1 // SPDX-License-Identifier: GPL-2.0
3 * linux/fs/ext4/ialloc.c
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
10 * BSD ufs-inspired inode and directory allocation by
11 * Stephen Tweedie (sct@redhat.com), 1993
12 * Big-endian to little-endian byte-swapping/bitmaps by
13 * David S. Miller (davem@caip.rutgers.edu), 1995
16 #include <linux/time.h>
18 #include <linux/stat.h>
19 #include <linux/string.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
22 #include <linux/random.h>
23 #include <linux/bitops.h>
24 #include <linux/blkdev.h>
25 #include <linux/cred.h>
27 #include <asm/byteorder.h>
30 #include "ext4_jbd2.h"
34 #include <trace/events/ext4.h>
37 * ialloc.c contains the inodes allocation and deallocation routines
41 * The free inodes are managed by bitmaps. A file system contains several
42 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
43 * block for inodes, N blocks for the inode table and data blocks.
45 * The file system contains group descriptors which are located after the
46 * super block. Each descriptor contains the number of the bitmap block and
47 * the free blocks count in the block.
51 * To avoid calling the atomic setbit hundreds or thousands of times, we only
52 * need to use it within a single byte (to ensure we get endianness right).
53 * We can use memset for the rest of the bitmap as there are no other users.
55 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
59 if (start_bit >= end_bit)
62 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
63 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
64 ext4_set_bit(i, bitmap);
66 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
69 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate)
72 set_buffer_uptodate(bh);
73 set_bitmap_uptodate(bh);
79 static int ext4_validate_inode_bitmap(struct super_block *sb,
80 struct ext4_group_desc *desc,
81 ext4_group_t block_group,
82 struct buffer_head *bh)
85 struct ext4_group_info *grp = ext4_get_group_info(sb, block_group);
87 if (buffer_verified(bh))
89 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
92 ext4_lock_group(sb, block_group);
93 blk = ext4_inode_bitmap(sb, desc);
94 if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh,
95 EXT4_INODES_PER_GROUP(sb) / 8)) {
96 ext4_unlock_group(sb, block_group);
97 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, "
98 "inode_bitmap = %llu", block_group, blk);
99 ext4_mark_group_bitmap_corrupted(sb, block_group,
100 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
103 set_buffer_verified(bh);
104 ext4_unlock_group(sb, block_group);
109 * Read the inode allocation bitmap for a given block_group, reading
110 * into the specified slot in the superblock's bitmap cache.
112 * Return buffer_head of bitmap on success or NULL.
114 static struct buffer_head *
115 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
117 struct ext4_group_desc *desc;
118 struct ext4_sb_info *sbi = EXT4_SB(sb);
119 struct buffer_head *bh = NULL;
120 ext4_fsblk_t bitmap_blk;
123 desc = ext4_get_group_desc(sb, block_group, NULL);
125 return ERR_PTR(-EFSCORRUPTED);
127 bitmap_blk = ext4_inode_bitmap(sb, desc);
128 if ((bitmap_blk <= le32_to_cpu(sbi->s_es->s_first_data_block)) ||
129 (bitmap_blk >= ext4_blocks_count(sbi->s_es))) {
130 ext4_error(sb, "Invalid inode bitmap blk %llu in "
131 "block_group %u", bitmap_blk, block_group);
132 ext4_mark_group_bitmap_corrupted(sb, block_group,
133 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
134 return ERR_PTR(-EFSCORRUPTED);
136 bh = sb_getblk(sb, bitmap_blk);
138 ext4_error(sb, "Cannot read inode bitmap - "
139 "block_group = %u, inode_bitmap = %llu",
140 block_group, bitmap_blk);
141 return ERR_PTR(-ENOMEM);
143 if (bitmap_uptodate(bh))
147 if (bitmap_uptodate(bh)) {
152 ext4_lock_group(sb, block_group);
153 if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
154 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
155 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb),
156 sb->s_blocksize * 8, bh->b_data);
157 set_bitmap_uptodate(bh);
158 set_buffer_uptodate(bh);
159 set_buffer_verified(bh);
160 ext4_unlock_group(sb, block_group);
164 ext4_unlock_group(sb, block_group);
166 if (buffer_uptodate(bh)) {
168 * if not uninit if bh is uptodate,
169 * bitmap is also uptodate
171 set_bitmap_uptodate(bh);
176 * submit the buffer_head for reading
178 trace_ext4_load_inode_bitmap(sb, block_group);
179 bh->b_end_io = ext4_end_bitmap_read;
181 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
183 if (!buffer_uptodate(bh)) {
185 ext4_error(sb, "Cannot read inode bitmap - "
186 "block_group = %u, inode_bitmap = %llu",
187 block_group, bitmap_blk);
188 ext4_mark_group_bitmap_corrupted(sb, block_group,
189 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
190 return ERR_PTR(-EIO);
194 err = ext4_validate_inode_bitmap(sb, desc, block_group, bh);
204 * NOTE! When we get the inode, we're the only people
205 * that have access to it, and as such there are no
206 * race conditions we have to worry about. The inode
207 * is not on the hash-lists, and it cannot be reached
208 * through the filesystem because the directory entry
209 * has been deleted earlier.
211 * HOWEVER: we must make sure that we get no aliases,
212 * which means that we have to call "clear_inode()"
213 * _before_ we mark the inode not in use in the inode
214 * bitmaps. Otherwise a newly created file might use
215 * the same inode number (not actually the same pointer
216 * though), and then we'd have two inodes sharing the
217 * same inode number and space on the harddisk.
219 void ext4_free_inode(handle_t *handle, struct inode *inode)
221 struct super_block *sb = inode->i_sb;
224 struct buffer_head *bitmap_bh = NULL;
225 struct buffer_head *bh2;
226 ext4_group_t block_group;
228 struct ext4_group_desc *gdp;
229 struct ext4_super_block *es;
230 struct ext4_sb_info *sbi;
231 int fatal = 0, err, count, cleared;
232 struct ext4_group_info *grp;
235 printk(KERN_ERR "EXT4-fs: %s:%d: inode on "
236 "nonexistent device\n", __func__, __LINE__);
239 if (atomic_read(&inode->i_count) > 1) {
240 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d",
241 __func__, __LINE__, inode->i_ino,
242 atomic_read(&inode->i_count));
245 if (inode->i_nlink) {
246 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n",
247 __func__, __LINE__, inode->i_ino, inode->i_nlink);
253 ext4_debug("freeing inode %lu\n", ino);
254 trace_ext4_free_inode(inode);
257 * Note: we must free any quota before locking the superblock,
258 * as writing the quota to disk may need the lock as well.
260 dquot_initialize(inode);
261 dquot_free_inode(inode);
264 is_directory = S_ISDIR(inode->i_mode);
266 /* Do this BEFORE marking the inode not in use or returning an error */
267 ext4_clear_inode(inode);
270 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
271 ext4_error(sb, "reserved or nonexistent inode %lu", ino);
274 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
275 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
276 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
277 /* Don't bother if the inode bitmap is corrupt. */
278 grp = ext4_get_group_info(sb, block_group);
279 if (IS_ERR(bitmap_bh)) {
280 fatal = PTR_ERR(bitmap_bh);
284 if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) {
285 fatal = -EFSCORRUPTED;
289 BUFFER_TRACE(bitmap_bh, "get_write_access");
290 fatal = ext4_journal_get_write_access(handle, bitmap_bh);
295 gdp = ext4_get_group_desc(sb, block_group, &bh2);
297 BUFFER_TRACE(bh2, "get_write_access");
298 fatal = ext4_journal_get_write_access(handle, bh2);
300 ext4_lock_group(sb, block_group);
301 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
302 if (fatal || !cleared) {
303 ext4_unlock_group(sb, block_group);
307 count = ext4_free_inodes_count(sb, gdp) + 1;
308 ext4_free_inodes_set(sb, gdp, count);
310 count = ext4_used_dirs_count(sb, gdp) - 1;
311 ext4_used_dirs_set(sb, gdp, count);
312 percpu_counter_dec(&sbi->s_dirs_counter);
314 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
315 EXT4_INODES_PER_GROUP(sb) / 8);
316 ext4_group_desc_csum_set(sb, block_group, gdp);
317 ext4_unlock_group(sb, block_group);
319 percpu_counter_inc(&sbi->s_freeinodes_counter);
320 if (sbi->s_log_groups_per_flex) {
321 ext4_group_t f = ext4_flex_group(sbi, block_group);
323 atomic_inc(&sbi->s_flex_groups[f].free_inodes);
325 atomic_dec(&sbi->s_flex_groups[f].used_dirs);
327 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
328 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
331 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
332 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
336 ext4_error(sb, "bit already cleared for inode %lu", ino);
337 ext4_mark_group_bitmap_corrupted(sb, block_group,
338 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
343 ext4_std_error(sb, fatal);
353 * Helper function for Orlov's allocator; returns critical information
354 * for a particular block group or flex_bg. If flex_size is 1, then g
355 * is a block group number; otherwise it is flex_bg number.
357 static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
358 int flex_size, struct orlov_stats *stats)
360 struct ext4_group_desc *desc;
361 struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups;
364 stats->free_inodes = atomic_read(&flex_group[g].free_inodes);
365 stats->free_clusters = atomic64_read(&flex_group[g].free_clusters);
366 stats->used_dirs = atomic_read(&flex_group[g].used_dirs);
370 desc = ext4_get_group_desc(sb, g, NULL);
372 stats->free_inodes = ext4_free_inodes_count(sb, desc);
373 stats->free_clusters = ext4_free_group_clusters(sb, desc);
374 stats->used_dirs = ext4_used_dirs_count(sb, desc);
376 stats->free_inodes = 0;
377 stats->free_clusters = 0;
378 stats->used_dirs = 0;
383 * Orlov's allocator for directories.
385 * We always try to spread first-level directories.
387 * If there are blockgroups with both free inodes and free blocks counts
388 * not worse than average we return one with smallest directory count.
389 * Otherwise we simply return a random group.
391 * For the rest rules look so:
393 * It's OK to put directory into a group unless
394 * it has too many directories already (max_dirs) or
395 * it has too few free inodes left (min_inodes) or
396 * it has too few free blocks left (min_blocks) or
397 * Parent's group is preferred, if it doesn't satisfy these
398 * conditions we search cyclically through the rest. If none
399 * of the groups look good we just look for a group with more
400 * free inodes than average (starting at parent's group).
403 static int find_group_orlov(struct super_block *sb, struct inode *parent,
404 ext4_group_t *group, umode_t mode,
405 const struct qstr *qstr)
407 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
408 struct ext4_sb_info *sbi = EXT4_SB(sb);
409 ext4_group_t real_ngroups = ext4_get_groups_count(sb);
410 int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
411 unsigned int freei, avefreei, grp_free;
412 ext4_fsblk_t freeb, avefreec;
414 int max_dirs, min_inodes;
415 ext4_grpblk_t min_clusters;
416 ext4_group_t i, grp, g, ngroups;
417 struct ext4_group_desc *desc;
418 struct orlov_stats stats;
419 int flex_size = ext4_flex_bg_size(sbi);
420 struct dx_hash_info hinfo;
422 ngroups = real_ngroups;
424 ngroups = (real_ngroups + flex_size - 1) >>
425 sbi->s_log_groups_per_flex;
426 parent_group >>= sbi->s_log_groups_per_flex;
429 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
430 avefreei = freei / ngroups;
431 freeb = EXT4_C2B(sbi,
432 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
434 do_div(avefreec, ngroups);
435 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
438 ((parent == d_inode(sb->s_root)) ||
439 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
440 int best_ndir = inodes_per_group;
444 hinfo.hash_version = DX_HASH_HALF_MD4;
445 hinfo.seed = sbi->s_hash_seed;
446 ext4fs_dirhash(qstr->name, qstr->len, &hinfo);
450 parent_group = (unsigned)grp % ngroups;
451 for (i = 0; i < ngroups; i++) {
452 g = (parent_group + i) % ngroups;
453 get_orlov_stats(sb, g, flex_size, &stats);
454 if (!stats.free_inodes)
456 if (stats.used_dirs >= best_ndir)
458 if (stats.free_inodes < avefreei)
460 if (stats.free_clusters < avefreec)
464 best_ndir = stats.used_dirs;
469 if (flex_size == 1) {
475 * We pack inodes at the beginning of the flexgroup's
476 * inode tables. Block allocation decisions will do
477 * something similar, although regular files will
478 * start at 2nd block group of the flexgroup. See
479 * ext4_ext_find_goal() and ext4_find_near().
482 for (i = 0; i < flex_size; i++) {
483 if (grp+i >= real_ngroups)
485 desc = ext4_get_group_desc(sb, grp+i, NULL);
486 if (desc && ext4_free_inodes_count(sb, desc)) {
494 max_dirs = ndirs / ngroups + inodes_per_group / 16;
495 min_inodes = avefreei - inodes_per_group*flex_size / 4;
498 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
501 * Start looking in the flex group where we last allocated an
502 * inode for this parent directory
504 if (EXT4_I(parent)->i_last_alloc_group != ~0) {
505 parent_group = EXT4_I(parent)->i_last_alloc_group;
507 parent_group >>= sbi->s_log_groups_per_flex;
510 for (i = 0; i < ngroups; i++) {
511 grp = (parent_group + i) % ngroups;
512 get_orlov_stats(sb, grp, flex_size, &stats);
513 if (stats.used_dirs >= max_dirs)
515 if (stats.free_inodes < min_inodes)
517 if (stats.free_clusters < min_clusters)
523 ngroups = real_ngroups;
524 avefreei = freei / ngroups;
526 parent_group = EXT4_I(parent)->i_block_group;
527 for (i = 0; i < ngroups; i++) {
528 grp = (parent_group + i) % ngroups;
529 desc = ext4_get_group_desc(sb, grp, NULL);
531 grp_free = ext4_free_inodes_count(sb, desc);
532 if (grp_free && grp_free >= avefreei) {
541 * The free-inodes counter is approximate, and for really small
542 * filesystems the above test can fail to find any blockgroups
551 static int find_group_other(struct super_block *sb, struct inode *parent,
552 ext4_group_t *group, umode_t mode)
554 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
555 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
556 struct ext4_group_desc *desc;
557 int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
560 * Try to place the inode is the same flex group as its
561 * parent. If we can't find space, use the Orlov algorithm to
562 * find another flex group, and store that information in the
563 * parent directory's inode information so that use that flex
564 * group for future allocations.
570 parent_group &= ~(flex_size-1);
571 last = parent_group + flex_size;
574 for (i = parent_group; i < last; i++) {
575 desc = ext4_get_group_desc(sb, i, NULL);
576 if (desc && ext4_free_inodes_count(sb, desc)) {
581 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
583 parent_group = EXT4_I(parent)->i_last_alloc_group;
587 * If this didn't work, use the Orlov search algorithm
588 * to find a new flex group; we pass in the mode to
589 * avoid the topdir algorithms.
591 *group = parent_group + flex_size;
592 if (*group > ngroups)
594 return find_group_orlov(sb, parent, group, mode, NULL);
598 * Try to place the inode in its parent directory
600 *group = parent_group;
601 desc = ext4_get_group_desc(sb, *group, NULL);
602 if (desc && ext4_free_inodes_count(sb, desc) &&
603 ext4_free_group_clusters(sb, desc))
607 * We're going to place this inode in a different blockgroup from its
608 * parent. We want to cause files in a common directory to all land in
609 * the same blockgroup. But we want files which are in a different
610 * directory which shares a blockgroup with our parent to land in a
611 * different blockgroup.
613 * So add our directory's i_ino into the starting point for the hash.
615 *group = (*group + parent->i_ino) % ngroups;
618 * Use a quadratic hash to find a group with a free inode and some free
621 for (i = 1; i < ngroups; i <<= 1) {
623 if (*group >= ngroups)
625 desc = ext4_get_group_desc(sb, *group, NULL);
626 if (desc && ext4_free_inodes_count(sb, desc) &&
627 ext4_free_group_clusters(sb, desc))
632 * That failed: try linear search for a free inode, even if that group
633 * has no free blocks.
635 *group = parent_group;
636 for (i = 0; i < ngroups; i++) {
637 if (++*group >= ngroups)
639 desc = ext4_get_group_desc(sb, *group, NULL);
640 if (desc && ext4_free_inodes_count(sb, desc))
648 * In no journal mode, if an inode has recently been deleted, we want
649 * to avoid reusing it until we're reasonably sure the inode table
650 * block has been written back to disk. (Yes, these values are
651 * somewhat arbitrary...)
653 #define RECENTCY_MIN 5
654 #define RECENTCY_DIRTY 300
656 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino)
658 struct ext4_group_desc *gdp;
659 struct ext4_inode *raw_inode;
660 struct buffer_head *bh;
661 int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
663 int recentcy = RECENTCY_MIN;
666 gdp = ext4_get_group_desc(sb, group, NULL);
670 bh = sb_find_get_block(sb, ext4_inode_table(sb, gdp) +
671 (ino / inodes_per_block));
672 if (!bh || !buffer_uptodate(bh))
674 * If the block is not in the buffer cache, then it
675 * must have been written out.
679 offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb);
680 raw_inode = (struct ext4_inode *) (bh->b_data + offset);
682 /* i_dtime is only 32 bits on disk, but we only care about relative
683 * times in the range of a few minutes (i.e. long enough to sync a
684 * recently-deleted inode to disk), so using the low 32 bits of the
685 * clock (a 68 year range) is enough, see time_before32() */
686 dtime = le32_to_cpu(raw_inode->i_dtime);
687 now = ktime_get_real_seconds();
688 if (buffer_dirty(bh))
689 recentcy += RECENTCY_DIRTY;
691 if (dtime && time_before32(dtime, now) &&
692 time_before32(now, dtime + recentcy))
699 static int find_inode_bit(struct super_block *sb, ext4_group_t group,
700 struct buffer_head *bitmap, unsigned long *ino)
703 *ino = ext4_find_next_zero_bit((unsigned long *)
705 EXT4_INODES_PER_GROUP(sb), *ino);
706 if (*ino >= EXT4_INODES_PER_GROUP(sb))
709 if ((EXT4_SB(sb)->s_journal == NULL) &&
710 recently_deleted(sb, group, *ino)) {
712 if (*ino < EXT4_INODES_PER_GROUP(sb))
721 * There are two policies for allocating an inode. If the new inode is
722 * a directory, then a forward search is made for a block group with both
723 * free space and a low directory-to-inode ratio; if that fails, then of
724 * the groups with above-average free space, that group with the fewest
725 * directories already is chosen.
727 * For other inodes, search forward from the parent directory's block
728 * group to find a free inode.
730 struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir,
731 umode_t mode, const struct qstr *qstr,
732 __u32 goal, uid_t *owner, __u32 i_flags,
733 int handle_type, unsigned int line_no,
736 struct super_block *sb;
737 struct buffer_head *inode_bitmap_bh = NULL;
738 struct buffer_head *group_desc_bh;
739 ext4_group_t ngroups, group = 0;
740 unsigned long ino = 0;
742 struct ext4_group_desc *gdp = NULL;
743 struct ext4_inode_info *ei;
744 struct ext4_sb_info *sbi;
748 ext4_group_t flex_group;
749 struct ext4_group_info *grp;
752 /* Cannot create files in a deleted directory */
753 if (!dir || !dir->i_nlink)
754 return ERR_PTR(-EPERM);
759 if (unlikely(ext4_forced_shutdown(sbi)))
760 return ERR_PTR(-EIO);
762 if ((ext4_encrypted_inode(dir) || DUMMY_ENCRYPTION_ENABLED(sbi)) &&
763 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)) &&
764 !(i_flags & EXT4_EA_INODE_FL)) {
765 err = fscrypt_get_encryption_info(dir);
768 if (!fscrypt_has_encryption_key(dir))
769 return ERR_PTR(-ENOKEY);
773 if (!handle && sbi->s_journal && !(i_flags & EXT4_EA_INODE_FL)) {
774 #ifdef CONFIG_EXT4_FS_POSIX_ACL
775 struct posix_acl *p = get_acl(dir, ACL_TYPE_DEFAULT);
780 int acl_size = p->a_count * sizeof(ext4_acl_entry);
782 nblocks += (S_ISDIR(mode) ? 2 : 1) *
783 __ext4_xattr_set_credits(sb, NULL /* inode */,
784 NULL /* block_bh */, acl_size,
785 true /* is_create */);
786 posix_acl_release(p);
790 #ifdef CONFIG_SECURITY
792 int num_security_xattrs = 1;
794 #ifdef CONFIG_INTEGRITY
795 num_security_xattrs++;
798 * We assume that security xattrs are never
799 * more than 1k. In practice they are under
802 nblocks += num_security_xattrs *
803 __ext4_xattr_set_credits(sb, NULL /* inode */,
804 NULL /* block_bh */, 1024,
805 true /* is_create */);
809 nblocks += __ext4_xattr_set_credits(sb,
810 NULL /* inode */, NULL /* block_bh */,
811 FSCRYPT_SET_CONTEXT_MAX_SIZE,
812 true /* is_create */);
815 ngroups = ext4_get_groups_count(sb);
816 trace_ext4_request_inode(dir, mode);
817 inode = new_inode(sb);
819 return ERR_PTR(-ENOMEM);
823 * Initialize owners and quota early so that we don't have to account
824 * for quota initialization worst case in standard inode creating
828 inode->i_mode = mode;
829 i_uid_write(inode, owner[0]);
830 i_gid_write(inode, owner[1]);
831 } else if (test_opt(sb, GRPID)) {
832 inode->i_mode = mode;
833 inode->i_uid = current_fsuid();
834 inode->i_gid = dir->i_gid;
836 inode_init_owner(inode, dir, mode);
838 if (ext4_has_feature_project(sb) &&
839 ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT))
840 ei->i_projid = EXT4_I(dir)->i_projid;
842 ei->i_projid = make_kprojid(&init_user_ns, EXT4_DEF_PROJID);
844 err = dquot_initialize(inode);
849 goal = sbi->s_inode_goal;
851 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
852 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
853 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
859 ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
861 ret2 = find_group_other(sb, dir, &group, mode);
864 EXT4_I(dir)->i_last_alloc_group = group;
870 * Normally we will only go through one pass of this loop,
871 * unless we get unlucky and it turns out the group we selected
872 * had its last inode grabbed by someone else.
874 for (i = 0; i < ngroups; i++, ino = 0) {
877 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
882 * Check free inodes count before loading bitmap.
884 if (ext4_free_inodes_count(sb, gdp) == 0)
887 grp = ext4_get_group_info(sb, group);
888 /* Skip groups with already-known suspicious inode tables */
889 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
892 brelse(inode_bitmap_bh);
893 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
894 /* Skip groups with suspicious inode tables */
895 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) ||
896 IS_ERR(inode_bitmap_bh)) {
897 inode_bitmap_bh = NULL;
901 repeat_in_this_group:
902 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino);
906 if (group == 0 && (ino + 1) < EXT4_FIRST_INO(sb)) {
907 ext4_error(sb, "reserved inode found cleared - "
908 "inode=%lu", ino + 1);
909 ext4_mark_group_bitmap_corrupted(sb, group,
910 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
915 BUG_ON(nblocks <= 0);
916 handle = __ext4_journal_start_sb(dir->i_sb, line_no,
917 handle_type, nblocks,
919 if (IS_ERR(handle)) {
920 err = PTR_ERR(handle);
921 ext4_std_error(sb, err);
925 BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
926 err = ext4_journal_get_write_access(handle, inode_bitmap_bh);
928 ext4_std_error(sb, err);
931 ext4_lock_group(sb, group);
932 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);
934 /* Someone already took the bit. Repeat the search
937 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino);
939 ext4_set_bit(ino, inode_bitmap_bh->b_data);
942 ret2 = 1; /* we didn't grab the inode */
945 ext4_unlock_group(sb, group);
946 ino++; /* the inode bitmap is zero-based */
948 goto got; /* we grabbed the inode! */
950 if (ino < EXT4_INODES_PER_GROUP(sb))
951 goto repeat_in_this_group;
953 if (++group == ngroups)
960 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
961 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh);
963 ext4_std_error(sb, err);
967 BUFFER_TRACE(group_desc_bh, "get_write_access");
968 err = ext4_journal_get_write_access(handle, group_desc_bh);
970 ext4_std_error(sb, err);
974 /* We may have to initialize the block bitmap if it isn't already */
975 if (ext4_has_group_desc_csum(sb) &&
976 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
977 struct buffer_head *block_bitmap_bh;
979 block_bitmap_bh = ext4_read_block_bitmap(sb, group);
980 if (IS_ERR(block_bitmap_bh)) {
981 err = PTR_ERR(block_bitmap_bh);
984 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
985 err = ext4_journal_get_write_access(handle, block_bitmap_bh);
987 brelse(block_bitmap_bh);
988 ext4_std_error(sb, err);
992 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
993 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
995 /* recheck and clear flag under lock if we still need to */
996 ext4_lock_group(sb, group);
997 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
998 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
999 ext4_free_group_clusters_set(sb, gdp,
1000 ext4_free_clusters_after_init(sb, group, gdp));
1001 ext4_block_bitmap_csum_set(sb, group, gdp,
1003 ext4_group_desc_csum_set(sb, group, gdp);
1005 ext4_unlock_group(sb, group);
1006 brelse(block_bitmap_bh);
1009 ext4_std_error(sb, err);
1014 /* Update the relevant bg descriptor fields */
1015 if (ext4_has_group_desc_csum(sb)) {
1017 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1019 down_read(&grp->alloc_sem); /* protect vs itable lazyinit */
1020 ext4_lock_group(sb, group); /* while we modify the bg desc */
1021 free = EXT4_INODES_PER_GROUP(sb) -
1022 ext4_itable_unused_count(sb, gdp);
1023 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
1024 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
1028 * Check the relative inode number against the last used
1029 * relative inode number in this group. if it is greater
1030 * we need to update the bg_itable_unused count
1033 ext4_itable_unused_set(sb, gdp,
1034 (EXT4_INODES_PER_GROUP(sb) - ino));
1035 up_read(&grp->alloc_sem);
1037 ext4_lock_group(sb, group);
1040 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
1041 if (S_ISDIR(mode)) {
1042 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1);
1043 if (sbi->s_log_groups_per_flex) {
1044 ext4_group_t f = ext4_flex_group(sbi, group);
1046 atomic_inc(&sbi->s_flex_groups[f].used_dirs);
1049 if (ext4_has_group_desc_csum(sb)) {
1050 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
1051 EXT4_INODES_PER_GROUP(sb) / 8);
1052 ext4_group_desc_csum_set(sb, group, gdp);
1054 ext4_unlock_group(sb, group);
1056 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
1057 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
1059 ext4_std_error(sb, err);
1063 percpu_counter_dec(&sbi->s_freeinodes_counter);
1065 percpu_counter_inc(&sbi->s_dirs_counter);
1067 if (sbi->s_log_groups_per_flex) {
1068 flex_group = ext4_flex_group(sbi, group);
1069 atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes);
1072 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
1073 /* This is the optimal IO size (for stat), not the fs block size */
1074 inode->i_blocks = 0;
1075 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1076 ei->i_crtime = timespec64_to_timespec(inode->i_mtime);
1078 memset(ei->i_data, 0, sizeof(ei->i_data));
1079 ei->i_dir_start_lookup = 0;
1082 /* Don't inherit extent flag from directory, amongst others. */
1084 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
1085 ei->i_flags |= i_flags;
1088 ei->i_block_group = group;
1089 ei->i_last_alloc_group = ~0;
1091 ext4_set_inode_flags(inode);
1092 if (IS_DIRSYNC(inode))
1093 ext4_handle_sync(handle);
1094 if (insert_inode_locked(inode) < 0) {
1096 * Likely a bitmap corruption causing inode to be allocated
1100 ext4_error(sb, "failed to insert inode %lu: doubly allocated?",
1102 ext4_mark_group_bitmap_corrupted(sb, group,
1103 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
1106 inode->i_generation = prandom_u32();
1108 /* Precompute checksum seed for inode metadata */
1109 if (ext4_has_metadata_csum(sb)) {
1111 __le32 inum = cpu_to_le32(inode->i_ino);
1112 __le32 gen = cpu_to_le32(inode->i_generation);
1113 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
1115 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
1119 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
1120 ext4_set_inode_state(inode, EXT4_STATE_NEW);
1122 ei->i_extra_isize = sbi->s_want_extra_isize;
1123 ei->i_inline_off = 0;
1124 if (ext4_has_feature_inline_data(sb))
1125 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
1127 err = dquot_alloc_inode(inode);
1132 * Since the encryption xattr will always be unique, create it first so
1133 * that it's less likely to end up in an external xattr block and
1134 * prevent its deduplication.
1137 err = fscrypt_inherit_context(dir, inode, handle, true);
1139 goto fail_free_drop;
1142 if (!(ei->i_flags & EXT4_EA_INODE_FL)) {
1143 err = ext4_init_acl(handle, inode, dir);
1145 goto fail_free_drop;
1147 err = ext4_init_security(handle, inode, dir, qstr);
1149 goto fail_free_drop;
1152 if (ext4_has_feature_extents(sb)) {
1153 /* set extent flag only for directory, file and normal symlink*/
1154 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
1155 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
1156 ext4_ext_tree_init(handle, inode);
1160 if (ext4_handle_valid(handle)) {
1161 ei->i_sync_tid = handle->h_transaction->t_tid;
1162 ei->i_datasync_tid = handle->h_transaction->t_tid;
1165 err = ext4_mark_inode_dirty(handle, inode);
1167 ext4_std_error(sb, err);
1168 goto fail_free_drop;
1171 ext4_debug("allocating inode %lu\n", inode->i_ino);
1172 trace_ext4_allocate_inode(inode, dir, mode);
1173 brelse(inode_bitmap_bh);
1177 dquot_free_inode(inode);
1180 unlock_new_inode(inode);
1183 inode->i_flags |= S_NOQUOTA;
1185 brelse(inode_bitmap_bh);
1186 return ERR_PTR(err);
1189 /* Verify that we are loading a valid orphan from disk */
1190 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
1192 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
1193 ext4_group_t block_group;
1195 struct buffer_head *bitmap_bh = NULL;
1196 struct inode *inode = NULL;
1197 int err = -EFSCORRUPTED;
1199 if (ino < EXT4_FIRST_INO(sb) || ino > max_ino)
1202 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
1203 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
1204 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
1205 if (IS_ERR(bitmap_bh))
1206 return (struct inode *) bitmap_bh;
1208 /* Having the inode bit set should be a 100% indicator that this
1209 * is a valid orphan (no e2fsck run on fs). Orphans also include
1210 * inodes that were being truncated, so we can't check i_nlink==0.
1212 if (!ext4_test_bit(bit, bitmap_bh->b_data))
1215 inode = ext4_iget(sb, ino);
1216 if (IS_ERR(inode)) {
1217 err = PTR_ERR(inode);
1218 ext4_error(sb, "couldn't read orphan inode %lu (err %d)",
1224 * If the orphans has i_nlinks > 0 then it should be able to
1225 * be truncated, otherwise it won't be removed from the orphan
1226 * list during processing and an infinite loop will result.
1227 * Similarly, it must not be a bad inode.
1229 if ((inode->i_nlink && !ext4_can_truncate(inode)) ||
1230 is_bad_inode(inode))
1233 if (NEXT_ORPHAN(inode) > max_ino)
1239 ext4_error(sb, "bad orphan inode %lu", ino);
1241 printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1242 bit, (unsigned long long)bitmap_bh->b_blocknr,
1243 ext4_test_bit(bit, bitmap_bh->b_data));
1245 printk(KERN_ERR "is_bad_inode(inode)=%d\n",
1246 is_bad_inode(inode));
1247 printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n",
1248 NEXT_ORPHAN(inode));
1249 printk(KERN_ERR "max_ino=%lu\n", max_ino);
1250 printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink);
1251 /* Avoid freeing blocks if we got a bad deleted inode */
1252 if (inode->i_nlink == 0)
1253 inode->i_blocks = 0;
1257 return ERR_PTR(err);
1260 unsigned long ext4_count_free_inodes(struct super_block *sb)
1262 unsigned long desc_count;
1263 struct ext4_group_desc *gdp;
1264 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1266 struct ext4_super_block *es;
1267 unsigned long bitmap_count, x;
1268 struct buffer_head *bitmap_bh = NULL;
1270 es = EXT4_SB(sb)->s_es;
1274 for (i = 0; i < ngroups; i++) {
1275 gdp = ext4_get_group_desc(sb, i, NULL);
1278 desc_count += ext4_free_inodes_count(sb, gdp);
1280 bitmap_bh = ext4_read_inode_bitmap(sb, i);
1281 if (IS_ERR(bitmap_bh)) {
1286 x = ext4_count_free(bitmap_bh->b_data,
1287 EXT4_INODES_PER_GROUP(sb) / 8);
1288 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1289 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1293 printk(KERN_DEBUG "ext4_count_free_inodes: "
1294 "stored = %u, computed = %lu, %lu\n",
1295 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1299 for (i = 0; i < ngroups; i++) {
1300 gdp = ext4_get_group_desc(sb, i, NULL);
1303 desc_count += ext4_free_inodes_count(sb, gdp);
1310 /* Called at mount-time, super-block is locked */
1311 unsigned long ext4_count_dirs(struct super_block * sb)
1313 unsigned long count = 0;
1314 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1316 for (i = 0; i < ngroups; i++) {
1317 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1320 count += ext4_used_dirs_count(sb, gdp);
1326 * Zeroes not yet zeroed inode table - just write zeroes through the whole
1327 * inode table. Must be called without any spinlock held. The only place
1328 * where it is called from on active part of filesystem is ext4lazyinit
1329 * thread, so we do not need any special locks, however we have to prevent
1330 * inode allocation from the current group, so we take alloc_sem lock, to
1331 * block ext4_new_inode() until we are finished.
1333 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1336 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1337 struct ext4_sb_info *sbi = EXT4_SB(sb);
1338 struct ext4_group_desc *gdp = NULL;
1339 struct buffer_head *group_desc_bh;
1342 int num, ret = 0, used_blks = 0;
1344 /* This should not happen, but just to be sure check this */
1345 if (sb_rdonly(sb)) {
1350 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1355 * We do not need to lock this, because we are the only one
1356 * handling this flag.
1358 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1361 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
1362 if (IS_ERR(handle)) {
1363 ret = PTR_ERR(handle);
1367 down_write(&grp->alloc_sem);
1369 * If inode bitmap was already initialized there may be some
1370 * used inodes so we need to skip blocks with used inodes in
1373 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1374 used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1375 ext4_itable_unused_count(sb, gdp)),
1376 sbi->s_inodes_per_block);
1378 if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) {
1379 ext4_error(sb, "Something is wrong with group %u: "
1380 "used itable blocks: %d; "
1381 "itable unused count: %u",
1383 ext4_itable_unused_count(sb, gdp));
1388 blk = ext4_inode_table(sb, gdp) + used_blks;
1389 num = sbi->s_itb_per_group - used_blks;
1391 BUFFER_TRACE(group_desc_bh, "get_write_access");
1392 ret = ext4_journal_get_write_access(handle,
1398 * Skip zeroout if the inode table is full. But we set the ZEROED
1399 * flag anyway, because obviously, when it is full it does not need
1402 if (unlikely(num == 0))
1405 ext4_debug("going to zero out inode table in group %d\n",
1407 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1411 blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
1414 ext4_lock_group(sb, group);
1415 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1416 ext4_group_desc_csum_set(sb, group, gdp);
1417 ext4_unlock_group(sb, group);
1419 BUFFER_TRACE(group_desc_bh,
1420 "call ext4_handle_dirty_metadata");
1421 ret = ext4_handle_dirty_metadata(handle, NULL,
1425 up_write(&grp->alloc_sem);
1426 ext4_journal_stop(handle);