ext4: use WARN in ext4_alloc_blocks
[platform/adaptation/renesas_rcar/renesas_kernel.git] / fs / ext4 / indirect.c
1 /*
2  *  linux/fs/ext4/indirect.c
3  *
4  *  from
5  *
6  *  linux/fs/ext4/inode.c
7  *
8  * Copyright (C) 1992, 1993, 1994, 1995
9  * Remy Card (card@masi.ibp.fr)
10  * Laboratoire MASI - Institut Blaise Pascal
11  * Universite Pierre et Marie Curie (Paris VI)
12  *
13  *  from
14  *
15  *  linux/fs/minix/inode.c
16  *
17  *  Copyright (C) 1991, 1992  Linus Torvalds
18  *
19  *  Goal-directed block allocation by Stephen Tweedie
20  *      (sct@redhat.com), 1993, 1998
21  */
22
23 #include "ext4_jbd2.h"
24 #include "truncate.h"
25 #include "ext4_extents.h"       /* Needed for EXT_MAX_BLOCKS */
26
27 #include <trace/events/ext4.h>
28
29 typedef struct {
30         __le32  *p;
31         __le32  key;
32         struct buffer_head *bh;
33 } Indirect;
34
35 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
36 {
37         p->key = *(p->p = v);
38         p->bh = bh;
39 }
40
41 /**
42  *      ext4_block_to_path - parse the block number into array of offsets
43  *      @inode: inode in question (we are only interested in its superblock)
44  *      @i_block: block number to be parsed
45  *      @offsets: array to store the offsets in
46  *      @boundary: set this non-zero if the referred-to block is likely to be
47  *             followed (on disk) by an indirect block.
48  *
49  *      To store the locations of file's data ext4 uses a data structure common
50  *      for UNIX filesystems - tree of pointers anchored in the inode, with
51  *      data blocks at leaves and indirect blocks in intermediate nodes.
52  *      This function translates the block number into path in that tree -
53  *      return value is the path length and @offsets[n] is the offset of
54  *      pointer to (n+1)th node in the nth one. If @block is out of range
55  *      (negative or too large) warning is printed and zero returned.
56  *
57  *      Note: function doesn't find node addresses, so no IO is needed. All
58  *      we need to know is the capacity of indirect blocks (taken from the
59  *      inode->i_sb).
60  */
61
62 /*
63  * Portability note: the last comparison (check that we fit into triple
64  * indirect block) is spelled differently, because otherwise on an
65  * architecture with 32-bit longs and 8Kb pages we might get into trouble
66  * if our filesystem had 8Kb blocks. We might use long long, but that would
67  * kill us on x86. Oh, well, at least the sign propagation does not matter -
68  * i_block would have to be negative in the very beginning, so we would not
69  * get there at all.
70  */
71
72 static int ext4_block_to_path(struct inode *inode,
73                               ext4_lblk_t i_block,
74                               ext4_lblk_t offsets[4], int *boundary)
75 {
76         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
77         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
78         const long direct_blocks = EXT4_NDIR_BLOCKS,
79                 indirect_blocks = ptrs,
80                 double_blocks = (1 << (ptrs_bits * 2));
81         int n = 0;
82         int final = 0;
83
84         if (i_block < direct_blocks) {
85                 offsets[n++] = i_block;
86                 final = direct_blocks;
87         } else if ((i_block -= direct_blocks) < indirect_blocks) {
88                 offsets[n++] = EXT4_IND_BLOCK;
89                 offsets[n++] = i_block;
90                 final = ptrs;
91         } else if ((i_block -= indirect_blocks) < double_blocks) {
92                 offsets[n++] = EXT4_DIND_BLOCK;
93                 offsets[n++] = i_block >> ptrs_bits;
94                 offsets[n++] = i_block & (ptrs - 1);
95                 final = ptrs;
96         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
97                 offsets[n++] = EXT4_TIND_BLOCK;
98                 offsets[n++] = i_block >> (ptrs_bits * 2);
99                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
100                 offsets[n++] = i_block & (ptrs - 1);
101                 final = ptrs;
102         } else {
103                 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
104                              i_block + direct_blocks +
105                              indirect_blocks + double_blocks, inode->i_ino);
106         }
107         if (boundary)
108                 *boundary = final - 1 - (i_block & (ptrs - 1));
109         return n;
110 }
111
112 /**
113  *      ext4_get_branch - read the chain of indirect blocks leading to data
114  *      @inode: inode in question
115  *      @depth: depth of the chain (1 - direct pointer, etc.)
116  *      @offsets: offsets of pointers in inode/indirect blocks
117  *      @chain: place to store the result
118  *      @err: here we store the error value
119  *
120  *      Function fills the array of triples <key, p, bh> and returns %NULL
121  *      if everything went OK or the pointer to the last filled triple
122  *      (incomplete one) otherwise. Upon the return chain[i].key contains
123  *      the number of (i+1)-th block in the chain (as it is stored in memory,
124  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
125  *      number (it points into struct inode for i==0 and into the bh->b_data
126  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
127  *      block for i>0 and NULL for i==0. In other words, it holds the block
128  *      numbers of the chain, addresses they were taken from (and where we can
129  *      verify that chain did not change) and buffer_heads hosting these
130  *      numbers.
131  *
132  *      Function stops when it stumbles upon zero pointer (absent block)
133  *              (pointer to last triple returned, *@err == 0)
134  *      or when it gets an IO error reading an indirect block
135  *              (ditto, *@err == -EIO)
136  *      or when it reads all @depth-1 indirect blocks successfully and finds
137  *      the whole chain, all way to the data (returns %NULL, *err == 0).
138  *
139  *      Need to be called with
140  *      down_read(&EXT4_I(inode)->i_data_sem)
141  */
142 static Indirect *ext4_get_branch(struct inode *inode, int depth,
143                                  ext4_lblk_t  *offsets,
144                                  Indirect chain[4], int *err)
145 {
146         struct super_block *sb = inode->i_sb;
147         Indirect *p = chain;
148         struct buffer_head *bh;
149         int ret = -EIO;
150
151         *err = 0;
152         /* i_data is not going away, no lock needed */
153         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
154         if (!p->key)
155                 goto no_block;
156         while (--depth) {
157                 bh = sb_getblk(sb, le32_to_cpu(p->key));
158                 if (unlikely(!bh)) {
159                         ret = -ENOMEM;
160                         goto failure;
161                 }
162
163                 if (!bh_uptodate_or_lock(bh)) {
164                         if (bh_submit_read(bh) < 0) {
165                                 put_bh(bh);
166                                 goto failure;
167                         }
168                         /* validate block references */
169                         if (ext4_check_indirect_blockref(inode, bh)) {
170                                 put_bh(bh);
171                                 goto failure;
172                         }
173                 }
174
175                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
176                 /* Reader: end */
177                 if (!p->key)
178                         goto no_block;
179         }
180         return NULL;
181
182 failure:
183         *err = ret;
184 no_block:
185         return p;
186 }
187
188 /**
189  *      ext4_find_near - find a place for allocation with sufficient locality
190  *      @inode: owner
191  *      @ind: descriptor of indirect block.
192  *
193  *      This function returns the preferred place for block allocation.
194  *      It is used when heuristic for sequential allocation fails.
195  *      Rules are:
196  *        + if there is a block to the left of our position - allocate near it.
197  *        + if pointer will live in indirect block - allocate near that block.
198  *        + if pointer will live in inode - allocate in the same
199  *          cylinder group.
200  *
201  * In the latter case we colour the starting block by the callers PID to
202  * prevent it from clashing with concurrent allocations for a different inode
203  * in the same block group.   The PID is used here so that functionally related
204  * files will be close-by on-disk.
205  *
206  *      Caller must make sure that @ind is valid and will stay that way.
207  */
208 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
209 {
210         struct ext4_inode_info *ei = EXT4_I(inode);
211         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
212         __le32 *p;
213
214         /* Try to find previous block */
215         for (p = ind->p - 1; p >= start; p--) {
216                 if (*p)
217                         return le32_to_cpu(*p);
218         }
219
220         /* No such thing, so let's try location of indirect block */
221         if (ind->bh)
222                 return ind->bh->b_blocknr;
223
224         /*
225          * It is going to be referred to from the inode itself? OK, just put it
226          * into the same cylinder group then.
227          */
228         return ext4_inode_to_goal_block(inode);
229 }
230
231 /**
232  *      ext4_find_goal - find a preferred place for allocation.
233  *      @inode: owner
234  *      @block:  block we want
235  *      @partial: pointer to the last triple within a chain
236  *
237  *      Normally this function find the preferred place for block allocation,
238  *      returns it.
239  *      Because this is only used for non-extent files, we limit the block nr
240  *      to 32 bits.
241  */
242 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
243                                    Indirect *partial)
244 {
245         ext4_fsblk_t goal;
246
247         /*
248          * XXX need to get goal block from mballoc's data structures
249          */
250
251         goal = ext4_find_near(inode, partial);
252         goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
253         return goal;
254 }
255
256 /**
257  *      ext4_blks_to_allocate - Look up the block map and count the number
258  *      of direct blocks need to be allocated for the given branch.
259  *
260  *      @branch: chain of indirect blocks
261  *      @k: number of blocks need for indirect blocks
262  *      @blks: number of data blocks to be mapped.
263  *      @blocks_to_boundary:  the offset in the indirect block
264  *
265  *      return the total number of blocks to be allocate, including the
266  *      direct and indirect blocks.
267  */
268 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
269                                  int blocks_to_boundary)
270 {
271         unsigned int count = 0;
272
273         /*
274          * Simple case, [t,d]Indirect block(s) has not allocated yet
275          * then it's clear blocks on that path have not allocated
276          */
277         if (k > 0) {
278                 /* right now we don't handle cross boundary allocation */
279                 if (blks < blocks_to_boundary + 1)
280                         count += blks;
281                 else
282                         count += blocks_to_boundary + 1;
283                 return count;
284         }
285
286         count++;
287         while (count < blks && count <= blocks_to_boundary &&
288                 le32_to_cpu(*(branch[0].p + count)) == 0) {
289                 count++;
290         }
291         return count;
292 }
293
294 /**
295  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
296  *      @handle: handle for this transaction
297  *      @inode: inode which needs allocated blocks
298  *      @iblock: the logical block to start allocated at
299  *      @goal: preferred physical block of allocation
300  *      @indirect_blks: the number of blocks need to allocate for indirect
301  *                      blocks
302  *      @blks: number of desired blocks
303  *      @new_blocks: on return it will store the new block numbers for
304  *      the indirect blocks(if needed) and the first direct block,
305  *      @err: on return it will store the error code
306  *
307  *      This function will return the number of blocks allocated as
308  *      requested by the passed-in parameters.
309  */
310 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
311                              ext4_lblk_t iblock, ext4_fsblk_t goal,
312                              int indirect_blks, int blks,
313                              ext4_fsblk_t new_blocks[4], int *err)
314 {
315         struct ext4_allocation_request ar;
316         int target, i;
317         unsigned long count = 0, blk_allocated = 0;
318         int index = 0;
319         ext4_fsblk_t current_block = 0;
320         int ret = 0;
321
322         /*
323          * Here we try to allocate the requested multiple blocks at once,
324          * on a best-effort basis.
325          * To build a branch, we should allocate blocks for
326          * the indirect blocks(if not allocated yet), and at least
327          * the first direct block of this branch.  That's the
328          * minimum number of blocks need to allocate(required)
329          */
330         /* first we try to allocate the indirect blocks */
331         target = indirect_blks;
332         while (target > 0) {
333                 count = target;
334                 /* allocating blocks for indirect blocks and direct blocks */
335                 current_block = ext4_new_meta_blocks(handle, inode, goal,
336                                                      0, &count, err);
337                 if (*err)
338                         goto failed_out;
339
340                 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
341                         EXT4_ERROR_INODE(inode,
342                                          "current_block %llu + count %lu > %d!",
343                                          current_block, count,
344                                          EXT4_MAX_BLOCK_FILE_PHYS);
345                         *err = -EIO;
346                         goto failed_out;
347                 }
348
349                 target -= count;
350                 /* allocate blocks for indirect blocks */
351                 while (index < indirect_blks && count) {
352                         new_blocks[index++] = current_block++;
353                         count--;
354                 }
355                 if (count > 0) {
356                         /*
357                          * save the new block number
358                          * for the first direct block
359                          */
360                         new_blocks[index] = current_block;
361                         WARN(1, KERN_INFO "%s returned more blocks than "
362                                                 "requested\n", __func__);
363                         break;
364                 }
365         }
366
367         target = blks - count ;
368         blk_allocated = count;
369         if (!target)
370                 goto allocated;
371         /* Now allocate data blocks */
372         memset(&ar, 0, sizeof(ar));
373         ar.inode = inode;
374         ar.goal = goal;
375         ar.len = target;
376         ar.logical = iblock;
377         if (S_ISREG(inode->i_mode))
378                 /* enable in-core preallocation only for regular files */
379                 ar.flags = EXT4_MB_HINT_DATA;
380
381         current_block = ext4_mb_new_blocks(handle, &ar, err);
382         if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
383                 EXT4_ERROR_INODE(inode,
384                                  "current_block %llu + ar.len %d > %d!",
385                                  current_block, ar.len,
386                                  EXT4_MAX_BLOCK_FILE_PHYS);
387                 *err = -EIO;
388                 goto failed_out;
389         }
390
391         if (*err && (target == blks)) {
392                 /*
393                  * if the allocation failed and we didn't allocate
394                  * any blocks before
395                  */
396                 goto failed_out;
397         }
398         if (!*err) {
399                 if (target == blks) {
400                         /*
401                          * save the new block number
402                          * for the first direct block
403                          */
404                         new_blocks[index] = current_block;
405                 }
406                 blk_allocated += ar.len;
407         }
408 allocated:
409         /* total number of blocks allocated for direct blocks */
410         ret = blk_allocated;
411         *err = 0;
412         return ret;
413 failed_out:
414         for (i = 0; i < index; i++)
415                 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
416         return ret;
417 }
418
419 /**
420  *      ext4_alloc_branch - allocate and set up a chain of blocks.
421  *      @handle: handle for this transaction
422  *      @inode: owner
423  *      @indirect_blks: number of allocated indirect blocks
424  *      @blks: number of allocated direct blocks
425  *      @goal: preferred place for allocation
426  *      @offsets: offsets (in the blocks) to store the pointers to next.
427  *      @branch: place to store the chain in.
428  *
429  *      This function allocates blocks, zeroes out all but the last one,
430  *      links them into chain and (if we are synchronous) writes them to disk.
431  *      In other words, it prepares a branch that can be spliced onto the
432  *      inode. It stores the information about that chain in the branch[], in
433  *      the same format as ext4_get_branch() would do. We are calling it after
434  *      we had read the existing part of chain and partial points to the last
435  *      triple of that (one with zero ->key). Upon the exit we have the same
436  *      picture as after the successful ext4_get_block(), except that in one
437  *      place chain is disconnected - *branch->p is still zero (we did not
438  *      set the last link), but branch->key contains the number that should
439  *      be placed into *branch->p to fill that gap.
440  *
441  *      If allocation fails we free all blocks we've allocated (and forget
442  *      their buffer_heads) and return the error value the from failed
443  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
444  *      as described above and return 0.
445  */
446 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
447                              ext4_lblk_t iblock, int indirect_blks,
448                              int *blks, ext4_fsblk_t goal,
449                              ext4_lblk_t *offsets, Indirect *branch)
450 {
451         int blocksize = inode->i_sb->s_blocksize;
452         int i, n = 0;
453         int err = 0;
454         struct buffer_head *bh;
455         int num;
456         ext4_fsblk_t new_blocks[4];
457         ext4_fsblk_t current_block;
458
459         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
460                                 *blks, new_blocks, &err);
461         if (err)
462                 return err;
463
464         branch[0].key = cpu_to_le32(new_blocks[0]);
465         /*
466          * metadata blocks and data blocks are allocated.
467          */
468         for (n = 1; n <= indirect_blks;  n++) {
469                 /*
470                  * Get buffer_head for parent block, zero it out
471                  * and set the pointer to new one, then send
472                  * parent to disk.
473                  */
474                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
475                 if (unlikely(!bh)) {
476                         err = -ENOMEM;
477                         goto failed;
478                 }
479
480                 branch[n].bh = bh;
481                 lock_buffer(bh);
482                 BUFFER_TRACE(bh, "call get_create_access");
483                 err = ext4_journal_get_create_access(handle, bh);
484                 if (err) {
485                         /* Don't brelse(bh) here; it's done in
486                          * ext4_journal_forget() below */
487                         unlock_buffer(bh);
488                         goto failed;
489                 }
490
491                 memset(bh->b_data, 0, blocksize);
492                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
493                 branch[n].key = cpu_to_le32(new_blocks[n]);
494                 *branch[n].p = branch[n].key;
495                 if (n == indirect_blks) {
496                         current_block = new_blocks[n];
497                         /*
498                          * End of chain, update the last new metablock of
499                          * the chain to point to the new allocated
500                          * data blocks numbers
501                          */
502                         for (i = 1; i < num; i++)
503                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
504                 }
505                 BUFFER_TRACE(bh, "marking uptodate");
506                 set_buffer_uptodate(bh);
507                 unlock_buffer(bh);
508
509                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
510                 err = ext4_handle_dirty_metadata(handle, inode, bh);
511                 if (err)
512                         goto failed;
513         }
514         *blks = num;
515         return err;
516 failed:
517         /* Allocation failed, free what we already allocated */
518         ext4_free_blocks(handle, inode, NULL, new_blocks[0], 1, 0);
519         for (i = 1; i <= n ; i++) {
520                 /*
521                  * branch[i].bh is newly allocated, so there is no
522                  * need to revoke the block, which is why we don't
523                  * need to set EXT4_FREE_BLOCKS_METADATA.
524                  */
525                 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1,
526                                  EXT4_FREE_BLOCKS_FORGET);
527         }
528         for (i = n+1; i < indirect_blks; i++)
529                 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
530
531         ext4_free_blocks(handle, inode, NULL, new_blocks[i], num, 0);
532
533         return err;
534 }
535
536 /**
537  * ext4_splice_branch - splice the allocated branch onto inode.
538  * @handle: handle for this transaction
539  * @inode: owner
540  * @block: (logical) number of block we are adding
541  * @chain: chain of indirect blocks (with a missing link - see
542  *      ext4_alloc_branch)
543  * @where: location of missing link
544  * @num:   number of indirect blocks we are adding
545  * @blks:  number of direct blocks we are adding
546  *
547  * This function fills the missing link and does all housekeeping needed in
548  * inode (->i_blocks, etc.). In case of success we end up with the full
549  * chain to new block and return 0.
550  */
551 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
552                               ext4_lblk_t block, Indirect *where, int num,
553                               int blks)
554 {
555         int i;
556         int err = 0;
557         ext4_fsblk_t current_block;
558
559         /*
560          * If we're splicing into a [td]indirect block (as opposed to the
561          * inode) then we need to get write access to the [td]indirect block
562          * before the splice.
563          */
564         if (where->bh) {
565                 BUFFER_TRACE(where->bh, "get_write_access");
566                 err = ext4_journal_get_write_access(handle, where->bh);
567                 if (err)
568                         goto err_out;
569         }
570         /* That's it */
571
572         *where->p = where->key;
573
574         /*
575          * Update the host buffer_head or inode to point to more just allocated
576          * direct blocks blocks
577          */
578         if (num == 0 && blks > 1) {
579                 current_block = le32_to_cpu(where->key) + 1;
580                 for (i = 1; i < blks; i++)
581                         *(where->p + i) = cpu_to_le32(current_block++);
582         }
583
584         /* We are done with atomic stuff, now do the rest of housekeeping */
585         /* had we spliced it onto indirect block? */
586         if (where->bh) {
587                 /*
588                  * If we spliced it onto an indirect block, we haven't
589                  * altered the inode.  Note however that if it is being spliced
590                  * onto an indirect block at the very end of the file (the
591                  * file is growing) then we *will* alter the inode to reflect
592                  * the new i_size.  But that is not done here - it is done in
593                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
594                  */
595                 jbd_debug(5, "splicing indirect only\n");
596                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
597                 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
598                 if (err)
599                         goto err_out;
600         } else {
601                 /*
602                  * OK, we spliced it into the inode itself on a direct block.
603                  */
604                 ext4_mark_inode_dirty(handle, inode);
605                 jbd_debug(5, "splicing direct\n");
606         }
607         return err;
608
609 err_out:
610         for (i = 1; i <= num; i++) {
611                 /*
612                  * branch[i].bh is newly allocated, so there is no
613                  * need to revoke the block, which is why we don't
614                  * need to set EXT4_FREE_BLOCKS_METADATA.
615                  */
616                 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
617                                  EXT4_FREE_BLOCKS_FORGET);
618         }
619         ext4_free_blocks(handle, inode, NULL, le32_to_cpu(where[num].key),
620                          blks, 0);
621
622         return err;
623 }
624
625 /*
626  * The ext4_ind_map_blocks() function handles non-extents inodes
627  * (i.e., using the traditional indirect/double-indirect i_blocks
628  * scheme) for ext4_map_blocks().
629  *
630  * Allocation strategy is simple: if we have to allocate something, we will
631  * have to go the whole way to leaf. So let's do it before attaching anything
632  * to tree, set linkage between the newborn blocks, write them if sync is
633  * required, recheck the path, free and repeat if check fails, otherwise
634  * set the last missing link (that will protect us from any truncate-generated
635  * removals - all blocks on the path are immune now) and possibly force the
636  * write on the parent block.
637  * That has a nice additional property: no special recovery from the failed
638  * allocations is needed - we simply release blocks and do not touch anything
639  * reachable from inode.
640  *
641  * `handle' can be NULL if create == 0.
642  *
643  * return > 0, # of blocks mapped or allocated.
644  * return = 0, if plain lookup failed.
645  * return < 0, error case.
646  *
647  * The ext4_ind_get_blocks() function should be called with
648  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
649  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
650  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
651  * blocks.
652  */
653 int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
654                         struct ext4_map_blocks *map,
655                         int flags)
656 {
657         int err = -EIO;
658         ext4_lblk_t offsets[4];
659         Indirect chain[4];
660         Indirect *partial;
661         ext4_fsblk_t goal;
662         int indirect_blks;
663         int blocks_to_boundary = 0;
664         int depth;
665         int count = 0;
666         ext4_fsblk_t first_block = 0;
667
668         trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
669         J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
670         J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
671         depth = ext4_block_to_path(inode, map->m_lblk, offsets,
672                                    &blocks_to_boundary);
673
674         if (depth == 0)
675                 goto out;
676
677         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
678
679         /* Simplest case - block found, no allocation needed */
680         if (!partial) {
681                 first_block = le32_to_cpu(chain[depth - 1].key);
682                 count++;
683                 /*map more blocks*/
684                 while (count < map->m_len && count <= blocks_to_boundary) {
685                         ext4_fsblk_t blk;
686
687                         blk = le32_to_cpu(*(chain[depth-1].p + count));
688
689                         if (blk == first_block + count)
690                                 count++;
691                         else
692                                 break;
693                 }
694                 goto got_it;
695         }
696
697         /* Next simple case - plain lookup or failed read of indirect block */
698         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
699                 goto cleanup;
700
701         /*
702          * Okay, we need to do block allocation.
703         */
704         if (EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
705                                        EXT4_FEATURE_RO_COMPAT_BIGALLOC)) {
706                 EXT4_ERROR_INODE(inode, "Can't allocate blocks for "
707                                  "non-extent mapped inodes with bigalloc");
708                 return -ENOSPC;
709         }
710
711         goal = ext4_find_goal(inode, map->m_lblk, partial);
712
713         /* the number of blocks need to allocate for [d,t]indirect blocks */
714         indirect_blks = (chain + depth) - partial - 1;
715
716         /*
717          * Next look up the indirect map to count the totoal number of
718          * direct blocks to allocate for this branch.
719          */
720         count = ext4_blks_to_allocate(partial, indirect_blks,
721                                       map->m_len, blocks_to_boundary);
722         /*
723          * Block out ext4_truncate while we alter the tree
724          */
725         err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
726                                 &count, goal,
727                                 offsets + (partial - chain), partial);
728
729         /*
730          * The ext4_splice_branch call will free and forget any buffers
731          * on the new chain if there is a failure, but that risks using
732          * up transaction credits, especially for bitmaps where the
733          * credits cannot be returned.  Can we handle this somehow?  We
734          * may need to return -EAGAIN upwards in the worst case.  --sct
735          */
736         if (!err)
737                 err = ext4_splice_branch(handle, inode, map->m_lblk,
738                                          partial, indirect_blks, count);
739         if (err)
740                 goto cleanup;
741
742         map->m_flags |= EXT4_MAP_NEW;
743
744         ext4_update_inode_fsync_trans(handle, inode, 1);
745 got_it:
746         map->m_flags |= EXT4_MAP_MAPPED;
747         map->m_pblk = le32_to_cpu(chain[depth-1].key);
748         map->m_len = count;
749         if (count > blocks_to_boundary)
750                 map->m_flags |= EXT4_MAP_BOUNDARY;
751         err = count;
752         /* Clean up and exit */
753         partial = chain + depth - 1;    /* the whole chain */
754 cleanup:
755         while (partial > chain) {
756                 BUFFER_TRACE(partial->bh, "call brelse");
757                 brelse(partial->bh);
758                 partial--;
759         }
760 out:
761         trace_ext4_ind_map_blocks_exit(inode, map, err);
762         return err;
763 }
764
765 /*
766  * O_DIRECT for ext3 (or indirect map) based files
767  *
768  * If the O_DIRECT write will extend the file then add this inode to the
769  * orphan list.  So recovery will truncate it back to the original size
770  * if the machine crashes during the write.
771  *
772  * If the O_DIRECT write is intantiating holes inside i_size and the machine
773  * crashes then stale disk data _may_ be exposed inside the file. But current
774  * VFS code falls back into buffered path in that case so we are safe.
775  */
776 ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
777                            const struct iovec *iov, loff_t offset,
778                            unsigned long nr_segs)
779 {
780         struct file *file = iocb->ki_filp;
781         struct inode *inode = file->f_mapping->host;
782         struct ext4_inode_info *ei = EXT4_I(inode);
783         handle_t *handle;
784         ssize_t ret;
785         int orphan = 0;
786         size_t count = iov_length(iov, nr_segs);
787         int retries = 0;
788
789         if (rw == WRITE) {
790                 loff_t final_size = offset + count;
791
792                 if (final_size > inode->i_size) {
793                         /* Credits for sb + inode write */
794                         handle = ext4_journal_start(inode, 2);
795                         if (IS_ERR(handle)) {
796                                 ret = PTR_ERR(handle);
797                                 goto out;
798                         }
799                         ret = ext4_orphan_add(handle, inode);
800                         if (ret) {
801                                 ext4_journal_stop(handle);
802                                 goto out;
803                         }
804                         orphan = 1;
805                         ei->i_disksize = inode->i_size;
806                         ext4_journal_stop(handle);
807                 }
808         }
809
810 retry:
811         if (rw == READ && ext4_should_dioread_nolock(inode)) {
812                 if (unlikely(atomic_read(&EXT4_I(inode)->i_unwritten))) {
813                         mutex_lock(&inode->i_mutex);
814                         ext4_flush_unwritten_io(inode);
815                         mutex_unlock(&inode->i_mutex);
816                 }
817                 /*
818                  * Nolock dioread optimization may be dynamically disabled
819                  * via ext4_inode_block_unlocked_dio(). Check inode's state
820                  * while holding extra i_dio_count ref.
821                  */
822                 atomic_inc(&inode->i_dio_count);
823                 smp_mb();
824                 if (unlikely(ext4_test_inode_state(inode,
825                                                     EXT4_STATE_DIOREAD_LOCK))) {
826                         inode_dio_done(inode);
827                         goto locked;
828                 }
829                 ret = __blockdev_direct_IO(rw, iocb, inode,
830                                  inode->i_sb->s_bdev, iov,
831                                  offset, nr_segs,
832                                  ext4_get_block, NULL, NULL, 0);
833                 inode_dio_done(inode);
834         } else {
835 locked:
836                 ret = blockdev_direct_IO(rw, iocb, inode, iov,
837                                  offset, nr_segs, ext4_get_block);
838
839                 if (unlikely((rw & WRITE) && ret < 0)) {
840                         loff_t isize = i_size_read(inode);
841                         loff_t end = offset + iov_length(iov, nr_segs);
842
843                         if (end > isize)
844                                 ext4_truncate_failed_write(inode);
845                 }
846         }
847         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
848                 goto retry;
849
850         if (orphan) {
851                 int err;
852
853                 /* Credits for sb + inode write */
854                 handle = ext4_journal_start(inode, 2);
855                 if (IS_ERR(handle)) {
856                         /* This is really bad luck. We've written the data
857                          * but cannot extend i_size. Bail out and pretend
858                          * the write failed... */
859                         ret = PTR_ERR(handle);
860                         if (inode->i_nlink)
861                                 ext4_orphan_del(NULL, inode);
862
863                         goto out;
864                 }
865                 if (inode->i_nlink)
866                         ext4_orphan_del(handle, inode);
867                 if (ret > 0) {
868                         loff_t end = offset + ret;
869                         if (end > inode->i_size) {
870                                 ei->i_disksize = end;
871                                 i_size_write(inode, end);
872                                 /*
873                                  * We're going to return a positive `ret'
874                                  * here due to non-zero-length I/O, so there's
875                                  * no way of reporting error returns from
876                                  * ext4_mark_inode_dirty() to userspace.  So
877                                  * ignore it.
878                                  */
879                                 ext4_mark_inode_dirty(handle, inode);
880                         }
881                 }
882                 err = ext4_journal_stop(handle);
883                 if (ret == 0)
884                         ret = err;
885         }
886 out:
887         return ret;
888 }
889
890 /*
891  * Calculate the number of metadata blocks need to reserve
892  * to allocate a new block at @lblocks for non extent file based file
893  */
894 int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock)
895 {
896         struct ext4_inode_info *ei = EXT4_I(inode);
897         sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
898         int blk_bits;
899
900         if (lblock < EXT4_NDIR_BLOCKS)
901                 return 0;
902
903         lblock -= EXT4_NDIR_BLOCKS;
904
905         if (ei->i_da_metadata_calc_len &&
906             (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
907                 ei->i_da_metadata_calc_len++;
908                 return 0;
909         }
910         ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
911         ei->i_da_metadata_calc_len = 1;
912         blk_bits = order_base_2(lblock);
913         return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
914 }
915
916 int ext4_ind_trans_blocks(struct inode *inode, int nrblocks, int chunk)
917 {
918         int indirects;
919
920         /* if nrblocks are contiguous */
921         if (chunk) {
922                 /*
923                  * With N contiguous data blocks, we need at most
924                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
925                  * 2 dindirect blocks, and 1 tindirect block
926                  */
927                 return DIV_ROUND_UP(nrblocks,
928                                     EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
929         }
930         /*
931          * if nrblocks are not contiguous, worse case, each block touch
932          * a indirect block, and each indirect block touch a double indirect
933          * block, plus a triple indirect block
934          */
935         indirects = nrblocks * 2 + 1;
936         return indirects;
937 }
938
939 /*
940  * Truncate transactions can be complex and absolutely huge.  So we need to
941  * be able to restart the transaction at a conventient checkpoint to make
942  * sure we don't overflow the journal.
943  *
944  * start_transaction gets us a new handle for a truncate transaction,
945  * and extend_transaction tries to extend the existing one a bit.  If
946  * extend fails, we need to propagate the failure up and restart the
947  * transaction in the top-level truncate loop. --sct
948  */
949 static handle_t *start_transaction(struct inode *inode)
950 {
951         handle_t *result;
952
953         result = ext4_journal_start(inode, ext4_blocks_for_truncate(inode));
954         if (!IS_ERR(result))
955                 return result;
956
957         ext4_std_error(inode->i_sb, PTR_ERR(result));
958         return result;
959 }
960
961 /*
962  * Try to extend this transaction for the purposes of truncation.
963  *
964  * Returns 0 if we managed to create more room.  If we can't create more
965  * room, and the transaction must be restarted we return 1.
966  */
967 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
968 {
969         if (!ext4_handle_valid(handle))
970                 return 0;
971         if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
972                 return 0;
973         if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode)))
974                 return 0;
975         return 1;
976 }
977
978 /*
979  * Probably it should be a library function... search for first non-zero word
980  * or memcmp with zero_page, whatever is better for particular architecture.
981  * Linus?
982  */
983 static inline int all_zeroes(__le32 *p, __le32 *q)
984 {
985         while (p < q)
986                 if (*p++)
987                         return 0;
988         return 1;
989 }
990
991 /**
992  *      ext4_find_shared - find the indirect blocks for partial truncation.
993  *      @inode:   inode in question
994  *      @depth:   depth of the affected branch
995  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
996  *      @chain:   place to store the pointers to partial indirect blocks
997  *      @top:     place to the (detached) top of branch
998  *
999  *      This is a helper function used by ext4_truncate().
1000  *
1001  *      When we do truncate() we may have to clean the ends of several
1002  *      indirect blocks but leave the blocks themselves alive. Block is
1003  *      partially truncated if some data below the new i_size is referred
1004  *      from it (and it is on the path to the first completely truncated
1005  *      data block, indeed).  We have to free the top of that path along
1006  *      with everything to the right of the path. Since no allocation
1007  *      past the truncation point is possible until ext4_truncate()
1008  *      finishes, we may safely do the latter, but top of branch may
1009  *      require special attention - pageout below the truncation point
1010  *      might try to populate it.
1011  *
1012  *      We atomically detach the top of branch from the tree, store the
1013  *      block number of its root in *@top, pointers to buffer_heads of
1014  *      partially truncated blocks - in @chain[].bh and pointers to
1015  *      their last elements that should not be removed - in
1016  *      @chain[].p. Return value is the pointer to last filled element
1017  *      of @chain.
1018  *
1019  *      The work left to caller to do the actual freeing of subtrees:
1020  *              a) free the subtree starting from *@top
1021  *              b) free the subtrees whose roots are stored in
1022  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1023  *              c) free the subtrees growing from the inode past the @chain[0].
1024  *                      (no partially truncated stuff there).  */
1025
1026 static Indirect *ext4_find_shared(struct inode *inode, int depth,
1027                                   ext4_lblk_t offsets[4], Indirect chain[4],
1028                                   __le32 *top)
1029 {
1030         Indirect *partial, *p;
1031         int k, err;
1032
1033         *top = 0;
1034         /* Make k index the deepest non-null offset + 1 */
1035         for (k = depth; k > 1 && !offsets[k-1]; k--)
1036                 ;
1037         partial = ext4_get_branch(inode, k, offsets, chain, &err);
1038         /* Writer: pointers */
1039         if (!partial)
1040                 partial = chain + k-1;
1041         /*
1042          * If the branch acquired continuation since we've looked at it -
1043          * fine, it should all survive and (new) top doesn't belong to us.
1044          */
1045         if (!partial->key && *partial->p)
1046                 /* Writer: end */
1047                 goto no_top;
1048         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
1049                 ;
1050         /*
1051          * OK, we've found the last block that must survive. The rest of our
1052          * branch should be detached before unlocking. However, if that rest
1053          * of branch is all ours and does not grow immediately from the inode
1054          * it's easier to cheat and just decrement partial->p.
1055          */
1056         if (p == chain + k - 1 && p > chain) {
1057                 p->p--;
1058         } else {
1059                 *top = *p->p;
1060                 /* Nope, don't do this in ext4.  Must leave the tree intact */
1061 #if 0
1062                 *p->p = 0;
1063 #endif
1064         }
1065         /* Writer: end */
1066
1067         while (partial > p) {
1068                 brelse(partial->bh);
1069                 partial--;
1070         }
1071 no_top:
1072         return partial;
1073 }
1074
1075 /*
1076  * Zero a number of block pointers in either an inode or an indirect block.
1077  * If we restart the transaction we must again get write access to the
1078  * indirect block for further modification.
1079  *
1080  * We release `count' blocks on disk, but (last - first) may be greater
1081  * than `count' because there can be holes in there.
1082  *
1083  * Return 0 on success, 1 on invalid block range
1084  * and < 0 on fatal error.
1085  */
1086 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
1087                              struct buffer_head *bh,
1088                              ext4_fsblk_t block_to_free,
1089                              unsigned long count, __le32 *first,
1090                              __le32 *last)
1091 {
1092         __le32 *p;
1093         int     flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
1094         int     err;
1095
1096         if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1097                 flags |= EXT4_FREE_BLOCKS_METADATA;
1098
1099         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
1100                                    count)) {
1101                 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
1102                                  "blocks %llu len %lu",
1103                                  (unsigned long long) block_to_free, count);
1104                 return 1;
1105         }
1106
1107         if (try_to_extend_transaction(handle, inode)) {
1108                 if (bh) {
1109                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1110                         err = ext4_handle_dirty_metadata(handle, inode, bh);
1111                         if (unlikely(err))
1112                                 goto out_err;
1113                 }
1114                 err = ext4_mark_inode_dirty(handle, inode);
1115                 if (unlikely(err))
1116                         goto out_err;
1117                 err = ext4_truncate_restart_trans(handle, inode,
1118                                         ext4_blocks_for_truncate(inode));
1119                 if (unlikely(err))
1120                         goto out_err;
1121                 if (bh) {
1122                         BUFFER_TRACE(bh, "retaking write access");
1123                         err = ext4_journal_get_write_access(handle, bh);
1124                         if (unlikely(err))
1125                                 goto out_err;
1126                 }
1127         }
1128
1129         for (p = first; p < last; p++)
1130                 *p = 0;
1131
1132         ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
1133         return 0;
1134 out_err:
1135         ext4_std_error(inode->i_sb, err);
1136         return err;
1137 }
1138
1139 /**
1140  * ext4_free_data - free a list of data blocks
1141  * @handle:     handle for this transaction
1142  * @inode:      inode we are dealing with
1143  * @this_bh:    indirect buffer_head which contains *@first and *@last
1144  * @first:      array of block numbers
1145  * @last:       points immediately past the end of array
1146  *
1147  * We are freeing all blocks referred from that array (numbers are stored as
1148  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
1149  *
1150  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
1151  * blocks are contiguous then releasing them at one time will only affect one
1152  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
1153  * actually use a lot of journal space.
1154  *
1155  * @this_bh will be %NULL if @first and @last point into the inode's direct
1156  * block pointers.
1157  */
1158 static void ext4_free_data(handle_t *handle, struct inode *inode,
1159                            struct buffer_head *this_bh,
1160                            __le32 *first, __le32 *last)
1161 {
1162         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
1163         unsigned long count = 0;            /* Number of blocks in the run */
1164         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
1165                                                corresponding to
1166                                                block_to_free */
1167         ext4_fsblk_t nr;                    /* Current block # */
1168         __le32 *p;                          /* Pointer into inode/ind
1169                                                for current block */
1170         int err = 0;
1171
1172         if (this_bh) {                          /* For indirect block */
1173                 BUFFER_TRACE(this_bh, "get_write_access");
1174                 err = ext4_journal_get_write_access(handle, this_bh);
1175                 /* Important: if we can't update the indirect pointers
1176                  * to the blocks, we can't free them. */
1177                 if (err)
1178                         return;
1179         }
1180
1181         for (p = first; p < last; p++) {
1182                 nr = le32_to_cpu(*p);
1183                 if (nr) {
1184                         /* accumulate blocks to free if they're contiguous */
1185                         if (count == 0) {
1186                                 block_to_free = nr;
1187                                 block_to_free_p = p;
1188                                 count = 1;
1189                         } else if (nr == block_to_free + count) {
1190                                 count++;
1191                         } else {
1192                                 err = ext4_clear_blocks(handle, inode, this_bh,
1193                                                         block_to_free, count,
1194                                                         block_to_free_p, p);
1195                                 if (err)
1196                                         break;
1197                                 block_to_free = nr;
1198                                 block_to_free_p = p;
1199                                 count = 1;
1200                         }
1201                 }
1202         }
1203
1204         if (!err && count > 0)
1205                 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
1206                                         count, block_to_free_p, p);
1207         if (err < 0)
1208                 /* fatal error */
1209                 return;
1210
1211         if (this_bh) {
1212                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
1213
1214                 /*
1215                  * The buffer head should have an attached journal head at this
1216                  * point. However, if the data is corrupted and an indirect
1217                  * block pointed to itself, it would have been detached when
1218                  * the block was cleared. Check for this instead of OOPSing.
1219                  */
1220                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
1221                         ext4_handle_dirty_metadata(handle, inode, this_bh);
1222                 else
1223                         EXT4_ERROR_INODE(inode,
1224                                          "circular indirect block detected at "
1225                                          "block %llu",
1226                                 (unsigned long long) this_bh->b_blocknr);
1227         }
1228 }
1229
1230 /**
1231  *      ext4_free_branches - free an array of branches
1232  *      @handle: JBD handle for this transaction
1233  *      @inode: inode we are dealing with
1234  *      @parent_bh: the buffer_head which contains *@first and *@last
1235  *      @first: array of block numbers
1236  *      @last:  pointer immediately past the end of array
1237  *      @depth: depth of the branches to free
1238  *
1239  *      We are freeing all blocks referred from these branches (numbers are
1240  *      stored as little-endian 32-bit) and updating @inode->i_blocks
1241  *      appropriately.
1242  */
1243 static void ext4_free_branches(handle_t *handle, struct inode *inode,
1244                                struct buffer_head *parent_bh,
1245                                __le32 *first, __le32 *last, int depth)
1246 {
1247         ext4_fsblk_t nr;
1248         __le32 *p;
1249
1250         if (ext4_handle_is_aborted(handle))
1251                 return;
1252
1253         if (depth--) {
1254                 struct buffer_head *bh;
1255                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1256                 p = last;
1257                 while (--p >= first) {
1258                         nr = le32_to_cpu(*p);
1259                         if (!nr)
1260                                 continue;               /* A hole */
1261
1262                         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
1263                                                    nr, 1)) {
1264                                 EXT4_ERROR_INODE(inode,
1265                                                  "invalid indirect mapped "
1266                                                  "block %lu (level %d)",
1267                                                  (unsigned long) nr, depth);
1268                                 break;
1269                         }
1270
1271                         /* Go read the buffer for the next level down */
1272                         bh = sb_bread(inode->i_sb, nr);
1273
1274                         /*
1275                          * A read failure? Report error and clear slot
1276                          * (should be rare).
1277                          */
1278                         if (!bh) {
1279                                 EXT4_ERROR_INODE_BLOCK(inode, nr,
1280                                                        "Read failure");
1281                                 continue;
1282                         }
1283
1284                         /* This zaps the entire block.  Bottom up. */
1285                         BUFFER_TRACE(bh, "free child branches");
1286                         ext4_free_branches(handle, inode, bh,
1287                                         (__le32 *) bh->b_data,
1288                                         (__le32 *) bh->b_data + addr_per_block,
1289                                         depth);
1290                         brelse(bh);
1291
1292                         /*
1293                          * Everything below this this pointer has been
1294                          * released.  Now let this top-of-subtree go.
1295                          *
1296                          * We want the freeing of this indirect block to be
1297                          * atomic in the journal with the updating of the
1298                          * bitmap block which owns it.  So make some room in
1299                          * the journal.
1300                          *
1301                          * We zero the parent pointer *after* freeing its
1302                          * pointee in the bitmaps, so if extend_transaction()
1303                          * for some reason fails to put the bitmap changes and
1304                          * the release into the same transaction, recovery
1305                          * will merely complain about releasing a free block,
1306                          * rather than leaking blocks.
1307                          */
1308                         if (ext4_handle_is_aborted(handle))
1309                                 return;
1310                         if (try_to_extend_transaction(handle, inode)) {
1311                                 ext4_mark_inode_dirty(handle, inode);
1312                                 ext4_truncate_restart_trans(handle, inode,
1313                                             ext4_blocks_for_truncate(inode));
1314                         }
1315
1316                         /*
1317                          * The forget flag here is critical because if
1318                          * we are journaling (and not doing data
1319                          * journaling), we have to make sure a revoke
1320                          * record is written to prevent the journal
1321                          * replay from overwriting the (former)
1322                          * indirect block if it gets reallocated as a
1323                          * data block.  This must happen in the same
1324                          * transaction where the data blocks are
1325                          * actually freed.
1326                          */
1327                         ext4_free_blocks(handle, inode, NULL, nr, 1,
1328                                          EXT4_FREE_BLOCKS_METADATA|
1329                                          EXT4_FREE_BLOCKS_FORGET);
1330
1331                         if (parent_bh) {
1332                                 /*
1333                                  * The block which we have just freed is
1334                                  * pointed to by an indirect block: journal it
1335                                  */
1336                                 BUFFER_TRACE(parent_bh, "get_write_access");
1337                                 if (!ext4_journal_get_write_access(handle,
1338                                                                    parent_bh)){
1339                                         *p = 0;
1340                                         BUFFER_TRACE(parent_bh,
1341                                         "call ext4_handle_dirty_metadata");
1342                                         ext4_handle_dirty_metadata(handle,
1343                                                                    inode,
1344                                                                    parent_bh);
1345                                 }
1346                         }
1347                 }
1348         } else {
1349                 /* We have reached the bottom of the tree. */
1350                 BUFFER_TRACE(parent_bh, "free data blocks");
1351                 ext4_free_data(handle, inode, parent_bh, first, last);
1352         }
1353 }
1354
1355 void ext4_ind_truncate(struct inode *inode)
1356 {
1357         handle_t *handle;
1358         struct ext4_inode_info *ei = EXT4_I(inode);
1359         __le32 *i_data = ei->i_data;
1360         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1361         struct address_space *mapping = inode->i_mapping;
1362         ext4_lblk_t offsets[4];
1363         Indirect chain[4];
1364         Indirect *partial;
1365         __le32 nr = 0;
1366         int n = 0;
1367         ext4_lblk_t last_block, max_block;
1368         loff_t page_len;
1369         unsigned blocksize = inode->i_sb->s_blocksize;
1370         int err;
1371
1372         handle = start_transaction(inode);
1373         if (IS_ERR(handle))
1374                 return;         /* AKPM: return what? */
1375
1376         last_block = (inode->i_size + blocksize-1)
1377                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1378         max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1379                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1380
1381         if (inode->i_size % PAGE_CACHE_SIZE != 0) {
1382                 page_len = PAGE_CACHE_SIZE -
1383                         (inode->i_size & (PAGE_CACHE_SIZE - 1));
1384
1385                 err = ext4_discard_partial_page_buffers(handle,
1386                         mapping, inode->i_size, page_len, 0);
1387
1388                 if (err)
1389                         goto out_stop;
1390         }
1391
1392         if (last_block != max_block) {
1393                 n = ext4_block_to_path(inode, last_block, offsets, NULL);
1394                 if (n == 0)
1395                         goto out_stop;  /* error */
1396         }
1397
1398         /*
1399          * OK.  This truncate is going to happen.  We add the inode to the
1400          * orphan list, so that if this truncate spans multiple transactions,
1401          * and we crash, we will resume the truncate when the filesystem
1402          * recovers.  It also marks the inode dirty, to catch the new size.
1403          *
1404          * Implication: the file must always be in a sane, consistent
1405          * truncatable state while each transaction commits.
1406          */
1407         if (ext4_orphan_add(handle, inode))
1408                 goto out_stop;
1409
1410         /*
1411          * From here we block out all ext4_get_block() callers who want to
1412          * modify the block allocation tree.
1413          */
1414         down_write(&ei->i_data_sem);
1415
1416         ext4_discard_preallocations(inode);
1417         ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block);
1418
1419         /*
1420          * The orphan list entry will now protect us from any crash which
1421          * occurs before the truncate completes, so it is now safe to propagate
1422          * the new, shorter inode size (held for now in i_size) into the
1423          * on-disk inode. We do this via i_disksize, which is the value which
1424          * ext4 *really* writes onto the disk inode.
1425          */
1426         ei->i_disksize = inode->i_size;
1427
1428         if (last_block == max_block) {
1429                 /*
1430                  * It is unnecessary to free any data blocks if last_block is
1431                  * equal to the indirect block limit.
1432                  */
1433                 goto out_unlock;
1434         } else if (n == 1) {            /* direct blocks */
1435                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
1436                                i_data + EXT4_NDIR_BLOCKS);
1437                 goto do_indirects;
1438         }
1439
1440         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1441         /* Kill the top of shared branch (not detached) */
1442         if (nr) {
1443                 if (partial == chain) {
1444                         /* Shared branch grows from the inode */
1445                         ext4_free_branches(handle, inode, NULL,
1446                                            &nr, &nr+1, (chain+n-1) - partial);
1447                         *partial->p = 0;
1448                         /*
1449                          * We mark the inode dirty prior to restart,
1450                          * and prior to stop.  No need for it here.
1451                          */
1452                 } else {
1453                         /* Shared branch grows from an indirect block */
1454                         BUFFER_TRACE(partial->bh, "get_write_access");
1455                         ext4_free_branches(handle, inode, partial->bh,
1456                                         partial->p,
1457                                         partial->p+1, (chain+n-1) - partial);
1458                 }
1459         }
1460         /* Clear the ends of indirect blocks on the shared branch */
1461         while (partial > chain) {
1462                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
1463                                    (__le32*)partial->bh->b_data+addr_per_block,
1464                                    (chain+n-1) - partial);
1465                 BUFFER_TRACE(partial->bh, "call brelse");
1466                 brelse(partial->bh);
1467                 partial--;
1468         }
1469 do_indirects:
1470         /* Kill the remaining (whole) subtrees */
1471         switch (offsets[0]) {
1472         default:
1473                 nr = i_data[EXT4_IND_BLOCK];
1474                 if (nr) {
1475                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1476                         i_data[EXT4_IND_BLOCK] = 0;
1477                 }
1478         case EXT4_IND_BLOCK:
1479                 nr = i_data[EXT4_DIND_BLOCK];
1480                 if (nr) {
1481                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1482                         i_data[EXT4_DIND_BLOCK] = 0;
1483                 }
1484         case EXT4_DIND_BLOCK:
1485                 nr = i_data[EXT4_TIND_BLOCK];
1486                 if (nr) {
1487                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1488                         i_data[EXT4_TIND_BLOCK] = 0;
1489                 }
1490         case EXT4_TIND_BLOCK:
1491                 ;
1492         }
1493
1494 out_unlock:
1495         up_write(&ei->i_data_sem);
1496         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
1497         ext4_mark_inode_dirty(handle, inode);
1498
1499         /*
1500          * In a multi-transaction truncate, we only make the final transaction
1501          * synchronous
1502          */
1503         if (IS_SYNC(inode))
1504                 ext4_handle_sync(handle);
1505 out_stop:
1506         /*
1507          * If this was a simple ftruncate(), and the file will remain alive
1508          * then we need to clear up the orphan record which we created above.
1509          * However, if this was a real unlink then we were called by
1510          * ext4_delete_inode(), and we allow that function to clean up the
1511          * orphan info for us.
1512          */
1513         if (inode->i_nlink)
1514                 ext4_orphan_del(handle, inode);
1515
1516         ext4_journal_stop(handle);
1517         trace_ext4_truncate_exit(inode);
1518 }
1519
1520 static int free_hole_blocks(handle_t *handle, struct inode *inode,
1521                             struct buffer_head *parent_bh, __le32 *i_data,
1522                             int level, ext4_lblk_t first,
1523                             ext4_lblk_t count, int max)
1524 {
1525         struct buffer_head *bh = NULL;
1526         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1527         int ret = 0;
1528         int i, inc;
1529         ext4_lblk_t offset;
1530         __le32 blk;
1531
1532         inc = 1 << ((EXT4_BLOCK_SIZE_BITS(inode->i_sb) - 2) * level);
1533         for (i = 0, offset = 0; i < max; i++, i_data++, offset += inc) {
1534                 if (offset >= count + first)
1535                         break;
1536                 if (*i_data == 0 || (offset + inc) <= first)
1537                         continue;
1538                 blk = *i_data;
1539                 if (level > 0) {
1540                         ext4_lblk_t first2;
1541                         bh = sb_bread(inode->i_sb, blk);
1542                         if (!bh) {
1543                                 EXT4_ERROR_INODE_BLOCK(inode, blk,
1544                                                        "Read failure");
1545                                 return -EIO;
1546                         }
1547                         first2 = (first > offset) ? first - offset : 0;
1548                         ret = free_hole_blocks(handle, inode, bh,
1549                                                (__le32 *)bh->b_data, level - 1,
1550                                                first2, count - offset,
1551                                                inode->i_sb->s_blocksize >> 2);
1552                         if (ret) {
1553                                 brelse(bh);
1554                                 goto err;
1555                         }
1556                 }
1557                 if (level == 0 ||
1558                     (bh && all_zeroes((__le32 *)bh->b_data,
1559                                       (__le32 *)bh->b_data + addr_per_block))) {
1560                         ext4_free_data(handle, inode, parent_bh, &blk, &blk+1);
1561                         *i_data = 0;
1562                 }
1563                 brelse(bh);
1564                 bh = NULL;
1565         }
1566
1567 err:
1568         return ret;
1569 }
1570
1571 static int ext4_free_hole_blocks(handle_t *handle, struct inode *inode,
1572                                  ext4_lblk_t first, ext4_lblk_t stop)
1573 {
1574         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1575         int level, ret = 0;
1576         int num = EXT4_NDIR_BLOCKS;
1577         ext4_lblk_t count, max = EXT4_NDIR_BLOCKS;
1578         __le32 *i_data = EXT4_I(inode)->i_data;
1579
1580         count = stop - first;
1581         for (level = 0; level < 4; level++, max *= addr_per_block) {
1582                 if (first < max) {
1583                         ret = free_hole_blocks(handle, inode, NULL, i_data,
1584                                                level, first, count, num);
1585                         if (ret)
1586                                 goto err;
1587                         if (count > max - first)
1588                                 count -= max - first;
1589                         else
1590                                 break;
1591                         first = 0;
1592                 } else {
1593                         first -= max;
1594                 }
1595                 i_data += num;
1596                 if (level == 0) {
1597                         num = 1;
1598                         max = 1;
1599                 }
1600         }
1601
1602 err:
1603         return ret;
1604 }
1605
1606 int ext4_ind_punch_hole(struct file *file, loff_t offset, loff_t length)
1607 {
1608         struct inode *inode = file->f_path.dentry->d_inode;
1609         struct super_block *sb = inode->i_sb;
1610         ext4_lblk_t first_block, stop_block;
1611         struct address_space *mapping = inode->i_mapping;
1612         handle_t *handle = NULL;
1613         loff_t first_page, last_page, page_len;
1614         loff_t first_page_offset, last_page_offset;
1615         int err = 0;
1616
1617         /*
1618          * Write out all dirty pages to avoid race conditions
1619          * Then release them.
1620          */
1621         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
1622                 err = filemap_write_and_wait_range(mapping,
1623                         offset, offset + length - 1);
1624                 if (err)
1625                         return err;
1626         }
1627
1628         mutex_lock(&inode->i_mutex);
1629         /* It's not possible punch hole on append only file */
1630         if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
1631                 err = -EPERM;
1632                 goto out_mutex;
1633         }
1634         if (IS_SWAPFILE(inode)) {
1635                 err = -ETXTBSY;
1636                 goto out_mutex;
1637         }
1638
1639         /* No need to punch hole beyond i_size */
1640         if (offset >= inode->i_size)
1641                 goto out_mutex;
1642
1643         /*
1644          * If the hole extents beyond i_size, set the hole
1645          * to end after the page that contains i_size
1646          */
1647         if (offset + length > inode->i_size) {
1648                 length = inode->i_size +
1649                     PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
1650                     offset;
1651         }
1652
1653         first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1654         last_page = (offset + length) >> PAGE_CACHE_SHIFT;
1655
1656         first_page_offset = first_page << PAGE_CACHE_SHIFT;
1657         last_page_offset = last_page << PAGE_CACHE_SHIFT;
1658
1659         /* Now release the pages */
1660         if (last_page_offset > first_page_offset) {
1661                 truncate_pagecache_range(inode, first_page_offset,
1662                                          last_page_offset - 1);
1663         }
1664
1665         /* Wait all existing dio works, newcomers will block on i_mutex */
1666         inode_dio_wait(inode);
1667
1668         handle = start_transaction(inode);
1669         if (IS_ERR(handle))
1670                 goto out_mutex;
1671
1672         /*
1673          * Now we need to zero out the non-page-aligned data in the
1674          * pages at the start and tail of the hole, and unmap the buffer
1675          * heads for the block aligned regions of the page that were
1676          * completely zerod.
1677          */
1678         if (first_page > last_page) {
1679                 /*
1680                  * If the file space being truncated is contained within a page
1681                  * just zero out and unmap the middle of that page
1682                  */
1683                 err = ext4_discard_partial_page_buffers(handle,
1684                         mapping, offset, length, 0);
1685                 if (err)
1686                         goto out;
1687         } else {
1688                 /*
1689                  * Zero out and unmap the paritial page that contains
1690                  * the start of the hole
1691                  */
1692                 page_len = first_page_offset - offset;
1693                 if (page_len > 0) {
1694                         err = ext4_discard_partial_page_buffers(handle, mapping,
1695                                                         offset, page_len, 0);
1696                         if (err)
1697                                 goto out;
1698                 }
1699
1700                 /*
1701                  * Zero out and unmap the partial page that contains
1702                  * the end of the hole
1703                  */
1704                 page_len = offset + length - last_page_offset;
1705                 if (page_len > 0) {
1706                         err = ext4_discard_partial_page_buffers(handle, mapping,
1707                                                 last_page_offset, page_len, 0);
1708                         if (err)
1709                                 goto out;
1710                 }
1711         }
1712
1713         /*
1714          * If i_size contained in the last page, we need to
1715          * unmap and zero the paritial page after i_size
1716          */
1717         if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
1718             inode->i_size % PAGE_CACHE_SIZE != 0) {
1719                 page_len = PAGE_CACHE_SIZE -
1720                         (inode->i_size & (PAGE_CACHE_SIZE - 1));
1721                 if (page_len > 0) {
1722                         err = ext4_discard_partial_page_buffers(handle,
1723                                 mapping, inode->i_size, page_len, 0);
1724                         if (err)
1725                                 goto out;
1726                 }
1727         }
1728
1729         first_block = (offset + sb->s_blocksize - 1) >>
1730                 EXT4_BLOCK_SIZE_BITS(sb);
1731         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
1732
1733         if (first_block >= stop_block)
1734                 goto out;
1735
1736         down_write(&EXT4_I(inode)->i_data_sem);
1737         ext4_discard_preallocations(inode);
1738
1739         err = ext4_es_remove_extent(inode, first_block,
1740                                     stop_block - first_block);
1741         err = ext4_free_hole_blocks(handle, inode, first_block, stop_block);
1742
1743         ext4_discard_preallocations(inode);
1744
1745         if (IS_SYNC(inode))
1746                 ext4_handle_sync(handle);
1747
1748         up_write(&EXT4_I(inode)->i_data_sem);
1749
1750 out:
1751         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
1752         ext4_mark_inode_dirty(handle, inode);
1753         ext4_journal_stop(handle);
1754
1755 out_mutex:
1756         mutex_unlock(&inode->i_mutex);
1757
1758         return err;
1759 }