Merge tag 'sound-6.6-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[platform/kernel/linux-rpi.git] / fs / ext4 / file.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/file.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/file.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  ext4 fs regular file handling primitives
17  *
18  *  64-bit file support on 64-bit platforms by Jakub Jelinek
19  *      (jj@sunsite.ms.mff.cuni.cz)
20  */
21
22 #include <linux/time.h>
23 #include <linux/fs.h>
24 #include <linux/iomap.h>
25 #include <linux/mount.h>
26 #include <linux/path.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/pagevec.h>
30 #include <linux/uio.h>
31 #include <linux/mman.h>
32 #include <linux/backing-dev.h>
33 #include "ext4.h"
34 #include "ext4_jbd2.h"
35 #include "xattr.h"
36 #include "acl.h"
37 #include "truncate.h"
38
39 /*
40  * Returns %true if the given DIO request should be attempted with DIO, or
41  * %false if it should fall back to buffered I/O.
42  *
43  * DIO isn't well specified; when it's unsupported (either due to the request
44  * being misaligned, or due to the file not supporting DIO at all), filesystems
45  * either fall back to buffered I/O or return EINVAL.  For files that don't use
46  * any special features like encryption or verity, ext4 has traditionally
47  * returned EINVAL for misaligned DIO.  iomap_dio_rw() uses this convention too.
48  * In this case, we should attempt the DIO, *not* fall back to buffered I/O.
49  *
50  * In contrast, in cases where DIO is unsupported due to ext4 features, ext4
51  * traditionally falls back to buffered I/O.
52  *
53  * This function implements the traditional ext4 behavior in all these cases.
54  */
55 static bool ext4_should_use_dio(struct kiocb *iocb, struct iov_iter *iter)
56 {
57         struct inode *inode = file_inode(iocb->ki_filp);
58         u32 dio_align = ext4_dio_alignment(inode);
59
60         if (dio_align == 0)
61                 return false;
62
63         if (dio_align == 1)
64                 return true;
65
66         return IS_ALIGNED(iocb->ki_pos | iov_iter_alignment(iter), dio_align);
67 }
68
69 static ssize_t ext4_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
70 {
71         ssize_t ret;
72         struct inode *inode = file_inode(iocb->ki_filp);
73
74         if (iocb->ki_flags & IOCB_NOWAIT) {
75                 if (!inode_trylock_shared(inode))
76                         return -EAGAIN;
77         } else {
78                 inode_lock_shared(inode);
79         }
80
81         if (!ext4_should_use_dio(iocb, to)) {
82                 inode_unlock_shared(inode);
83                 /*
84                  * Fallback to buffered I/O if the operation being performed on
85                  * the inode is not supported by direct I/O. The IOCB_DIRECT
86                  * flag needs to be cleared here in order to ensure that the
87                  * direct I/O path within generic_file_read_iter() is not
88                  * taken.
89                  */
90                 iocb->ki_flags &= ~IOCB_DIRECT;
91                 return generic_file_read_iter(iocb, to);
92         }
93
94         ret = iomap_dio_rw(iocb, to, &ext4_iomap_ops, NULL, 0, NULL, 0);
95         inode_unlock_shared(inode);
96
97         file_accessed(iocb->ki_filp);
98         return ret;
99 }
100
101 #ifdef CONFIG_FS_DAX
102 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
103 {
104         struct inode *inode = file_inode(iocb->ki_filp);
105         ssize_t ret;
106
107         if (iocb->ki_flags & IOCB_NOWAIT) {
108                 if (!inode_trylock_shared(inode))
109                         return -EAGAIN;
110         } else {
111                 inode_lock_shared(inode);
112         }
113         /*
114          * Recheck under inode lock - at this point we are sure it cannot
115          * change anymore
116          */
117         if (!IS_DAX(inode)) {
118                 inode_unlock_shared(inode);
119                 /* Fallback to buffered IO in case we cannot support DAX */
120                 return generic_file_read_iter(iocb, to);
121         }
122         ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
123         inode_unlock_shared(inode);
124
125         file_accessed(iocb->ki_filp);
126         return ret;
127 }
128 #endif
129
130 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
131 {
132         struct inode *inode = file_inode(iocb->ki_filp);
133
134         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
135                 return -EIO;
136
137         if (!iov_iter_count(to))
138                 return 0; /* skip atime */
139
140 #ifdef CONFIG_FS_DAX
141         if (IS_DAX(inode))
142                 return ext4_dax_read_iter(iocb, to);
143 #endif
144         if (iocb->ki_flags & IOCB_DIRECT)
145                 return ext4_dio_read_iter(iocb, to);
146
147         return generic_file_read_iter(iocb, to);
148 }
149
150 static ssize_t ext4_file_splice_read(struct file *in, loff_t *ppos,
151                                      struct pipe_inode_info *pipe,
152                                      size_t len, unsigned int flags)
153 {
154         struct inode *inode = file_inode(in);
155
156         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
157                 return -EIO;
158         return filemap_splice_read(in, ppos, pipe, len, flags);
159 }
160
161 /*
162  * Called when an inode is released. Note that this is different
163  * from ext4_file_open: open gets called at every open, but release
164  * gets called only when /all/ the files are closed.
165  */
166 static int ext4_release_file(struct inode *inode, struct file *filp)
167 {
168         if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
169                 ext4_alloc_da_blocks(inode);
170                 ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
171         }
172         /* if we are the last writer on the inode, drop the block reservation */
173         if ((filp->f_mode & FMODE_WRITE) &&
174                         (atomic_read(&inode->i_writecount) == 1) &&
175                         !EXT4_I(inode)->i_reserved_data_blocks) {
176                 down_write(&EXT4_I(inode)->i_data_sem);
177                 ext4_discard_preallocations(inode, 0);
178                 up_write(&EXT4_I(inode)->i_data_sem);
179         }
180         if (is_dx(inode) && filp->private_data)
181                 ext4_htree_free_dir_info(filp->private_data);
182
183         return 0;
184 }
185
186 /*
187  * This tests whether the IO in question is block-aligned or not.
188  * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
189  * are converted to written only after the IO is complete.  Until they are
190  * mapped, these blocks appear as holes, so dio_zero_block() will assume that
191  * it needs to zero out portions of the start and/or end block.  If 2 AIO
192  * threads are at work on the same unwritten block, they must be synchronized
193  * or one thread will zero the other's data, causing corruption.
194  */
195 static bool
196 ext4_unaligned_io(struct inode *inode, struct iov_iter *from, loff_t pos)
197 {
198         struct super_block *sb = inode->i_sb;
199         unsigned long blockmask = sb->s_blocksize - 1;
200
201         if ((pos | iov_iter_alignment(from)) & blockmask)
202                 return true;
203
204         return false;
205 }
206
207 static bool
208 ext4_extending_io(struct inode *inode, loff_t offset, size_t len)
209 {
210         if (offset + len > i_size_read(inode) ||
211             offset + len > EXT4_I(inode)->i_disksize)
212                 return true;
213         return false;
214 }
215
216 /* Is IO overwriting allocated or initialized blocks? */
217 static bool ext4_overwrite_io(struct inode *inode,
218                               loff_t pos, loff_t len, bool *unwritten)
219 {
220         struct ext4_map_blocks map;
221         unsigned int blkbits = inode->i_blkbits;
222         int err, blklen;
223
224         if (pos + len > i_size_read(inode))
225                 return false;
226
227         map.m_lblk = pos >> blkbits;
228         map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
229         blklen = map.m_len;
230
231         err = ext4_map_blocks(NULL, inode, &map, 0);
232         if (err != blklen)
233                 return false;
234         /*
235          * 'err==len' means that all of the blocks have been preallocated,
236          * regardless of whether they have been initialized or not. We need to
237          * check m_flags to distinguish the unwritten extents.
238          */
239         *unwritten = !(map.m_flags & EXT4_MAP_MAPPED);
240         return true;
241 }
242
243 static ssize_t ext4_generic_write_checks(struct kiocb *iocb,
244                                          struct iov_iter *from)
245 {
246         struct inode *inode = file_inode(iocb->ki_filp);
247         ssize_t ret;
248
249         if (unlikely(IS_IMMUTABLE(inode)))
250                 return -EPERM;
251
252         ret = generic_write_checks(iocb, from);
253         if (ret <= 0)
254                 return ret;
255
256         /*
257          * If we have encountered a bitmap-format file, the size limit
258          * is smaller than s_maxbytes, which is for extent-mapped files.
259          */
260         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
261                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
262
263                 if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
264                         return -EFBIG;
265                 iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
266         }
267
268         return iov_iter_count(from);
269 }
270
271 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
272 {
273         ssize_t ret, count;
274
275         count = ext4_generic_write_checks(iocb, from);
276         if (count <= 0)
277                 return count;
278
279         ret = file_modified(iocb->ki_filp);
280         if (ret)
281                 return ret;
282         return count;
283 }
284
285 static ssize_t ext4_buffered_write_iter(struct kiocb *iocb,
286                                         struct iov_iter *from)
287 {
288         ssize_t ret;
289         struct inode *inode = file_inode(iocb->ki_filp);
290
291         if (iocb->ki_flags & IOCB_NOWAIT)
292                 return -EOPNOTSUPP;
293
294         inode_lock(inode);
295         ret = ext4_write_checks(iocb, from);
296         if (ret <= 0)
297                 goto out;
298
299         ret = generic_perform_write(iocb, from);
300
301 out:
302         inode_unlock(inode);
303         if (unlikely(ret <= 0))
304                 return ret;
305         return generic_write_sync(iocb, ret);
306 }
307
308 static ssize_t ext4_handle_inode_extension(struct inode *inode, loff_t offset,
309                                            ssize_t written, size_t count)
310 {
311         handle_t *handle;
312         bool truncate = false;
313         u8 blkbits = inode->i_blkbits;
314         ext4_lblk_t written_blk, end_blk;
315         int ret;
316
317         /*
318          * Note that EXT4_I(inode)->i_disksize can get extended up to
319          * inode->i_size while the I/O was running due to writeback of delalloc
320          * blocks. But, the code in ext4_iomap_alloc() is careful to use
321          * zeroed/unwritten extents if this is possible; thus we won't leave
322          * uninitialized blocks in a file even if we didn't succeed in writing
323          * as much as we intended.
324          */
325         WARN_ON_ONCE(i_size_read(inode) < EXT4_I(inode)->i_disksize);
326         if (offset + count <= EXT4_I(inode)->i_disksize) {
327                 /*
328                  * We need to ensure that the inode is removed from the orphan
329                  * list if it has been added prematurely, due to writeback of
330                  * delalloc blocks.
331                  */
332                 if (!list_empty(&EXT4_I(inode)->i_orphan) && inode->i_nlink) {
333                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
334
335                         if (IS_ERR(handle)) {
336                                 ext4_orphan_del(NULL, inode);
337                                 return PTR_ERR(handle);
338                         }
339
340                         ext4_orphan_del(handle, inode);
341                         ext4_journal_stop(handle);
342                 }
343
344                 return written;
345         }
346
347         if (written < 0)
348                 goto truncate;
349
350         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
351         if (IS_ERR(handle)) {
352                 written = PTR_ERR(handle);
353                 goto truncate;
354         }
355
356         if (ext4_update_inode_size(inode, offset + written)) {
357                 ret = ext4_mark_inode_dirty(handle, inode);
358                 if (unlikely(ret)) {
359                         written = ret;
360                         ext4_journal_stop(handle);
361                         goto truncate;
362                 }
363         }
364
365         /*
366          * We may need to truncate allocated but not written blocks beyond EOF.
367          */
368         written_blk = ALIGN(offset + written, 1 << blkbits);
369         end_blk = ALIGN(offset + count, 1 << blkbits);
370         if (written_blk < end_blk && ext4_can_truncate(inode))
371                 truncate = true;
372
373         /*
374          * Remove the inode from the orphan list if it has been extended and
375          * everything went OK.
376          */
377         if (!truncate && inode->i_nlink)
378                 ext4_orphan_del(handle, inode);
379         ext4_journal_stop(handle);
380
381         if (truncate) {
382 truncate:
383                 ext4_truncate_failed_write(inode);
384                 /*
385                  * If the truncate operation failed early, then the inode may
386                  * still be on the orphan list. In that case, we need to try
387                  * remove the inode from the in-memory linked list.
388                  */
389                 if (inode->i_nlink)
390                         ext4_orphan_del(NULL, inode);
391         }
392
393         return written;
394 }
395
396 static int ext4_dio_write_end_io(struct kiocb *iocb, ssize_t size,
397                                  int error, unsigned int flags)
398 {
399         loff_t pos = iocb->ki_pos;
400         struct inode *inode = file_inode(iocb->ki_filp);
401
402         if (error)
403                 return error;
404
405         if (size && flags & IOMAP_DIO_UNWRITTEN) {
406                 error = ext4_convert_unwritten_extents(NULL, inode, pos, size);
407                 if (error < 0)
408                         return error;
409         }
410         /*
411          * If we are extending the file, we have to update i_size here before
412          * page cache gets invalidated in iomap_dio_rw(). Otherwise racing
413          * buffered reads could zero out too much from page cache pages. Update
414          * of on-disk size will happen later in ext4_dio_write_iter() where
415          * we have enough information to also perform orphan list handling etc.
416          * Note that we perform all extending writes synchronously under
417          * i_rwsem held exclusively so i_size update is safe here in that case.
418          * If the write was not extending, we cannot see pos > i_size here
419          * because operations reducing i_size like truncate wait for all
420          * outstanding DIO before updating i_size.
421          */
422         pos += size;
423         if (pos > i_size_read(inode))
424                 i_size_write(inode, pos);
425
426         return 0;
427 }
428
429 static const struct iomap_dio_ops ext4_dio_write_ops = {
430         .end_io = ext4_dio_write_end_io,
431 };
432
433 /*
434  * The intention here is to start with shared lock acquired then see if any
435  * condition requires an exclusive inode lock. If yes, then we restart the
436  * whole operation by releasing the shared lock and acquiring exclusive lock.
437  *
438  * - For unaligned_io we never take shared lock as it may cause data corruption
439  *   when two unaligned IO tries to modify the same block e.g. while zeroing.
440  *
441  * - For extending writes case we don't take the shared lock, since it requires
442  *   updating inode i_disksize and/or orphan handling with exclusive lock.
443  *
444  * - shared locking will only be true mostly with overwrites, including
445  *   initialized blocks and unwritten blocks. For overwrite unwritten blocks
446  *   we protect splitting extents by i_data_sem in ext4_inode_info, so we can
447  *   also release exclusive i_rwsem lock.
448  *
449  * - Otherwise we will switch to exclusive i_rwsem lock.
450  */
451 static ssize_t ext4_dio_write_checks(struct kiocb *iocb, struct iov_iter *from,
452                                      bool *ilock_shared, bool *extend,
453                                      bool *unwritten, int *dio_flags)
454 {
455         struct file *file = iocb->ki_filp;
456         struct inode *inode = file_inode(file);
457         loff_t offset;
458         size_t count;
459         ssize_t ret;
460         bool overwrite, unaligned_io;
461
462 restart:
463         ret = ext4_generic_write_checks(iocb, from);
464         if (ret <= 0)
465                 goto out;
466
467         offset = iocb->ki_pos;
468         count = ret;
469
470         unaligned_io = ext4_unaligned_io(inode, from, offset);
471         *extend = ext4_extending_io(inode, offset, count);
472         overwrite = ext4_overwrite_io(inode, offset, count, unwritten);
473
474         /*
475          * Determine whether we need to upgrade to an exclusive lock. This is
476          * required to change security info in file_modified(), for extending
477          * I/O, any form of non-overwrite I/O, and unaligned I/O to unwritten
478          * extents (as partial block zeroing may be required).
479          *
480          * Note that unaligned writes are allowed under shared lock so long as
481          * they are pure overwrites. Otherwise, concurrent unaligned writes risk
482          * data corruption due to partial block zeroing in the dio layer, and so
483          * the I/O must occur exclusively.
484          */
485         if (*ilock_shared &&
486             ((!IS_NOSEC(inode) || *extend || !overwrite ||
487              (unaligned_io && *unwritten)))) {
488                 if (iocb->ki_flags & IOCB_NOWAIT) {
489                         ret = -EAGAIN;
490                         goto out;
491                 }
492                 inode_unlock_shared(inode);
493                 *ilock_shared = false;
494                 inode_lock(inode);
495                 goto restart;
496         }
497
498         /*
499          * Now that locking is settled, determine dio flags and exclusivity
500          * requirements. We don't use DIO_OVERWRITE_ONLY because we enforce
501          * behavior already. The inode lock is already held exclusive if the
502          * write is non-overwrite or extending, so drain all outstanding dio and
503          * set the force wait dio flag.
504          */
505         if (!*ilock_shared && (unaligned_io || *extend)) {
506                 if (iocb->ki_flags & IOCB_NOWAIT) {
507                         ret = -EAGAIN;
508                         goto out;
509                 }
510                 if (unaligned_io && (!overwrite || *unwritten))
511                         inode_dio_wait(inode);
512                 *dio_flags = IOMAP_DIO_FORCE_WAIT;
513         }
514
515         ret = file_modified(file);
516         if (ret < 0)
517                 goto out;
518
519         return count;
520 out:
521         if (*ilock_shared)
522                 inode_unlock_shared(inode);
523         else
524                 inode_unlock(inode);
525         return ret;
526 }
527
528 static ssize_t ext4_dio_write_iter(struct kiocb *iocb, struct iov_iter *from)
529 {
530         ssize_t ret;
531         handle_t *handle;
532         struct inode *inode = file_inode(iocb->ki_filp);
533         loff_t offset = iocb->ki_pos;
534         size_t count = iov_iter_count(from);
535         const struct iomap_ops *iomap_ops = &ext4_iomap_ops;
536         bool extend = false, unwritten = false;
537         bool ilock_shared = true;
538         int dio_flags = 0;
539
540         /*
541          * Quick check here without any i_rwsem lock to see if it is extending
542          * IO. A more reliable check is done in ext4_dio_write_checks() with
543          * proper locking in place.
544          */
545         if (offset + count > i_size_read(inode))
546                 ilock_shared = false;
547
548         if (iocb->ki_flags & IOCB_NOWAIT) {
549                 if (ilock_shared) {
550                         if (!inode_trylock_shared(inode))
551                                 return -EAGAIN;
552                 } else {
553                         if (!inode_trylock(inode))
554                                 return -EAGAIN;
555                 }
556         } else {
557                 if (ilock_shared)
558                         inode_lock_shared(inode);
559                 else
560                         inode_lock(inode);
561         }
562
563         /* Fallback to buffered I/O if the inode does not support direct I/O. */
564         if (!ext4_should_use_dio(iocb, from)) {
565                 if (ilock_shared)
566                         inode_unlock_shared(inode);
567                 else
568                         inode_unlock(inode);
569                 return ext4_buffered_write_iter(iocb, from);
570         }
571
572         ret = ext4_dio_write_checks(iocb, from, &ilock_shared, &extend,
573                                     &unwritten, &dio_flags);
574         if (ret <= 0)
575                 return ret;
576
577         /*
578          * Make sure inline data cannot be created anymore since we are going
579          * to allocate blocks for DIO. We know the inode does not have any
580          * inline data now because ext4_dio_supported() checked for that.
581          */
582         ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
583
584         offset = iocb->ki_pos;
585         count = ret;
586
587         if (extend) {
588                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
589                 if (IS_ERR(handle)) {
590                         ret = PTR_ERR(handle);
591                         goto out;
592                 }
593
594                 ret = ext4_orphan_add(handle, inode);
595                 if (ret) {
596                         ext4_journal_stop(handle);
597                         goto out;
598                 }
599
600                 ext4_journal_stop(handle);
601         }
602
603         if (ilock_shared && !unwritten)
604                 iomap_ops = &ext4_iomap_overwrite_ops;
605         ret = iomap_dio_rw(iocb, from, iomap_ops, &ext4_dio_write_ops,
606                            dio_flags, NULL, 0);
607         if (ret == -ENOTBLK)
608                 ret = 0;
609
610         if (extend)
611                 ret = ext4_handle_inode_extension(inode, offset, ret, count);
612
613 out:
614         if (ilock_shared)
615                 inode_unlock_shared(inode);
616         else
617                 inode_unlock(inode);
618
619         if (ret >= 0 && iov_iter_count(from)) {
620                 ssize_t err;
621                 loff_t endbyte;
622
623                 offset = iocb->ki_pos;
624                 err = ext4_buffered_write_iter(iocb, from);
625                 if (err < 0)
626                         return err;
627
628                 /*
629                  * We need to ensure that the pages within the page cache for
630                  * the range covered by this I/O are written to disk and
631                  * invalidated. This is in attempt to preserve the expected
632                  * direct I/O semantics in the case we fallback to buffered I/O
633                  * to complete off the I/O request.
634                  */
635                 ret += err;
636                 endbyte = offset + err - 1;
637                 err = filemap_write_and_wait_range(iocb->ki_filp->f_mapping,
638                                                    offset, endbyte);
639                 if (!err)
640                         invalidate_mapping_pages(iocb->ki_filp->f_mapping,
641                                                  offset >> PAGE_SHIFT,
642                                                  endbyte >> PAGE_SHIFT);
643         }
644
645         return ret;
646 }
647
648 #ifdef CONFIG_FS_DAX
649 static ssize_t
650 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
651 {
652         ssize_t ret;
653         size_t count;
654         loff_t offset;
655         handle_t *handle;
656         bool extend = false;
657         struct inode *inode = file_inode(iocb->ki_filp);
658
659         if (iocb->ki_flags & IOCB_NOWAIT) {
660                 if (!inode_trylock(inode))
661                         return -EAGAIN;
662         } else {
663                 inode_lock(inode);
664         }
665
666         ret = ext4_write_checks(iocb, from);
667         if (ret <= 0)
668                 goto out;
669
670         offset = iocb->ki_pos;
671         count = iov_iter_count(from);
672
673         if (offset + count > EXT4_I(inode)->i_disksize) {
674                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
675                 if (IS_ERR(handle)) {
676                         ret = PTR_ERR(handle);
677                         goto out;
678                 }
679
680                 ret = ext4_orphan_add(handle, inode);
681                 if (ret) {
682                         ext4_journal_stop(handle);
683                         goto out;
684                 }
685
686                 extend = true;
687                 ext4_journal_stop(handle);
688         }
689
690         ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
691
692         if (extend)
693                 ret = ext4_handle_inode_extension(inode, offset, ret, count);
694 out:
695         inode_unlock(inode);
696         if (ret > 0)
697                 ret = generic_write_sync(iocb, ret);
698         return ret;
699 }
700 #endif
701
702 static ssize_t
703 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
704 {
705         struct inode *inode = file_inode(iocb->ki_filp);
706
707         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
708                 return -EIO;
709
710 #ifdef CONFIG_FS_DAX
711         if (IS_DAX(inode))
712                 return ext4_dax_write_iter(iocb, from);
713 #endif
714         if (iocb->ki_flags & IOCB_DIRECT)
715                 return ext4_dio_write_iter(iocb, from);
716         else
717                 return ext4_buffered_write_iter(iocb, from);
718 }
719
720 #ifdef CONFIG_FS_DAX
721 static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf, unsigned int order)
722 {
723         int error = 0;
724         vm_fault_t result;
725         int retries = 0;
726         handle_t *handle = NULL;
727         struct inode *inode = file_inode(vmf->vma->vm_file);
728         struct super_block *sb = inode->i_sb;
729
730         /*
731          * We have to distinguish real writes from writes which will result in a
732          * COW page; COW writes should *not* poke the journal (the file will not
733          * be changed). Doing so would cause unintended failures when mounted
734          * read-only.
735          *
736          * We check for VM_SHARED rather than vmf->cow_page since the latter is
737          * unset for order != 0 (i.e. only in do_cow_fault); for
738          * other sizes, dax_iomap_fault will handle splitting / fallback so that
739          * we eventually come back with a COW page.
740          */
741         bool write = (vmf->flags & FAULT_FLAG_WRITE) &&
742                 (vmf->vma->vm_flags & VM_SHARED);
743         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
744         pfn_t pfn;
745
746         if (write) {
747                 sb_start_pagefault(sb);
748                 file_update_time(vmf->vma->vm_file);
749                 filemap_invalidate_lock_shared(mapping);
750 retry:
751                 handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
752                                                EXT4_DATA_TRANS_BLOCKS(sb));
753                 if (IS_ERR(handle)) {
754                         filemap_invalidate_unlock_shared(mapping);
755                         sb_end_pagefault(sb);
756                         return VM_FAULT_SIGBUS;
757                 }
758         } else {
759                 filemap_invalidate_lock_shared(mapping);
760         }
761         result = dax_iomap_fault(vmf, order, &pfn, &error, &ext4_iomap_ops);
762         if (write) {
763                 ext4_journal_stop(handle);
764
765                 if ((result & VM_FAULT_ERROR) && error == -ENOSPC &&
766                     ext4_should_retry_alloc(sb, &retries))
767                         goto retry;
768                 /* Handling synchronous page fault? */
769                 if (result & VM_FAULT_NEEDDSYNC)
770                         result = dax_finish_sync_fault(vmf, order, pfn);
771                 filemap_invalidate_unlock_shared(mapping);
772                 sb_end_pagefault(sb);
773         } else {
774                 filemap_invalidate_unlock_shared(mapping);
775         }
776
777         return result;
778 }
779
780 static vm_fault_t ext4_dax_fault(struct vm_fault *vmf)
781 {
782         return ext4_dax_huge_fault(vmf, 0);
783 }
784
785 static const struct vm_operations_struct ext4_dax_vm_ops = {
786         .fault          = ext4_dax_fault,
787         .huge_fault     = ext4_dax_huge_fault,
788         .page_mkwrite   = ext4_dax_fault,
789         .pfn_mkwrite    = ext4_dax_fault,
790 };
791 #else
792 #define ext4_dax_vm_ops ext4_file_vm_ops
793 #endif
794
795 static const struct vm_operations_struct ext4_file_vm_ops = {
796         .fault          = filemap_fault,
797         .map_pages      = filemap_map_pages,
798         .page_mkwrite   = ext4_page_mkwrite,
799 };
800
801 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
802 {
803         struct inode *inode = file->f_mapping->host;
804         struct dax_device *dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
805
806         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
807                 return -EIO;
808
809         /*
810          * We don't support synchronous mappings for non-DAX files and
811          * for DAX files if underneath dax_device is not synchronous.
812          */
813         if (!daxdev_mapping_supported(vma, dax_dev))
814                 return -EOPNOTSUPP;
815
816         file_accessed(file);
817         if (IS_DAX(file_inode(file))) {
818                 vma->vm_ops = &ext4_dax_vm_ops;
819                 vm_flags_set(vma, VM_HUGEPAGE);
820         } else {
821                 vma->vm_ops = &ext4_file_vm_ops;
822         }
823         return 0;
824 }
825
826 static int ext4_sample_last_mounted(struct super_block *sb,
827                                     struct vfsmount *mnt)
828 {
829         struct ext4_sb_info *sbi = EXT4_SB(sb);
830         struct path path;
831         char buf[64], *cp;
832         handle_t *handle;
833         int err;
834
835         if (likely(ext4_test_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED)))
836                 return 0;
837
838         if (sb_rdonly(sb) || !sb_start_intwrite_trylock(sb))
839                 return 0;
840
841         ext4_set_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED);
842         /*
843          * Sample where the filesystem has been mounted and
844          * store it in the superblock for sysadmin convenience
845          * when trying to sort through large numbers of block
846          * devices or filesystem images.
847          */
848         memset(buf, 0, sizeof(buf));
849         path.mnt = mnt;
850         path.dentry = mnt->mnt_root;
851         cp = d_path(&path, buf, sizeof(buf));
852         err = 0;
853         if (IS_ERR(cp))
854                 goto out;
855
856         handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
857         err = PTR_ERR(handle);
858         if (IS_ERR(handle))
859                 goto out;
860         BUFFER_TRACE(sbi->s_sbh, "get_write_access");
861         err = ext4_journal_get_write_access(handle, sb, sbi->s_sbh,
862                                             EXT4_JTR_NONE);
863         if (err)
864                 goto out_journal;
865         lock_buffer(sbi->s_sbh);
866         strncpy(sbi->s_es->s_last_mounted, cp,
867                 sizeof(sbi->s_es->s_last_mounted));
868         ext4_superblock_csum_set(sb);
869         unlock_buffer(sbi->s_sbh);
870         ext4_handle_dirty_metadata(handle, NULL, sbi->s_sbh);
871 out_journal:
872         ext4_journal_stop(handle);
873 out:
874         sb_end_intwrite(sb);
875         return err;
876 }
877
878 static int ext4_file_open(struct inode *inode, struct file *filp)
879 {
880         int ret;
881
882         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
883                 return -EIO;
884
885         ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt);
886         if (ret)
887                 return ret;
888
889         ret = fscrypt_file_open(inode, filp);
890         if (ret)
891                 return ret;
892
893         ret = fsverity_file_open(inode, filp);
894         if (ret)
895                 return ret;
896
897         /*
898          * Set up the jbd2_inode if we are opening the inode for
899          * writing and the journal is present
900          */
901         if (filp->f_mode & FMODE_WRITE) {
902                 ret = ext4_inode_attach_jinode(inode);
903                 if (ret < 0)
904                         return ret;
905         }
906
907         filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC |
908                         FMODE_DIO_PARALLEL_WRITE;
909         return dquot_file_open(inode, filp);
910 }
911
912 /*
913  * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
914  * by calling generic_file_llseek_size() with the appropriate maxbytes
915  * value for each.
916  */
917 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
918 {
919         struct inode *inode = file->f_mapping->host;
920         loff_t maxbytes;
921
922         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
923                 maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
924         else
925                 maxbytes = inode->i_sb->s_maxbytes;
926
927         switch (whence) {
928         default:
929                 return generic_file_llseek_size(file, offset, whence,
930                                                 maxbytes, i_size_read(inode));
931         case SEEK_HOLE:
932                 inode_lock_shared(inode);
933                 offset = iomap_seek_hole(inode, offset,
934                                          &ext4_iomap_report_ops);
935                 inode_unlock_shared(inode);
936                 break;
937         case SEEK_DATA:
938                 inode_lock_shared(inode);
939                 offset = iomap_seek_data(inode, offset,
940                                          &ext4_iomap_report_ops);
941                 inode_unlock_shared(inode);
942                 break;
943         }
944
945         if (offset < 0)
946                 return offset;
947         return vfs_setpos(file, offset, maxbytes);
948 }
949
950 const struct file_operations ext4_file_operations = {
951         .llseek         = ext4_llseek,
952         .read_iter      = ext4_file_read_iter,
953         .write_iter     = ext4_file_write_iter,
954         .iopoll         = iocb_bio_iopoll,
955         .unlocked_ioctl = ext4_ioctl,
956 #ifdef CONFIG_COMPAT
957         .compat_ioctl   = ext4_compat_ioctl,
958 #endif
959         .mmap           = ext4_file_mmap,
960         .mmap_supported_flags = MAP_SYNC,
961         .open           = ext4_file_open,
962         .release        = ext4_release_file,
963         .fsync          = ext4_sync_file,
964         .get_unmapped_area = thp_get_unmapped_area,
965         .splice_read    = ext4_file_splice_read,
966         .splice_write   = iter_file_splice_write,
967         .fallocate      = ext4_fallocate,
968 };
969
970 const struct inode_operations ext4_file_inode_operations = {
971         .setattr        = ext4_setattr,
972         .getattr        = ext4_file_getattr,
973         .listxattr      = ext4_listxattr,
974         .get_inode_acl  = ext4_get_acl,
975         .set_acl        = ext4_set_acl,
976         .fiemap         = ext4_fiemap,
977         .fileattr_get   = ext4_fileattr_get,
978         .fileattr_set   = ext4_fileattr_set,
979 };
980