Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso...
[platform/kernel/linux-starfive.git] / fs / ext4 / file.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/file.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/file.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  ext4 fs regular file handling primitives
17  *
18  *  64-bit file support on 64-bit platforms by Jakub Jelinek
19  *      (jj@sunsite.ms.mff.cuni.cz)
20  */
21
22 #include <linux/time.h>
23 #include <linux/fs.h>
24 #include <linux/iomap.h>
25 #include <linux/mount.h>
26 #include <linux/path.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/pagevec.h>
30 #include <linux/uio.h>
31 #include <linux/mman.h>
32 #include <linux/backing-dev.h>
33 #include "ext4.h"
34 #include "ext4_jbd2.h"
35 #include "xattr.h"
36 #include "acl.h"
37 #include "truncate.h"
38
39 /*
40  * Returns %true if the given DIO request should be attempted with DIO, or
41  * %false if it should fall back to buffered I/O.
42  *
43  * DIO isn't well specified; when it's unsupported (either due to the request
44  * being misaligned, or due to the file not supporting DIO at all), filesystems
45  * either fall back to buffered I/O or return EINVAL.  For files that don't use
46  * any special features like encryption or verity, ext4 has traditionally
47  * returned EINVAL for misaligned DIO.  iomap_dio_rw() uses this convention too.
48  * In this case, we should attempt the DIO, *not* fall back to buffered I/O.
49  *
50  * In contrast, in cases where DIO is unsupported due to ext4 features, ext4
51  * traditionally falls back to buffered I/O.
52  *
53  * This function implements the traditional ext4 behavior in all these cases.
54  */
55 static bool ext4_should_use_dio(struct kiocb *iocb, struct iov_iter *iter)
56 {
57         struct inode *inode = file_inode(iocb->ki_filp);
58         u32 dio_align = ext4_dio_alignment(inode);
59
60         if (dio_align == 0)
61                 return false;
62
63         if (dio_align == 1)
64                 return true;
65
66         return IS_ALIGNED(iocb->ki_pos | iov_iter_alignment(iter), dio_align);
67 }
68
69 static ssize_t ext4_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
70 {
71         ssize_t ret;
72         struct inode *inode = file_inode(iocb->ki_filp);
73
74         if (iocb->ki_flags & IOCB_NOWAIT) {
75                 if (!inode_trylock_shared(inode))
76                         return -EAGAIN;
77         } else {
78                 inode_lock_shared(inode);
79         }
80
81         if (!ext4_should_use_dio(iocb, to)) {
82                 inode_unlock_shared(inode);
83                 /*
84                  * Fallback to buffered I/O if the operation being performed on
85                  * the inode is not supported by direct I/O. The IOCB_DIRECT
86                  * flag needs to be cleared here in order to ensure that the
87                  * direct I/O path within generic_file_read_iter() is not
88                  * taken.
89                  */
90                 iocb->ki_flags &= ~IOCB_DIRECT;
91                 return generic_file_read_iter(iocb, to);
92         }
93
94         ret = iomap_dio_rw(iocb, to, &ext4_iomap_ops, NULL, 0, NULL, 0);
95         inode_unlock_shared(inode);
96
97         file_accessed(iocb->ki_filp);
98         return ret;
99 }
100
101 #ifdef CONFIG_FS_DAX
102 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
103 {
104         struct inode *inode = file_inode(iocb->ki_filp);
105         ssize_t ret;
106
107         if (iocb->ki_flags & IOCB_NOWAIT) {
108                 if (!inode_trylock_shared(inode))
109                         return -EAGAIN;
110         } else {
111                 inode_lock_shared(inode);
112         }
113         /*
114          * Recheck under inode lock - at this point we are sure it cannot
115          * change anymore
116          */
117         if (!IS_DAX(inode)) {
118                 inode_unlock_shared(inode);
119                 /* Fallback to buffered IO in case we cannot support DAX */
120                 return generic_file_read_iter(iocb, to);
121         }
122         ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
123         inode_unlock_shared(inode);
124
125         file_accessed(iocb->ki_filp);
126         return ret;
127 }
128 #endif
129
130 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
131 {
132         struct inode *inode = file_inode(iocb->ki_filp);
133
134         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
135                 return -EIO;
136
137         if (!iov_iter_count(to))
138                 return 0; /* skip atime */
139
140 #ifdef CONFIG_FS_DAX
141         if (IS_DAX(inode))
142                 return ext4_dax_read_iter(iocb, to);
143 #endif
144         if (iocb->ki_flags & IOCB_DIRECT)
145                 return ext4_dio_read_iter(iocb, to);
146
147         return generic_file_read_iter(iocb, to);
148 }
149
150 /*
151  * Called when an inode is released. Note that this is different
152  * from ext4_file_open: open gets called at every open, but release
153  * gets called only when /all/ the files are closed.
154  */
155 static int ext4_release_file(struct inode *inode, struct file *filp)
156 {
157         if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
158                 ext4_alloc_da_blocks(inode);
159                 ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
160         }
161         /* if we are the last writer on the inode, drop the block reservation */
162         if ((filp->f_mode & FMODE_WRITE) &&
163                         (atomic_read(&inode->i_writecount) == 1) &&
164                         !EXT4_I(inode)->i_reserved_data_blocks) {
165                 down_write(&EXT4_I(inode)->i_data_sem);
166                 ext4_discard_preallocations(inode, 0);
167                 up_write(&EXT4_I(inode)->i_data_sem);
168         }
169         if (is_dx(inode) && filp->private_data)
170                 ext4_htree_free_dir_info(filp->private_data);
171
172         return 0;
173 }
174
175 /*
176  * This tests whether the IO in question is block-aligned or not.
177  * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
178  * are converted to written only after the IO is complete.  Until they are
179  * mapped, these blocks appear as holes, so dio_zero_block() will assume that
180  * it needs to zero out portions of the start and/or end block.  If 2 AIO
181  * threads are at work on the same unwritten block, they must be synchronized
182  * or one thread will zero the other's data, causing corruption.
183  */
184 static bool
185 ext4_unaligned_io(struct inode *inode, struct iov_iter *from, loff_t pos)
186 {
187         struct super_block *sb = inode->i_sb;
188         unsigned long blockmask = sb->s_blocksize - 1;
189
190         if ((pos | iov_iter_alignment(from)) & blockmask)
191                 return true;
192
193         return false;
194 }
195
196 static bool
197 ext4_extending_io(struct inode *inode, loff_t offset, size_t len)
198 {
199         if (offset + len > i_size_read(inode) ||
200             offset + len > EXT4_I(inode)->i_disksize)
201                 return true;
202         return false;
203 }
204
205 /* Is IO overwriting allocated or initialized blocks? */
206 static bool ext4_overwrite_io(struct inode *inode,
207                               loff_t pos, loff_t len, bool *unwritten)
208 {
209         struct ext4_map_blocks map;
210         unsigned int blkbits = inode->i_blkbits;
211         int err, blklen;
212
213         if (pos + len > i_size_read(inode))
214                 return false;
215
216         map.m_lblk = pos >> blkbits;
217         map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
218         blklen = map.m_len;
219
220         err = ext4_map_blocks(NULL, inode, &map, 0);
221         if (err != blklen)
222                 return false;
223         /*
224          * 'err==len' means that all of the blocks have been preallocated,
225          * regardless of whether they have been initialized or not. We need to
226          * check m_flags to distinguish the unwritten extents.
227          */
228         *unwritten = !(map.m_flags & EXT4_MAP_MAPPED);
229         return true;
230 }
231
232 static ssize_t ext4_generic_write_checks(struct kiocb *iocb,
233                                          struct iov_iter *from)
234 {
235         struct inode *inode = file_inode(iocb->ki_filp);
236         ssize_t ret;
237
238         if (unlikely(IS_IMMUTABLE(inode)))
239                 return -EPERM;
240
241         ret = generic_write_checks(iocb, from);
242         if (ret <= 0)
243                 return ret;
244
245         /*
246          * If we have encountered a bitmap-format file, the size limit
247          * is smaller than s_maxbytes, which is for extent-mapped files.
248          */
249         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
250                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
251
252                 if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
253                         return -EFBIG;
254                 iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
255         }
256
257         return iov_iter_count(from);
258 }
259
260 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
261 {
262         ssize_t ret, count;
263
264         count = ext4_generic_write_checks(iocb, from);
265         if (count <= 0)
266                 return count;
267
268         ret = file_modified(iocb->ki_filp);
269         if (ret)
270                 return ret;
271         return count;
272 }
273
274 static ssize_t ext4_buffered_write_iter(struct kiocb *iocb,
275                                         struct iov_iter *from)
276 {
277         ssize_t ret;
278         struct inode *inode = file_inode(iocb->ki_filp);
279
280         if (iocb->ki_flags & IOCB_NOWAIT)
281                 return -EOPNOTSUPP;
282
283         inode_lock(inode);
284         ret = ext4_write_checks(iocb, from);
285         if (ret <= 0)
286                 goto out;
287
288         current->backing_dev_info = inode_to_bdi(inode);
289         ret = generic_perform_write(iocb, from);
290         current->backing_dev_info = NULL;
291
292 out:
293         inode_unlock(inode);
294         if (likely(ret > 0)) {
295                 iocb->ki_pos += ret;
296                 ret = generic_write_sync(iocb, ret);
297         }
298
299         return ret;
300 }
301
302 static ssize_t ext4_handle_inode_extension(struct inode *inode, loff_t offset,
303                                            ssize_t written, size_t count)
304 {
305         handle_t *handle;
306         bool truncate = false;
307         u8 blkbits = inode->i_blkbits;
308         ext4_lblk_t written_blk, end_blk;
309         int ret;
310
311         /*
312          * Note that EXT4_I(inode)->i_disksize can get extended up to
313          * inode->i_size while the I/O was running due to writeback of delalloc
314          * blocks. But, the code in ext4_iomap_alloc() is careful to use
315          * zeroed/unwritten extents if this is possible; thus we won't leave
316          * uninitialized blocks in a file even if we didn't succeed in writing
317          * as much as we intended.
318          */
319         WARN_ON_ONCE(i_size_read(inode) < EXT4_I(inode)->i_disksize);
320         if (offset + count <= EXT4_I(inode)->i_disksize) {
321                 /*
322                  * We need to ensure that the inode is removed from the orphan
323                  * list if it has been added prematurely, due to writeback of
324                  * delalloc blocks.
325                  */
326                 if (!list_empty(&EXT4_I(inode)->i_orphan) && inode->i_nlink) {
327                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
328
329                         if (IS_ERR(handle)) {
330                                 ext4_orphan_del(NULL, inode);
331                                 return PTR_ERR(handle);
332                         }
333
334                         ext4_orphan_del(handle, inode);
335                         ext4_journal_stop(handle);
336                 }
337
338                 return written;
339         }
340
341         if (written < 0)
342                 goto truncate;
343
344         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
345         if (IS_ERR(handle)) {
346                 written = PTR_ERR(handle);
347                 goto truncate;
348         }
349
350         if (ext4_update_inode_size(inode, offset + written)) {
351                 ret = ext4_mark_inode_dirty(handle, inode);
352                 if (unlikely(ret)) {
353                         written = ret;
354                         ext4_journal_stop(handle);
355                         goto truncate;
356                 }
357         }
358
359         /*
360          * We may need to truncate allocated but not written blocks beyond EOF.
361          */
362         written_blk = ALIGN(offset + written, 1 << blkbits);
363         end_blk = ALIGN(offset + count, 1 << blkbits);
364         if (written_blk < end_blk && ext4_can_truncate(inode))
365                 truncate = true;
366
367         /*
368          * Remove the inode from the orphan list if it has been extended and
369          * everything went OK.
370          */
371         if (!truncate && inode->i_nlink)
372                 ext4_orphan_del(handle, inode);
373         ext4_journal_stop(handle);
374
375         if (truncate) {
376 truncate:
377                 ext4_truncate_failed_write(inode);
378                 /*
379                  * If the truncate operation failed early, then the inode may
380                  * still be on the orphan list. In that case, we need to try
381                  * remove the inode from the in-memory linked list.
382                  */
383                 if (inode->i_nlink)
384                         ext4_orphan_del(NULL, inode);
385         }
386
387         return written;
388 }
389
390 static int ext4_dio_write_end_io(struct kiocb *iocb, ssize_t size,
391                                  int error, unsigned int flags)
392 {
393         loff_t pos = iocb->ki_pos;
394         struct inode *inode = file_inode(iocb->ki_filp);
395
396         if (error)
397                 return error;
398
399         if (size && flags & IOMAP_DIO_UNWRITTEN) {
400                 error = ext4_convert_unwritten_extents(NULL, inode, pos, size);
401                 if (error < 0)
402                         return error;
403         }
404         /*
405          * If we are extending the file, we have to update i_size here before
406          * page cache gets invalidated in iomap_dio_rw(). Otherwise racing
407          * buffered reads could zero out too much from page cache pages. Update
408          * of on-disk size will happen later in ext4_dio_write_iter() where
409          * we have enough information to also perform orphan list handling etc.
410          * Note that we perform all extending writes synchronously under
411          * i_rwsem held exclusively so i_size update is safe here in that case.
412          * If the write was not extending, we cannot see pos > i_size here
413          * because operations reducing i_size like truncate wait for all
414          * outstanding DIO before updating i_size.
415          */
416         pos += size;
417         if (pos > i_size_read(inode))
418                 i_size_write(inode, pos);
419
420         return 0;
421 }
422
423 static const struct iomap_dio_ops ext4_dio_write_ops = {
424         .end_io = ext4_dio_write_end_io,
425 };
426
427 /*
428  * The intention here is to start with shared lock acquired then see if any
429  * condition requires an exclusive inode lock. If yes, then we restart the
430  * whole operation by releasing the shared lock and acquiring exclusive lock.
431  *
432  * - For unaligned_io we never take shared lock as it may cause data corruption
433  *   when two unaligned IO tries to modify the same block e.g. while zeroing.
434  *
435  * - For extending writes case we don't take the shared lock, since it requires
436  *   updating inode i_disksize and/or orphan handling with exclusive lock.
437  *
438  * - shared locking will only be true mostly with overwrites, including
439  *   initialized blocks and unwritten blocks. For overwrite unwritten blocks
440  *   we protect splitting extents by i_data_sem in ext4_inode_info, so we can
441  *   also release exclusive i_rwsem lock.
442  *
443  * - Otherwise we will switch to exclusive i_rwsem lock.
444  */
445 static ssize_t ext4_dio_write_checks(struct kiocb *iocb, struct iov_iter *from,
446                                      bool *ilock_shared, bool *extend,
447                                      bool *unwritten)
448 {
449         struct file *file = iocb->ki_filp;
450         struct inode *inode = file_inode(file);
451         loff_t offset;
452         size_t count;
453         ssize_t ret;
454
455 restart:
456         ret = ext4_generic_write_checks(iocb, from);
457         if (ret <= 0)
458                 goto out;
459
460         offset = iocb->ki_pos;
461         count = ret;
462         if (ext4_extending_io(inode, offset, count))
463                 *extend = true;
464         /*
465          * Determine whether the IO operation will overwrite allocated
466          * and initialized blocks.
467          * We need exclusive i_rwsem for changing security info
468          * in file_modified().
469          */
470         if (*ilock_shared && (!IS_NOSEC(inode) || *extend ||
471              !ext4_overwrite_io(inode, offset, count, unwritten))) {
472                 if (iocb->ki_flags & IOCB_NOWAIT) {
473                         ret = -EAGAIN;
474                         goto out;
475                 }
476                 inode_unlock_shared(inode);
477                 *ilock_shared = false;
478                 inode_lock(inode);
479                 goto restart;
480         }
481
482         ret = file_modified(file);
483         if (ret < 0)
484                 goto out;
485
486         return count;
487 out:
488         if (*ilock_shared)
489                 inode_unlock_shared(inode);
490         else
491                 inode_unlock(inode);
492         return ret;
493 }
494
495 static ssize_t ext4_dio_write_iter(struct kiocb *iocb, struct iov_iter *from)
496 {
497         ssize_t ret;
498         handle_t *handle;
499         struct inode *inode = file_inode(iocb->ki_filp);
500         loff_t offset = iocb->ki_pos;
501         size_t count = iov_iter_count(from);
502         const struct iomap_ops *iomap_ops = &ext4_iomap_ops;
503         bool extend = false, unaligned_io = false, unwritten = false;
504         bool ilock_shared = true;
505
506         /*
507          * We initially start with shared inode lock unless it is
508          * unaligned IO which needs exclusive lock anyways.
509          */
510         if (ext4_unaligned_io(inode, from, offset)) {
511                 unaligned_io = true;
512                 ilock_shared = false;
513         }
514         /*
515          * Quick check here without any i_rwsem lock to see if it is extending
516          * IO. A more reliable check is done in ext4_dio_write_checks() with
517          * proper locking in place.
518          */
519         if (offset + count > i_size_read(inode))
520                 ilock_shared = false;
521
522         if (iocb->ki_flags & IOCB_NOWAIT) {
523                 if (ilock_shared) {
524                         if (!inode_trylock_shared(inode))
525                                 return -EAGAIN;
526                 } else {
527                         if (!inode_trylock(inode))
528                                 return -EAGAIN;
529                 }
530         } else {
531                 if (ilock_shared)
532                         inode_lock_shared(inode);
533                 else
534                         inode_lock(inode);
535         }
536
537         /* Fallback to buffered I/O if the inode does not support direct I/O. */
538         if (!ext4_should_use_dio(iocb, from)) {
539                 if (ilock_shared)
540                         inode_unlock_shared(inode);
541                 else
542                         inode_unlock(inode);
543                 return ext4_buffered_write_iter(iocb, from);
544         }
545
546         ret = ext4_dio_write_checks(iocb, from,
547                                     &ilock_shared, &extend, &unwritten);
548         if (ret <= 0)
549                 return ret;
550
551         /* if we're going to block and IOCB_NOWAIT is set, return -EAGAIN */
552         if ((iocb->ki_flags & IOCB_NOWAIT) && (unaligned_io || extend)) {
553                 ret = -EAGAIN;
554                 goto out;
555         }
556         /*
557          * Make sure inline data cannot be created anymore since we are going
558          * to allocate blocks for DIO. We know the inode does not have any
559          * inline data now because ext4_dio_supported() checked for that.
560          */
561         ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
562
563         offset = iocb->ki_pos;
564         count = ret;
565
566         /*
567          * Unaligned direct IO must be serialized among each other as zeroing
568          * of partial blocks of two competing unaligned IOs can result in data
569          * corruption.
570          *
571          * So we make sure we don't allow any unaligned IO in flight.
572          * For IOs where we need not wait (like unaligned non-AIO DIO),
573          * below inode_dio_wait() may anyway become a no-op, since we start
574          * with exclusive lock.
575          */
576         if (unaligned_io)
577                 inode_dio_wait(inode);
578
579         if (extend) {
580                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
581                 if (IS_ERR(handle)) {
582                         ret = PTR_ERR(handle);
583                         goto out;
584                 }
585
586                 ret = ext4_orphan_add(handle, inode);
587                 if (ret) {
588                         ext4_journal_stop(handle);
589                         goto out;
590                 }
591
592                 ext4_journal_stop(handle);
593         }
594
595         if (ilock_shared && !unwritten)
596                 iomap_ops = &ext4_iomap_overwrite_ops;
597         ret = iomap_dio_rw(iocb, from, iomap_ops, &ext4_dio_write_ops,
598                            (unaligned_io || extend) ? IOMAP_DIO_FORCE_WAIT : 0,
599                            NULL, 0);
600         if (ret == -ENOTBLK)
601                 ret = 0;
602
603         if (extend)
604                 ret = ext4_handle_inode_extension(inode, offset, ret, count);
605
606 out:
607         if (ilock_shared)
608                 inode_unlock_shared(inode);
609         else
610                 inode_unlock(inode);
611
612         if (ret >= 0 && iov_iter_count(from)) {
613                 ssize_t err;
614                 loff_t endbyte;
615
616                 offset = iocb->ki_pos;
617                 err = ext4_buffered_write_iter(iocb, from);
618                 if (err < 0)
619                         return err;
620
621                 /*
622                  * We need to ensure that the pages within the page cache for
623                  * the range covered by this I/O are written to disk and
624                  * invalidated. This is in attempt to preserve the expected
625                  * direct I/O semantics in the case we fallback to buffered I/O
626                  * to complete off the I/O request.
627                  */
628                 ret += err;
629                 endbyte = offset + err - 1;
630                 err = filemap_write_and_wait_range(iocb->ki_filp->f_mapping,
631                                                    offset, endbyte);
632                 if (!err)
633                         invalidate_mapping_pages(iocb->ki_filp->f_mapping,
634                                                  offset >> PAGE_SHIFT,
635                                                  endbyte >> PAGE_SHIFT);
636         }
637
638         return ret;
639 }
640
641 #ifdef CONFIG_FS_DAX
642 static ssize_t
643 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
644 {
645         ssize_t ret;
646         size_t count;
647         loff_t offset;
648         handle_t *handle;
649         bool extend = false;
650         struct inode *inode = file_inode(iocb->ki_filp);
651
652         if (iocb->ki_flags & IOCB_NOWAIT) {
653                 if (!inode_trylock(inode))
654                         return -EAGAIN;
655         } else {
656                 inode_lock(inode);
657         }
658
659         ret = ext4_write_checks(iocb, from);
660         if (ret <= 0)
661                 goto out;
662
663         offset = iocb->ki_pos;
664         count = iov_iter_count(from);
665
666         if (offset + count > EXT4_I(inode)->i_disksize) {
667                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
668                 if (IS_ERR(handle)) {
669                         ret = PTR_ERR(handle);
670                         goto out;
671                 }
672
673                 ret = ext4_orphan_add(handle, inode);
674                 if (ret) {
675                         ext4_journal_stop(handle);
676                         goto out;
677                 }
678
679                 extend = true;
680                 ext4_journal_stop(handle);
681         }
682
683         ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
684
685         if (extend)
686                 ret = ext4_handle_inode_extension(inode, offset, ret, count);
687 out:
688         inode_unlock(inode);
689         if (ret > 0)
690                 ret = generic_write_sync(iocb, ret);
691         return ret;
692 }
693 #endif
694
695 static ssize_t
696 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
697 {
698         struct inode *inode = file_inode(iocb->ki_filp);
699
700         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
701                 return -EIO;
702
703 #ifdef CONFIG_FS_DAX
704         if (IS_DAX(inode))
705                 return ext4_dax_write_iter(iocb, from);
706 #endif
707         if (iocb->ki_flags & IOCB_DIRECT)
708                 return ext4_dio_write_iter(iocb, from);
709         else
710                 return ext4_buffered_write_iter(iocb, from);
711 }
712
713 #ifdef CONFIG_FS_DAX
714 static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf,
715                 enum page_entry_size pe_size)
716 {
717         int error = 0;
718         vm_fault_t result;
719         int retries = 0;
720         handle_t *handle = NULL;
721         struct inode *inode = file_inode(vmf->vma->vm_file);
722         struct super_block *sb = inode->i_sb;
723
724         /*
725          * We have to distinguish real writes from writes which will result in a
726          * COW page; COW writes should *not* poke the journal (the file will not
727          * be changed). Doing so would cause unintended failures when mounted
728          * read-only.
729          *
730          * We check for VM_SHARED rather than vmf->cow_page since the latter is
731          * unset for pe_size != PE_SIZE_PTE (i.e. only in do_cow_fault); for
732          * other sizes, dax_iomap_fault will handle splitting / fallback so that
733          * we eventually come back with a COW page.
734          */
735         bool write = (vmf->flags & FAULT_FLAG_WRITE) &&
736                 (vmf->vma->vm_flags & VM_SHARED);
737         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
738         pfn_t pfn;
739
740         if (write) {
741                 sb_start_pagefault(sb);
742                 file_update_time(vmf->vma->vm_file);
743                 filemap_invalidate_lock_shared(mapping);
744 retry:
745                 handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
746                                                EXT4_DATA_TRANS_BLOCKS(sb));
747                 if (IS_ERR(handle)) {
748                         filemap_invalidate_unlock_shared(mapping);
749                         sb_end_pagefault(sb);
750                         return VM_FAULT_SIGBUS;
751                 }
752         } else {
753                 filemap_invalidate_lock_shared(mapping);
754         }
755         result = dax_iomap_fault(vmf, pe_size, &pfn, &error, &ext4_iomap_ops);
756         if (write) {
757                 ext4_journal_stop(handle);
758
759                 if ((result & VM_FAULT_ERROR) && error == -ENOSPC &&
760                     ext4_should_retry_alloc(sb, &retries))
761                         goto retry;
762                 /* Handling synchronous page fault? */
763                 if (result & VM_FAULT_NEEDDSYNC)
764                         result = dax_finish_sync_fault(vmf, pe_size, pfn);
765                 filemap_invalidate_unlock_shared(mapping);
766                 sb_end_pagefault(sb);
767         } else {
768                 filemap_invalidate_unlock_shared(mapping);
769         }
770
771         return result;
772 }
773
774 static vm_fault_t ext4_dax_fault(struct vm_fault *vmf)
775 {
776         return ext4_dax_huge_fault(vmf, PE_SIZE_PTE);
777 }
778
779 static const struct vm_operations_struct ext4_dax_vm_ops = {
780         .fault          = ext4_dax_fault,
781         .huge_fault     = ext4_dax_huge_fault,
782         .page_mkwrite   = ext4_dax_fault,
783         .pfn_mkwrite    = ext4_dax_fault,
784 };
785 #else
786 #define ext4_dax_vm_ops ext4_file_vm_ops
787 #endif
788
789 static const struct vm_operations_struct ext4_file_vm_ops = {
790         .fault          = filemap_fault,
791         .map_pages      = filemap_map_pages,
792         .page_mkwrite   = ext4_page_mkwrite,
793 };
794
795 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
796 {
797         struct inode *inode = file->f_mapping->host;
798         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
799         struct dax_device *dax_dev = sbi->s_daxdev;
800
801         if (unlikely(ext4_forced_shutdown(sbi)))
802                 return -EIO;
803
804         /*
805          * We don't support synchronous mappings for non-DAX files and
806          * for DAX files if underneath dax_device is not synchronous.
807          */
808         if (!daxdev_mapping_supported(vma, dax_dev))
809                 return -EOPNOTSUPP;
810
811         file_accessed(file);
812         if (IS_DAX(file_inode(file))) {
813                 vma->vm_ops = &ext4_dax_vm_ops;
814                 vm_flags_set(vma, VM_HUGEPAGE);
815         } else {
816                 vma->vm_ops = &ext4_file_vm_ops;
817         }
818         return 0;
819 }
820
821 static int ext4_sample_last_mounted(struct super_block *sb,
822                                     struct vfsmount *mnt)
823 {
824         struct ext4_sb_info *sbi = EXT4_SB(sb);
825         struct path path;
826         char buf[64], *cp;
827         handle_t *handle;
828         int err;
829
830         if (likely(ext4_test_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED)))
831                 return 0;
832
833         if (sb_rdonly(sb) || !sb_start_intwrite_trylock(sb))
834                 return 0;
835
836         ext4_set_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED);
837         /*
838          * Sample where the filesystem has been mounted and
839          * store it in the superblock for sysadmin convenience
840          * when trying to sort through large numbers of block
841          * devices or filesystem images.
842          */
843         memset(buf, 0, sizeof(buf));
844         path.mnt = mnt;
845         path.dentry = mnt->mnt_root;
846         cp = d_path(&path, buf, sizeof(buf));
847         err = 0;
848         if (IS_ERR(cp))
849                 goto out;
850
851         handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
852         err = PTR_ERR(handle);
853         if (IS_ERR(handle))
854                 goto out;
855         BUFFER_TRACE(sbi->s_sbh, "get_write_access");
856         err = ext4_journal_get_write_access(handle, sb, sbi->s_sbh,
857                                             EXT4_JTR_NONE);
858         if (err)
859                 goto out_journal;
860         lock_buffer(sbi->s_sbh);
861         strncpy(sbi->s_es->s_last_mounted, cp,
862                 sizeof(sbi->s_es->s_last_mounted));
863         ext4_superblock_csum_set(sb);
864         unlock_buffer(sbi->s_sbh);
865         ext4_handle_dirty_metadata(handle, NULL, sbi->s_sbh);
866 out_journal:
867         ext4_journal_stop(handle);
868 out:
869         sb_end_intwrite(sb);
870         return err;
871 }
872
873 static int ext4_file_open(struct inode *inode, struct file *filp)
874 {
875         int ret;
876
877         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
878                 return -EIO;
879
880         ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt);
881         if (ret)
882                 return ret;
883
884         ret = fscrypt_file_open(inode, filp);
885         if (ret)
886                 return ret;
887
888         ret = fsverity_file_open(inode, filp);
889         if (ret)
890                 return ret;
891
892         /*
893          * Set up the jbd2_inode if we are opening the inode for
894          * writing and the journal is present
895          */
896         if (filp->f_mode & FMODE_WRITE) {
897                 ret = ext4_inode_attach_jinode(inode);
898                 if (ret < 0)
899                         return ret;
900         }
901
902         filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
903         return dquot_file_open(inode, filp);
904 }
905
906 /*
907  * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
908  * by calling generic_file_llseek_size() with the appropriate maxbytes
909  * value for each.
910  */
911 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
912 {
913         struct inode *inode = file->f_mapping->host;
914         loff_t maxbytes;
915
916         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
917                 maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
918         else
919                 maxbytes = inode->i_sb->s_maxbytes;
920
921         switch (whence) {
922         default:
923                 return generic_file_llseek_size(file, offset, whence,
924                                                 maxbytes, i_size_read(inode));
925         case SEEK_HOLE:
926                 inode_lock_shared(inode);
927                 offset = iomap_seek_hole(inode, offset,
928                                          &ext4_iomap_report_ops);
929                 inode_unlock_shared(inode);
930                 break;
931         case SEEK_DATA:
932                 inode_lock_shared(inode);
933                 offset = iomap_seek_data(inode, offset,
934                                          &ext4_iomap_report_ops);
935                 inode_unlock_shared(inode);
936                 break;
937         }
938
939         if (offset < 0)
940                 return offset;
941         return vfs_setpos(file, offset, maxbytes);
942 }
943
944 const struct file_operations ext4_file_operations = {
945         .llseek         = ext4_llseek,
946         .read_iter      = ext4_file_read_iter,
947         .write_iter     = ext4_file_write_iter,
948         .iopoll         = iocb_bio_iopoll,
949         .unlocked_ioctl = ext4_ioctl,
950 #ifdef CONFIG_COMPAT
951         .compat_ioctl   = ext4_compat_ioctl,
952 #endif
953         .mmap           = ext4_file_mmap,
954         .mmap_supported_flags = MAP_SYNC,
955         .open           = ext4_file_open,
956         .release        = ext4_release_file,
957         .fsync          = ext4_sync_file,
958         .get_unmapped_area = thp_get_unmapped_area,
959         .splice_read    = generic_file_splice_read,
960         .splice_write   = iter_file_splice_write,
961         .fallocate      = ext4_fallocate,
962 };
963
964 const struct inode_operations ext4_file_inode_operations = {
965         .setattr        = ext4_setattr,
966         .getattr        = ext4_file_getattr,
967         .listxattr      = ext4_listxattr,
968         .get_inode_acl  = ext4_get_acl,
969         .set_acl        = ext4_set_acl,
970         .fiemap         = ext4_fiemap,
971         .fileattr_get   = ext4_fileattr_get,
972         .fileattr_set   = ext4_fileattr_set,
973 };
974