Linux 6.1.52
[platform/kernel/linux-starfive.git] / fs / ext4 / file.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/file.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/file.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  ext4 fs regular file handling primitives
17  *
18  *  64-bit file support on 64-bit platforms by Jakub Jelinek
19  *      (jj@sunsite.ms.mff.cuni.cz)
20  */
21
22 #include <linux/time.h>
23 #include <linux/fs.h>
24 #include <linux/iomap.h>
25 #include <linux/mount.h>
26 #include <linux/path.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/pagevec.h>
30 #include <linux/uio.h>
31 #include <linux/mman.h>
32 #include <linux/backing-dev.h>
33 #include "ext4.h"
34 #include "ext4_jbd2.h"
35 #include "xattr.h"
36 #include "acl.h"
37 #include "truncate.h"
38
39 /*
40  * Returns %true if the given DIO request should be attempted with DIO, or
41  * %false if it should fall back to buffered I/O.
42  *
43  * DIO isn't well specified; when it's unsupported (either due to the request
44  * being misaligned, or due to the file not supporting DIO at all), filesystems
45  * either fall back to buffered I/O or return EINVAL.  For files that don't use
46  * any special features like encryption or verity, ext4 has traditionally
47  * returned EINVAL for misaligned DIO.  iomap_dio_rw() uses this convention too.
48  * In this case, we should attempt the DIO, *not* fall back to buffered I/O.
49  *
50  * In contrast, in cases where DIO is unsupported due to ext4 features, ext4
51  * traditionally falls back to buffered I/O.
52  *
53  * This function implements the traditional ext4 behavior in all these cases.
54  */
55 static bool ext4_should_use_dio(struct kiocb *iocb, struct iov_iter *iter)
56 {
57         struct inode *inode = file_inode(iocb->ki_filp);
58         u32 dio_align = ext4_dio_alignment(inode);
59
60         if (dio_align == 0)
61                 return false;
62
63         if (dio_align == 1)
64                 return true;
65
66         return IS_ALIGNED(iocb->ki_pos | iov_iter_alignment(iter), dio_align);
67 }
68
69 static ssize_t ext4_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
70 {
71         ssize_t ret;
72         struct inode *inode = file_inode(iocb->ki_filp);
73
74         if (iocb->ki_flags & IOCB_NOWAIT) {
75                 if (!inode_trylock_shared(inode))
76                         return -EAGAIN;
77         } else {
78                 inode_lock_shared(inode);
79         }
80
81         if (!ext4_should_use_dio(iocb, to)) {
82                 inode_unlock_shared(inode);
83                 /*
84                  * Fallback to buffered I/O if the operation being performed on
85                  * the inode is not supported by direct I/O. The IOCB_DIRECT
86                  * flag needs to be cleared here in order to ensure that the
87                  * direct I/O path within generic_file_read_iter() is not
88                  * taken.
89                  */
90                 iocb->ki_flags &= ~IOCB_DIRECT;
91                 return generic_file_read_iter(iocb, to);
92         }
93
94         ret = iomap_dio_rw(iocb, to, &ext4_iomap_ops, NULL, 0, NULL, 0);
95         inode_unlock_shared(inode);
96
97         file_accessed(iocb->ki_filp);
98         return ret;
99 }
100
101 #ifdef CONFIG_FS_DAX
102 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
103 {
104         struct inode *inode = file_inode(iocb->ki_filp);
105         ssize_t ret;
106
107         if (iocb->ki_flags & IOCB_NOWAIT) {
108                 if (!inode_trylock_shared(inode))
109                         return -EAGAIN;
110         } else {
111                 inode_lock_shared(inode);
112         }
113         /*
114          * Recheck under inode lock - at this point we are sure it cannot
115          * change anymore
116          */
117         if (!IS_DAX(inode)) {
118                 inode_unlock_shared(inode);
119                 /* Fallback to buffered IO in case we cannot support DAX */
120                 return generic_file_read_iter(iocb, to);
121         }
122         ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
123         inode_unlock_shared(inode);
124
125         file_accessed(iocb->ki_filp);
126         return ret;
127 }
128 #endif
129
130 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
131 {
132         struct inode *inode = file_inode(iocb->ki_filp);
133
134         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
135                 return -EIO;
136
137         if (!iov_iter_count(to))
138                 return 0; /* skip atime */
139
140 #ifdef CONFIG_FS_DAX
141         if (IS_DAX(inode))
142                 return ext4_dax_read_iter(iocb, to);
143 #endif
144         if (iocb->ki_flags & IOCB_DIRECT)
145                 return ext4_dio_read_iter(iocb, to);
146
147         return generic_file_read_iter(iocb, to);
148 }
149
150 /*
151  * Called when an inode is released. Note that this is different
152  * from ext4_file_open: open gets called at every open, but release
153  * gets called only when /all/ the files are closed.
154  */
155 static int ext4_release_file(struct inode *inode, struct file *filp)
156 {
157         if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
158                 ext4_alloc_da_blocks(inode);
159                 ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
160         }
161         /* if we are the last writer on the inode, drop the block reservation */
162         if ((filp->f_mode & FMODE_WRITE) &&
163                         (atomic_read(&inode->i_writecount) == 1) &&
164                         !EXT4_I(inode)->i_reserved_data_blocks) {
165                 down_write(&EXT4_I(inode)->i_data_sem);
166                 ext4_discard_preallocations(inode, 0);
167                 up_write(&EXT4_I(inode)->i_data_sem);
168         }
169         if (is_dx(inode) && filp->private_data)
170                 ext4_htree_free_dir_info(filp->private_data);
171
172         return 0;
173 }
174
175 /*
176  * This tests whether the IO in question is block-aligned or not.
177  * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
178  * are converted to written only after the IO is complete.  Until they are
179  * mapped, these blocks appear as holes, so dio_zero_block() will assume that
180  * it needs to zero out portions of the start and/or end block.  If 2 AIO
181  * threads are at work on the same unwritten block, they must be synchronized
182  * or one thread will zero the other's data, causing corruption.
183  */
184 static bool
185 ext4_unaligned_io(struct inode *inode, struct iov_iter *from, loff_t pos)
186 {
187         struct super_block *sb = inode->i_sb;
188         unsigned long blockmask = sb->s_blocksize - 1;
189
190         if ((pos | iov_iter_alignment(from)) & blockmask)
191                 return true;
192
193         return false;
194 }
195
196 static bool
197 ext4_extending_io(struct inode *inode, loff_t offset, size_t len)
198 {
199         if (offset + len > i_size_read(inode) ||
200             offset + len > EXT4_I(inode)->i_disksize)
201                 return true;
202         return false;
203 }
204
205 /* Is IO overwriting allocated and initialized blocks? */
206 static bool ext4_overwrite_io(struct inode *inode, loff_t pos, loff_t len)
207 {
208         struct ext4_map_blocks map;
209         unsigned int blkbits = inode->i_blkbits;
210         int err, blklen;
211
212         if (pos + len > i_size_read(inode))
213                 return false;
214
215         map.m_lblk = pos >> blkbits;
216         map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
217         blklen = map.m_len;
218
219         err = ext4_map_blocks(NULL, inode, &map, 0);
220         /*
221          * 'err==len' means that all of the blocks have been preallocated,
222          * regardless of whether they have been initialized or not. To exclude
223          * unwritten extents, we need to check m_flags.
224          */
225         return err == blklen && (map.m_flags & EXT4_MAP_MAPPED);
226 }
227
228 static ssize_t ext4_generic_write_checks(struct kiocb *iocb,
229                                          struct iov_iter *from)
230 {
231         struct inode *inode = file_inode(iocb->ki_filp);
232         ssize_t ret;
233
234         if (unlikely(IS_IMMUTABLE(inode)))
235                 return -EPERM;
236
237         ret = generic_write_checks(iocb, from);
238         if (ret <= 0)
239                 return ret;
240
241         /*
242          * If we have encountered a bitmap-format file, the size limit
243          * is smaller than s_maxbytes, which is for extent-mapped files.
244          */
245         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
246                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
247
248                 if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
249                         return -EFBIG;
250                 iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
251         }
252
253         return iov_iter_count(from);
254 }
255
256 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
257 {
258         ssize_t ret, count;
259
260         count = ext4_generic_write_checks(iocb, from);
261         if (count <= 0)
262                 return count;
263
264         ret = file_modified(iocb->ki_filp);
265         if (ret)
266                 return ret;
267         return count;
268 }
269
270 static ssize_t ext4_buffered_write_iter(struct kiocb *iocb,
271                                         struct iov_iter *from)
272 {
273         ssize_t ret;
274         struct inode *inode = file_inode(iocb->ki_filp);
275
276         if (iocb->ki_flags & IOCB_NOWAIT)
277                 return -EOPNOTSUPP;
278
279         inode_lock(inode);
280         ret = ext4_write_checks(iocb, from);
281         if (ret <= 0)
282                 goto out;
283
284         current->backing_dev_info = inode_to_bdi(inode);
285         ret = generic_perform_write(iocb, from);
286         current->backing_dev_info = NULL;
287
288 out:
289         inode_unlock(inode);
290         if (likely(ret > 0)) {
291                 iocb->ki_pos += ret;
292                 ret = generic_write_sync(iocb, ret);
293         }
294
295         return ret;
296 }
297
298 static ssize_t ext4_handle_inode_extension(struct inode *inode, loff_t offset,
299                                            ssize_t written, size_t count)
300 {
301         handle_t *handle;
302         bool truncate = false;
303         u8 blkbits = inode->i_blkbits;
304         ext4_lblk_t written_blk, end_blk;
305         int ret;
306
307         /*
308          * Note that EXT4_I(inode)->i_disksize can get extended up to
309          * inode->i_size while the I/O was running due to writeback of delalloc
310          * blocks. But, the code in ext4_iomap_alloc() is careful to use
311          * zeroed/unwritten extents if this is possible; thus we won't leave
312          * uninitialized blocks in a file even if we didn't succeed in writing
313          * as much as we intended.
314          */
315         WARN_ON_ONCE(i_size_read(inode) < EXT4_I(inode)->i_disksize);
316         if (offset + count <= EXT4_I(inode)->i_disksize) {
317                 /*
318                  * We need to ensure that the inode is removed from the orphan
319                  * list if it has been added prematurely, due to writeback of
320                  * delalloc blocks.
321                  */
322                 if (!list_empty(&EXT4_I(inode)->i_orphan) && inode->i_nlink) {
323                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
324
325                         if (IS_ERR(handle)) {
326                                 ext4_orphan_del(NULL, inode);
327                                 return PTR_ERR(handle);
328                         }
329
330                         ext4_orphan_del(handle, inode);
331                         ext4_journal_stop(handle);
332                 }
333
334                 return written;
335         }
336
337         if (written < 0)
338                 goto truncate;
339
340         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
341         if (IS_ERR(handle)) {
342                 written = PTR_ERR(handle);
343                 goto truncate;
344         }
345
346         if (ext4_update_inode_size(inode, offset + written)) {
347                 ret = ext4_mark_inode_dirty(handle, inode);
348                 if (unlikely(ret)) {
349                         written = ret;
350                         ext4_journal_stop(handle);
351                         goto truncate;
352                 }
353         }
354
355         /*
356          * We may need to truncate allocated but not written blocks beyond EOF.
357          */
358         written_blk = ALIGN(offset + written, 1 << blkbits);
359         end_blk = ALIGN(offset + count, 1 << blkbits);
360         if (written_blk < end_blk && ext4_can_truncate(inode))
361                 truncate = true;
362
363         /*
364          * Remove the inode from the orphan list if it has been extended and
365          * everything went OK.
366          */
367         if (!truncate && inode->i_nlink)
368                 ext4_orphan_del(handle, inode);
369         ext4_journal_stop(handle);
370
371         if (truncate) {
372 truncate:
373                 ext4_truncate_failed_write(inode);
374                 /*
375                  * If the truncate operation failed early, then the inode may
376                  * still be on the orphan list. In that case, we need to try
377                  * remove the inode from the in-memory linked list.
378                  */
379                 if (inode->i_nlink)
380                         ext4_orphan_del(NULL, inode);
381         }
382
383         return written;
384 }
385
386 static int ext4_dio_write_end_io(struct kiocb *iocb, ssize_t size,
387                                  int error, unsigned int flags)
388 {
389         loff_t pos = iocb->ki_pos;
390         struct inode *inode = file_inode(iocb->ki_filp);
391
392         if (error)
393                 return error;
394
395         if (size && flags & IOMAP_DIO_UNWRITTEN) {
396                 error = ext4_convert_unwritten_extents(NULL, inode, pos, size);
397                 if (error < 0)
398                         return error;
399         }
400         /*
401          * If we are extending the file, we have to update i_size here before
402          * page cache gets invalidated in iomap_dio_rw(). Otherwise racing
403          * buffered reads could zero out too much from page cache pages. Update
404          * of on-disk size will happen later in ext4_dio_write_iter() where
405          * we have enough information to also perform orphan list handling etc.
406          * Note that we perform all extending writes synchronously under
407          * i_rwsem held exclusively so i_size update is safe here in that case.
408          * If the write was not extending, we cannot see pos > i_size here
409          * because operations reducing i_size like truncate wait for all
410          * outstanding DIO before updating i_size.
411          */
412         pos += size;
413         if (pos > i_size_read(inode))
414                 i_size_write(inode, pos);
415
416         return 0;
417 }
418
419 static const struct iomap_dio_ops ext4_dio_write_ops = {
420         .end_io = ext4_dio_write_end_io,
421 };
422
423 /*
424  * The intention here is to start with shared lock acquired then see if any
425  * condition requires an exclusive inode lock. If yes, then we restart the
426  * whole operation by releasing the shared lock and acquiring exclusive lock.
427  *
428  * - For unaligned_io we never take shared lock as it may cause data corruption
429  *   when two unaligned IO tries to modify the same block e.g. while zeroing.
430  *
431  * - For extending writes case we don't take the shared lock, since it requires
432  *   updating inode i_disksize and/or orphan handling with exclusive lock.
433  *
434  * - shared locking will only be true mostly with overwrites. Otherwise we will
435  *   switch to exclusive i_rwsem lock.
436  */
437 static ssize_t ext4_dio_write_checks(struct kiocb *iocb, struct iov_iter *from,
438                                      bool *ilock_shared, bool *extend)
439 {
440         struct file *file = iocb->ki_filp;
441         struct inode *inode = file_inode(file);
442         loff_t offset;
443         size_t count;
444         ssize_t ret;
445
446 restart:
447         ret = ext4_generic_write_checks(iocb, from);
448         if (ret <= 0)
449                 goto out;
450
451         offset = iocb->ki_pos;
452         count = ret;
453         if (ext4_extending_io(inode, offset, count))
454                 *extend = true;
455         /*
456          * Determine whether the IO operation will overwrite allocated
457          * and initialized blocks.
458          * We need exclusive i_rwsem for changing security info
459          * in file_modified().
460          */
461         if (*ilock_shared && (!IS_NOSEC(inode) || *extend ||
462              !ext4_overwrite_io(inode, offset, count))) {
463                 if (iocb->ki_flags & IOCB_NOWAIT) {
464                         ret = -EAGAIN;
465                         goto out;
466                 }
467                 inode_unlock_shared(inode);
468                 *ilock_shared = false;
469                 inode_lock(inode);
470                 goto restart;
471         }
472
473         ret = file_modified(file);
474         if (ret < 0)
475                 goto out;
476
477         return count;
478 out:
479         if (*ilock_shared)
480                 inode_unlock_shared(inode);
481         else
482                 inode_unlock(inode);
483         return ret;
484 }
485
486 static ssize_t ext4_dio_write_iter(struct kiocb *iocb, struct iov_iter *from)
487 {
488         ssize_t ret;
489         handle_t *handle;
490         struct inode *inode = file_inode(iocb->ki_filp);
491         loff_t offset = iocb->ki_pos;
492         size_t count = iov_iter_count(from);
493         const struct iomap_ops *iomap_ops = &ext4_iomap_ops;
494         bool extend = false, unaligned_io = false;
495         bool ilock_shared = true;
496
497         /*
498          * We initially start with shared inode lock unless it is
499          * unaligned IO which needs exclusive lock anyways.
500          */
501         if (ext4_unaligned_io(inode, from, offset)) {
502                 unaligned_io = true;
503                 ilock_shared = false;
504         }
505         /*
506          * Quick check here without any i_rwsem lock to see if it is extending
507          * IO. A more reliable check is done in ext4_dio_write_checks() with
508          * proper locking in place.
509          */
510         if (offset + count > i_size_read(inode))
511                 ilock_shared = false;
512
513         if (iocb->ki_flags & IOCB_NOWAIT) {
514                 if (ilock_shared) {
515                         if (!inode_trylock_shared(inode))
516                                 return -EAGAIN;
517                 } else {
518                         if (!inode_trylock(inode))
519                                 return -EAGAIN;
520                 }
521         } else {
522                 if (ilock_shared)
523                         inode_lock_shared(inode);
524                 else
525                         inode_lock(inode);
526         }
527
528         /* Fallback to buffered I/O if the inode does not support direct I/O. */
529         if (!ext4_should_use_dio(iocb, from)) {
530                 if (ilock_shared)
531                         inode_unlock_shared(inode);
532                 else
533                         inode_unlock(inode);
534                 return ext4_buffered_write_iter(iocb, from);
535         }
536
537         ret = ext4_dio_write_checks(iocb, from, &ilock_shared, &extend);
538         if (ret <= 0)
539                 return ret;
540
541         /* if we're going to block and IOCB_NOWAIT is set, return -EAGAIN */
542         if ((iocb->ki_flags & IOCB_NOWAIT) && (unaligned_io || extend)) {
543                 ret = -EAGAIN;
544                 goto out;
545         }
546         /*
547          * Make sure inline data cannot be created anymore since we are going
548          * to allocate blocks for DIO. We know the inode does not have any
549          * inline data now because ext4_dio_supported() checked for that.
550          */
551         ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
552
553         offset = iocb->ki_pos;
554         count = ret;
555
556         /*
557          * Unaligned direct IO must be serialized among each other as zeroing
558          * of partial blocks of two competing unaligned IOs can result in data
559          * corruption.
560          *
561          * So we make sure we don't allow any unaligned IO in flight.
562          * For IOs where we need not wait (like unaligned non-AIO DIO),
563          * below inode_dio_wait() may anyway become a no-op, since we start
564          * with exclusive lock.
565          */
566         if (unaligned_io)
567                 inode_dio_wait(inode);
568
569         if (extend) {
570                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
571                 if (IS_ERR(handle)) {
572                         ret = PTR_ERR(handle);
573                         goto out;
574                 }
575
576                 ret = ext4_orphan_add(handle, inode);
577                 if (ret) {
578                         ext4_journal_stop(handle);
579                         goto out;
580                 }
581
582                 ext4_journal_stop(handle);
583         }
584
585         if (ilock_shared)
586                 iomap_ops = &ext4_iomap_overwrite_ops;
587         ret = iomap_dio_rw(iocb, from, iomap_ops, &ext4_dio_write_ops,
588                            (unaligned_io || extend) ? IOMAP_DIO_FORCE_WAIT : 0,
589                            NULL, 0);
590         if (ret == -ENOTBLK)
591                 ret = 0;
592
593         if (extend)
594                 ret = ext4_handle_inode_extension(inode, offset, ret, count);
595
596 out:
597         if (ilock_shared)
598                 inode_unlock_shared(inode);
599         else
600                 inode_unlock(inode);
601
602         if (ret >= 0 && iov_iter_count(from)) {
603                 ssize_t err;
604                 loff_t endbyte;
605
606                 offset = iocb->ki_pos;
607                 err = ext4_buffered_write_iter(iocb, from);
608                 if (err < 0)
609                         return err;
610
611                 /*
612                  * We need to ensure that the pages within the page cache for
613                  * the range covered by this I/O are written to disk and
614                  * invalidated. This is in attempt to preserve the expected
615                  * direct I/O semantics in the case we fallback to buffered I/O
616                  * to complete off the I/O request.
617                  */
618                 ret += err;
619                 endbyte = offset + err - 1;
620                 err = filemap_write_and_wait_range(iocb->ki_filp->f_mapping,
621                                                    offset, endbyte);
622                 if (!err)
623                         invalidate_mapping_pages(iocb->ki_filp->f_mapping,
624                                                  offset >> PAGE_SHIFT,
625                                                  endbyte >> PAGE_SHIFT);
626         }
627
628         return ret;
629 }
630
631 #ifdef CONFIG_FS_DAX
632 static ssize_t
633 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
634 {
635         ssize_t ret;
636         size_t count;
637         loff_t offset;
638         handle_t *handle;
639         bool extend = false;
640         struct inode *inode = file_inode(iocb->ki_filp);
641
642         if (iocb->ki_flags & IOCB_NOWAIT) {
643                 if (!inode_trylock(inode))
644                         return -EAGAIN;
645         } else {
646                 inode_lock(inode);
647         }
648
649         ret = ext4_write_checks(iocb, from);
650         if (ret <= 0)
651                 goto out;
652
653         offset = iocb->ki_pos;
654         count = iov_iter_count(from);
655
656         if (offset + count > EXT4_I(inode)->i_disksize) {
657                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
658                 if (IS_ERR(handle)) {
659                         ret = PTR_ERR(handle);
660                         goto out;
661                 }
662
663                 ret = ext4_orphan_add(handle, inode);
664                 if (ret) {
665                         ext4_journal_stop(handle);
666                         goto out;
667                 }
668
669                 extend = true;
670                 ext4_journal_stop(handle);
671         }
672
673         ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
674
675         if (extend)
676                 ret = ext4_handle_inode_extension(inode, offset, ret, count);
677 out:
678         inode_unlock(inode);
679         if (ret > 0)
680                 ret = generic_write_sync(iocb, ret);
681         return ret;
682 }
683 #endif
684
685 static ssize_t
686 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
687 {
688         struct inode *inode = file_inode(iocb->ki_filp);
689
690         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
691                 return -EIO;
692
693 #ifdef CONFIG_FS_DAX
694         if (IS_DAX(inode))
695                 return ext4_dax_write_iter(iocb, from);
696 #endif
697         if (iocb->ki_flags & IOCB_DIRECT)
698                 return ext4_dio_write_iter(iocb, from);
699         else
700                 return ext4_buffered_write_iter(iocb, from);
701 }
702
703 #ifdef CONFIG_FS_DAX
704 static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf,
705                 enum page_entry_size pe_size)
706 {
707         int error = 0;
708         vm_fault_t result;
709         int retries = 0;
710         handle_t *handle = NULL;
711         struct inode *inode = file_inode(vmf->vma->vm_file);
712         struct super_block *sb = inode->i_sb;
713
714         /*
715          * We have to distinguish real writes from writes which will result in a
716          * COW page; COW writes should *not* poke the journal (the file will not
717          * be changed). Doing so would cause unintended failures when mounted
718          * read-only.
719          *
720          * We check for VM_SHARED rather than vmf->cow_page since the latter is
721          * unset for pe_size != PE_SIZE_PTE (i.e. only in do_cow_fault); for
722          * other sizes, dax_iomap_fault will handle splitting / fallback so that
723          * we eventually come back with a COW page.
724          */
725         bool write = (vmf->flags & FAULT_FLAG_WRITE) &&
726                 (vmf->vma->vm_flags & VM_SHARED);
727         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
728         pfn_t pfn;
729
730         if (write) {
731                 sb_start_pagefault(sb);
732                 file_update_time(vmf->vma->vm_file);
733                 filemap_invalidate_lock_shared(mapping);
734 retry:
735                 handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
736                                                EXT4_DATA_TRANS_BLOCKS(sb));
737                 if (IS_ERR(handle)) {
738                         filemap_invalidate_unlock_shared(mapping);
739                         sb_end_pagefault(sb);
740                         return VM_FAULT_SIGBUS;
741                 }
742         } else {
743                 filemap_invalidate_lock_shared(mapping);
744         }
745         result = dax_iomap_fault(vmf, pe_size, &pfn, &error, &ext4_iomap_ops);
746         if (write) {
747                 ext4_journal_stop(handle);
748
749                 if ((result & VM_FAULT_ERROR) && error == -ENOSPC &&
750                     ext4_should_retry_alloc(sb, &retries))
751                         goto retry;
752                 /* Handling synchronous page fault? */
753                 if (result & VM_FAULT_NEEDDSYNC)
754                         result = dax_finish_sync_fault(vmf, pe_size, pfn);
755                 filemap_invalidate_unlock_shared(mapping);
756                 sb_end_pagefault(sb);
757         } else {
758                 filemap_invalidate_unlock_shared(mapping);
759         }
760
761         return result;
762 }
763
764 static vm_fault_t ext4_dax_fault(struct vm_fault *vmf)
765 {
766         return ext4_dax_huge_fault(vmf, PE_SIZE_PTE);
767 }
768
769 static const struct vm_operations_struct ext4_dax_vm_ops = {
770         .fault          = ext4_dax_fault,
771         .huge_fault     = ext4_dax_huge_fault,
772         .page_mkwrite   = ext4_dax_fault,
773         .pfn_mkwrite    = ext4_dax_fault,
774 };
775 #else
776 #define ext4_dax_vm_ops ext4_file_vm_ops
777 #endif
778
779 static const struct vm_operations_struct ext4_file_vm_ops = {
780         .fault          = filemap_fault,
781         .map_pages      = filemap_map_pages,
782         .page_mkwrite   = ext4_page_mkwrite,
783 };
784
785 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
786 {
787         struct inode *inode = file->f_mapping->host;
788         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
789         struct dax_device *dax_dev = sbi->s_daxdev;
790
791         if (unlikely(ext4_forced_shutdown(sbi)))
792                 return -EIO;
793
794         /*
795          * We don't support synchronous mappings for non-DAX files and
796          * for DAX files if underneath dax_device is not synchronous.
797          */
798         if (!daxdev_mapping_supported(vma, dax_dev))
799                 return -EOPNOTSUPP;
800
801         file_accessed(file);
802         if (IS_DAX(file_inode(file))) {
803                 vma->vm_ops = &ext4_dax_vm_ops;
804                 vma->vm_flags |= VM_HUGEPAGE;
805         } else {
806                 vma->vm_ops = &ext4_file_vm_ops;
807         }
808         return 0;
809 }
810
811 static int ext4_sample_last_mounted(struct super_block *sb,
812                                     struct vfsmount *mnt)
813 {
814         struct ext4_sb_info *sbi = EXT4_SB(sb);
815         struct path path;
816         char buf[64], *cp;
817         handle_t *handle;
818         int err;
819
820         if (likely(ext4_test_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED)))
821                 return 0;
822
823         if (sb_rdonly(sb) || !sb_start_intwrite_trylock(sb))
824                 return 0;
825
826         ext4_set_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED);
827         /*
828          * Sample where the filesystem has been mounted and
829          * store it in the superblock for sysadmin convenience
830          * when trying to sort through large numbers of block
831          * devices or filesystem images.
832          */
833         memset(buf, 0, sizeof(buf));
834         path.mnt = mnt;
835         path.dentry = mnt->mnt_root;
836         cp = d_path(&path, buf, sizeof(buf));
837         err = 0;
838         if (IS_ERR(cp))
839                 goto out;
840
841         handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
842         err = PTR_ERR(handle);
843         if (IS_ERR(handle))
844                 goto out;
845         BUFFER_TRACE(sbi->s_sbh, "get_write_access");
846         err = ext4_journal_get_write_access(handle, sb, sbi->s_sbh,
847                                             EXT4_JTR_NONE);
848         if (err)
849                 goto out_journal;
850         lock_buffer(sbi->s_sbh);
851         strncpy(sbi->s_es->s_last_mounted, cp,
852                 sizeof(sbi->s_es->s_last_mounted));
853         ext4_superblock_csum_set(sb);
854         unlock_buffer(sbi->s_sbh);
855         ext4_handle_dirty_metadata(handle, NULL, sbi->s_sbh);
856 out_journal:
857         ext4_journal_stop(handle);
858 out:
859         sb_end_intwrite(sb);
860         return err;
861 }
862
863 static int ext4_file_open(struct inode *inode, struct file *filp)
864 {
865         int ret;
866
867         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
868                 return -EIO;
869
870         ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt);
871         if (ret)
872                 return ret;
873
874         ret = fscrypt_file_open(inode, filp);
875         if (ret)
876                 return ret;
877
878         ret = fsverity_file_open(inode, filp);
879         if (ret)
880                 return ret;
881
882         /*
883          * Set up the jbd2_inode if we are opening the inode for
884          * writing and the journal is present
885          */
886         if (filp->f_mode & FMODE_WRITE) {
887                 ret = ext4_inode_attach_jinode(inode);
888                 if (ret < 0)
889                         return ret;
890         }
891
892         filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
893         return dquot_file_open(inode, filp);
894 }
895
896 /*
897  * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
898  * by calling generic_file_llseek_size() with the appropriate maxbytes
899  * value for each.
900  */
901 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
902 {
903         struct inode *inode = file->f_mapping->host;
904         loff_t maxbytes;
905
906         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
907                 maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
908         else
909                 maxbytes = inode->i_sb->s_maxbytes;
910
911         switch (whence) {
912         default:
913                 return generic_file_llseek_size(file, offset, whence,
914                                                 maxbytes, i_size_read(inode));
915         case SEEK_HOLE:
916                 inode_lock_shared(inode);
917                 offset = iomap_seek_hole(inode, offset,
918                                          &ext4_iomap_report_ops);
919                 inode_unlock_shared(inode);
920                 break;
921         case SEEK_DATA:
922                 inode_lock_shared(inode);
923                 offset = iomap_seek_data(inode, offset,
924                                          &ext4_iomap_report_ops);
925                 inode_unlock_shared(inode);
926                 break;
927         }
928
929         if (offset < 0)
930                 return offset;
931         return vfs_setpos(file, offset, maxbytes);
932 }
933
934 const struct file_operations ext4_file_operations = {
935         .llseek         = ext4_llseek,
936         .read_iter      = ext4_file_read_iter,
937         .write_iter     = ext4_file_write_iter,
938         .iopoll         = iocb_bio_iopoll,
939         .unlocked_ioctl = ext4_ioctl,
940 #ifdef CONFIG_COMPAT
941         .compat_ioctl   = ext4_compat_ioctl,
942 #endif
943         .mmap           = ext4_file_mmap,
944         .mmap_supported_flags = MAP_SYNC,
945         .open           = ext4_file_open,
946         .release        = ext4_release_file,
947         .fsync          = ext4_sync_file,
948         .get_unmapped_area = thp_get_unmapped_area,
949         .splice_read    = generic_file_splice_read,
950         .splice_write   = iter_file_splice_write,
951         .fallocate      = ext4_fallocate,
952 };
953
954 const struct inode_operations ext4_file_inode_operations = {
955         .setattr        = ext4_setattr,
956         .getattr        = ext4_file_getattr,
957         .listxattr      = ext4_listxattr,
958         .get_acl        = ext4_get_acl,
959         .set_acl        = ext4_set_acl,
960         .fiemap         = ext4_fiemap,
961         .fileattr_get   = ext4_fileattr_get,
962         .fileattr_set   = ext4_fileattr_set,
963 };
964