page->index;
2066                         mpd->next_page = page->index + 1;
2067                         logical = (sector_t) page->index <<
2068                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2069
2070                         if (!page_has_buffers(page)) {
2071                                 mpage_add_bh_to_extent(mpd, logical,
2072                                                        PAGE_CACHE_SIZE,
2073                                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2074                                 if (mpd->io_done)
2075                                         goto ret_extent_tail;
2076                         } else {
2077                                 /*
2078                                  * Page with regular buffer heads,
2079                                  * just add all dirty ones
2080                                  */
2081                                 head = page_buffers(page);
2082                                 bh = head;
2083                                 do {
2084                                         BUG_ON(buffer_locked(bh));
2085                                         /*
2086                                          * We need to try to allocate
2087                                          * unmapped blocks in the same page.
2088                                          * Otherwise we won't make progress
2089                                          * with the page in ext4_writepage
2090                                          */
2091                                         if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2092                                                 mpage_add_bh_to_extent(mpd, logical,
2093                                                                        bh->b_size,
2094                                                                        bh->b_state);
2095                                                 if (mpd->io_done)
2096                                                         goto ret_extent_tail;
2097                                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2098                                                 /*
2099                                                  * mapped dirty buffer. We need
2100                                                  * to update the b_state
2101                                                  * because we look at b_state
2102                                                  * in mpage_da_map_blocks.  We
2103                                                  * don't update b_size because
2104                                                  * if we find an unmapped
2105                                                  * buffer_head later we need to
2106                                                  * use the b_state flag of that
2107                                                  * buffer_head.
2108                                                  */
2109                                                 if (mpd->b_size == 0)
2110                                                         mpd->b_state = bh->b_state & BH_FLAGS;
2111                                         }
2112                                         logical++;
2113                                 } while ((bh = bh->b_this_page) != head);
2114                         }
2115
2116                         if (nr_to_write > 0) {
2117                                 nr_to_write--;
2118                                 if (nr_to_write == 0 &&
2119                                     wbc->sync_mode == WB_SYNC_NONE)
2120                                         /*
2121                                          * We stop writing back only if we are
2122                                          * not doing integrity sync. In case of
2123                                          * integrity sync we have to keep going
2124                                          * because someone may be concurrently
2125                                          * dirtying pages, and we might have
2126                                          * synced a lot of newly appeared dirty
2127                                          * pages, but have not synced all of the
2128                                          * old dirty pages.
2129                                          */
2130                                         goto out;
2131                         }
2132                 }
2133                 pagevec_release(&pvec);
2134                 cond_resched();
2135         }
2136         return 0;
2137 ret_extent_tail:
2138         ret = MPAGE_DA_EXTENT_TAIL;
2139 out:
2140         pagevec_release(&pvec);
2141         cond_resched();
2142         return ret;
2143 }
2144
2145
2146 static int ext4_da_writepages(struct address_space *mapping,
2147                               struct writeback_control *wbc)
2148 {
2149         pgoff_t index;
2150         int range_whole = 0;
2151         handle_t *handle = NULL;
2152         struct mpage_da_data mpd;
2153         struct inode *inode = mapping->host;
2154         int pages_written = 0;
2155         unsigned int max_pages;
2156         int range_cyclic, cycled = 1, io_done = 0;
2157         int needed_blocks, ret = 0;
2158         long desired_nr_to_write, nr_to_writebump = 0;
2159         loff_t range_start = wbc->range_start;
2160         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2161         pgoff_t done_index = 0;
2162         pgoff_t end;
2163         struct blk_plug plug;
2164
2165         trace_ext4_da_writepages(inode, wbc);
2166
2167         /*
2168          * No pages to write? This is mainly a kludge to avoid starting
2169          * a transaction for special inodes like journal inode on last iput()
2170          * because that could violate lock ordering on umount
2171          */
2172         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2173                 return 0;
2174
2175         /*
2176          * If the filesystem has aborted, it is read-only, so return
2177          * right away instead of dumping stack traces later on that
2178          * will obscure the real source of the problem.  We test
2179          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2180          * the latter could be true if the filesystem is mounted
2181          * read-only, and in that case, ext4_da_writepages should
2182          * *never* be called, so if that ever happens, we would want
2183          * the stack trace.
2184          */
2185         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2186                 return -EROFS;
2187
2188         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2189                 range_whole = 1;
2190
2191         range_cyclic = wbc->range_cyclic;
2192         if (wbc->range_cyclic) {
2193                 index = mapping->writeback_index;
2194                 if (index)
2195                         cycled = 0;
2196                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2197                 wbc->range_end  = LLONG_MAX;
2198                 wbc->range_cyclic = 0;
2199                 end = -1;
2200         } else {
2201                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2202                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2203         }
2204
2205         /*
2206          * This works around two forms of stupidity.  The first is in
2207          * the writeback code, which caps the maximum number of pages
2208          * written to be 1024 pages.  This is wrong on multiple
2209          * levels; different architectues have a different page size,
2210          * which changes the maximum amount of data which gets
2211          * written.  Secondly, 4 megabytes is way too small.  XFS
2212          * forces this value to be 16 megabytes by multiplying
2213          * nr_to_write parameter by four, and then relies on its
2214          * allocator to allocate larger extents to make them
2215          * contiguous.  Unfortunately this brings us to the second
2216          * stupidity, which is that ext4's mballoc code only allocates
2217          * at most 2048 blocks.  So we force contiguous writes up to
2218          * the number of dirty blocks in the inode, or
2219          * sbi->max_writeback_mb_bump whichever is smaller.
2220          */
2221         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2222         if (!range_cyclic && range_whole) {
2223                 if (wbc->nr_to_write == LONG_MAX)
2224                         desired_nr_to_write = wbc->nr_to_write;
2225                 else
2226                         desired_nr_to_write = wbc->nr_to_write * 8;
2227         } else
2228                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2229                                                            max_pages);
2230         if (desired_nr_to_write > max_pages)
2231                 desired_nr_to_write = max_pages;
2232
2233         if (wbc->nr_to_write < desired_nr_to_write) {
2234                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2235                 wbc->nr_to_write = desired_nr_to_write;
2236         }
2237
2238 retry:
2239         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2240                 tag_pages_for_writeback(mapping, index, end);
2241
2242         blk_start_plug(&plug);
2243         while (!ret && wbc->nr_to_write > 0) {
2244
2245                 /*
2246                  * we  insert one extent at a time. So we need
2247                  * credit needed for single extent allocation.
2248                  * journalled mode is currently not supported
2249                  * by delalloc
2250                  */
2251                 BUG_ON(ext4_should_journal_data(inode));
2252                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2253
2254                 /* start a new transaction*/
2255                 handle = ext4_journal_start(inode, needed_blocks);
2256                 if (IS_ERR(handle)) {
2257                         ret = PTR_ERR(handle);
2258                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2259                                "%ld pages, ino %lu; err %d", __func__,
2260                                 wbc->nr_to_write, inode->i_ino, ret);
2261                         goto out_writepages;
2262                 }
2263
2264                 /*
2265                  * Now call write_cache_pages_da() to find the next
2266                  * contiguous region of logical blocks that need
2267                  * blocks to be allocated by ext4 and submit them.
2268                  */
2269                 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2270                 /*
2271                  * If we have a contiguous extent of pages and we
2272                  * haven't done the I/O yet, map the blocks and submit
2273                  * them for I/O.
2274                  */
2275                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2276                         mpage_da_map_and_submit(&mpd);
2277                         ret = MPAGE_DA_EXTENT_TAIL;
2278                 }
2279                 trace_ext4_da_write_pages(inode, &mpd);
2280                 wbc->nr_to_write -= mpd.pages_written;
2281
2282                 ext4_journal_stop(handle);
2283
2284                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2285                         /* commit the transaction which would
2286                          * free blocks released in the transaction
2287                          * and try again
2288                          */
2289                         jbd2_journal_force_commit_nested(sbi->s_journal);
2290                         ret = 0;
2291                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2292                         /*
2293                          * got one extent now try with
2294                          * rest of the pages
2295                          */
2296                         pages_written += mpd.pages_written;
2297                         ret = 0;
2298                         io_done = 1;
2299                 } else if (wbc->nr_to_write)
2300                         /*
2301                          * There is no more writeout needed
2302                          * or we requested for a noblocking writeout
2303                          * and we found the device congested
2304                          */
2305                         break;
2306         }
2307         blk_finish_plug(&plug);
2308         if (!io_done && !cycled) {
2309                 cycled = 1;
2310                 index = 0;
2311                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2312                 wbc->range_end  = mapping->writeback_index - 1;
2313                 goto retry;
2314         }
2315
2316         /* Update index */
2317         wbc->range_cyclic = range_cyclic;
2318         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2319                 /*
2320                  * set the writeback_index so that range_cyclic
2321                  * mode will write it back later
2322                  */
2323                 mapping->writeback_index = done_index;
2324
2325 out_writepages:
2326         wbc->nr_to_write -= nr_to_writebump;
2327         wbc->range_start = range_start;
2328         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2329         return ret;
2330 }
2331
2332 #define FALL_BACK_TO_NONDELALLOC 1
2333 static int ext4_nonda_switch(struct super_block *sb)
2334 {
2335         s64 free_blocks, dirty_blocks;
2336         struct ext4_sb_info *sbi = EXT4_SB(sb);
2337
2338         /*
2339          * switch to non delalloc mode if we are running low
2340          * on free block. The free block accounting via percpu
2341          * counters can get slightly wrong with percpu_counter_batch getting
2342          * accumulated on each CPU without updating global counters
2343          * Delalloc need an accurate free block accounting. So switch
2344          * to non delalloc when we are near to error range.
2345          */
2346         free_blocks  = EXT4_C2B(sbi,
2347                 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2348         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2349         if (2 * free_blocks < 3 * dirty_blocks ||
2350                 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2351                 /*
2352                  * free block count is less than 150% of dirty blocks
2353                  * or free blocks is less than watermark
2354                  */
2355                 return 1;
2356         }
2357         /*
2358          * Even if we don't switch but are nearing capacity,
2359          * start pushing delalloc when 1/2 of free blocks are dirty.
2360          */
2361         if (free_blocks < 2 * dirty_blocks)
2362                 writeback_inodes_sb_if_idle(sb);
2363
2364         return 0;
2365 }
2366
2367 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2368                                loff_t pos, unsigned len, unsigned flags,
2369                                struct page **pagep, void **fsdata)
2370 {
2371         int ret, retries = 0;
2372         struct page *page;
2373         pgoff_t index;
2374         struct inode *inode = mapping->host;
2375         handle_t *handle;
2376         loff_t page_len;
2377
2378         index = pos >> PAGE_CACHE_SHIFT;
2379
2380         if (ext4_nonda_switch(inode->i_sb)) {
2381                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2382                 return ext4_write_begin(file, mapping, pos,
2383                                         len, flags, pagep, fsdata);
2384         }
2385         *fsdata = (void *)0;
2386         trace_ext4_da_write_begin(inode, pos, len, flags);
2387 retry:
2388         /*
2389          * With delayed allocation, we don't log the i_disksize update
2390          * if there is delayed block allocation. But we still need
2391          * to journalling the i_disksize update if writes to the end
2392          * of file which has an already mapped buffer.
2393          */
2394         handle = ext4_journal_start(inode, 1);
2395         if (IS_ERR(handle)) {
2396                 ret = PTR_ERR(handle);
2397                 goto out;
2398         }
2399         /* We cannot recurse into the filesystem as the transaction is already
2400          * started */
2401         flags |= AOP_FLAG_NOFS;
2402
2403         page = grab_cache_page_write_begin(mapping, index, flags);
2404         if (!page) {
2405                 ext4_journal_stop(handle);
2406                 ret = -ENOMEM;
2407                 goto out;
2408         }
2409         *pagep = page;
2410
2411         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2412         if (ret < 0) {
2413                 unlock_page(page);
2414                 ext4_journal_stop(handle);
2415                 page_cache_release(page);
2416                 /*
2417                  * block_write_begin may have instantiated a few blocks
2418                  * outside i_size.  Trim these off again. Don't need
2419                  * i_size_read because we hold i_mutex.
2420                  */
2421                 if (pos + len > inode->i_size)
2422                         ext4_truncate_failed_write(inode);
2423         } else {
2424                 page_len = pos & (PAGE_CACHE_SIZE - 1);
2425                 if (page_len > 0) {
2426                         ret = ext4_discard_partial_page_buffers_no_lock(handle,
2427                                 inode, page, pos - page_len, page_len,
2428                                 EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED);
2429                 }
2430         }
2431
2432         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2433                 goto retry;
2434 out:
2435         return ret;
2436 }
2437
2438 /*
2439  * Check if we should update i_disksize
2440  * when write to the end of file but not require block allocation
2441  */
2442 static int ext4_da_should_update_i_disksize(struct page *page,
2443                                             unsigned long offset)
2444 {
2445         struct buffer_head *bh;
2446         struct inode *inode = page->mapping->host;
2447         unsigned int idx;
2448         int i;
2449
2450         bh = page_buffers(page);
2451         idx = offset >> inode->i_blkbits;
2452
2453         for (i = 0; i < idx; i++)
2454                 bh = bh->b_this_page;
2455
2456         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2457                 return 0;
2458         return 1;
2459 }
2460
2461 static int ext4_da_write_end(struct file *file,
2462                              struct address_space *mapping,
2463                              loff_t pos, unsigned len, unsigned copied,
2464                              struct page *page, void *fsdata)
2465 {
2466         struct inode *inode = mapping->host;
2467         int ret = 0, ret2;
2468         handle_t *handle = ext4_journal_current_handle();
2469         loff_t new_i_size;
2470         unsigned long start, end;
2471         int write_mode = (int)(unsigned long)fsdata;
2472         loff_t page_len;
2473
2474         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2475                 if (ext4_should_order_data(inode)) {
2476                         return ext4_ordered_write_end(file, mapping, pos,
2477                                         len, copied, page, fsdata);
2478                 } else if (ext4_should_writeback_data(inode)) {
2479                         return ext4_writeback_write_end(file, mapping, pos,
2480                                         len, copied, page, fsdata);
2481                 } else {
2482                         BUG();
2483                 }
2484         }
2485
2486         trace_ext4_da_write_end(inode, pos, len, copied);
2487         start = pos & (PAGE_CACHE_SIZE - 1);
2488         end = start + copied - 1;
2489
2490         /*
2491          * generic_write_end() will run mark_inode_dirty() if i_size
2492          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2493          * into that.
2494          */
2495
2496         new_i_size = pos + copied;
2497         if (new_i_size > EXT4_I(inode)->i_disksize) {
2498                 if (ext4_da_should_update_i_disksize(page, end)) {
2499                         down_write(&EXT4_I(inode)->i_data_sem);
2500                         if (new_i_size > EXT4_I(inode)->i_disksize) {
2501                                 /*
2502                                  * Updating i_disksize when extending file
2503                                  * without needing block allocation
2504                                  */
2505                                 if (ext4_should_order_data(inode))
2506                                         ret = ext4_jbd2_file_inode(handle,
2507                                                                    inode);
2508
2509                                 EXT4_I(inode)->i_disksize = new_i_size;
2510                         }
2511                         up_write(&EXT4_I(inode)->i_data_sem);
2512                         /* We need to mark inode dirty even if
2513                          * new_i_size is less that inode->i_size
2514                          * bu greater than i_disksize.(hint delalloc)
2515                          */
2516                         ext4_mark_inode_dirty(handle, inode);
2517                 }
2518         }
2519         ret2 = generic_write_end(file, mapping, pos, len, copied,
2520                                                         page, fsdata);
2521
2522         page_len = PAGE_CACHE_SIZE -
2523                         ((pos + copied - 1) & (PAGE_CACHE_SIZE - 1));
2524
2525         if (page_len > 0) {
2526                 ret = ext4_discard_partial_page_buffers_no_lock(handle,
2527                         inode, page, pos + copied - 1, page_len,
2528                         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED);
2529         }
2530
2531         copied = ret2;
2532         if (ret2 < 0)
2533                 ret = ret2;
2534         ret2 = ext4_journal_stop(handle);
2535         if (!ret)
2536                 ret = ret2;
2537
2538         return ret ? ret : copied;
2539 }
2540
2541 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2542 {
2543         /*
2544          * Drop reserved blocks
2545          */
2546         BUG_ON(!PageLocked(page));
2547         if (!page_has_buffers(page))
2548                 goto out;
2549
2550         ext4_da_page_release_reservation(page, offset);
2551
2552 out:
2553         ext4_invalidatepage(page, offset);
2554
2555         return;
2556 }
2557
2558 /*
2559  * Force all delayed allocation blocks to be allocated for a given inode.
2560  */
2561 int ext4_alloc_da_blocks(struct inode *inode)
2562 {
2563         trace_ext4_alloc_da_blocks(inode);
2564
2565         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2566             !EXT4_I(inode)->i_reserved_meta_blocks)
2567                 return 0;
2568
2569         /*
2570          * We do something simple for now.  The filemap_flush() will
2571          * also start triggering a write of the data blocks, which is
2572          * not strictly speaking necessary (and for users of
2573          * laptop_mode, not even desirable).  However, to do otherwise
2574          * would require replicating code paths in:
2575          *
2576          * ext4_da_writepages() ->
2577          *    write_cache_pages() ---> (via passed in callback function)
2578          *        __mpage_da_writepage() -->
2579          *           mpage_add_bh_to_extent()
2580          *           mpage_da_map_blocks()
2581          *
2582          * The problem is that write_cache_pages(), located in
2583          * mm/page-writeback.c, marks pages clean in preparation for
2584          * doing I/O, which is not desirable if we're not planning on
2585          * doing I/O at all.
2586          *
2587          * We could call write_cache_pages(), and then redirty all of
2588          * the pages by calling redirty_page_for_writepage() but that
2589          * would be ugly in the extreme.  So instead we would need to
2590          * replicate parts of the code in the above functions,
2591          * simplifying them because we wouldn't actually intend to
2592          * write out the pages, but rather only collect contiguous
2593          * logical block extents, call the multi-block allocator, and
2594          * then update the buffer heads with the block allocations.
2595          *
2596          * For now, though, we'll cheat by calling filemap_flush(),
2597          * which will map the blocks, and start the I/O, but not
2598          * actually wait for the I/O to complete.
2599          */
2600         return filemap_flush(inode->i_mapping);
2601 }
2602
2603 /*
2604  * bmap() is special.  It gets used by applications such as lilo and by
2605  * the swapper to find the on-disk block of a specific piece of data.
2606  *
2607  * Naturally, this is dangerous if the block concerned is still in the
2608  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2609  * filesystem and enables swap, then they may get a nasty shock when the
2610  * data getting swapped to that swapfile suddenly gets overwritten by
2611  * the original zero's written out previously to the journal and
2612  * awaiting writeback in the kernel's buffer cache.
2613  *
2614  * So, if we see any bmap calls here on a modified, data-journaled file,
2615  * take extra steps to flush any blocks which might be in the cache.
2616  */
2617 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2618 {
2619         struct inode *inode = mapping->host;
2620         journal_t *journal;
2621         int err;
2622
2623         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2624                         test_opt(inode->i_sb, DELALLOC)) {
2625                 /*
2626                  * With delalloc we want to sync the file
2627                  * so that we can make sure we allocate
2628                  * blocks for file
2629                  */
2630                 filemap_write_and_wait(mapping);
2631         }
2632
2633         if (EXT4_JOURNAL(inode) &&
2634             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2635                 /*
2636                  * This is a REALLY heavyweight approach, but the use of
2637                  * bmap on dirty files is expected to be extremely rare:
2638                  * only if we run lilo or swapon on a freshly made file
2639                  * do we expect this to happen.
2640                  *
2641                  * (bmap requires CAP_SYS_RAWIO so this does not
2642                  * represent an unprivileged user DOS attack --- we'd be
2643                  * in trouble if mortal users could trigger this path at
2644                  * will.)
2645                  *
2646                  * NB. EXT4_STATE_JDATA is not set on files other than
2647                  * regular files.  If somebody wants to bmap a directory
2648                  * or symlink and gets confused because the buffer
2649                  * hasn't yet been flushed to disk, they deserve
2650                  * everything they get.
2651                  */
2652
2653                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2654                 journal = EXT4_JOURNAL(inode);
2655                 jbd2_journal_lock_updates(journal);
2656                 err = jbd2_journal_flush(journal);
2657                 jbd2_journal_unlock_updates(journal);
2658
2659                 if (err)
2660                         return 0;
2661         }
2662
2663         return generic_block_bmap(mapping, block, ext4_get_block);
2664 }
2665
2666 static int ext4_readpage(struct file *file, struct page *page)
2667 {
2668         trace_ext4_readpage(page);
2669         return mpage_readpage(page, ext4_get_block);
2670 }
2671
2672 static int
2673 ext4_readpages(struct file *file, struct address_space *mapping,
2674                 struct list_head *pages, unsigned nr_pages)
2675 {
2676         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2677 }
2678
2679 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2680 {
2681         struct buffer_head *head, *bh;
2682         unsigned int curr_off = 0;
2683
2684         if (!page_has_buffers(page))
2685                 return;
2686         head = bh = page_buffers(page);
2687         do {
2688                 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2689                                         && bh->b_private) {
2690                         ext4_free_io_end(bh->b_private);
2691                         bh->b_private = NULL;
2692                         bh->b_end_io = NULL;
2693                 }
2694                 curr_off = curr_off + bh->b_size;
2695                 bh = bh->b_this_page;
2696         } while (bh != head);
2697 }
2698
2699 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2700 {
2701         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2702
2703         trace_ext4_invalidatepage(page, offset);
2704
2705         /*
2706          * free any io_end structure allocated for buffers to be discarded
2707          */
2708         if (ext4_should_dioread_nolock(page->mapping->host))
2709                 ext4_invalidatepage_free_endio(page, offset);
2710         /*
2711          * If it's a full truncate we just forget about the pending dirtying
2712          */
2713         if (offset == 0)
2714                 ClearPageChecked(page);
2715
2716         if (journal)
2717                 jbd2_journal_invalidatepage(journal, page, offset);
2718         else
2719                 block_invalidatepage(page, offset);
2720 }
2721
2722 static int ext4_releasepage(struct page *page, gfp_t wait)
2723 {
2724         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2725
2726         trace_ext4_releasepage(page);
2727
2728         WARN_ON(PageChecked(page));
2729         if (!page_has_buffers(page))
2730                 return 0;
2731         if (journal)
2732                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2733         else
2734                 return try_to_free_buffers(page);
2735 }
2736
2737 /*
2738  * ext4_get_block used when preparing for a DIO write or buffer write.
2739  * We allocate an uinitialized extent if blocks haven't been allocated.
2740  * The extent will be converted to initialized after the IO is complete.
2741  */
2742 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2743                    struct buffer_head *bh_result, int create)
2744 {
2745         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2746                    inode->i_ino, create);
2747         return _ext4_get_block(inode, iblock, bh_result,
2748                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
2749 }
2750
2751 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2752                             ssize_t size, void *private, int ret,
2753                             bool is_async)
2754 {
2755         struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2756         ext4_io_end_t *io_end = iocb->private;
2757         struct workqueue_struct *wq;
2758         unsigned long flags;
2759         struct ext4_inode_info *ei;
2760
2761         /* if not async direct IO or dio with 0 bytes write, just return */
2762         if (!io_end || !size)
2763                 goto out;
2764
2765         ext_debug("ext4_end_io_dio(): io_end 0x%p"
2766                   "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
2767                   iocb->private, io_end->inode->i_ino, iocb, offset,
2768                   size);
2769
2770         /* if not aio dio with unwritten extents, just free io and return */
2771         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2772                 ext4_free_io_end(io_end);
2773                 iocb->private = NULL;
2774 out:
2775                 if (is_async)
2776                         aio_complete(iocb, ret, 0);
2777                 inode_dio_done(inode);
2778                 return;
2779         }
2780
2781         io_end->offset = offset;
2782         io_end->size = size;
2783         if (is_async) {
2784                 io_end->iocb = iocb;
2785                 io_end->result = ret;
2786         }
2787         wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2788
2789         /* Add the io_end to per-inode completed aio dio list*/
2790         ei = EXT4_I(io_end->inode);
2791         spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2792         list_add_tail(&io_end->list, &ei->i_completed_io_list);
2793         spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2794
2795         /* queue the work to convert unwritten extents to written */
2796         queue_work(wq, &io_end->work);
2797         iocb->private = NULL;
2798
2799         /* XXX: probably should move into the real I/O completion handler */
2800         inode_dio_done(inode);
2801 }
2802
2803 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2804 {
2805         ext4_io_end_t *io_end = bh->b_private;
2806         struct workqueue_struct *wq;
2807         struct inode *inode;
2808         unsigned long flags;
2809
2810         if (!test_clear_buffer_uninit(bh) || !io_end)
2811                 goto out;
2812
2813         if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2814                 printk("sb umounted, discard end_io request for inode %lu\n",
2815                         io_end->inode->i_ino);
2816                 ext4_free_io_end(io_end);
2817                 goto out;
2818         }
2819
2820         /*
2821          * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2822          * but being more careful is always safe for the future change.
2823          */
2824         inode = io_end->inode;
2825         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2826                 io_end->flag |= EXT4_IO_END_UNWRITTEN;
2827                 atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
2828         }
2829
2830         /* Add the io_end to per-inode completed io list*/
2831         spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2832         list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2833         spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2834
2835         wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2836         /* queue the work to convert unwritten extents to written */
2837         queue_work(wq, &io_end->work);
2838 out:
2839         bh->b_private = NULL;
2840         bh->b_end_io = NULL;
2841         clear_buffer_uninit(bh);
2842         end_buffer_async_write(bh, uptodate);
2843 }
2844
2845 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2846 {
2847         ext4_io_end_t *io_end;
2848         struct page *page = bh->b_page;
2849         loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2850         size_t size = bh->b_size;
2851
2852 retry:
2853         io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2854         if (!io_end) {
2855                 pr_warn_ratelimited("%s: allocation fail\n", __func__);
2856                 schedule();
2857                 goto retry;
2858         }
2859         io_end->offset = offset;
2860         io_end->size = size;
2861         /*
2862          * We need to hold a reference to the page to make sure it
2863          * doesn't get evicted before ext4_end_io_work() has a chance
2864          * to convert the extent from written to unwritten.
2865          */
2866         io_end->page = page;
2867         get_page(io_end->page);
2868
2869         bh->b_private = io_end;
2870         bh->b_end_io = ext4_end_io_buffer_write;
2871         return 0;
2872 }
2873
2874 /*
2875  * For ext4 extent files, ext4 will do direct-io write to holes,
2876  * preallocated extents, and those write extend the file, no need to
2877  * fall back to buffered IO.
2878  *
2879  * For holes, we fallocate those blocks, mark them as uninitialized
2880  * If those blocks were preallocated, we mark sure they are splited, but
2881  * still keep the range to write as uninitialized.
2882  *
2883  * The unwrritten extents will be converted to written when DIO is completed.
2884  * For async direct IO, since the IO may still pending when return, we
2885  * set up an end_io call back function, which will do the conversion
2886  * when async direct IO completed.
2887  *
2888  * If the O_DIRECT write will extend the file then add this inode to the
2889  * orphan list.  So recovery will truncate it back to the original size
2890  * if the machine crashes during the write.
2891  *
2892  */
2893 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2894                               const struct iovec *iov, loff_t offset,
2895                               unsigned long nr_segs)
2896 {
2897         struct file *file = iocb->ki_filp;
2898         struct inode *inode = file->f_mapping->host;
2899         ssize_t ret;
2900         size_t count = iov_length(iov, nr_segs);
2901
2902         loff_t final_size = offset + count;
2903         if (rw == WRITE && final_size <= inode->i_size) {
2904                 /*
2905                  * We could direct write to holes and fallocate.
2906                  *
2907                  * Allocated blocks to fill the hole are marked as uninitialized
2908                  * to prevent parallel buffered read to expose the stale data
2909                  * before DIO complete the data IO.
2910                  *
2911                  * As to previously fallocated extents, ext4 get_block
2912                  * will just simply mark the buffer mapped but still
2913                  * keep the extents uninitialized.
2914                  *
2915                  * for non AIO case, we will convert those unwritten extents
2916                  * to written after return back from blockdev_direct_IO.
2917                  *
2918                  * for async DIO, the conversion needs to be defered when
2919                  * the IO is completed. The ext4 end_io callback function
2920                  * will be called to take care of the conversion work.
2921                  * Here for async case, we allocate an io_end structure to
2922                  * hook to the iocb.
2923                  */
2924                 iocb->private = NULL;
2925                 EXT4_I(inode)->cur_aio_dio = NULL;
2926                 if (!is_sync_kiocb(iocb)) {
2927                         iocb->private = ext4_init_io_end(inode, GFP_NOFS);
2928                         if (!iocb->private)
2929                                 return -ENOMEM;
2930                         /*
2931                          * we save the io structure for current async
2932                          * direct IO, so that later ext4_map_blocks()
2933                          * could flag the io structure whether there
2934                          * is a unwritten extents needs to be converted
2935                          * when IO is completed.
2936                          */
2937                         EXT4_I(inode)->cur_aio_dio = iocb->private;
2938                 }
2939
2940                 ret = __blockdev_direct_IO(rw, iocb, inode,
2941                                          inode->i_sb->s_bdev, iov,
2942                                          offset, nr_segs,
2943                                          ext4_get_block_write,
2944                                          ext4_end_io_dio,
2945                                          NULL,
2946                                          DIO_LOCKING | DIO_SKIP_HOLES);
2947                 if (iocb->private)
2948                         EXT4_I(inode)->cur_aio_dio = NULL;
2949                 /*
2950                  * The io_end structure takes a reference to the inode,
2951                  * that structure needs to be destroyed and the
2952                  * reference to the inode need to be dropped, when IO is
2953                  * complete, even with 0 byte write, or failed.
2954                  *
2955                  * In the successful AIO DIO case, the io_end structure will be
2956                  * desctroyed and the reference to the inode will be dropped
2957                  * after the end_io call back function is called.
2958                  *
2959                  * In the case there is 0 byte write, or error case, since
2960                  * VFS direct IO won't invoke the end_io call back function,
2961                  * we need to free the end_io structure here.
2962                  */
2963                 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
2964                         ext4_free_io_end(iocb->private);
2965                         iocb->private = NULL;
2966                 } else if (ret > 0 && ext4_test_inode_state(inode,
2967                                                 EXT4_STATE_DIO_UNWRITTEN)) {
2968                         int err;
2969                         /*
2970                          * for non AIO case, since the IO is already
2971                          * completed, we could do the conversion right here
2972                          */
2973                         err = ext4_convert_unwritten_extents(inode,
2974                                                              offset, ret);
2975                         if (err < 0)
2976                                 ret = err;
2977                         ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
2978                 }
2979                 return ret;
2980         }
2981
2982         /* for write the the end of file case, we fall back to old way */
2983         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2984 }
2985
2986 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2987                               const struct iovec *iov, loff_t offset,
2988                               unsigned long nr_segs)
2989 {
2990         struct file *file = iocb->ki_filp;
2991         struct inode *inode = file->f_mapping->host;
2992         ssize_t ret;
2993
2994         /*
2995          * If we are doing data journalling we don't support O_DIRECT
2996          */
2997         if (ext4_should_journal_data(inode))
2998                 return 0;
2999
3000         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3001         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3002                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3003         else
3004                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3005         trace_ext4_direct_IO_exit(inode, offset,
3006                                 iov_length(iov, nr_segs), rw, ret);
3007         return ret;
3008 }
3009
3010 /*
3011  * Pages can be marked dirty completely asynchronously from ext4's journalling
3012  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3013  * much here because ->set_page_dirty is called under VFS locks.  The page is
3014  * not necessarily locked.
3015  *
3016  * We cannot just dirty the page and leave attached buffers clean, because the
3017  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3018  * or jbddirty because all the journalling code will explode.
3019  *
3020  * So what we do is to mark the page "pending dirty" and next time writepage
3021  * is called, propagate that into the buffers appropriately.
3022  */
3023 static int ext4_journalled_set_page_dirty(struct page *page)
3024 {
3025         SetPageChecked(page);
3026         return __set_page_dirty_nobuffers(page);
3027 }
3028
3029 static const struct address_space_operations ext4_ordered_aops = {
3030         .readpage               = ext4_readpage,
3031         .readpages              = ext4_readpages,
3032         .writepage              = ext4_writepage,
3033         .write_begin            = ext4_write_begin,
3034         .write_end              = ext4_ordered_write_end,
3035         .bmap                   = ext4_bmap,
3036         .invalidatepage         = ext4_invalidatepage,
3037         .releasepage            = ext4_releasepage,
3038         .direct_IO              = ext4_direct_IO,
3039         .migratepage            = buffer_migrate_page,
3040         .is_partially_uptodate  = block_is_partially_uptodate,
3041         .error_remove_page      = generic_error_remove_page,
3042 };
3043
3044 static const struct address_space_operations ext4_writeback_aops = {
3045         .readpage               = ext4_readpage,
3046         .readpages              = ext4_readpages,
3047         .writepage              = ext4_writepage,
3048         .write_begin            = ext4_write_begin,
3049         .write_end              = ext4_writeback_write_end,
3050         .bmap                   = ext4_bmap,
3051         .invalidatepage         = ext4_invalidatepage,
3052         .releasepage            = ext4_releasepage,
3053         .direct_IO              = ext4_direct_IO,
3054         .migratepage            = buffer_migrate_page,
3055         .is_partially_uptodate  = block_is_partially_uptodate,
3056         .error_remove_page      = generic_error_remove_page,
3057 };
3058
3059 static const struct address_space_operations ext4_journalled_aops = {
3060         .readpage               = ext4_readpage,
3061         .readpages              = ext4_readpages,
3062         .writepage              = ext4_writepage,
3063         .write_begin            = ext4_write_begin,
3064         .write_end              = ext4_journalled_write_end,
3065         .set_page_dirty         = ext4_journalled_set_page_dirty,
3066         .bmap                   = ext4_bmap,
3067         .invalidatepage         = ext4_invalidatepage,
3068         .releasepage            = ext4_releasepage,
3069         .direct_IO              = ext4_direct_IO,
3070         .is_partially_uptodate  = block_is_partially_uptodate,
3071         .error_remove_page      = generic_error_remove_page,
3072 };
3073
3074 static const struct address_space_operations ext4_da_aops = {
3075         .readpage               = ext4_readpage,
3076         .readpages              = ext4_readpages,
3077         .writepage              = ext4_writepage,
3078         .writepages             = ext4_da_writepages,
3079         .write_begin            = ext4_da_write_begin,
3080         .write_end              = ext4_da_write_end,
3081         .bmap                   = ext4_bmap,
3082         .invalidatepage         = ext4_da_invalidatepage,
3083         .releasepage            = ext4_releasepage,
3084         .direct_IO              = ext4_direct_IO,
3085         .migratepage            = buffer_migrate_page,
3086         .is_partially_uptodate  = block_is_partially_uptodate,
3087         .error_remove_page      = generic_error_remove_page,
3088 };
3089
3090 void ext4_set_aops(struct inode *inode)
3091 {
3092         if (ext4_should_order_data(inode) &&
3093                 test_opt(inode->i_sb, DELALLOC))
3094                 inode->i_mapping->a_ops = &ext4_da_aops;
3095         else if (ext4_should_order_data(inode))
3096                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3097         else if (ext4_should_writeback_data(inode) &&
3098                  test_opt(inode->i_sb, DELALLOC))
3099                 inode->i_mapping->a_ops = &ext4_da_aops;
3100         else if (ext4_should_writeback_data(inode))
3101                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3102         else
3103                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3104 }
3105
3106
3107 /*
3108  * ext4_discard_partial_page_buffers()
3109  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3110  * This function finds and locks the page containing the offset
3111  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3112  * Calling functions that already have the page locked should call
3113  * ext4_discard_partial_page_buffers_no_lock directly.
3114  */
3115 int ext4_discard_partial_page_buffers(handle_t *handle,
3116                 struct address_space *mapping, loff_t from,
3117                 loff_t length, int flags)
3118 {
3119         struct inode *inode = mapping->host;
3120         struct page *page;
3121         int err = 0;
3122
3123         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3124                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3125         if (!page)
3126                 return -EINVAL;
3127
3128         err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3129                 from, length, flags);
3130
3131         unlock_page(page);
3132         page_cache_release(page);
3133         return err;
3134 }
3135
3136 /*
3137  * ext4_discard_partial_page_buffers_no_lock()
3138  * Zeros a page range of length 'length' starting from offset 'from'.
3139  * Buffer heads that correspond to the block aligned regions of the
3140  * zeroed range will be unmapped.  Unblock aligned regions
3141  * will have the corresponding buffer head mapped if needed so that
3142  * that region of the page can be updated with the partial zero out.
3143  *
3144  * This function assumes that the page has already been  locked.  The
3145  * The range to be discarded must be contained with in the given page.
3146  * If the specified range exceeds the end of the page it will be shortened
3147  * to the end of the page that corresponds to 'from'.  This function is
3148  * appropriate for updating a page and it buffer heads to be unmapped and
3149  * zeroed for blocks that have been either released, or are going to be
3150  * released.
3151  *
3152  * handle: The journal handle
3153  * inode:  The files inode
3154  * page:   A locked page that contains the offset "from"
3155  * from:   The starting byte offset (from the begining of the file)
3156  *         to begin discarding
3157  * len:    The length of bytes to discard
3158  * flags:  Optional flags that may be used:
3159  *
3160  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3161  *         Only zero the regions of the page whose buffer heads
3162  *         have already been unmapped.  This flag is appropriate
3163  *         for updateing the contents of a page whose blocks may
3164  *         have already been released, and we only want to zero
3165  *         out the regions that correspond to those released blocks.
3166  *
3167  * Returns zero on sucess or negative on failure.
3168  */
3169 int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3170                 struct inode *inode, struct page *page, loff_t from,
3171                 loff_t length, int flags)
3172 {
3173         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3174         unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3175         unsigned int blocksize, max, pos;
3176         unsigned int end_of_block, range_to_discard;
3177         ext4_lblk_t iblock;
3178         struct buffer_head *bh;
3179         int err = 0;
3180
3181         blocksize = inode->i_sb->s_blocksize;
3182         max = PAGE_CACHE_SIZE - offset;
3183
3184         if (index != page->index)
3185                 return -EINVAL;
3186
3187         /*
3188          * correct length if it does not fall between
3189          * 'from' and the end of the page
3190          */
3191         if (length > max || length < 0)
3192                 length = max;
3193
3194         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3195
3196         if (!page_has_buffers(page)) {
3197                 /*
3198                  * If the range to be discarded covers a partial block
3199                  * we need to get the page buffers.  This is because
3200                  * partial blocks cannot be released and the page needs
3201                  * to be updated with the contents of the block before
3202                  * we write the zeros on top of it.
3203                  */
3204                 if (!(from & (blocksize - 1)) ||
3205                     !((from + length) & (blocksize - 1))) {
3206                         create_empty_buffers(page, blocksize, 0);
3207                 } else {
3208                         /*
3209                          * If there are no partial blocks,
3210                          * there is nothing to update,
3211                          * so we can return now
3212                          */
3213                         return 0;
3214                 }
3215         }
3216
3217         /* Find the buffer that contains "offset" */
3218         bh = page_buffers(page);
3219         pos = blocksize;
3220         while (offset >= pos) {
3221                 bh = bh->b_this_page;
3222                 iblock++;
3223                 pos += blocksize;
3224         }
3225
3226         pos = offset;
3227         while (pos < offset + length) {
3228                 err = 0;
3229
3230                 /* The length of space left to zero and unmap */
3231                 range_to_discard = offset + length - pos;
3232
3233                 /* The length of space until the end of the block */
3234                 end_of_block = blocksize - (pos & (blocksize-1));
3235
3236                 /*
3237                  * Do not unmap or zero past end of block
3238                  * for this buffer head
3239                  */
3240                 if (range_to_discard > end_of_block)
3241                         range_to_discard = end_of_block;
3242
3243
3244                 /*
3245                  * Skip this buffer head if we are only zeroing unampped
3246                  * regions of the page
3247                  */
3248                 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3249                         buffer_mapped(bh))
3250                                 goto next;
3251
3252                 /* If the range is block aligned, unmap */
3253                 if (range_to_discard == blocksize) {
3254                         clear_buffer_dirty(bh);
3255                         bh->b_bdev = NULL;
3256                         clear_buffer_mapped(bh);
3257                         clear_buffer_req(bh);
3258                         clear_buffer_new(bh);
3259                         clear_buffer_delay(bh);
3260                         clear_buffer_unwritten(bh);
3261                         clear_buffer_uptodate(bh);
3262                         zero_user(page, pos, range_to_discard);
3263                         BUFFER_TRACE(bh, "Buffer discarded");
3264                         goto next;
3265                 }
3266
3267                 /*
3268                  * If this block is not completely contained in the range
3269                  * to be discarded, then it is not going to be released. Because
3270                  * we need to keep this block, we need to make sure this part
3271                  * of the page is uptodate before we modify it by writeing
3272                  * partial zeros on it.
3273                  */
3274                 if (!buffer_mapped(bh)) {
3275                         /*
3276                          * Buffer head must be mapped before we can read
3277                          * from the block
3278                          */
3279                         BUFFER_TRACE(bh, "unmapped");
3280                         ext4_get_block(inode, iblock, bh, 0);
3281                         /* unmapped? It's a hole - nothing to do */
3282                         if (!buffer_mapped(bh)) {
3283                                 BUFFER_TRACE(bh, "still unmapped");
3284                                 goto next;
3285                         }
3286                 }
3287
3288                 /* Ok, it's mapped. Make sure it's up-to-date */
3289                 if (PageUptodate(page))
3290                         set_buffer_uptodate(bh);
3291
3292                 if (!buffer_uptodate(bh)) {
3293                         err = -EIO;
3294                         ll_rw_block(READ, 1, &bh);
3295                         wait_on_buffer(bh);
3296                         /* Uhhuh. Read error. Complain and punt.*/
3297                         if (!buffer_uptodate(bh))
3298                                 goto next;
3299                 }
3300
3301                 if (ext4_should_journal_data(inode)) {
3302                         BUFFER_TRACE(bh, "get write access");
3303                         err = ext4_journal_get_write_access(handle, bh);
3304                         if (err)
3305                                 goto next;
3306                 }
3307
3308                 zero_user(page, pos, range_to_discard);
3309
3310                 err = 0;
3311                 if (ext4_should_journal_data(inode)) {
3312                         err = ext4_handle_dirty_metadata(handle, inode, bh);
3313                 } else
3314                         mark_buffer_dirty(bh);
3315
3316                 BUFFER_TRACE(bh, "Partial buffer zeroed");
3317 next:
3318                 bh = bh->b_this_page;
3319                 iblock++;
3320                 pos += range_to_discard;
3321         }
3322
3323         return err;
3324 }
3325
3326 /*
3327  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3328  * up to the end of the block which corresponds to `from'.
3329  * This required during truncate. We need to physically zero the tail end
3330  * of that block so it doesn't yield old data if the file is later grown.
3331  */
3332 int ext4_block_truncate_page(handle_t *handle,
3333                 struct address_space *mapping, loff_t from)
3334 {
3335         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3336         unsigned length;
3337         unsigned blocksize;
3338         struct inode *inode = mapping->host;
3339
3340         blocksize = inode->i_sb->s_blocksize;
3341         length = blocksize - (offset & (blocksize - 1));
3342
3343         return ext4_block_zero_page_range(handle, mapping, from, length);
3344 }
3345
3346 /*
3347  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3348  * starting from file offset 'from'.  The range to be zero'd must
3349  * be contained with in one block.  If the specified range exceeds
3350  * the end of the block it will be shortened to end of the block
3351  * that cooresponds to 'from'
3352  */
3353 int ext4_block_zero_page_range(handle_t *handle,
3354                 struct address_space *mapping, loff_t from, loff_t length)
3355 {
3356         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3357         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3358         unsigned blocksize, max, pos;
3359         ext4_lblk_t iblock;
3360         struct inode *inode = mapping->host;
3361         struct buffer_head *bh;
3362         struct page *page;
3363         int err = 0;
3364
3365         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3366                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3367         if (!page)
3368                 return -EINVAL;
3369
3370         blocksize = inode->i_sb->s_blocksize;
3371         max = blocksize - (offset & (blocksize - 1));
3372
3373         /*
3374          * correct length if it does not fall between
3375          * 'from' and the end of the block
3376          */
3377         if (length > max || length < 0)
3378                 length = max;
3379
3380         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3381
3382         if (!page_has_buffers(page))
3383                 create_empty_buffers(page, blocksize, 0);
3384
3385         /* Find the buffer that contains "offset" */
3386         bh = page_buffers(page);
3387         pos = blocksize;
3388         while (offset >= pos) {
3389                 bh = bh->b_this_page;
3390                 iblock++;
3391                 pos += blocksize;
3392         }
3393
3394         err = 0;
3395         if (buffer_freed(bh)) {
3396                 BUFFER_TRACE(bh, "freed: skip");
3397                 goto unlock;
3398         }
3399
3400         if (!buffer_mapped(bh)) {
3401                 BUFFER_TRACE(bh, "unmapped");
3402                 ext4_get_block(inode, iblock, bh, 0);
3403                 /* unmapped? It's a hole - nothing to do */
3404                 if (!buffer_mapped(bh)) {
3405                         BUFFER_TRACE(bh, "still unmapped");
3406                         goto unlock;
3407                 }
3408         }
3409
3410         /* Ok, it's mapped. Make sure it's up-to-date */
3411         if (PageUptodate(page))
3412                 set_buffer_uptodate(bh);
3413
3414         if (!buffer_uptodate(bh)) {
3415                 err = -EIO;
3416                 ll_rw_block(READ, 1, &bh);
3417                 wait_on_buffer(bh);
3418                 /* Uhhuh. Read error. Complain and punt. */
3419                 if (!buffer_uptodate(bh))
3420                         goto unlock;
3421         }
3422
3423         if (ext4_should_journal_data(inode)) {
3424                 BUFFER_TRACE(bh, "get write access");
3425                 err = ext4_journal_get_write_access(handle, bh);
3426                 if (err)
3427                         goto unlock;
3428         }
3429
3430         zero_user(page, offset, length);
3431
3432         BUFFER_TRACE(bh, "zeroed end of block");
3433
3434         err = 0;
3435         if (ext4_should_journal_data(inode)) {
3436                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3437         } else
3438                 mark_buffer_dirty(bh);
3439
3440 unlock:
3441         unlock_page(page);
3442         page_cache_release(page);
3443         return err;
3444 }
3445
3446 int ext4_can_truncate(struct inode *inode)
3447 {
3448         if (S_ISREG(inode->i_mode))
3449                 return 1;
3450         if (S_ISDIR(inode->i_mode))
3451                 return 1;
3452         if (S_ISLNK(inode->i_mode))
3453                 return !ext4_inode_is_fast_symlink(inode);
3454         return 0;
3455 }
3456
3457 /*
3458  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3459  * associated with the given offset and length
3460  *
3461  * @inode:  File inode
3462  * @offset: The offset where the hole will begin
3463  * @len:    The length of the hole
3464  *
3465  * Returns: 0 on sucess or negative on failure
3466  */
3467
3468 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3469 {
3470         struct inode *inode = file->f_path.dentry->d_inode;
3471         if (!S_ISREG(inode->i_mode))
3472                 return -ENOTSUPP;
3473
3474         if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3475                 /* TODO: Add support for non extent hole punching */
3476                 return -ENOTSUPP;
3477         }
3478
3479         if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3480                 /* TODO: Add support for bigalloc file systems */
3481                 return -ENOTSUPP;
3482         }
3483
3484         return ext4_ext_punch_hole(file, offset, length);
3485 }
3486
3487 /*
3488  * ext4_truncate()
3489  *
3490  * We block out ext4_get_block() block instantiations across the entire
3491  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3492  * simultaneously on behalf of the same inode.
3493  *
3494  * As we work through the truncate and commmit bits of it to the journal there
3495  * is one core, guiding principle: the file's tree must always be consistent on
3496  * disk.  We must be able to restart the truncate after a crash.
3497  *
3498  * The file's tree may be transiently inconsistent in memory (although it
3499  * probably isn't), but whenever we close off and commit a journal transaction,
3500  * the contents of (the filesystem + the journal) must be consistent and
3501  * restartable.  It's pretty simple, really: bottom up, right to left (although
3502  * left-to-right works OK too).
3503  *
3504  * Note that at recovery time, journal replay occurs *before* the restart of
3505  * truncate against the orphan inode list.
3506  *
3507  * The committed inode has the new, desired i_size (which is the same as
3508  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3509  * that this inode's truncate did not complete and it will again call
3510  * ext4_truncate() to have another go.  So there will be instantiated blocks
3511  * to the right of the truncation point in a crashed ext4 filesystem.  But
3512  * that's fine - as long as they are linked from the inode, the post-crash
3513  * ext4_truncate() run will find them and release them.
3514  */
3515 void ext4_truncate(struct inode *inode)
3516 {
3517         trace_ext4_truncate_enter(inode);
3518
3519         if (!ext4_can_truncate(inode))
3520                 return;
3521
3522         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3523
3524         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3525                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3526
3527         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3528                 ext4_ext_truncate(inode);
3529         else
3530                 ext4_ind_truncate(inode);
3531
3532         trace_ext4_truncate_exit(inode);
3533 }
3534
3535 /*
3536  * ext4_get_inode_loc returns with an extra refcount against the inode's
3537  * underlying buffer_head on success. If 'in_mem' is true, we have all
3538  * data in memory that is needed to recreate the on-disk version of this
3539  * inode.
3540  */
3541 static int __ext4_get_inode_loc(struct inode *inode,
3542                                 struct ext4_iloc *iloc, int in_mem)
3543 {
3544         struct ext4_group_desc  *gdp;
3545         struct buffer_head      *bh;
3546         struct super_block      *sb = inode->i_sb;
3547         ext4_fsblk_t            block;
3548         int                     inodes_per_block, inode_offset;
3549
3550         iloc->bh = NULL;
3551         if (!ext4_valid_inum(sb, inode->i_ino))
3552                 return -EIO;
3553
3554         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3555         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3556         if (!gdp)
3557                 return -EIO;
3558
3559         /*
3560          * Figure out the offset within the block group inode table
3561          */
3562         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3563         inode_offset = ((inode->i_ino - 1) %
3564                         EXT4_INODES_PER_GROUP(sb));
3565         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3566         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3567
3568         bh = sb_getblk(sb, block);
3569         if (!bh) {
3570                 EXT4_ERROR_INODE_BLOCK(inode, block,
3571                                        "unable to read itable block");
3572                 return -EIO;
3573         }
3574         if (!buffer_uptodate(bh)) {
3575                 lock_buffer(bh);
3576
3577                 /*
3578                  * If the buffer has the write error flag, we have failed
3579                  * to write out another inode in the same block.  In this
3580                  * case, we don't have to read the block because we may
3581                  * read the old inode data successfully.
3582                  */
3583                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3584                         set_buffer_uptodate(bh);
3585
3586                 if (buffer_uptodate(bh)) {
3587                         /* someone brought it uptodate while we waited */
3588                         unlock_buffer(bh);
3589                         goto has_buffer;
3590                 }
3591
3592                 /*
3593                  * If we have all information of the inode in memory and this
3594                  * is the only valid inode in the block, we need not read the
3595                  * block.
3596                  */
3597                 if (in_mem) {
3598                         struct buffer_head *bitmap_bh;
3599                         int i, start;
3600
3601                         start = inode_offset & ~(inodes_per_block - 1);
3602
3603                         /* Is the inode bitmap in cache? */
3604                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3605                         if (!bitmap_bh)
3606                                 goto make_io;
3607
3608                         /*
3609                          * If the inode bitmap isn't in cache then the
3610                          * optimisation may end up performing two reads instead
3611                          * of one, so skip it.
3612                          */
3613                         if (!buffer_uptodate(bitmap_bh)) {
3614                                 brelse(bitmap_bh);
3615                                 goto make_io;
3616                         }
3617                         for (i = start; i < start + inodes_per_block; i++) {
3618                                 if (i == inode_offset)
3619                                         continue;
3620                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3621                                         break;
3622                         }
3623                         brelse(bitmap_bh);
3624                         if (i == start + inodes_per_block) {
3625                                 /* all other inodes are free, so skip I/O */
3626                                 memset(bh->b_data, 0, bh->b_size);
3627                                 set_buffer_uptodate(bh);
3628                                 unlock_buffer(bh);
3629                                 goto has_buffer;
3630                         }
3631                 }
3632
3633 make_io:
3634                 /*
3635                  * If we need to do any I/O, try to pre-readahead extra
3636                  * blocks from the inode table.
3637                  */
3638                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3639                         ext4_fsblk_t b, end, table;
3640                         unsigned num;
3641
3642                         table = ext4_inode_table(sb, gdp);
3643                         /* s_inode_readahead_blks is always a power of 2 */
3644                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3645                         if (table > b)
3646                                 b = table;
3647                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3648                         num = EXT4_INODES_PER_GROUP(sb);
3649                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3650                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3651                                 num -= ext4_itable_unused_count(sb, gdp);
3652                         table += num / inodes_per_block;
3653                         if (end > table)
3654                                 end = table;
3655                         while (b <= end)
3656                                 sb_breadahead(sb, b++);
3657                 }
3658
3659                 /*
3660                  * There are other valid inodes in the buffer, this inode
3661                  * has in-inode xattrs, or we don't have this inode in memory.
3662                  * Read the block from disk.
3663                  */
3664                 trace_ext4_load_inode(inode);
3665                 get_bh(bh);
3666                 bh->b_end_io = end_buffer_read_sync;
3667                 submit_bh(READ_META, bh);
3668                 wait_on_buffer(bh);
3669                 if (!buffer_uptodate(bh)) {
3670                         EXT4_ERROR_INODE_BLOCK(inode, block,
3671                                                "unable to read itable block");
3672                         brelse(bh);
3673                         return -EIO;
3674                 }
3675         }
3676 has_buffer:
3677         iloc->bh = bh;
3678         return 0;
3679 }
3680
3681 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3682 {
3683         /* We have all inode data except xattrs in memory here. */
3684         return __ext4_get_inode_loc(inode, iloc,
3685                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3686 }
3687
3688 void ext4_set_inode_flags(struct inode *inode)
3689 {
3690         unsigned int flags = EXT4_I(inode)->i_flags;
3691
3692         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3693         if (flags & EXT4_SYNC_FL)
3694                 inode->i_flags |= S_SYNC;
3695         if (flags & EXT4_APPEND_FL)
3696                 inode->i_flags |= S_APPEND;
3697         if (flags & EXT4_IMMUTABLE_FL)
3698                 inode->i_flags |= S_IMMUTABLE;
3699         if (flags & EXT4_NOATIME_FL)
3700                 inode->i_flags |= S_NOATIME;
3701         if (flags & EXT4_DIRSYNC_FL)
3702                 inode->i_flags |= S_DIRSYNC;
3703 }
3704
3705 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3706 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3707 {
3708         unsigned int vfs_fl;
3709         unsigned long old_fl, new_fl;
3710
3711         do {
3712                 vfs_fl = ei->vfs_inode.i_flags;
3713                 old_fl = ei->i_flags;
3714                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3715                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3716                                 EXT4_DIRSYNC_FL);
3717                 if (vfs_fl & S_SYNC)
3718                         new_fl |= EXT4_SYNC_FL;
3719                 if (vfs_fl & S_APPEND)
3720                         new_fl |= EXT4_APPEND_FL;
3721                 if (vfs_fl & S_IMMUTABLE)
3722                         new_fl |= EXT4_IMMUTABLE_FL;
3723                 if (vfs_fl & S_NOATIME)
3724                         new_fl |= EXT4_NOATIME_FL;
3725                 if (vfs_fl & S_DIRSYNC)
3726                         new_fl |= EXT4_DIRSYNC_FL;
3727         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3728 }
3729
3730 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3731                                   struct ext4_inode_info *ei)
3732 {
3733         blkcnt_t i_blocks ;
3734         struct inode *inode = &(ei->vfs_inode);
3735         struct super_block *sb = inode->i_sb;
3736
3737         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3738                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3739                 /* we are using combined 48 bit field */
3740                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3741                                         le32_to_cpu(raw_inode->i_blocks_lo);
3742                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3743                         /* i_blocks represent file system block size */
3744                         return i_blocks  << (inode->i_blkbits - 9);
3745                 } else {
3746                         return i_blocks;
3747                 }
3748         } else {
3749                 return le32_to_cpu(raw_inode->i_blocks_lo);
3750         }
3751 }
3752
3753 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3754 {
3755         struct ext4_iloc iloc;
3756         struct ext4_inode *raw_inode;
3757         struct ext4_inode_info *ei;
3758         struct inode *inode;
3759         journal_t *journal = EXT4_SB(sb)->s_journal;
3760         long ret;
3761         int block;
3762
3763         inode = iget_locked(sb, ino);
3764         if (!inode)
3765                 return ERR_PTR(-ENOMEM);
3766         if (!(inode->i_state & I_NEW))
3767                 return inode;
3768
3769         ei = EXT4_I(inode);
3770         iloc.bh = NULL;
3771
3772         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3773         if (ret < 0)
3774                 goto bad_inode;
3775         raw_inode = ext4_raw_inode(&iloc);
3776         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3777         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3778         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3779         if (!(test_opt(inode->i_sb, NO_UID32))) {
3780                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3781                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3782         }
3783         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
3784
3785         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
3786         ei->i_dir_start_lookup = 0;
3787         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3788         /* We now have enough fields to check if the inode was active or not.
3789          * This is needed because nfsd might try to access dead inodes
3790          * the test is that same one that e2fsck uses
3791          * NeilBrown 1999oct15
3792          */
3793         if (inode->i_nlink == 0) {
3794                 if (inode->i_mode == 0 ||
3795                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3796                         /* this inode is deleted */
3797                         ret = -ESTALE;
3798                         goto bad_inode;
3799                 }
3800                 /* The only unlinked inodes we let through here have
3801                  * valid i_mode and are being read by the orphan
3802                  * recovery code: that's fine, we're about to complete
3803                  * the process of deleting those. */
3804         }
3805         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3806         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3807         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3808         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3809                 ei->i_file_acl |=
3810                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3811         inode->i_size = ext4_isize(raw_inode);
3812         ei->i_disksize = inode->i_size;
3813 #ifdef CONFIG_QUOTA
3814         ei->i_reserved_quota = 0;
3815 #endif
3816         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3817         ei->i_block_group = iloc.block_group;
3818         ei->i_last_alloc_group = ~0;
3819         /*
3820          * NOTE! The in-memory inode i_data array is in little-endian order
3821          * even on big-endian machines: we do NOT byteswap the block numbers!
3822          */
3823         for (block = 0; block < EXT4_N_BLOCKS; block++)
3824                 ei->i_data[block] = raw_inode->i_block[block];
3825         INIT_LIST_HEAD(&ei->i_orphan);
3826
3827         /*
3828          * Set transaction id's of transactions that have to be committed
3829          * to finish f[data]sync. We set them to currently running transaction
3830          * as we cannot be sure that the inode or some of its metadata isn't
3831          * part of the transaction - the inode could have been reclaimed and
3832          * now it is reread from disk.
3833          */
3834         if (journal) {
3835                 transaction_t *transaction;
3836                 tid_t tid;
3837
3838                 read_lock(&journal->j_state_lock);
3839                 if (journal->j_running_transaction)
3840                         transaction = journal->j_running_transaction;
3841                 else
3842                         transaction = journal->j_committing_transaction;
3843                 if (transaction)
3844                         tid = transaction->t_tid;
3845                 else
3846                         tid = journal->j_commit_sequence;
3847                 read_unlock(&journal->j_state_lock);
3848                 ei->i_sync_tid = tid;
3849                 ei->i_datasync_tid = tid;
3850         }
3851
3852         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3853                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3854                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3855                     EXT4_INODE_SIZE(inode->i_sb)) {
3856                         ret = -EIO;
3857                         goto bad_inode;
3858                 }
3859                 if (ei->i_extra_isize == 0) {
3860                         /* The extra space is currently unused. Use it. */
3861                         ei->i_extra_isize = sizeof(struct ext4_inode) -
3862                                             EXT4_GOOD_OLD_INODE_SIZE;
3863                 } else {
3864                         __le32 *magic = (void *)raw_inode +
3865                                         EXT4_GOOD_OLD_INODE_SIZE +
3866                                         ei->i_extra_isize;
3867                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3868                                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3869                 }
3870         } else
3871                 ei->i_extra_isize = 0;
3872
3873         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3874         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3875         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3876         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3877
3878         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3879         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3880                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3881                         inode->i_version |=
3882                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3883         }
3884
3885         ret = 0;
3886         if (ei->i_file_acl &&
3887             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3888                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3889                                  ei->i_file_acl);
3890                 ret = -EIO;
3891                 goto bad_inode;
3892         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3893                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3894                     (S_ISLNK(inode->i_mode) &&
3895                      !ext4_inode_is_fast_symlink(inode)))
3896                         /* Validate extent which is part of inode */
3897                         ret = ext4_ext_check_inode(inode);
3898         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3899                    (S_ISLNK(inode->i_mode) &&
3900                     !ext4_inode_is_fast_symlink(inode))) {
3901                 /* Validate block references which are part of inode */
3902                 ret = ext4_ind_check_inode(inode);
3903         }
3904         if (ret)
3905                 goto bad_inode;
3906
3907         if (S_ISREG(inode->i_mode)) {
3908                 inode->i_op = &ext4_file_inode_operations;
3909                 inode->i_fop = &ext4_file_operations;
3910                 ext4_set_aops(inode);
3911         } else if (S_ISDIR(inode->i_mode)) {
3912                 inode->i_op = &ext4_dir_inode_operations;
3913                 inode->i_fop = &ext4_dir_operations;
3914         } else if (S_ISLNK(inode->i_mode)) {
3915                 if (ext4_inode_is_fast_symlink(inode)) {
3916                         inode->i_op = &ext4_fast_symlink_inode_operations;
3917                         nd_terminate_link(ei->i_data, inode->i_size,
3918                                 sizeof(ei->i_data) - 1);
3919                 } else {
3920                         inode->i_op = &ext4_symlink_inode_operations;
3921                         ext4_set_aops(inode);
3922                 }
3923         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3924               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3925                 inode->i_op = &ext4_special_inode_operations;
3926                 if (raw_inode->i_block[0])
3927                         init_special_inode(inode, inode->i_mode,
3928                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3929                 else
3930                         init_special_inode(inode, inode->i_mode,
3931                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3932         } else {
3933                 ret = -EIO;
3934                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3935                 goto bad_inode;
3936         }
3937         brelse(iloc.bh);
3938         ext4_set_inode_flags(inode);
3939         unlock_new_inode(inode);
3940         return inode;
3941
3942 bad_inode:
3943         brelse(iloc.bh);
3944         iget_failed(inode);
3945         return ERR_PTR(ret);
3946 }
3947
3948 static int ext4_inode_blocks_set(handle_t *handle,
3949                                 struct ext4_inode *raw_inode,
3950                                 struct ext4_inode_info *ei)
3951 {
3952         struct inode *inode = &(ei->vfs_inode);
3953         u64 i_blocks = inode->i_blocks;
3954         struct super_block *sb = inode->i_sb;
3955
3956         if (i_blocks <= ~0U) {
3957                 /*
3958                  * i_blocks can be represnted in a 32 bit variable
3959                  * as multiple of 512 bytes
3960                  */
3961                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3962                 raw_inode->i_blocks_high = 0;
3963                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3964                 return 0;
3965         }
3966         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3967                 return -EFBIG;
3968
3969         if (i_blocks <= 0xffffffffffffULL) {
3970                 /*
3971                  * i_blocks can be represented in a 48 bit variable
3972                  * as multiple of 512 bytes
3973                  */
3974                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3975                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3976                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3977         } else {
3978                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3979                 /* i_block is stored in file system block size */
3980                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
3981                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3982                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3983         }
3984         return 0;
3985 }
3986
3987 /*
3988  * Post the struct inode info into an on-disk inode location in the
3989  * buffer-cache.  This gobbles the caller's reference to the
3990  * buffer_head in the inode location struct.
3991  *
3992  * The caller must have write access to iloc->bh.
3993  */
3994 static int ext4_do_update_inode(handle_t *handle,
3995                                 struct inode *inode,
3996                                 struct ext4_iloc *iloc)
3997 {
3998         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3999         struct ext4_inode_info *ei = EXT4_I(inode);
4000         struct buffer_head *bh = iloc->bh;
4001         int err = 0, rc, block;
4002
4003         /* For fields not not tracking in the in-memory inode,
4004          * initialise them to zero for new inodes. */
4005         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4006                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4007
4008         ext4_get_inode_flags(ei);
4009         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4010         if (!(test_opt(inode->i_sb, NO_UID32))) {
4011                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4012                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4013 /*
4014  * Fix up interoperability with old kernels. Otherwise, old inodes get
4015  * re-used with the upper 16 bits of the uid/gid intact
4016  */
4017                 if (!ei->i_dtime) {
4018                         raw_inode->i_uid_high =
4019                                 cpu_to_le16(high_16_bits(inode->i_uid));
4020                         raw_inode->i_gid_high =
4021                                 cpu_to_le16(high_16_bits(inode->i_gid));
4022                 } else {
4023                         raw_inode->i_uid_high = 0;
4024                         raw_inode->i_gid_high = 0;
4025                 }
4026         } else {
4027                 raw_inode->i_uid_low =
4028                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
4029                 raw_inode->i_gid_low =
4030                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
4031                 raw_inode->i_uid_high = 0;
4032                 raw_inode->i_gid_high = 0;
4033         }
4034         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4035
4036         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4037         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4038         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4039         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4040
4041         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4042                 goto out_brelse;
4043         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4044         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4045         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4046             cpu_to_le32(EXT4_OS_HURD))
4047                 raw_inode->i_file_acl_high =
4048                         cpu_to_le16(ei->i_file_acl >> 32);
4049         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4050         ext4_isize_set(raw_inode, ei->i_disksize);
4051         if (ei->i_disksize > 0x7fffffffULL) {
4052                 struct super_block *sb = inode->i_sb;
4053                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4054                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4055                                 EXT4_SB(sb)->s_es->s_rev_level ==
4056                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4057                         /* If this is the first large file
4058                          * created, add a flag to the superblock.
4059                          */
4060                         err = ext4_journal_get_write_access(handle,
4061                                         EXT4_SB(sb)->s_sbh);
4062                         if (err)
4063                                 goto out_brelse;
4064                         ext4_update_dynamic_rev(sb);
4065                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4066                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4067                         sb->s_dirt = 1;
4068                         ext4_handle_sync(handle);
4069                         err = ext4_handle_dirty_metadata(handle, NULL,
4070                                         EXT4_SB(sb)->s_sbh);
4071                 }
4072         }
4073         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4074         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4075                 if (old_valid_dev(inode->i_rdev)) {
4076                         raw_inode->i_block[0] =
4077                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4078                         raw_inode->i_block[1] = 0;
4079                 } else {
4080                         raw_inode->i_block[0] = 0;
4081                         raw_inode->i_block[1] =
4082                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4083                         raw_inode->i_block[2] = 0;
4084                 }
4085         } else
4086                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4087                         raw_inode->i_block[block] = ei->i_data[block];
4088
4089         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4090         if (ei->i_extra_isize) {
4091                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4092                         raw_inode->i_version_hi =
4093                         cpu_to_le32(inode->i_version >> 32);
4094                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4095         }
4096
4097         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4098         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4099         if (!err)
4100                 err = rc;
4101         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4102
4103         ext4_update_inode_fsync_trans(handle, inode, 0);
4104 out_brelse:
4105         brelse(bh);
4106         ext4_std_error(inode->i_sb, err);
4107         return err;
4108 }
4109
4110 /*
4111  * ext4_write_inode()
4112  *
4113  * We are called from a few places:
4114  *
4115  * - Within generic_file_write() for O_SYNC files.
4116  *   Here, there will be no transaction running. We wait for any running
4117  *   trasnaction to commit.
4118  *
4119  * - Within sys_sync(), kupdate and such.
4120  *   We wait on commit, if tol to.
4121  *
4122  * - Within prune_icache() (PF_MEMALLOC == true)
4123  *   Here we simply return.  We can't afford to block kswapd on the
4124  *   journal commit.
4125  *
4126  * In all cases it is actually safe for us to return without doing anything,
4127  * because the inode has been copied into a raw inode buffer in
4128  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4129  * knfsd.
4130  *
4131  * Note that we are absolutely dependent upon all inode dirtiers doing the
4132  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4133  * which we are interested.
4134  *
4135  * It would be a bug for them to not do this.  The code:
4136  *
4137  *      mark_inode_dirty(inode)
4138  *      stuff();
4139  *      inode->i_size = expr;
4140  *
4141  * is in error because a kswapd-driven write_inode() could occur while
4142  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4143  * will no longer be on the superblock's dirty inode list.
4144  */
4145 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4146 {
4147         int err;
4148
4149         if (current->flags & PF_MEMALLOC)
4150                 return 0;
4151
4152         if (EXT4_SB(inode->i_sb)->s_journal) {
4153                 if (ext4_journal_current_handle()) {
4154                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4155                         dump_stack();
4156                         return -EIO;
4157                 }
4158
4159                 if (wbc->sync_mode != WB_SYNC_ALL)
4160                         return 0;
4161
4162                 err = ext4_force_commit(inode->i_sb);
4163         } else {
4164                 struct ext4_iloc iloc;
4165
4166                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4167                 if (err)
4168                         return err;
4169                 if (wbc->sync_mode == WB_SYNC_ALL)
4170                         sync_dirty_buffer(iloc.bh);
4171                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4172                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4173                                          "IO error syncing inode");
4174                         err = -EIO;
4175                 }
4176                 brelse(iloc.bh);
4177         }
4178         return err;
4179 }
4180
4181 /*
4182  * ext4_setattr()
4183  *
4184  * Called from notify_change.
4185  *
4186  * We want to trap VFS attempts to truncate the file as soon as
4187  * possible.  In particular, we want to make sure that when the VFS
4188  * shrinks i_size, we put the inode on the orphan list and modify
4189  * i_disksize immediately, so that during the subsequent flushing of
4190  * dirty pages and freeing of disk blocks, we can guarantee that any
4191  * commit will leave the blocks being flushed in an unused state on
4192  * disk.  (On recovery, the inode will get truncated and the blocks will
4193  * be freed, so we have a strong guarantee that no future commit will
4194  * leave these blocks visible to the user.)
4195  *
4196  * Another thing we have to assure is that if we are in ordered mode
4197  * and inode is still attached to the committing transaction, we must
4198  * we start writeout of all the dirty pages which are being truncated.
4199  * This way we are sure that all the data written in the previous
4200  * transaction are already on disk (truncate waits for pages under
4201  * writeback).
4202  *
4203  * Called with inode->i_mutex down.
4204  */
4205 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4206 {
4207         struct inode *inode = dentry->d_inode;
4208         int error, rc = 0;
4209         int orphan = 0;
4210         const unsigned int ia_valid = attr->ia_valid;
4211
4212         error = inode_change_ok(inode, attr);
4213         if (error)
4214                 return error;
4215
4216         if (is_quota_modification(inode, attr))
4217                 dquot_initialize(inode);
4218         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4219                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4220                 handle_t *handle;
4221
4222                 /* (user+group)*(old+new) structure, inode write (sb,
4223                  * inode block, ? - but truncate inode update has it) */
4224                 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4225                                         EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4226                 if (IS_ERR(handle)) {
4227                         error = PTR_ERR(handle);
4228                         goto err_out;
4229                 }
4230                 error = dquot_transfer(inode, attr);
4231                 if (error) {
4232                         ext4_journal_stop(handle);
4233                         return error;
4234                 }
4235                 /* Update corresponding info in inode so that everything is in
4236                  * one transaction */
4237                 if (attr->ia_valid & ATTR_UID)
4238                         inode->i_uid = attr->ia_uid;
4239                 if (attr->ia_valid & ATTR_GID)
4240                         inode->i_gid = attr->ia_gid;
4241                 error = ext4_mark_inode_dirty(handle, inode);
4242                 ext4_journal_stop(handle);
4243         }
4244
4245         if (attr->ia_valid & ATTR_SIZE) {
4246                 inode_dio_wait(inode);
4247
4248                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4249                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4250
4251                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4252                                 return -EFBIG;
4253                 }
4254         }
4255
4256         if (S_ISREG(inode->i_mode) &&
4257             attr->ia_valid & ATTR_SIZE &&
4258             (attr->ia_size < inode->i_size)) {
4259                 handle_t *handle;
4260
4261                 handle = ext4_journal_start(inode, 3);
4262                 if (IS_ERR(handle)) {
4263                         error = PTR_ERR(handle);
4264                         goto err_out;
4265                 }
4266                 if (ext4_handle_valid(handle)) {
4267                         error = ext4_orphan_add(handle, inode);
4268                         orphan = 1;
4269                 }
4270                 EXT4_I(inode)->i_disksize = attr->ia_size;
4271                 rc = ext4_mark_inode_dirty(handle, inode);
4272                 if (!error)
4273                         error = rc;
4274                 ext4_journal_stop(handle);
4275
4276                 if (ext4_should_order_data(inode)) {
4277                         error = ext4_begin_ordered_truncate(inode,
4278                                                             attr->ia_size);
4279                         if (error) {
4280                                 /* Do as much error cleanup as possible */
4281                                 handle = ext4_journal_start(inode, 3);
4282                                 if (IS_ERR(handle)) {
4283                                         ext4_orphan_del(NULL, inode);
4284                                         goto err_out;
4285                                 }
4286                                 ext4_orphan_del(handle, inode);
4287                                 orphan = 0;
4288                                 ext4_journal_stop(handle);
4289                                 goto err_out;
4290                         }
4291                 }
4292         }
4293
4294         if (attr->ia_valid & ATTR_SIZE) {
4295                 if (attr->ia_size != i_size_read(inode)) {
4296                         truncate_setsize(inode, attr->ia_size);
4297                         ext4_truncate(inode);
4298                 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
4299                         ext4_truncate(inode);
4300         }
4301
4302         if (!rc) {
4303                 setattr_copy(inode, attr);
4304                 mark_inode_dirty(inode);
4305         }
4306
4307         /*
4308          * If the call to ext4_truncate failed to get a transaction handle at
4309          * all, we need to clean up the in-core orphan list manually.
4310          */
4311         if (orphan && inode->i_nlink)
4312                 ext4_orphan_del(NULL, inode);
4313
4314         if (!rc && (ia_valid & ATTR_MODE))
4315                 rc = ext4_acl_chmod(inode);
4316
4317 err_out:
4318         ext4_std_error(inode->i_sb, error);
4319         if (!error)
4320                 error = rc;
4321         return error;
4322 }
4323
4324 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4325                  struct kstat *stat)
4326 {
4327         struct inode *inode;
4328         unsigned long delalloc_blocks;
4329
4330         inode = dentry->d_inode;
4331         generic_fillattr(inode, stat);
4332
4333         /*
4334          * We can't update i_blocks if the block allocation is delayed
4335          * otherwise in the case of system crash before the real block
4336          * allocation is done, we will have i_blocks inconsistent with
4337          * on-disk file blocks.
4338          * We always keep i_blocks updated together with real
4339          * allocation. But to not confuse with user, stat
4340          * will return the blocks that include the delayed allocation
4341          * blocks for this file.
4342          */
4343         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4344
4345         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4346         return 0;
4347 }
4348
4349 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4350 {
4351         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4352                 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4353         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4354 }
4355
4356 /*
4357  * Account for index blocks, block groups bitmaps and block group
4358  * descriptor blocks if modify datablocks and index blocks
4359  * worse case, the indexs blocks spread over different block groups
4360  *
4361  * If datablocks are discontiguous, they are possible to spread over
4362  * different block groups too. If they are contiuguous, with flexbg,
4363  * they could still across block group boundary.
4364  *
4365  * Also account for superblock, inode, quota and xattr blocks
4366  */
4367 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4368 {
4369         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4370         int gdpblocks;
4371         int idxblocks;
4372         int ret = 0;
4373
4374         /*
4375          * How many index blocks need to touch to modify nrblocks?
4376          * The "Chunk" flag indicating whether the nrblocks is
4377          * physically contiguous on disk
4378          *
4379          * For Direct IO and fallocate, they calls get_block to allocate
4380          * one single extent at a time, so they could set the "Chunk" flag
4381          */
4382         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4383
4384         ret = idxblocks;
4385
4386         /*
4387          * Now let's see how many group bitmaps and group descriptors need
4388          * to account
4389          */
4390         groups = idxblocks;
4391         if (chunk)
4392                 groups += 1;
4393         else
4394                 groups += nrblocks;
4395
4396         gdpblocks = groups;
4397         if (groups > ngroups)
4398                 groups = ngroups;
4399         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4400                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4401
4402         /* bitmaps and block group descriptor blocks */
4403         ret += groups + gdpblocks;
4404
4405         /* Blocks for super block, inode, quota and xattr blocks */
4406         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4407
4408         return ret;
4409 }
4410
4411 /*
4412  * Calculate the total number of credits to reserve to fit
4413  * the modification of a single pages into a single transaction,
4414  * which may include multiple chunks of block allocations.
4415  *
4416  * This could be called via ext4_write_begin()
4417  *
4418  * We need to consider the worse case, when
4419  * one new block per extent.
4420  */
4421 int ext4_writepage_trans_blocks(struct inode *inode)
4422 {
4423         int bpp = ext4_journal_blocks_per_page(inode);
4424         int ret;
4425
4426         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4427
4428         /* Account for data blocks for journalled mode */
4429         if (ext4_should_journal_data(inode))
4430                 ret += bpp;
4431         return ret;
4432 }
4433
4434 /*
4435  * Calculate the journal credits for a chunk of data modification.
4436  *
4437  * This is called from DIO, fallocate or whoever calling
4438  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4439  *
4440  * journal buffers for data blocks are not included here, as DIO
4441  * and fallocate do no need to journal data buffers.
4442  */
4443 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4444 {
4445         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4446 }
4447
4448 /*
4449  * The caller must have previously called ext4_reserve_inode_write().
4450  * Give this, we know that the caller already has write access to iloc->bh.
4451  */
4452 int ext4_mark_iloc_dirty(handle_t *handle,
4453                          struct inode *inode, struct ext4_iloc *iloc)
4454 {
4455         int err = 0;
4456
4457         if (test_opt(inode->i_sb, I_VERSION))
4458                 inode_inc_iversion(inode);
4459
4460         /* the do_update_inode consumes one bh->b_count */
4461         get_bh(iloc->bh);
4462
4463         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4464         err = ext4_do_update_inode(handle, inode, iloc);
4465         put_bh(iloc->bh);
4466         return err;
4467 }
4468
4469 /*
4470  * On success, We end up with an outstanding reference count against
4471  * iloc->bh.  This _must_ be cleaned up later.
4472  */
4473
4474 int
4475 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4476                          struct ext4_iloc *iloc)
4477 {
4478         int err;
4479
4480         err = ext4_get_inode_loc(inode, iloc);
4481         if (!err) {
4482                 BUFFER_TRACE(iloc->bh, "get_write_access");
4483                 err = ext4_journal_get_write_access(handle, iloc->bh);
4484                 if (err) {
4485                         brelse(iloc->bh);
4486                         iloc->bh = NULL;
4487                 }
4488         }
4489         ext4_std_error(inode->i_sb, err);
4490         return err;
4491 }
4492
4493 /*
4494  * Expand an inode by new_extra_isize bytes.
4495  * Returns 0 on success or negative error number on failure.
4496  */
4497 static int ext4_expand_extra_isize(struct inode *inode,
4498                                    unsigned int new_extra_isize,
4499                                    struct ext4_iloc iloc,
4500                                    handle_t *handle)
4501 {
4502         struct ext4_inode *raw_inode;
4503         struct ext4_xattr_ibody_header *header;
4504
4505         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4506                 return 0;
4507
4508         raw_inode = ext4_raw_inode(&iloc);
4509
4510         header = IHDR(inode, raw_inode);
4511
4512         /* No extended attributes present */
4513         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4514             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4515                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4516                         new_extra_isize);
4517                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4518                 return 0;
4519         }
4520
4521         /* try to expand with EAs present */
4522         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4523                                           raw_inode, handle);
4524 }
4525
4526 /*
4527  * What we do here is to mark the in-core inode as clean with respect to inode
4528  * dirtiness (it may still be data-dirty).
4529  * This means that the in-core inode may be reaped by prune_icache
4530  * without having to perform any I/O.  This is a very good thing,
4531  * because *any* task may call prune_icache - even ones which
4532  * have a transaction open against a different journal.
4533  *
4534  * Is this cheating?  Not really.  Sure, we haven't written the
4535  * inode out, but prune_icache isn't a user-visible syncing function.
4536  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4537  * we start and wait on commits.
4538  *
4539  * Is this efficient/effective?  Well, we're being nice to the system
4540  * by cleaning up our inodes proactively so they can be reaped
4541  * without I/O.  But we are potentially leaving up to five seconds'
4542  * worth of inodes floating about which prune_icache wants us to
4543  * write out.  One way to fix that would be to get prune_icache()
4544  * to do a write_super() to free up some memory.  It has the desired
4545  * effect.
4546  */
4547 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4548 {
4549         struct ext4_iloc iloc;
4550         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4551         static unsigned int mnt_count;
4552         int err, ret;
4553
4554         might_sleep();
4555         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4556         err = ext4_reserve_inode_write(handle, inode, &iloc);
4557         if (ext4_handle_valid(handle) &&
4558             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4559             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4560                 /*
4561                  * We need extra buffer credits since we may write into EA block
4562                  * with this same handle. If journal_extend fails, then it will
4563                  * only result in a minor loss of functionality for that inode.
4564                  * If this is felt to be critical, then e2fsck should be run to
4565                  * force a large enough s_min_extra_isize.
4566                  */
4567                 if ((jbd2_journal_extend(handle,
4568                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4569                         ret = ext4_expand_extra_isize(inode,
4570                                                       sbi->s_want_extra_isize,
4571                                                       iloc, handle);
4572                         if (ret) {
4573                                 ext4_set_inode_state(inode,
4574                                                      EXT4_STATE_NO_EXPAND);
4575                                 if (mnt_count !=
4576                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4577                                         ext4_warning(inode->i_sb,
4578                                         "Unable to expand inode %lu. Delete"
4579                                         " some EAs or run e2fsck.",
4580                                         inode->i_ino);
4581                                         mnt_count =
4582                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4583                                 }
4584                         }
4585                 }
4586         }
4587         if (!err)
4588                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4589         return err;
4590 }
4591
4592 /*
4593  * ext4_dirty_inode() is called from __mark_inode_dirty()
4594  *
4595  * We're really interested in the case where a file is being extended.
4596  * i_size has been changed by generic_commit_write() and we thus need
4597  * to include the updated inode in the current transaction.
4598  *
4599  * Also, dquot_alloc_block() will always dirty the inode when blocks
4600  * are allocated to the file.
4601  *
4602  * If the inode is marked synchronous, we don't honour that here - doing
4603  * so would cause a commit on atime updates, which we don't bother doing.
4604  * We handle synchronous inodes at the highest possible level.
4605  */
4606 void ext4_dirty_inode(struct inode *inode, int flags)
4607 {
4608         handle_t *handle;
4609
4610         handle = ext4_journal_start(inode, 2);
4611         if (IS_ERR(handle))
4612                 goto out;
4613
4614         ext4_mark_inode_dirty(handle, inode);
4615
4616         ext4_journal_stop(handle);
4617 out:
4618         return;
4619 }
4620
4621 #if 0
4622 /*
4623  * Bind an inode's backing buffer_head into this transaction, to prevent
4624  * it from being flushed to disk early.  Unlike
4625  * ext4_reserve_inode_write, this leaves behind no bh reference and
4626  * returns no iloc structure, so the caller needs to repeat the iloc
4627  * lookup to mark the inode dirty later.
4628  */
4629 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4630 {
4631         struct ext4_iloc iloc;
4632
4633         int err = 0;
4634         if (handle) {
4635                 err = ext4_get_inode_loc(inode, &iloc);
4636                 if (!err) {
4637                         BUFFER_TRACE(iloc.bh, "get_write_access");
4638                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4639                         if (!err)
4640                                 err = ext4_handle_dirty_metadata(handle,
4641                                                                  NULL,
4642                                                                  iloc.bh);
4643                         brelse(iloc.bh);
4644                 }
4645         }
4646         ext4_std_error(inode->i_sb, err);
4647         return err;
4648 }
4649 #endif
4650
4651 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4652 {
4653         journal_t *journal;
4654         handle_t *handle;
4655         int err;
4656
4657         /*
4658          * We have to be very careful here: changing a data block's
4659          * journaling status dynamically is dangerous.  If we write a
4660          * data block to the journal, change the status and then delete
4661          * that block, we risk forgetting to revoke the old log record
4662          * from the journal and so a subsequent replay can corrupt data.
4663          * So, first we make sure that the journal is empty and that
4664          * nobody is changing anything.
4665          */
4666
4667         journal = EXT4_JOURNAL(inode);
4668         if (!journal)
4669                 return 0;
4670         if (is_journal_aborted(journal))
4671                 return -EROFS;
4672
4673         jbd2_journal_lock_updates(journal);
4674         jbd2_journal_flush(journal);
4675
4676         /*
4677          * OK, there are no updates running now, and all cached data is
4678          * synced to disk.  We are now in a completely consistent state
4679          * which doesn't have anything in the journal, and we know that
4680          * no filesystem updates are running, so it is safe to modify
4681          * the inode's in-core data-journaling state flag now.
4682          */
4683
4684         if (val)
4685                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4686         else
4687                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4688         ext4_set_aops(inode);
4689
4690         jbd2_journal_unlock_updates(journal);
4691
4692         /* Finally we can mark the inode as dirty. */
4693
4694         handle = ext4_journal_start(inode, 1);
4695         if (IS_ERR(handle))
4696                 return PTR_ERR(handle);
4697
4698         err = ext4_mark_inode_dirty(handle, inode);
4699         ext4_handle_sync(handle);
4700         ext4_journal_stop(handle);
4701         ext4_std_error(inode->i_sb, err);
4702
4703         return err;
4704 }
4705
4706 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4707 {
4708         return !buffer_mapped(bh);
4709 }
4710
4711 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4712 {
4713         struct page *page = vmf->page;
4714         loff_t size;
4715         unsigned long len;
4716         int ret;
4717         struct file *file = vma->vm_file;
4718         struct inode *inode = file->f_path.dentry->d_inode;
4719         struct address_space *mapping = inode->i_mapping;
4720         handle_t *handle;
4721         get_block_t *get_block;
4722         int retries = 0;
4723
4724         /*
4725          * This check is racy but catches the common case. We rely on
4726          * __block_page_mkwrite() to do a reliable check.
4727          */
4728         vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
4729         /* Delalloc case is easy... */
4730         if (test_opt(inode->i_sb, DELALLOC) &&
4731             !ext4_should_journal_data(inode) &&
4732             !ext4_nonda_switch(inode->i_sb)) {
4733                 do {
4734                         ret = __block_page_mkwrite(vma, vmf,
4735                                                    ext4_da_get_block_prep);
4736                 } while (ret == -ENOSPC &&
4737                        ext4_should_retry_alloc(inode->i_sb, &retries));
4738                 goto out_ret;
4739         }
4740
4741         lock_page(page);
4742         size = i_size_read(inode);
4743         /* Page got truncated from under us? */
4744         if (page->mapping != mapping || page_offset(page) > size) {
4745                 unlock_page(page);
4746                 ret = VM_FAULT_NOPAGE;
4747                 goto out;
4748         }
4749
4750         if (page->index == size >> PAGE_CACHE_SHIFT)
4751                 len = size & ~PAGE_CACHE_MASK;
4752         else
4753                 len = PAGE_CACHE_SIZE;
4754         /*
4755          * Return if we have all the buffers mapped. This avoids the need to do
4756          * journal_start/journal_stop which can block and take a long time
4757          */
4758         if (page_has_buffers(page)) {
4759                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4760                                         ext4_bh_unmapped)) {
4761                         /* Wait so that we don't change page under IO */
4762                         wait_on_page_writeback(page);
4763                         ret = VM_FAULT_LOCKED;
4764                         goto out;
4765                 }
4766         }
4767         unlock_page(page);
4768         /* OK, we need to fill the hole... */
4769         if (ext4_should_dioread_nolock(inode))
4770                 get_block = ext4_get_block_write;
4771         else
4772                 get_block = ext4_get_block;
4773 retry_alloc:
4774         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4775         if (IS_ERR(handle)) {
4776                 ret = VM_FAULT_SIGBUS;
4777                 goto out;
4778         }
4779         ret = __block_page_mkwrite(vma, vmf, get_block);
4780         if (!ret && ext4_should_journal_data(inode)) {
4781                 if (walk_page_buffers(handle, page_buffers(page), 0,
4782                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4783                         unlock_page(page);
4784                         ret = VM_FAULT_SIGBUS;
4785                         goto out;
4786                 }
4787                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4788         }
4789         ext4_journal_stop(handle);
4790         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4791                 goto retry_alloc;
4792 out_ret:
4793         ret = block_page_mkwrite_return(ret);
4794 out:
4795         return ret;
4796 }