ext4: improve writepage credit estimate for files with indirect blocks
[platform/upstream/kernel-adaptation-pc.git] / fs / ext4 / indirect.c
1 /*
2  *  linux/fs/ext4/indirect.c
3  *
4  *  from
5  *
6  *  linux/fs/ext4/inode.c
7  *
8  * Copyright (C) 1992, 1993, 1994, 1995
9  * Remy Card (card@masi.ibp.fr)
10  * Laboratoire MASI - Institut Blaise Pascal
11  * Universite Pierre et Marie Curie (Paris VI)
12  *
13  *  from
14  *
15  *  linux/fs/minix/inode.c
16  *
17  *  Copyright (C) 1991, 1992  Linus Torvalds
18  *
19  *  Goal-directed block allocation by Stephen Tweedie
20  *      (sct@redhat.com), 1993, 1998
21  */
22
23 #include <linux/aio.h>
24 #include "ext4_jbd2.h"
25 #include "truncate.h"
26 #include "ext4_extents.h"       /* Needed for EXT_MAX_BLOCKS */
27
28 #include <trace/events/ext4.h>
29
30 typedef struct {
31         __le32  *p;
32         __le32  key;
33         struct buffer_head *bh;
34 } Indirect;
35
36 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
37 {
38         p->key = *(p->p = v);
39         p->bh = bh;
40 }
41
42 /**
43  *      ext4_block_to_path - parse the block number into array of offsets
44  *      @inode: inode in question (we are only interested in its superblock)
45  *      @i_block: block number to be parsed
46  *      @offsets: array to store the offsets in
47  *      @boundary: set this non-zero if the referred-to block is likely to be
48  *             followed (on disk) by an indirect block.
49  *
50  *      To store the locations of file's data ext4 uses a data structure common
51  *      for UNIX filesystems - tree of pointers anchored in the inode, with
52  *      data blocks at leaves and indirect blocks in intermediate nodes.
53  *      This function translates the block number into path in that tree -
54  *      return value is the path length and @offsets[n] is the offset of
55  *      pointer to (n+1)th node in the nth one. If @block is out of range
56  *      (negative or too large) warning is printed and zero returned.
57  *
58  *      Note: function doesn't find node addresses, so no IO is needed. All
59  *      we need to know is the capacity of indirect blocks (taken from the
60  *      inode->i_sb).
61  */
62
63 /*
64  * Portability note: the last comparison (check that we fit into triple
65  * indirect block) is spelled differently, because otherwise on an
66  * architecture with 32-bit longs and 8Kb pages we might get into trouble
67  * if our filesystem had 8Kb blocks. We might use long long, but that would
68  * kill us on x86. Oh, well, at least the sign propagation does not matter -
69  * i_block would have to be negative in the very beginning, so we would not
70  * get there at all.
71  */
72
73 static int ext4_block_to_path(struct inode *inode,
74                               ext4_lblk_t i_block,
75                               ext4_lblk_t offsets[4], int *boundary)
76 {
77         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
78         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
79         const long direct_blocks = EXT4_NDIR_BLOCKS,
80                 indirect_blocks = ptrs,
81                 double_blocks = (1 << (ptrs_bits * 2));
82         int n = 0;
83         int final = 0;
84
85         if (i_block < direct_blocks) {
86                 offsets[n++] = i_block;
87                 final = direct_blocks;
88         } else if ((i_block -= direct_blocks) < indirect_blocks) {
89                 offsets[n++] = EXT4_IND_BLOCK;
90                 offsets[n++] = i_block;
91                 final = ptrs;
92         } else if ((i_block -= indirect_blocks) < double_blocks) {
93                 offsets[n++] = EXT4_DIND_BLOCK;
94                 offsets[n++] = i_block >> ptrs_bits;
95                 offsets[n++] = i_block & (ptrs - 1);
96                 final = ptrs;
97         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
98                 offsets[n++] = EXT4_TIND_BLOCK;
99                 offsets[n++] = i_block >> (ptrs_bits * 2);
100                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
101                 offsets[n++] = i_block & (ptrs - 1);
102                 final = ptrs;
103         } else {
104                 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
105                              i_block + direct_blocks +
106                              indirect_blocks + double_blocks, inode->i_ino);
107         }
108         if (boundary)
109                 *boundary = final - 1 - (i_block & (ptrs - 1));
110         return n;
111 }
112
113 /**
114  *      ext4_get_branch - read the chain of indirect blocks leading to data
115  *      @inode: inode in question
116  *      @depth: depth of the chain (1 - direct pointer, etc.)
117  *      @offsets: offsets of pointers in inode/indirect blocks
118  *      @chain: place to store the result
119  *      @err: here we store the error value
120  *
121  *      Function fills the array of triples <key, p, bh> and returns %NULL
122  *      if everything went OK or the pointer to the last filled triple
123  *      (incomplete one) otherwise. Upon the return chain[i].key contains
124  *      the number of (i+1)-th block in the chain (as it is stored in memory,
125  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
126  *      number (it points into struct inode for i==0 and into the bh->b_data
127  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
128  *      block for i>0 and NULL for i==0. In other words, it holds the block
129  *      numbers of the chain, addresses they were taken from (and where we can
130  *      verify that chain did not change) and buffer_heads hosting these
131  *      numbers.
132  *
133  *      Function stops when it stumbles upon zero pointer (absent block)
134  *              (pointer to last triple returned, *@err == 0)
135  *      or when it gets an IO error reading an indirect block
136  *              (ditto, *@err == -EIO)
137  *      or when it reads all @depth-1 indirect blocks successfully and finds
138  *      the whole chain, all way to the data (returns %NULL, *err == 0).
139  *
140  *      Need to be called with
141  *      down_read(&EXT4_I(inode)->i_data_sem)
142  */
143 static Indirect *ext4_get_branch(struct inode *inode, int depth,
144                                  ext4_lblk_t  *offsets,
145                                  Indirect chain[4], int *err)
146 {
147         struct super_block *sb = inode->i_sb;
148         Indirect *p = chain;
149         struct buffer_head *bh;
150         int ret = -EIO;
151
152         *err = 0;
153         /* i_data is not going away, no lock needed */
154         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
155         if (!p->key)
156                 goto no_block;
157         while (--depth) {
158                 bh = sb_getblk(sb, le32_to_cpu(p->key));
159                 if (unlikely(!bh)) {
160                         ret = -ENOMEM;
161                         goto failure;
162                 }
163
164                 if (!bh_uptodate_or_lock(bh)) {
165                         if (bh_submit_read(bh) < 0) {
166                                 put_bh(bh);
167                                 goto failure;
168                         }
169                         /* validate block references */
170                         if (ext4_check_indirect_blockref(inode, bh)) {
171                                 put_bh(bh);
172                                 goto failure;
173                         }
174                 }
175
176                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
177                 /* Reader: end */
178                 if (!p->key)
179                         goto no_block;
180         }
181         return NULL;
182
183 failure:
184         *err = ret;
185 no_block:
186         return p;
187 }
188
189 /**
190  *      ext4_find_near - find a place for allocation with sufficient locality
191  *      @inode: owner
192  *      @ind: descriptor of indirect block.
193  *
194  *      This function returns the preferred place for block allocation.
195  *      It is used when heuristic for sequential allocation fails.
196  *      Rules are:
197  *        + if there is a block to the left of our position - allocate near it.
198  *        + if pointer will live in indirect block - allocate near that block.
199  *        + if pointer will live in inode - allocate in the same
200  *          cylinder group.
201  *
202  * In the latter case we colour the starting block by the callers PID to
203  * prevent it from clashing with concurrent allocations for a different inode
204  * in the same block group.   The PID is used here so that functionally related
205  * files will be close-by on-disk.
206  *
207  *      Caller must make sure that @ind is valid and will stay that way.
208  */
209 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
210 {
211         struct ext4_inode_info *ei = EXT4_I(inode);
212         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
213         __le32 *p;
214
215         /* Try to find previous block */
216         for (p = ind->p - 1; p >= start; p--) {
217                 if (*p)
218                         return le32_to_cpu(*p);
219         }
220
221         /* No such thing, so let's try location of indirect block */
222         if (ind->bh)
223                 return ind->bh->b_blocknr;
224
225         /*
226          * It is going to be referred to from the inode itself? OK, just put it
227          * into the same cylinder group then.
228          */
229         return ext4_inode_to_goal_block(inode);
230 }
231
232 /**
233  *      ext4_find_goal - find a preferred place for allocation.
234  *      @inode: owner
235  *      @block:  block we want
236  *      @partial: pointer to the last triple within a chain
237  *
238  *      Normally this function find the preferred place for block allocation,
239  *      returns it.
240  *      Because this is only used for non-extent files, we limit the block nr
241  *      to 32 bits.
242  */
243 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
244                                    Indirect *partial)
245 {
246         ext4_fsblk_t goal;
247
248         /*
249          * XXX need to get goal block from mballoc's data structures
250          */
251
252         goal = ext4_find_near(inode, partial);
253         goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
254         return goal;
255 }
256
257 /**
258  *      ext4_blks_to_allocate - Look up the block map and count the number
259  *      of direct blocks need to be allocated for the given branch.
260  *
261  *      @branch: chain of indirect blocks
262  *      @k: number of blocks need for indirect blocks
263  *      @blks: number of data blocks to be mapped.
264  *      @blocks_to_boundary:  the offset in the indirect block
265  *
266  *      return the total number of blocks to be allocate, including the
267  *      direct and indirect blocks.
268  */
269 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
270                                  int blocks_to_boundary)
271 {
272         unsigned int count = 0;
273
274         /*
275          * Simple case, [t,d]Indirect block(s) has not allocated yet
276          * then it's clear blocks on that path have not allocated
277          */
278         if (k > 0) {
279                 /* right now we don't handle cross boundary allocation */
280                 if (blks < blocks_to_boundary + 1)
281                         count += blks;
282                 else
283                         count += blocks_to_boundary + 1;
284                 return count;
285         }
286
287         count++;
288         while (count < blks && count <= blocks_to_boundary &&
289                 le32_to_cpu(*(branch[0].p + count)) == 0) {
290                 count++;
291         }
292         return count;
293 }
294
295 /**
296  *      ext4_alloc_branch - allocate and set up a chain of blocks.
297  *      @handle: handle for this transaction
298  *      @inode: owner
299  *      @indirect_blks: number of allocated indirect blocks
300  *      @blks: number of allocated direct blocks
301  *      @goal: preferred place for allocation
302  *      @offsets: offsets (in the blocks) to store the pointers to next.
303  *      @branch: place to store the chain in.
304  *
305  *      This function allocates blocks, zeroes out all but the last one,
306  *      links them into chain and (if we are synchronous) writes them to disk.
307  *      In other words, it prepares a branch that can be spliced onto the
308  *      inode. It stores the information about that chain in the branch[], in
309  *      the same format as ext4_get_branch() would do. We are calling it after
310  *      we had read the existing part of chain and partial points to the last
311  *      triple of that (one with zero ->key). Upon the exit we have the same
312  *      picture as after the successful ext4_get_block(), except that in one
313  *      place chain is disconnected - *branch->p is still zero (we did not
314  *      set the last link), but branch->key contains the number that should
315  *      be placed into *branch->p to fill that gap.
316  *
317  *      If allocation fails we free all blocks we've allocated (and forget
318  *      their buffer_heads) and return the error value the from failed
319  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
320  *      as described above and return 0.
321  */
322 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
323                              ext4_lblk_t iblock, int indirect_blks,
324                              int *blks, ext4_fsblk_t goal,
325                              ext4_lblk_t *offsets, Indirect *branch)
326 {
327         struct ext4_allocation_request  ar;
328         struct buffer_head *            bh;
329         ext4_fsblk_t                    b, new_blocks[4];
330         __le32                          *p;
331         int                             i, j, err, len = 1;
332
333         /*
334          * Set up for the direct block allocation
335          */
336         memset(&ar, 0, sizeof(ar));
337         ar.inode = inode;
338         ar.len = *blks;
339         ar.logical = iblock;
340         if (S_ISREG(inode->i_mode))
341                 ar.flags = EXT4_MB_HINT_DATA;
342
343         for (i = 0; i <= indirect_blks; i++) {
344                 if (i == indirect_blks) {
345                         ar.goal = goal;
346                         new_blocks[i] = ext4_mb_new_blocks(handle, &ar, &err);
347                 } else
348                         goal = new_blocks[i] = ext4_new_meta_blocks(handle, inode,
349                                                         goal, 0, NULL, &err);
350                 if (err) {
351                         i--;
352                         goto failed;
353                 }
354                 branch[i].key = cpu_to_le32(new_blocks[i]);
355                 if (i == 0)
356                         continue;
357
358                 bh = branch[i].bh = sb_getblk(inode->i_sb, new_blocks[i-1]);
359                 if (unlikely(!bh)) {
360                         err = -ENOMEM;
361                         goto failed;
362                 }
363                 lock_buffer(bh);
364                 BUFFER_TRACE(bh, "call get_create_access");
365                 err = ext4_journal_get_create_access(handle, bh);
366                 if (err) {
367                         unlock_buffer(bh);
368                         goto failed;
369                 }
370
371                 memset(bh->b_data, 0, bh->b_size);
372                 p = branch[i].p = (__le32 *) bh->b_data + offsets[i];
373                 b = new_blocks[i];
374
375                 if (i == indirect_blks)
376                         len = ar.len;
377                 for (j = 0; j < len; j++)
378                         *p++ = cpu_to_le32(b++);
379
380                 BUFFER_TRACE(bh, "marking uptodate");
381                 set_buffer_uptodate(bh);
382                 unlock_buffer(bh);
383
384                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
385                 err = ext4_handle_dirty_metadata(handle, inode, bh);
386                 if (err)
387                         goto failed;
388         }
389         *blks = ar.len;
390         return 0;
391 failed:
392         for (; i >= 0; i--) {
393                 if (i != indirect_blks && branch[i].bh)
394                         ext4_forget(handle, 1, inode, branch[i].bh,
395                                     branch[i].bh->b_blocknr);
396                 ext4_free_blocks(handle, inode, NULL, new_blocks[i],
397                                  (i == indirect_blks) ? ar.len : 1, 0);
398         }
399         return err;
400 }
401
402 /**
403  * ext4_splice_branch - splice the allocated branch onto inode.
404  * @handle: handle for this transaction
405  * @inode: owner
406  * @block: (logical) number of block we are adding
407  * @chain: chain of indirect blocks (with a missing link - see
408  *      ext4_alloc_branch)
409  * @where: location of missing link
410  * @num:   number of indirect blocks we are adding
411  * @blks:  number of direct blocks we are adding
412  *
413  * This function fills the missing link and does all housekeeping needed in
414  * inode (->i_blocks, etc.). In case of success we end up with the full
415  * chain to new block and return 0.
416  */
417 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
418                               ext4_lblk_t block, Indirect *where, int num,
419                               int blks)
420 {
421         int i;
422         int err = 0;
423         ext4_fsblk_t current_block;
424
425         /*
426          * If we're splicing into a [td]indirect block (as opposed to the
427          * inode) then we need to get write access to the [td]indirect block
428          * before the splice.
429          */
430         if (where->bh) {
431                 BUFFER_TRACE(where->bh, "get_write_access");
432                 err = ext4_journal_get_write_access(handle, where->bh);
433                 if (err)
434                         goto err_out;
435         }
436         /* That's it */
437
438         *where->p = where->key;
439
440         /*
441          * Update the host buffer_head or inode to point to more just allocated
442          * direct blocks blocks
443          */
444         if (num == 0 && blks > 1) {
445                 current_block = le32_to_cpu(where->key) + 1;
446                 for (i = 1; i < blks; i++)
447                         *(where->p + i) = cpu_to_le32(current_block++);
448         }
449
450         /* We are done with atomic stuff, now do the rest of housekeeping */
451         /* had we spliced it onto indirect block? */
452         if (where->bh) {
453                 /*
454                  * If we spliced it onto an indirect block, we haven't
455                  * altered the inode.  Note however that if it is being spliced
456                  * onto an indirect block at the very end of the file (the
457                  * file is growing) then we *will* alter the inode to reflect
458                  * the new i_size.  But that is not done here - it is done in
459                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
460                  */
461                 jbd_debug(5, "splicing indirect only\n");
462                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
463                 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
464                 if (err)
465                         goto err_out;
466         } else {
467                 /*
468                  * OK, we spliced it into the inode itself on a direct block.
469                  */
470                 ext4_mark_inode_dirty(handle, inode);
471                 jbd_debug(5, "splicing direct\n");
472         }
473         return err;
474
475 err_out:
476         for (i = 1; i <= num; i++) {
477                 /*
478                  * branch[i].bh is newly allocated, so there is no
479                  * need to revoke the block, which is why we don't
480                  * need to set EXT4_FREE_BLOCKS_METADATA.
481                  */
482                 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
483                                  EXT4_FREE_BLOCKS_FORGET);
484         }
485         ext4_free_blocks(handle, inode, NULL, le32_to_cpu(where[num].key),
486                          blks, 0);
487
488         return err;
489 }
490
491 /*
492  * The ext4_ind_map_blocks() function handles non-extents inodes
493  * (i.e., using the traditional indirect/double-indirect i_blocks
494  * scheme) for ext4_map_blocks().
495  *
496  * Allocation strategy is simple: if we have to allocate something, we will
497  * have to go the whole way to leaf. So let's do it before attaching anything
498  * to tree, set linkage between the newborn blocks, write them if sync is
499  * required, recheck the path, free and repeat if check fails, otherwise
500  * set the last missing link (that will protect us from any truncate-generated
501  * removals - all blocks on the path are immune now) and possibly force the
502  * write on the parent block.
503  * That has a nice additional property: no special recovery from the failed
504  * allocations is needed - we simply release blocks and do not touch anything
505  * reachable from inode.
506  *
507  * `handle' can be NULL if create == 0.
508  *
509  * return > 0, # of blocks mapped or allocated.
510  * return = 0, if plain lookup failed.
511  * return < 0, error case.
512  *
513  * The ext4_ind_get_blocks() function should be called with
514  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
515  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
516  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
517  * blocks.
518  */
519 int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
520                         struct ext4_map_blocks *map,
521                         int flags)
522 {
523         int err = -EIO;
524         ext4_lblk_t offsets[4];
525         Indirect chain[4];
526         Indirect *partial;
527         ext4_fsblk_t goal;
528         int indirect_blks;
529         int blocks_to_boundary = 0;
530         int depth;
531         int count = 0;
532         ext4_fsblk_t first_block = 0;
533
534         trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
535         J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
536         J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
537         depth = ext4_block_to_path(inode, map->m_lblk, offsets,
538                                    &blocks_to_boundary);
539
540         if (depth == 0)
541                 goto out;
542
543         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
544
545         /* Simplest case - block found, no allocation needed */
546         if (!partial) {
547                 first_block = le32_to_cpu(chain[depth - 1].key);
548                 count++;
549                 /*map more blocks*/
550                 while (count < map->m_len && count <= blocks_to_boundary) {
551                         ext4_fsblk_t blk;
552
553                         blk = le32_to_cpu(*(chain[depth-1].p + count));
554
555                         if (blk == first_block + count)
556                                 count++;
557                         else
558                                 break;
559                 }
560                 goto got_it;
561         }
562
563         /* Next simple case - plain lookup or failed read of indirect block */
564         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
565                 goto cleanup;
566
567         /*
568          * Okay, we need to do block allocation.
569         */
570         if (EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
571                                        EXT4_FEATURE_RO_COMPAT_BIGALLOC)) {
572                 EXT4_ERROR_INODE(inode, "Can't allocate blocks for "
573                                  "non-extent mapped inodes with bigalloc");
574                 return -ENOSPC;
575         }
576
577         goal = ext4_find_goal(inode, map->m_lblk, partial);
578
579         /* the number of blocks need to allocate for [d,t]indirect blocks */
580         indirect_blks = (chain + depth) - partial - 1;
581
582         /*
583          * Next look up the indirect map to count the totoal number of
584          * direct blocks to allocate for this branch.
585          */
586         count = ext4_blks_to_allocate(partial, indirect_blks,
587                                       map->m_len, blocks_to_boundary);
588         /*
589          * Block out ext4_truncate while we alter the tree
590          */
591         err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
592                                 &count, goal,
593                                 offsets + (partial - chain), partial);
594
595         /*
596          * The ext4_splice_branch call will free and forget any buffers
597          * on the new chain if there is a failure, but that risks using
598          * up transaction credits, especially for bitmaps where the
599          * credits cannot be returned.  Can we handle this somehow?  We
600          * may need to return -EAGAIN upwards in the worst case.  --sct
601          */
602         if (!err)
603                 err = ext4_splice_branch(handle, inode, map->m_lblk,
604                                          partial, indirect_blks, count);
605         if (err)
606                 goto cleanup;
607
608         map->m_flags |= EXT4_MAP_NEW;
609
610         ext4_update_inode_fsync_trans(handle, inode, 1);
611 got_it:
612         map->m_flags |= EXT4_MAP_MAPPED;
613         map->m_pblk = le32_to_cpu(chain[depth-1].key);
614         map->m_len = count;
615         if (count > blocks_to_boundary)
616                 map->m_flags |= EXT4_MAP_BOUNDARY;
617         err = count;
618         /* Clean up and exit */
619         partial = chain + depth - 1;    /* the whole chain */
620 cleanup:
621         while (partial > chain) {
622                 BUFFER_TRACE(partial->bh, "call brelse");
623                 brelse(partial->bh);
624                 partial--;
625         }
626 out:
627         trace_ext4_ind_map_blocks_exit(inode, map, err);
628         return err;
629 }
630
631 /*
632  * O_DIRECT for ext3 (or indirect map) based files
633  *
634  * If the O_DIRECT write will extend the file then add this inode to the
635  * orphan list.  So recovery will truncate it back to the original size
636  * if the machine crashes during the write.
637  *
638  * If the O_DIRECT write is intantiating holes inside i_size and the machine
639  * crashes then stale disk data _may_ be exposed inside the file. But current
640  * VFS code falls back into buffered path in that case so we are safe.
641  */
642 ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
643                            const struct iovec *iov, loff_t offset,
644                            unsigned long nr_segs)
645 {
646         struct file *file = iocb->ki_filp;
647         struct inode *inode = file->f_mapping->host;
648         struct ext4_inode_info *ei = EXT4_I(inode);
649         handle_t *handle;
650         ssize_t ret;
651         int orphan = 0;
652         size_t count = iov_length(iov, nr_segs);
653         int retries = 0;
654
655         if (rw == WRITE) {
656                 loff_t final_size = offset + count;
657
658                 if (final_size > inode->i_size) {
659                         /* Credits for sb + inode write */
660                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
661                         if (IS_ERR(handle)) {
662                                 ret = PTR_ERR(handle);
663                                 goto out;
664                         }
665                         ret = ext4_orphan_add(handle, inode);
666                         if (ret) {
667                                 ext4_journal_stop(handle);
668                                 goto out;
669                         }
670                         orphan = 1;
671                         ei->i_disksize = inode->i_size;
672                         ext4_journal_stop(handle);
673                 }
674         }
675
676 retry:
677         if (rw == READ && ext4_should_dioread_nolock(inode)) {
678                 if (unlikely(atomic_read(&EXT4_I(inode)->i_unwritten))) {
679                         mutex_lock(&inode->i_mutex);
680                         ext4_flush_unwritten_io(inode);
681                         mutex_unlock(&inode->i_mutex);
682                 }
683                 /*
684                  * Nolock dioread optimization may be dynamically disabled
685                  * via ext4_inode_block_unlocked_dio(). Check inode's state
686                  * while holding extra i_dio_count ref.
687                  */
688                 atomic_inc(&inode->i_dio_count);
689                 smp_mb();
690                 if (unlikely(ext4_test_inode_state(inode,
691                                                     EXT4_STATE_DIOREAD_LOCK))) {
692                         inode_dio_done(inode);
693                         goto locked;
694                 }
695                 ret = __blockdev_direct_IO(rw, iocb, inode,
696                                  inode->i_sb->s_bdev, iov,
697                                  offset, nr_segs,
698                                  ext4_get_block, NULL, NULL, 0);
699                 inode_dio_done(inode);
700         } else {
701 locked:
702                 ret = blockdev_direct_IO(rw, iocb, inode, iov,
703                                  offset, nr_segs, ext4_get_block);
704
705                 if (unlikely((rw & WRITE) && ret < 0)) {
706                         loff_t isize = i_size_read(inode);
707                         loff_t end = offset + iov_length(iov, nr_segs);
708
709                         if (end > isize)
710                                 ext4_truncate_failed_write(inode);
711                 }
712         }
713         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
714                 goto retry;
715
716         if (orphan) {
717                 int err;
718
719                 /* Credits for sb + inode write */
720                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
721                 if (IS_ERR(handle)) {
722                         /* This is really bad luck. We've written the data
723                          * but cannot extend i_size. Bail out and pretend
724                          * the write failed... */
725                         ret = PTR_ERR(handle);
726                         if (inode->i_nlink)
727                                 ext4_orphan_del(NULL, inode);
728
729                         goto out;
730                 }
731                 if (inode->i_nlink)
732                         ext4_orphan_del(handle, inode);
733                 if (ret > 0) {
734                         loff_t end = offset + ret;
735                         if (end > inode->i_size) {
736                                 ei->i_disksize = end;
737                                 i_size_write(inode, end);
738                                 /*
739                                  * We're going to return a positive `ret'
740                                  * here due to non-zero-length I/O, so there's
741                                  * no way of reporting error returns from
742                                  * ext4_mark_inode_dirty() to userspace.  So
743                                  * ignore it.
744                                  */
745                                 ext4_mark_inode_dirty(handle, inode);
746                         }
747                 }
748                 err = ext4_journal_stop(handle);
749                 if (ret == 0)
750                         ret = err;
751         }
752 out:
753         return ret;
754 }
755
756 /*
757  * Calculate the number of metadata blocks need to reserve
758  * to allocate a new block at @lblocks for non extent file based file
759  */
760 int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock)
761 {
762         struct ext4_inode_info *ei = EXT4_I(inode);
763         sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
764         int blk_bits;
765
766         if (lblock < EXT4_NDIR_BLOCKS)
767                 return 0;
768
769         lblock -= EXT4_NDIR_BLOCKS;
770
771         if (ei->i_da_metadata_calc_len &&
772             (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
773                 ei->i_da_metadata_calc_len++;
774                 return 0;
775         }
776         ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
777         ei->i_da_metadata_calc_len = 1;
778         blk_bits = order_base_2(lblock);
779         return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
780 }
781
782 /*
783  * Calculate number of indirect blocks touched by mapping @nrblocks logically
784  * contiguous blocks
785  */
786 int ext4_ind_trans_blocks(struct inode *inode, int nrblocks)
787 {
788         /*
789          * With N contiguous data blocks, we need at most
790          * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
791          * 2 dindirect blocks, and 1 tindirect block
792          */
793         return DIV_ROUND_UP(nrblocks, EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
794 }
795
796 /*
797  * Truncate transactions can be complex and absolutely huge.  So we need to
798  * be able to restart the transaction at a conventient checkpoint to make
799  * sure we don't overflow the journal.
800  *
801  * Try to extend this transaction for the purposes of truncation.  If
802  * extend fails, we need to propagate the failure up and restart the
803  * transaction in the top-level truncate loop. --sct
804  *
805  * Returns 0 if we managed to create more room.  If we can't create more
806  * room, and the transaction must be restarted we return 1.
807  */
808 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
809 {
810         if (!ext4_handle_valid(handle))
811                 return 0;
812         if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
813                 return 0;
814         if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode)))
815                 return 0;
816         return 1;
817 }
818
819 /*
820  * Probably it should be a library function... search for first non-zero word
821  * or memcmp with zero_page, whatever is better for particular architecture.
822  * Linus?
823  */
824 static inline int all_zeroes(__le32 *p, __le32 *q)
825 {
826         while (p < q)
827                 if (*p++)
828                         return 0;
829         return 1;
830 }
831
832 /**
833  *      ext4_find_shared - find the indirect blocks for partial truncation.
834  *      @inode:   inode in question
835  *      @depth:   depth of the affected branch
836  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
837  *      @chain:   place to store the pointers to partial indirect blocks
838  *      @top:     place to the (detached) top of branch
839  *
840  *      This is a helper function used by ext4_truncate().
841  *
842  *      When we do truncate() we may have to clean the ends of several
843  *      indirect blocks but leave the blocks themselves alive. Block is
844  *      partially truncated if some data below the new i_size is referred
845  *      from it (and it is on the path to the first completely truncated
846  *      data block, indeed).  We have to free the top of that path along
847  *      with everything to the right of the path. Since no allocation
848  *      past the truncation point is possible until ext4_truncate()
849  *      finishes, we may safely do the latter, but top of branch may
850  *      require special attention - pageout below the truncation point
851  *      might try to populate it.
852  *
853  *      We atomically detach the top of branch from the tree, store the
854  *      block number of its root in *@top, pointers to buffer_heads of
855  *      partially truncated blocks - in @chain[].bh and pointers to
856  *      their last elements that should not be removed - in
857  *      @chain[].p. Return value is the pointer to last filled element
858  *      of @chain.
859  *
860  *      The work left to caller to do the actual freeing of subtrees:
861  *              a) free the subtree starting from *@top
862  *              b) free the subtrees whose roots are stored in
863  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
864  *              c) free the subtrees growing from the inode past the @chain[0].
865  *                      (no partially truncated stuff there).  */
866
867 static Indirect *ext4_find_shared(struct inode *inode, int depth,
868                                   ext4_lblk_t offsets[4], Indirect chain[4],
869                                   __le32 *top)
870 {
871         Indirect *partial, *p;
872         int k, err;
873
874         *top = 0;
875         /* Make k index the deepest non-null offset + 1 */
876         for (k = depth; k > 1 && !offsets[k-1]; k--)
877                 ;
878         partial = ext4_get_branch(inode, k, offsets, chain, &err);
879         /* Writer: pointers */
880         if (!partial)
881                 partial = chain + k-1;
882         /*
883          * If the branch acquired continuation since we've looked at it -
884          * fine, it should all survive and (new) top doesn't belong to us.
885          */
886         if (!partial->key && *partial->p)
887                 /* Writer: end */
888                 goto no_top;
889         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
890                 ;
891         /*
892          * OK, we've found the last block that must survive. The rest of our
893          * branch should be detached before unlocking. However, if that rest
894          * of branch is all ours and does not grow immediately from the inode
895          * it's easier to cheat and just decrement partial->p.
896          */
897         if (p == chain + k - 1 && p > chain) {
898                 p->p--;
899         } else {
900                 *top = *p->p;
901                 /* Nope, don't do this in ext4.  Must leave the tree intact */
902 #if 0
903                 *p->p = 0;
904 #endif
905         }
906         /* Writer: end */
907
908         while (partial > p) {
909                 brelse(partial->bh);
910                 partial--;
911         }
912 no_top:
913         return partial;
914 }
915
916 /*
917  * Zero a number of block pointers in either an inode or an indirect block.
918  * If we restart the transaction we must again get write access to the
919  * indirect block for further modification.
920  *
921  * We release `count' blocks on disk, but (last - first) may be greater
922  * than `count' because there can be holes in there.
923  *
924  * Return 0 on success, 1 on invalid block range
925  * and < 0 on fatal error.
926  */
927 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
928                              struct buffer_head *bh,
929                              ext4_fsblk_t block_to_free,
930                              unsigned long count, __le32 *first,
931                              __le32 *last)
932 {
933         __le32 *p;
934         int     flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
935         int     err;
936
937         if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
938                 flags |= EXT4_FREE_BLOCKS_METADATA;
939
940         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
941                                    count)) {
942                 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
943                                  "blocks %llu len %lu",
944                                  (unsigned long long) block_to_free, count);
945                 return 1;
946         }
947
948         if (try_to_extend_transaction(handle, inode)) {
949                 if (bh) {
950                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
951                         err = ext4_handle_dirty_metadata(handle, inode, bh);
952                         if (unlikely(err))
953                                 goto out_err;
954                 }
955                 err = ext4_mark_inode_dirty(handle, inode);
956                 if (unlikely(err))
957                         goto out_err;
958                 err = ext4_truncate_restart_trans(handle, inode,
959                                         ext4_blocks_for_truncate(inode));
960                 if (unlikely(err))
961                         goto out_err;
962                 if (bh) {
963                         BUFFER_TRACE(bh, "retaking write access");
964                         err = ext4_journal_get_write_access(handle, bh);
965                         if (unlikely(err))
966                                 goto out_err;
967                 }
968         }
969
970         for (p = first; p < last; p++)
971                 *p = 0;
972
973         ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
974         return 0;
975 out_err:
976         ext4_std_error(inode->i_sb, err);
977         return err;
978 }
979
980 /**
981  * ext4_free_data - free a list of data blocks
982  * @handle:     handle for this transaction
983  * @inode:      inode we are dealing with
984  * @this_bh:    indirect buffer_head which contains *@first and *@last
985  * @first:      array of block numbers
986  * @last:       points immediately past the end of array
987  *
988  * We are freeing all blocks referred from that array (numbers are stored as
989  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
990  *
991  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
992  * blocks are contiguous then releasing them at one time will only affect one
993  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
994  * actually use a lot of journal space.
995  *
996  * @this_bh will be %NULL if @first and @last point into the inode's direct
997  * block pointers.
998  */
999 static void ext4_free_data(handle_t *handle, struct inode *inode,
1000                            struct buffer_head *this_bh,
1001                            __le32 *first, __le32 *last)
1002 {
1003         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
1004         unsigned long count = 0;            /* Number of blocks in the run */
1005         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
1006                                                corresponding to
1007                                                block_to_free */
1008         ext4_fsblk_t nr;                    /* Current block # */
1009         __le32 *p;                          /* Pointer into inode/ind
1010                                                for current block */
1011         int err = 0;
1012
1013         if (this_bh) {                          /* For indirect block */
1014                 BUFFER_TRACE(this_bh, "get_write_access");
1015                 err = ext4_journal_get_write_access(handle, this_bh);
1016                 /* Important: if we can't update the indirect pointers
1017                  * to the blocks, we can't free them. */
1018                 if (err)
1019                         return;
1020         }
1021
1022         for (p = first; p < last; p++) {
1023                 nr = le32_to_cpu(*p);
1024                 if (nr) {
1025                         /* accumulate blocks to free if they're contiguous */
1026                         if (count == 0) {
1027                                 block_to_free = nr;
1028                                 block_to_free_p = p;
1029                                 count = 1;
1030                         } else if (nr == block_to_free + count) {
1031                                 count++;
1032                         } else {
1033                                 err = ext4_clear_blocks(handle, inode, this_bh,
1034                                                         block_to_free, count,
1035                                                         block_to_free_p, p);
1036                                 if (err)
1037                                         break;
1038                                 block_to_free = nr;
1039                                 block_to_free_p = p;
1040                                 count = 1;
1041                         }
1042                 }
1043         }
1044
1045         if (!err && count > 0)
1046                 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
1047                                         count, block_to_free_p, p);
1048         if (err < 0)
1049                 /* fatal error */
1050                 return;
1051
1052         if (this_bh) {
1053                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
1054
1055                 /*
1056                  * The buffer head should have an attached journal head at this
1057                  * point. However, if the data is corrupted and an indirect
1058                  * block pointed to itself, it would have been detached when
1059                  * the block was cleared. Check for this instead of OOPSing.
1060                  */
1061                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
1062                         ext4_handle_dirty_metadata(handle, inode, this_bh);
1063                 else
1064                         EXT4_ERROR_INODE(inode,
1065                                          "circular indirect block detected at "
1066                                          "block %llu",
1067                                 (unsigned long long) this_bh->b_blocknr);
1068         }
1069 }
1070
1071 /**
1072  *      ext4_free_branches - free an array of branches
1073  *      @handle: JBD handle for this transaction
1074  *      @inode: inode we are dealing with
1075  *      @parent_bh: the buffer_head which contains *@first and *@last
1076  *      @first: array of block numbers
1077  *      @last:  pointer immediately past the end of array
1078  *      @depth: depth of the branches to free
1079  *
1080  *      We are freeing all blocks referred from these branches (numbers are
1081  *      stored as little-endian 32-bit) and updating @inode->i_blocks
1082  *      appropriately.
1083  */
1084 static void ext4_free_branches(handle_t *handle, struct inode *inode,
1085                                struct buffer_head *parent_bh,
1086                                __le32 *first, __le32 *last, int depth)
1087 {
1088         ext4_fsblk_t nr;
1089         __le32 *p;
1090
1091         if (ext4_handle_is_aborted(handle))
1092                 return;
1093
1094         if (depth--) {
1095                 struct buffer_head *bh;
1096                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1097                 p = last;
1098                 while (--p >= first) {
1099                         nr = le32_to_cpu(*p);
1100                         if (!nr)
1101                                 continue;               /* A hole */
1102
1103                         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
1104                                                    nr, 1)) {
1105                                 EXT4_ERROR_INODE(inode,
1106                                                  "invalid indirect mapped "
1107                                                  "block %lu (level %d)",
1108                                                  (unsigned long) nr, depth);
1109                                 break;
1110                         }
1111
1112                         /* Go read the buffer for the next level down */
1113                         bh = sb_bread(inode->i_sb, nr);
1114
1115                         /*
1116                          * A read failure? Report error and clear slot
1117                          * (should be rare).
1118                          */
1119                         if (!bh) {
1120                                 EXT4_ERROR_INODE_BLOCK(inode, nr,
1121                                                        "Read failure");
1122                                 continue;
1123                         }
1124
1125                         /* This zaps the entire block.  Bottom up. */
1126                         BUFFER_TRACE(bh, "free child branches");
1127                         ext4_free_branches(handle, inode, bh,
1128                                         (__le32 *) bh->b_data,
1129                                         (__le32 *) bh->b_data + addr_per_block,
1130                                         depth);
1131                         brelse(bh);
1132
1133                         /*
1134                          * Everything below this this pointer has been
1135                          * released.  Now let this top-of-subtree go.
1136                          *
1137                          * We want the freeing of this indirect block to be
1138                          * atomic in the journal with the updating of the
1139                          * bitmap block which owns it.  So make some room in
1140                          * the journal.
1141                          *
1142                          * We zero the parent pointer *after* freeing its
1143                          * pointee in the bitmaps, so if extend_transaction()
1144                          * for some reason fails to put the bitmap changes and
1145                          * the release into the same transaction, recovery
1146                          * will merely complain about releasing a free block,
1147                          * rather than leaking blocks.
1148                          */
1149                         if (ext4_handle_is_aborted(handle))
1150                                 return;
1151                         if (try_to_extend_transaction(handle, inode)) {
1152                                 ext4_mark_inode_dirty(handle, inode);
1153                                 ext4_truncate_restart_trans(handle, inode,
1154                                             ext4_blocks_for_truncate(inode));
1155                         }
1156
1157                         /*
1158                          * The forget flag here is critical because if
1159                          * we are journaling (and not doing data
1160                          * journaling), we have to make sure a revoke
1161                          * record is written to prevent the journal
1162                          * replay from overwriting the (former)
1163                          * indirect block if it gets reallocated as a
1164                          * data block.  This must happen in the same
1165                          * transaction where the data blocks are
1166                          * actually freed.
1167                          */
1168                         ext4_free_blocks(handle, inode, NULL, nr, 1,
1169                                          EXT4_FREE_BLOCKS_METADATA|
1170                                          EXT4_FREE_BLOCKS_FORGET);
1171
1172                         if (parent_bh) {
1173                                 /*
1174                                  * The block which we have just freed is
1175                                  * pointed to by an indirect block: journal it
1176                                  */
1177                                 BUFFER_TRACE(parent_bh, "get_write_access");
1178                                 if (!ext4_journal_get_write_access(handle,
1179                                                                    parent_bh)){
1180                                         *p = 0;
1181                                         BUFFER_TRACE(parent_bh,
1182                                         "call ext4_handle_dirty_metadata");
1183                                         ext4_handle_dirty_metadata(handle,
1184                                                                    inode,
1185                                                                    parent_bh);
1186                                 }
1187                         }
1188                 }
1189         } else {
1190                 /* We have reached the bottom of the tree. */
1191                 BUFFER_TRACE(parent_bh, "free data blocks");
1192                 ext4_free_data(handle, inode, parent_bh, first, last);
1193         }
1194 }
1195
1196 void ext4_ind_truncate(handle_t *handle, struct inode *inode)
1197 {
1198         struct ext4_inode_info *ei = EXT4_I(inode);
1199         __le32 *i_data = ei->i_data;
1200         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1201         ext4_lblk_t offsets[4];
1202         Indirect chain[4];
1203         Indirect *partial;
1204         __le32 nr = 0;
1205         int n = 0;
1206         ext4_lblk_t last_block, max_block;
1207         unsigned blocksize = inode->i_sb->s_blocksize;
1208
1209         last_block = (inode->i_size + blocksize-1)
1210                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1211         max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1212                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1213
1214         if (last_block != max_block) {
1215                 n = ext4_block_to_path(inode, last_block, offsets, NULL);
1216                 if (n == 0)
1217                         return;
1218         }
1219
1220         ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block);
1221
1222         /*
1223          * The orphan list entry will now protect us from any crash which
1224          * occurs before the truncate completes, so it is now safe to propagate
1225          * the new, shorter inode size (held for now in i_size) into the
1226          * on-disk inode. We do this via i_disksize, which is the value which
1227          * ext4 *really* writes onto the disk inode.
1228          */
1229         ei->i_disksize = inode->i_size;
1230
1231         if (last_block == max_block) {
1232                 /*
1233                  * It is unnecessary to free any data blocks if last_block is
1234                  * equal to the indirect block limit.
1235                  */
1236                 return;
1237         } else if (n == 1) {            /* direct blocks */
1238                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
1239                                i_data + EXT4_NDIR_BLOCKS);
1240                 goto do_indirects;
1241         }
1242
1243         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1244         /* Kill the top of shared branch (not detached) */
1245         if (nr) {
1246                 if (partial == chain) {
1247                         /* Shared branch grows from the inode */
1248                         ext4_free_branches(handle, inode, NULL,
1249                                            &nr, &nr+1, (chain+n-1) - partial);
1250                         *partial->p = 0;
1251                         /*
1252                          * We mark the inode dirty prior to restart,
1253                          * and prior to stop.  No need for it here.
1254                          */
1255                 } else {
1256                         /* Shared branch grows from an indirect block */
1257                         BUFFER_TRACE(partial->bh, "get_write_access");
1258                         ext4_free_branches(handle, inode, partial->bh,
1259                                         partial->p,
1260                                         partial->p+1, (chain+n-1) - partial);
1261                 }
1262         }
1263         /* Clear the ends of indirect blocks on the shared branch */
1264         while (partial > chain) {
1265                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
1266                                    (__le32*)partial->bh->b_data+addr_per_block,
1267                                    (chain+n-1) - partial);
1268                 BUFFER_TRACE(partial->bh, "call brelse");
1269                 brelse(partial->bh);
1270                 partial--;
1271         }
1272 do_indirects:
1273         /* Kill the remaining (whole) subtrees */
1274         switch (offsets[0]) {
1275         default:
1276                 nr = i_data[EXT4_IND_BLOCK];
1277                 if (nr) {
1278                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1279                         i_data[EXT4_IND_BLOCK] = 0;
1280                 }
1281         case EXT4_IND_BLOCK:
1282                 nr = i_data[EXT4_DIND_BLOCK];
1283                 if (nr) {
1284                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1285                         i_data[EXT4_DIND_BLOCK] = 0;
1286                 }
1287         case EXT4_DIND_BLOCK:
1288                 nr = i_data[EXT4_TIND_BLOCK];
1289                 if (nr) {
1290                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1291                         i_data[EXT4_TIND_BLOCK] = 0;
1292                 }
1293         case EXT4_TIND_BLOCK:
1294                 ;
1295         }
1296 }
1297
1298 static int free_hole_blocks(handle_t *handle, struct inode *inode,
1299                             struct buffer_head *parent_bh, __le32 *i_data,
1300                             int level, ext4_lblk_t first,
1301                             ext4_lblk_t count, int max)
1302 {
1303         struct buffer_head *bh = NULL;
1304         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1305         int ret = 0;
1306         int i, inc;
1307         ext4_lblk_t offset;
1308         __le32 blk;
1309
1310         inc = 1 << ((EXT4_BLOCK_SIZE_BITS(inode->i_sb) - 2) * level);
1311         for (i = 0, offset = 0; i < max; i++, i_data++, offset += inc) {
1312                 if (offset >= count + first)
1313                         break;
1314                 if (*i_data == 0 || (offset + inc) <= first)
1315                         continue;
1316                 blk = *i_data;
1317                 if (level > 0) {
1318                         ext4_lblk_t first2;
1319                         bh = sb_bread(inode->i_sb, le32_to_cpu(blk));
1320                         if (!bh) {
1321                                 EXT4_ERROR_INODE_BLOCK(inode, le32_to_cpu(blk),
1322                                                        "Read failure");
1323                                 return -EIO;
1324                         }
1325                         first2 = (first > offset) ? first - offset : 0;
1326                         ret = free_hole_blocks(handle, inode, bh,
1327                                                (__le32 *)bh->b_data, level - 1,
1328                                                first2, count - offset,
1329                                                inode->i_sb->s_blocksize >> 2);
1330                         if (ret) {
1331                                 brelse(bh);
1332                                 goto err;
1333                         }
1334                 }
1335                 if (level == 0 ||
1336                     (bh && all_zeroes((__le32 *)bh->b_data,
1337                                       (__le32 *)bh->b_data + addr_per_block))) {
1338                         ext4_free_data(handle, inode, parent_bh, &blk, &blk+1);
1339                         *i_data = 0;
1340                 }
1341                 brelse(bh);
1342                 bh = NULL;
1343         }
1344
1345 err:
1346         return ret;
1347 }
1348
1349 int ext4_free_hole_blocks(handle_t *handle, struct inode *inode,
1350                           ext4_lblk_t first, ext4_lblk_t stop)
1351 {
1352         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1353         int level, ret = 0;
1354         int num = EXT4_NDIR_BLOCKS;
1355         ext4_lblk_t count, max = EXT4_NDIR_BLOCKS;
1356         __le32 *i_data = EXT4_I(inode)->i_data;
1357
1358         count = stop - first;
1359         for (level = 0; level < 4; level++, max *= addr_per_block) {
1360                 if (first < max) {
1361                         ret = free_hole_blocks(handle, inode, NULL, i_data,
1362                                                level, first, count, num);
1363                         if (ret)
1364                                 goto err;
1365                         if (count > max - first)
1366                                 count -= max - first;
1367                         else
1368                                 break;
1369                         first = 0;
1370                 } else {
1371                         first -= max;
1372                 }
1373                 i_data += num;
1374                 if (level == 0) {
1375                         num = 1;
1376                         max = 1;
1377                 }
1378         }
1379
1380 err:
1381         return ret;
1382 }
1383