1 // SPDX-License-Identifier: GPL-2.0
4 * fs/ext4/fast_commit.c
6 * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com>
8 * Ext4 fast commits routines.
11 #include "ext4_jbd2.h"
12 #include "ext4_extents.h"
19 * Ext4 fast commits implement fine grained journalling for Ext4.
21 * Fast commits are organized as a log of tag-length-value (TLV) structs. (See
22 * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by
23 * TLV during the recovery phase. For the scenarios for which we currently
24 * don't have replay code, fast commit falls back to full commits.
25 * Fast commits record delta in one of the following three categories.
27 * (A) Directory entry updates:
29 * - EXT4_FC_TAG_UNLINK - records directory entry unlink
30 * - EXT4_FC_TAG_LINK - records directory entry link
31 * - EXT4_FC_TAG_CREAT - records inode and directory entry creation
33 * (B) File specific data range updates:
35 * - EXT4_FC_TAG_ADD_RANGE - records addition of new blocks to an inode
36 * - EXT4_FC_TAG_DEL_RANGE - records deletion of blocks from an inode
38 * (C) Inode metadata (mtime / ctime etc):
40 * - EXT4_FC_TAG_INODE - record the inode that should be replayed
41 * during recovery. Note that iblocks field is
42 * not replayed and instead derived during
46 * With fast commits, we maintain all the directory entry operations in the
47 * order in which they are issued in an in-memory queue. This queue is flushed
48 * to disk during the commit operation. We also maintain a list of inodes
49 * that need to be committed during a fast commit in another in memory queue of
50 * inodes. During the commit operation, we commit in the following order:
52 * [1] Lock inodes for any further data updates by setting COMMITTING state
53 * [2] Submit data buffers of all the inodes
54 * [3] Wait for [2] to complete
55 * [4] Commit all the directory entry updates in the fast commit space
56 * [5] Commit all the changed inode structures
57 * [6] Write tail tag (this tag ensures the atomicity, please read the following
58 * section for more details).
59 * [7] Wait for [4], [5] and [6] to complete.
61 * All the inode updates must call ext4_fc_start_update() before starting an
62 * update. If such an ongoing update is present, fast commit waits for it to
63 * complete. The completion of such an update is marked by
64 * ext4_fc_stop_update().
66 * Fast Commit Ineligibility
67 * -------------------------
69 * Not all operations are supported by fast commits today (e.g extended
70 * attributes). Fast commit ineligibility is marked by calling
71 * ext4_fc_mark_ineligible(): This makes next fast commit operation to fall back
74 * Atomicity of commits
75 * --------------------
76 * In order to guarantee atomicity during the commit operation, fast commit
77 * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail
78 * tag contains CRC of the contents and TID of the transaction after which
79 * this fast commit should be applied. Recovery code replays fast commit
80 * logs only if there's at least 1 valid tail present. For every fast commit
81 * operation, there is 1 tail. This means, we may end up with multiple tails
82 * in the fast commit space. Here's an example:
84 * - Create a new file A and remove existing file B
86 * - Append contents to file A
90 * The fast commit space at the end of above operations would look like this:
91 * [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL]
92 * |<--- Fast Commit 1 --->|<--- Fast Commit 2 ---->|
94 * Replay code should thus check for all the valid tails in the FC area.
96 * Fast Commit Replay Idempotence
97 * ------------------------------
99 * Fast commits tags are idempotent in nature provided the recovery code follows
100 * certain rules. The guiding principle that the commit path follows while
101 * committing is that it stores the result of a particular operation instead of
102 * storing the procedure.
104 * Let's consider this rename operation: 'mv /a /b'. Let's assume dirent '/a'
105 * was associated with inode 10. During fast commit, instead of storing this
106 * operation as a procedure "rename a to b", we store the resulting file system
107 * state as a "series" of outcomes:
109 * - Link dirent b to inode 10
111 * - Inode <10> with valid refcount
113 * Now when recovery code runs, it needs "enforce" this state on the file
114 * system. This is what guarantees idempotence of fast commit replay.
116 * Let's take an example of a procedure that is not idempotent and see how fast
117 * commits make it idempotent. Consider following sequence of operations:
119 * rm A; mv B A; read A
122 * (x), (y) and (z) are the points at which we can crash. If we store this
123 * sequence of operations as is then the replay is not idempotent. Let's say
124 * while in replay, we crash at (z). During the second replay, file A (which was
125 * actually created as a result of "mv B A" operation) would get deleted. Thus,
126 * file named A would be absent when we try to read A. So, this sequence of
127 * operations is not idempotent. However, as mentioned above, instead of storing
128 * the procedure fast commits store the outcome of each procedure. Thus the fast
129 * commit log for above procedure would be as follows:
131 * (Let's assume dirent A was linked to inode 10 and dirent B was linked to
132 * inode 11 before the replay)
134 * [Unlink A] [Link A to inode 11] [Unlink B] [Inode 11]
137 * If we crash at (z), we will have file A linked to inode 11. During the second
138 * replay, we will remove file A (inode 11). But we will create it back and make
139 * it point to inode 11. We won't find B, so we'll just skip that step. At this
140 * point, the refcount for inode 11 is not reliable, but that gets fixed by the
141 * replay of last inode 11 tag. Crashes at points (w), (x) and (y) get handled
142 * similarly. Thus, by converting a non-idempotent procedure into a series of
143 * idempotent outcomes, fast commits ensured idempotence during the replay.
148 * 0) Fast commit replay path hardening: Fast commit replay code should use
149 * journal handles to make sure all the updates it does during the replay
150 * path are atomic. With that if we crash during fast commit replay, after
151 * trying to do recovery again, we will find a file system where fast commit
152 * area is invalid (because new full commit would be found). In order to deal
153 * with that, fast commit replay code should ensure that the "FC_REPLAY"
154 * superblock state is persisted before starting the replay, so that after
155 * the crash, fast commit recovery code can look at that flag and perform
156 * fast commit recovery even if that area is invalidated by later full
159 * 1) Fast commit's commit path locks the entire file system during fast
160 * commit. This has significant performance penalty. Instead of that, we
161 * should use ext4_fc_start/stop_update functions to start inode level
162 * updates from ext4_journal_start/stop. Once we do that we can drop file
163 * system locking during commit path.
165 * 2) Handle more ineligible cases.
168 #include <trace/events/ext4.h>
169 static struct kmem_cache *ext4_fc_dentry_cachep;
171 static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
173 BUFFER_TRACE(bh, "");
175 ext4_debug("%s: Block %lld up-to-date",
176 __func__, bh->b_blocknr);
177 set_buffer_uptodate(bh);
179 ext4_debug("%s: Block %lld not up-to-date",
180 __func__, bh->b_blocknr);
181 clear_buffer_uptodate(bh);
187 static inline void ext4_fc_reset_inode(struct inode *inode)
189 struct ext4_inode_info *ei = EXT4_I(inode);
191 ei->i_fc_lblk_start = 0;
192 ei->i_fc_lblk_len = 0;
195 void ext4_fc_init_inode(struct inode *inode)
197 struct ext4_inode_info *ei = EXT4_I(inode);
199 ext4_fc_reset_inode(inode);
200 ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING);
201 INIT_LIST_HEAD(&ei->i_fc_list);
202 INIT_LIST_HEAD(&ei->i_fc_dilist);
203 init_waitqueue_head(&ei->i_fc_wait);
204 atomic_set(&ei->i_fc_updates, 0);
207 /* This function must be called with sbi->s_fc_lock held. */
208 static void ext4_fc_wait_committing_inode(struct inode *inode)
209 __releases(&EXT4_SB(inode->i_sb)->s_fc_lock)
211 wait_queue_head_t *wq;
212 struct ext4_inode_info *ei = EXT4_I(inode);
214 #if (BITS_PER_LONG < 64)
215 DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
216 EXT4_STATE_FC_COMMITTING);
217 wq = bit_waitqueue(&ei->i_state_flags,
218 EXT4_STATE_FC_COMMITTING);
220 DEFINE_WAIT_BIT(wait, &ei->i_flags,
221 EXT4_STATE_FC_COMMITTING);
222 wq = bit_waitqueue(&ei->i_flags,
223 EXT4_STATE_FC_COMMITTING);
225 lockdep_assert_held(&EXT4_SB(inode->i_sb)->s_fc_lock);
226 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
227 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
229 finish_wait(wq, &wait.wq_entry);
232 static bool ext4_fc_disabled(struct super_block *sb)
234 return (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
235 (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY));
239 * Inform Ext4's fast about start of an inode update
241 * This function is called by the high level call VFS callbacks before
242 * performing any inode update. This function blocks if there's an ongoing
243 * fast commit on the inode in question.
245 void ext4_fc_start_update(struct inode *inode)
247 struct ext4_inode_info *ei = EXT4_I(inode);
249 if (ext4_fc_disabled(inode->i_sb))
253 spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
254 if (list_empty(&ei->i_fc_list))
257 if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
258 ext4_fc_wait_committing_inode(inode);
262 atomic_inc(&ei->i_fc_updates);
263 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
267 * Stop inode update and wake up waiting fast commits if any.
269 void ext4_fc_stop_update(struct inode *inode)
271 struct ext4_inode_info *ei = EXT4_I(inode);
273 if (ext4_fc_disabled(inode->i_sb))
276 if (atomic_dec_and_test(&ei->i_fc_updates))
277 wake_up_all(&ei->i_fc_wait);
281 * Remove inode from fast commit list. If the inode is being committed
282 * we wait until inode commit is done.
284 void ext4_fc_del(struct inode *inode)
286 struct ext4_inode_info *ei = EXT4_I(inode);
287 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
288 struct ext4_fc_dentry_update *fc_dentry;
290 if (ext4_fc_disabled(inode->i_sb))
294 spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
295 if (list_empty(&ei->i_fc_list) && list_empty(&ei->i_fc_dilist)) {
296 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
300 if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
301 ext4_fc_wait_committing_inode(inode);
305 if (!list_empty(&ei->i_fc_list))
306 list_del_init(&ei->i_fc_list);
309 * Since this inode is getting removed, let's also remove all FC
310 * dentry create references, since it is not needed to log it anyways.
312 if (list_empty(&ei->i_fc_dilist)) {
313 spin_unlock(&sbi->s_fc_lock);
317 fc_dentry = list_first_entry(&ei->i_fc_dilist, struct ext4_fc_dentry_update, fcd_dilist);
318 WARN_ON(fc_dentry->fcd_op != EXT4_FC_TAG_CREAT);
319 list_del_init(&fc_dentry->fcd_list);
320 list_del_init(&fc_dentry->fcd_dilist);
322 WARN_ON(!list_empty(&ei->i_fc_dilist));
323 spin_unlock(&sbi->s_fc_lock);
325 if (fc_dentry->fcd_name.name &&
326 fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
327 kfree(fc_dentry->fcd_name.name);
328 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
334 * Mark file system as fast commit ineligible, and record latest
335 * ineligible transaction tid. This means until the recorded
336 * transaction, commit operation would result in a full jbd2 commit.
338 void ext4_fc_mark_ineligible(struct super_block *sb, int reason, handle_t *handle)
340 struct ext4_sb_info *sbi = EXT4_SB(sb);
343 if (ext4_fc_disabled(sb))
346 ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
347 if (handle && !IS_ERR(handle))
348 tid = handle->h_transaction->t_tid;
350 read_lock(&sbi->s_journal->j_state_lock);
351 tid = sbi->s_journal->j_running_transaction ?
352 sbi->s_journal->j_running_transaction->t_tid : 0;
353 read_unlock(&sbi->s_journal->j_state_lock);
355 spin_lock(&sbi->s_fc_lock);
356 if (sbi->s_fc_ineligible_tid < tid)
357 sbi->s_fc_ineligible_tid = tid;
358 spin_unlock(&sbi->s_fc_lock);
359 WARN_ON(reason >= EXT4_FC_REASON_MAX);
360 sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
364 * Generic fast commit tracking function. If this is the first time this we are
365 * called after a full commit, we initialize fast commit fields and then call
366 * __fc_track_fn() with update = 0. If we have already been called after a full
367 * commit, we pass update = 1. Based on that, the track function can determine
368 * if it needs to track a field for the first time or if it needs to just
369 * update the previously tracked value.
371 * If enqueue is set, this function enqueues the inode in fast commit list.
373 static int ext4_fc_track_template(
374 handle_t *handle, struct inode *inode,
375 int (*__fc_track_fn)(struct inode *, void *, bool),
376 void *args, int enqueue)
379 struct ext4_inode_info *ei = EXT4_I(inode);
380 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
384 tid = handle->h_transaction->t_tid;
385 mutex_lock(&ei->i_fc_lock);
386 if (tid == ei->i_sync_tid) {
389 ext4_fc_reset_inode(inode);
390 ei->i_sync_tid = tid;
392 ret = __fc_track_fn(inode, args, update);
393 mutex_unlock(&ei->i_fc_lock);
398 spin_lock(&sbi->s_fc_lock);
399 if (list_empty(&EXT4_I(inode)->i_fc_list))
400 list_add_tail(&EXT4_I(inode)->i_fc_list,
401 (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
402 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) ?
403 &sbi->s_fc_q[FC_Q_STAGING] :
404 &sbi->s_fc_q[FC_Q_MAIN]);
405 spin_unlock(&sbi->s_fc_lock);
410 struct __track_dentry_update_args {
411 struct dentry *dentry;
415 /* __track_fn for directory entry updates. Called with ei->i_fc_lock. */
416 static int __track_dentry_update(struct inode *inode, void *arg, bool update)
418 struct ext4_fc_dentry_update *node;
419 struct ext4_inode_info *ei = EXT4_I(inode);
420 struct __track_dentry_update_args *dentry_update =
421 (struct __track_dentry_update_args *)arg;
422 struct dentry *dentry = dentry_update->dentry;
423 struct inode *dir = dentry->d_parent->d_inode;
424 struct super_block *sb = inode->i_sb;
425 struct ext4_sb_info *sbi = EXT4_SB(sb);
427 mutex_unlock(&ei->i_fc_lock);
429 if (IS_ENCRYPTED(dir)) {
430 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_ENCRYPTED_FILENAME,
432 mutex_lock(&ei->i_fc_lock);
436 node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS);
438 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, NULL);
439 mutex_lock(&ei->i_fc_lock);
443 node->fcd_op = dentry_update->op;
444 node->fcd_parent = dir->i_ino;
445 node->fcd_ino = inode->i_ino;
446 if (dentry->d_name.len > DNAME_INLINE_LEN) {
447 node->fcd_name.name = kmalloc(dentry->d_name.len, GFP_NOFS);
448 if (!node->fcd_name.name) {
449 kmem_cache_free(ext4_fc_dentry_cachep, node);
450 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, NULL);
451 mutex_lock(&ei->i_fc_lock);
454 memcpy((u8 *)node->fcd_name.name, dentry->d_name.name,
457 memcpy(node->fcd_iname, dentry->d_name.name,
459 node->fcd_name.name = node->fcd_iname;
461 node->fcd_name.len = dentry->d_name.len;
462 INIT_LIST_HEAD(&node->fcd_dilist);
463 spin_lock(&sbi->s_fc_lock);
464 if (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
465 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING)
466 list_add_tail(&node->fcd_list,
467 &sbi->s_fc_dentry_q[FC_Q_STAGING]);
469 list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]);
472 * This helps us keep a track of all fc_dentry updates which is part of
473 * this ext4 inode. So in case the inode is getting unlinked, before
474 * even we get a chance to fsync, we could remove all fc_dentry
475 * references while evicting the inode in ext4_fc_del().
476 * Also with this, we don't need to loop over all the inodes in
477 * sbi->s_fc_q to get the corresponding inode in
478 * ext4_fc_commit_dentry_updates().
480 if (dentry_update->op == EXT4_FC_TAG_CREAT) {
481 WARN_ON(!list_empty(&ei->i_fc_dilist));
482 list_add_tail(&node->fcd_dilist, &ei->i_fc_dilist);
484 spin_unlock(&sbi->s_fc_lock);
485 mutex_lock(&ei->i_fc_lock);
490 void __ext4_fc_track_unlink(handle_t *handle,
491 struct inode *inode, struct dentry *dentry)
493 struct __track_dentry_update_args args;
496 args.dentry = dentry;
497 args.op = EXT4_FC_TAG_UNLINK;
499 ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
501 trace_ext4_fc_track_unlink(handle, inode, dentry, ret);
504 void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry)
506 struct inode *inode = d_inode(dentry);
508 if (ext4_fc_disabled(inode->i_sb))
511 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
514 __ext4_fc_track_unlink(handle, inode, dentry);
517 void __ext4_fc_track_link(handle_t *handle,
518 struct inode *inode, struct dentry *dentry)
520 struct __track_dentry_update_args args;
523 args.dentry = dentry;
524 args.op = EXT4_FC_TAG_LINK;
526 ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
528 trace_ext4_fc_track_link(handle, inode, dentry, ret);
531 void ext4_fc_track_link(handle_t *handle, struct dentry *dentry)
533 struct inode *inode = d_inode(dentry);
535 if (ext4_fc_disabled(inode->i_sb))
538 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
541 __ext4_fc_track_link(handle, inode, dentry);
544 void __ext4_fc_track_create(handle_t *handle, struct inode *inode,
545 struct dentry *dentry)
547 struct __track_dentry_update_args args;
550 args.dentry = dentry;
551 args.op = EXT4_FC_TAG_CREAT;
553 ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
555 trace_ext4_fc_track_create(handle, inode, dentry, ret);
558 void ext4_fc_track_create(handle_t *handle, struct dentry *dentry)
560 struct inode *inode = d_inode(dentry);
562 if (ext4_fc_disabled(inode->i_sb))
565 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
568 __ext4_fc_track_create(handle, inode, dentry);
571 /* __track_fn for inode tracking */
572 static int __track_inode(struct inode *inode, void *arg, bool update)
577 EXT4_I(inode)->i_fc_lblk_len = 0;
582 void ext4_fc_track_inode(handle_t *handle, struct inode *inode)
586 if (S_ISDIR(inode->i_mode))
589 if (ext4_fc_disabled(inode->i_sb))
592 if (ext4_should_journal_data(inode)) {
593 ext4_fc_mark_ineligible(inode->i_sb,
594 EXT4_FC_REASON_INODE_JOURNAL_DATA, handle);
598 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
601 ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1);
602 trace_ext4_fc_track_inode(handle, inode, ret);
605 struct __track_range_args {
606 ext4_lblk_t start, end;
609 /* __track_fn for tracking data updates */
610 static int __track_range(struct inode *inode, void *arg, bool update)
612 struct ext4_inode_info *ei = EXT4_I(inode);
613 ext4_lblk_t oldstart;
614 struct __track_range_args *__arg =
615 (struct __track_range_args *)arg;
617 if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) {
618 ext4_debug("Special inode %ld being modified\n", inode->i_ino);
622 oldstart = ei->i_fc_lblk_start;
624 if (update && ei->i_fc_lblk_len > 0) {
625 ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start);
627 max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) -
628 ei->i_fc_lblk_start + 1;
630 ei->i_fc_lblk_start = __arg->start;
631 ei->i_fc_lblk_len = __arg->end - __arg->start + 1;
637 void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start,
640 struct __track_range_args args;
643 if (S_ISDIR(inode->i_mode))
646 if (ext4_fc_disabled(inode->i_sb))
649 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
655 ret = ext4_fc_track_template(handle, inode, __track_range, &args, 1);
657 trace_ext4_fc_track_range(handle, inode, start, end, ret);
660 static void ext4_fc_submit_bh(struct super_block *sb, bool is_tail)
662 blk_opf_t write_flags = REQ_SYNC;
663 struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh;
665 /* Add REQ_FUA | REQ_PREFLUSH only its tail */
666 if (test_opt(sb, BARRIER) && is_tail)
667 write_flags |= REQ_FUA | REQ_PREFLUSH;
669 set_buffer_dirty(bh);
670 set_buffer_uptodate(bh);
671 bh->b_end_io = ext4_end_buffer_io_sync;
672 submit_bh(REQ_OP_WRITE | write_flags, bh);
673 EXT4_SB(sb)->s_fc_bh = NULL;
676 /* Ext4 commit path routines */
679 * Allocate len bytes on a fast commit buffer.
681 * During the commit time this function is used to manage fast commit
682 * block space. We don't split a fast commit log onto different
683 * blocks. So this function makes sure that if there's not enough space
684 * on the current block, the remaining space in the current block is
685 * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case,
686 * new block is from jbd2 and CRC is updated to reflect the padding
689 static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc)
691 struct ext4_fc_tl tl;
692 struct ext4_sb_info *sbi = EXT4_SB(sb);
693 struct buffer_head *bh;
694 int bsize = sbi->s_journal->j_blocksize;
695 int ret, off = sbi->s_fc_bytes % bsize;
700 * If 'len' is too long to fit in any block alongside a PAD tlv, then we
701 * cannot fulfill the request.
703 if (len > bsize - EXT4_FC_TAG_BASE_LEN)
707 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
712 dst = sbi->s_fc_bh->b_data + off;
715 * Allocate the bytes in the current block if we can do so while still
716 * leaving enough space for a PAD tlv.
718 remaining = bsize - EXT4_FC_TAG_BASE_LEN - off;
719 if (len <= remaining) {
720 sbi->s_fc_bytes += len;
725 * Else, terminate the current block with a PAD tlv, then allocate a new
726 * block and allocate the bytes at the start of that new block.
729 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD);
730 tl.fc_len = cpu_to_le16(remaining);
731 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
732 memset(dst + EXT4_FC_TAG_BASE_LEN, 0, remaining);
733 *crc = ext4_chksum(sbi, *crc, sbi->s_fc_bh->b_data, bsize);
735 ext4_fc_submit_bh(sb, false);
737 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
741 sbi->s_fc_bytes += bsize - off + len;
742 return sbi->s_fc_bh->b_data;
746 * Complete a fast commit by writing tail tag.
748 * Writing tail tag marks the end of a fast commit. In order to guarantee
749 * atomicity, after writing tail tag, even if there's space remaining
750 * in the block, next commit shouldn't use it. That's why tail tag
751 * has the length as that of the remaining space on the block.
753 static int ext4_fc_write_tail(struct super_block *sb, u32 crc)
755 struct ext4_sb_info *sbi = EXT4_SB(sb);
756 struct ext4_fc_tl tl;
757 struct ext4_fc_tail tail;
758 int off, bsize = sbi->s_journal->j_blocksize;
762 * ext4_fc_reserve_space takes care of allocating an extra block if
763 * there's no enough space on this block for accommodating this tail.
765 dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + sizeof(tail), &crc);
769 off = sbi->s_fc_bytes % bsize;
771 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL);
772 tl.fc_len = cpu_to_le16(bsize - off + sizeof(struct ext4_fc_tail));
773 sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize);
775 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
776 dst += EXT4_FC_TAG_BASE_LEN;
777 tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid);
778 memcpy(dst, &tail.fc_tid, sizeof(tail.fc_tid));
779 dst += sizeof(tail.fc_tid);
780 crc = ext4_chksum(sbi, crc, sbi->s_fc_bh->b_data,
781 dst - (u8 *)sbi->s_fc_bh->b_data);
782 tail.fc_crc = cpu_to_le32(crc);
783 memcpy(dst, &tail.fc_crc, sizeof(tail.fc_crc));
784 dst += sizeof(tail.fc_crc);
785 memset(dst, 0, bsize - off); /* Don't leak uninitialized memory. */
787 ext4_fc_submit_bh(sb, true);
793 * Adds tag, length, value and updates CRC. Returns true if tlv was added.
794 * Returns false if there's not enough space.
796 static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val,
799 struct ext4_fc_tl tl;
802 dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + len, crc);
806 tl.fc_tag = cpu_to_le16(tag);
807 tl.fc_len = cpu_to_le16(len);
809 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
810 memcpy(dst + EXT4_FC_TAG_BASE_LEN, val, len);
815 /* Same as above, but adds dentry tlv. */
816 static bool ext4_fc_add_dentry_tlv(struct super_block *sb, u32 *crc,
817 struct ext4_fc_dentry_update *fc_dentry)
819 struct ext4_fc_dentry_info fcd;
820 struct ext4_fc_tl tl;
821 int dlen = fc_dentry->fcd_name.len;
822 u8 *dst = ext4_fc_reserve_space(sb,
823 EXT4_FC_TAG_BASE_LEN + sizeof(fcd) + dlen, crc);
828 fcd.fc_parent_ino = cpu_to_le32(fc_dentry->fcd_parent);
829 fcd.fc_ino = cpu_to_le32(fc_dentry->fcd_ino);
830 tl.fc_tag = cpu_to_le16(fc_dentry->fcd_op);
831 tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen);
832 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
833 dst += EXT4_FC_TAG_BASE_LEN;
834 memcpy(dst, &fcd, sizeof(fcd));
836 memcpy(dst, fc_dentry->fcd_name.name, dlen);
842 * Writes inode in the fast commit space under TLV with tag @tag.
843 * Returns 0 on success, error on failure.
845 static int ext4_fc_write_inode(struct inode *inode, u32 *crc)
847 struct ext4_inode_info *ei = EXT4_I(inode);
848 int inode_len = EXT4_GOOD_OLD_INODE_SIZE;
850 struct ext4_iloc iloc;
851 struct ext4_fc_inode fc_inode;
852 struct ext4_fc_tl tl;
855 ret = ext4_get_inode_loc(inode, &iloc);
859 if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
860 inode_len = EXT4_INODE_SIZE(inode->i_sb);
861 else if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE)
862 inode_len += ei->i_extra_isize;
864 fc_inode.fc_ino = cpu_to_le32(inode->i_ino);
865 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE);
866 tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino));
869 dst = ext4_fc_reserve_space(inode->i_sb,
870 EXT4_FC_TAG_BASE_LEN + inode_len + sizeof(fc_inode.fc_ino), crc);
874 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
875 dst += EXT4_FC_TAG_BASE_LEN;
876 memcpy(dst, &fc_inode, sizeof(fc_inode));
877 dst += sizeof(fc_inode);
878 memcpy(dst, (u8 *)ext4_raw_inode(&iloc), inode_len);
886 * Writes updated data ranges for the inode in question. Updates CRC.
887 * Returns 0 on success, error otherwise.
889 static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc)
891 ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size;
892 struct ext4_inode_info *ei = EXT4_I(inode);
893 struct ext4_map_blocks map;
894 struct ext4_fc_add_range fc_ext;
895 struct ext4_fc_del_range lrange;
896 struct ext4_extent *ex;
899 mutex_lock(&ei->i_fc_lock);
900 if (ei->i_fc_lblk_len == 0) {
901 mutex_unlock(&ei->i_fc_lock);
904 old_blk_size = ei->i_fc_lblk_start;
905 new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1;
906 ei->i_fc_lblk_len = 0;
907 mutex_unlock(&ei->i_fc_lock);
909 cur_lblk_off = old_blk_size;
910 ext4_debug("will try writing %d to %d for inode %ld\n",
911 cur_lblk_off, new_blk_size, inode->i_ino);
913 while (cur_lblk_off <= new_blk_size) {
914 map.m_lblk = cur_lblk_off;
915 map.m_len = new_blk_size - cur_lblk_off + 1;
916 ret = ext4_map_blocks(NULL, inode, &map, 0);
920 if (map.m_len == 0) {
926 lrange.fc_ino = cpu_to_le32(inode->i_ino);
927 lrange.fc_lblk = cpu_to_le32(map.m_lblk);
928 lrange.fc_len = cpu_to_le32(map.m_len);
929 if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE,
930 sizeof(lrange), (u8 *)&lrange, crc))
933 unsigned int max = (map.m_flags & EXT4_MAP_UNWRITTEN) ?
934 EXT_UNWRITTEN_MAX_LEN : EXT_INIT_MAX_LEN;
936 /* Limit the number of blocks in one extent */
937 map.m_len = min(max, map.m_len);
939 fc_ext.fc_ino = cpu_to_le32(inode->i_ino);
940 ex = (struct ext4_extent *)&fc_ext.fc_ex;
941 ex->ee_block = cpu_to_le32(map.m_lblk);
942 ex->ee_len = cpu_to_le16(map.m_len);
943 ext4_ext_store_pblock(ex, map.m_pblk);
944 if (map.m_flags & EXT4_MAP_UNWRITTEN)
945 ext4_ext_mark_unwritten(ex);
947 ext4_ext_mark_initialized(ex);
948 if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE,
949 sizeof(fc_ext), (u8 *)&fc_ext, crc))
953 cur_lblk_off += map.m_len;
960 /* Submit data for all the fast commit inodes */
961 static int ext4_fc_submit_inode_data_all(journal_t *journal)
963 struct super_block *sb = journal->j_private;
964 struct ext4_sb_info *sbi = EXT4_SB(sb);
965 struct ext4_inode_info *ei;
968 spin_lock(&sbi->s_fc_lock);
969 list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
970 ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING);
971 while (atomic_read(&ei->i_fc_updates)) {
974 prepare_to_wait(&ei->i_fc_wait, &wait,
975 TASK_UNINTERRUPTIBLE);
976 if (atomic_read(&ei->i_fc_updates)) {
977 spin_unlock(&sbi->s_fc_lock);
979 spin_lock(&sbi->s_fc_lock);
981 finish_wait(&ei->i_fc_wait, &wait);
983 spin_unlock(&sbi->s_fc_lock);
984 ret = jbd2_submit_inode_data(journal, ei->jinode);
987 spin_lock(&sbi->s_fc_lock);
989 spin_unlock(&sbi->s_fc_lock);
994 /* Wait for completion of data for all the fast commit inodes */
995 static int ext4_fc_wait_inode_data_all(journal_t *journal)
997 struct super_block *sb = journal->j_private;
998 struct ext4_sb_info *sbi = EXT4_SB(sb);
999 struct ext4_inode_info *pos, *n;
1002 spin_lock(&sbi->s_fc_lock);
1003 list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1004 if (!ext4_test_inode_state(&pos->vfs_inode,
1005 EXT4_STATE_FC_COMMITTING))
1007 spin_unlock(&sbi->s_fc_lock);
1009 ret = jbd2_wait_inode_data(journal, pos->jinode);
1012 spin_lock(&sbi->s_fc_lock);
1014 spin_unlock(&sbi->s_fc_lock);
1019 /* Commit all the directory entry updates */
1020 static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc)
1021 __acquires(&sbi->s_fc_lock)
1022 __releases(&sbi->s_fc_lock)
1024 struct super_block *sb = journal->j_private;
1025 struct ext4_sb_info *sbi = EXT4_SB(sb);
1026 struct ext4_fc_dentry_update *fc_dentry, *fc_dentry_n;
1027 struct inode *inode;
1028 struct ext4_inode_info *ei;
1031 if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN]))
1033 list_for_each_entry_safe(fc_dentry, fc_dentry_n,
1034 &sbi->s_fc_dentry_q[FC_Q_MAIN], fcd_list) {
1035 if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) {
1036 spin_unlock(&sbi->s_fc_lock);
1037 if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
1041 spin_lock(&sbi->s_fc_lock);
1045 * With fcd_dilist we need not loop in sbi->s_fc_q to get the
1046 * corresponding inode pointer
1048 WARN_ON(list_empty(&fc_dentry->fcd_dilist));
1049 ei = list_first_entry(&fc_dentry->fcd_dilist,
1050 struct ext4_inode_info, i_fc_dilist);
1051 inode = &ei->vfs_inode;
1052 WARN_ON(inode->i_ino != fc_dentry->fcd_ino);
1054 spin_unlock(&sbi->s_fc_lock);
1057 * We first write the inode and then the create dirent. This
1058 * allows the recovery code to create an unnamed inode first
1059 * and then link it to a directory entry. This allows us
1060 * to use namei.c routines almost as is and simplifies
1061 * the recovery code.
1063 ret = ext4_fc_write_inode(inode, crc);
1067 ret = ext4_fc_write_inode_data(inode, crc);
1071 if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
1076 spin_lock(&sbi->s_fc_lock);
1080 spin_lock(&sbi->s_fc_lock);
1084 static int ext4_fc_perform_commit(journal_t *journal)
1086 struct super_block *sb = journal->j_private;
1087 struct ext4_sb_info *sbi = EXT4_SB(sb);
1088 struct ext4_inode_info *iter;
1089 struct ext4_fc_head head;
1090 struct inode *inode;
1091 struct blk_plug plug;
1095 ret = ext4_fc_submit_inode_data_all(journal);
1099 ret = ext4_fc_wait_inode_data_all(journal);
1104 * If file system device is different from journal device, issue a cache
1105 * flush before we start writing fast commit blocks.
1107 if (journal->j_fs_dev != journal->j_dev)
1108 blkdev_issue_flush(journal->j_fs_dev);
1110 blk_start_plug(&plug);
1111 if (sbi->s_fc_bytes == 0) {
1113 * Add a head tag only if this is the first fast commit
1116 head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES);
1117 head.fc_tid = cpu_to_le32(
1118 sbi->s_journal->j_running_transaction->t_tid);
1119 if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head),
1120 (u8 *)&head, &crc)) {
1126 spin_lock(&sbi->s_fc_lock);
1127 ret = ext4_fc_commit_dentry_updates(journal, &crc);
1129 spin_unlock(&sbi->s_fc_lock);
1133 list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1134 inode = &iter->vfs_inode;
1135 if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING))
1138 spin_unlock(&sbi->s_fc_lock);
1139 ret = ext4_fc_write_inode_data(inode, &crc);
1142 ret = ext4_fc_write_inode(inode, &crc);
1145 spin_lock(&sbi->s_fc_lock);
1147 spin_unlock(&sbi->s_fc_lock);
1149 ret = ext4_fc_write_tail(sb, crc);
1152 blk_finish_plug(&plug);
1156 static void ext4_fc_update_stats(struct super_block *sb, int status,
1157 u64 commit_time, int nblks, tid_t commit_tid)
1159 struct ext4_fc_stats *stats = &EXT4_SB(sb)->s_fc_stats;
1161 ext4_debug("Fast commit ended with status = %d for tid %u",
1162 status, commit_tid);
1163 if (status == EXT4_FC_STATUS_OK) {
1164 stats->fc_num_commits++;
1165 stats->fc_numblks += nblks;
1166 if (likely(stats->s_fc_avg_commit_time))
1167 stats->s_fc_avg_commit_time =
1169 stats->s_fc_avg_commit_time * 3) / 4;
1171 stats->s_fc_avg_commit_time = commit_time;
1172 } else if (status == EXT4_FC_STATUS_FAILED ||
1173 status == EXT4_FC_STATUS_INELIGIBLE) {
1174 if (status == EXT4_FC_STATUS_FAILED)
1175 stats->fc_failed_commits++;
1176 stats->fc_ineligible_commits++;
1178 stats->fc_skipped_commits++;
1180 trace_ext4_fc_commit_stop(sb, nblks, status, commit_tid);
1184 * The main commit entry point. Performs a fast commit for transaction
1185 * commit_tid if needed. If it's not possible to perform a fast commit
1186 * due to various reasons, we fall back to full commit. Returns 0
1187 * on success, error otherwise.
1189 int ext4_fc_commit(journal_t *journal, tid_t commit_tid)
1191 struct super_block *sb = journal->j_private;
1192 struct ext4_sb_info *sbi = EXT4_SB(sb);
1193 int nblks = 0, ret, bsize = journal->j_blocksize;
1194 int subtid = atomic_read(&sbi->s_fc_subtid);
1195 int status = EXT4_FC_STATUS_OK, fc_bufs_before = 0;
1196 ktime_t start_time, commit_time;
1198 if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
1199 return jbd2_complete_transaction(journal, commit_tid);
1201 trace_ext4_fc_commit_start(sb, commit_tid);
1203 start_time = ktime_get();
1206 ret = jbd2_fc_begin_commit(journal, commit_tid);
1207 if (ret == -EALREADY) {
1208 /* There was an ongoing commit, check if we need to restart */
1209 if (atomic_read(&sbi->s_fc_subtid) <= subtid &&
1210 commit_tid > journal->j_commit_sequence)
1212 ext4_fc_update_stats(sb, EXT4_FC_STATUS_SKIPPED, 0, 0,
1217 * Commit couldn't start. Just update stats and perform a
1220 ext4_fc_update_stats(sb, EXT4_FC_STATUS_FAILED, 0, 0,
1222 return jbd2_complete_transaction(journal, commit_tid);
1226 * After establishing journal barrier via jbd2_fc_begin_commit(), check
1227 * if we are fast commit ineligible.
1229 if (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE)) {
1230 status = EXT4_FC_STATUS_INELIGIBLE;
1234 fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize;
1235 ret = ext4_fc_perform_commit(journal);
1237 status = EXT4_FC_STATUS_FAILED;
1240 nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before;
1241 ret = jbd2_fc_wait_bufs(journal, nblks);
1243 status = EXT4_FC_STATUS_FAILED;
1246 atomic_inc(&sbi->s_fc_subtid);
1247 ret = jbd2_fc_end_commit(journal);
1249 * weight the commit time higher than the average time so we
1250 * don't react too strongly to vast changes in the commit time
1252 commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1253 ext4_fc_update_stats(sb, status, commit_time, nblks, commit_tid);
1257 ret = jbd2_fc_end_commit_fallback(journal);
1258 ext4_fc_update_stats(sb, status, 0, 0, commit_tid);
1263 * Fast commit cleanup routine. This is called after every fast commit and
1264 * full commit. full is true if we are called after a full commit.
1266 static void ext4_fc_cleanup(journal_t *journal, int full, tid_t tid)
1268 struct super_block *sb = journal->j_private;
1269 struct ext4_sb_info *sbi = EXT4_SB(sb);
1270 struct ext4_inode_info *iter, *iter_n;
1271 struct ext4_fc_dentry_update *fc_dentry;
1273 if (full && sbi->s_fc_bh)
1274 sbi->s_fc_bh = NULL;
1276 trace_ext4_fc_cleanup(journal, full, tid);
1277 jbd2_fc_release_bufs(journal);
1279 spin_lock(&sbi->s_fc_lock);
1280 list_for_each_entry_safe(iter, iter_n, &sbi->s_fc_q[FC_Q_MAIN],
1282 list_del_init(&iter->i_fc_list);
1283 ext4_clear_inode_state(&iter->vfs_inode,
1284 EXT4_STATE_FC_COMMITTING);
1285 if (iter->i_sync_tid <= tid)
1286 ext4_fc_reset_inode(&iter->vfs_inode);
1287 /* Make sure EXT4_STATE_FC_COMMITTING bit is clear */
1289 #if (BITS_PER_LONG < 64)
1290 wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING);
1292 wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING);
1296 while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) {
1297 fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN],
1298 struct ext4_fc_dentry_update,
1300 list_del_init(&fc_dentry->fcd_list);
1301 list_del_init(&fc_dentry->fcd_dilist);
1302 spin_unlock(&sbi->s_fc_lock);
1304 if (fc_dentry->fcd_name.name &&
1305 fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
1306 kfree(fc_dentry->fcd_name.name);
1307 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
1308 spin_lock(&sbi->s_fc_lock);
1311 list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING],
1312 &sbi->s_fc_dentry_q[FC_Q_MAIN]);
1313 list_splice_init(&sbi->s_fc_q[FC_Q_STAGING],
1314 &sbi->s_fc_q[FC_Q_MAIN]);
1316 if (tid >= sbi->s_fc_ineligible_tid) {
1317 sbi->s_fc_ineligible_tid = 0;
1318 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
1322 sbi->s_fc_bytes = 0;
1323 spin_unlock(&sbi->s_fc_lock);
1324 trace_ext4_fc_stats(sb);
1327 /* Ext4 Replay Path Routines */
1329 /* Helper struct for dentry replay routines */
1330 struct dentry_info_args {
1331 int parent_ino, dname_len, ino, inode_len;
1335 /* Same as struct ext4_fc_tl, but uses native endianness fields */
1336 struct ext4_fc_tl_mem {
1341 static inline void tl_to_darg(struct dentry_info_args *darg,
1342 struct ext4_fc_tl_mem *tl, u8 *val)
1344 struct ext4_fc_dentry_info fcd;
1346 memcpy(&fcd, val, sizeof(fcd));
1348 darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino);
1349 darg->ino = le32_to_cpu(fcd.fc_ino);
1350 darg->dname = val + offsetof(struct ext4_fc_dentry_info, fc_dname);
1351 darg->dname_len = tl->fc_len - sizeof(struct ext4_fc_dentry_info);
1354 static inline void ext4_fc_get_tl(struct ext4_fc_tl_mem *tl, u8 *val)
1356 struct ext4_fc_tl tl_disk;
1358 memcpy(&tl_disk, val, EXT4_FC_TAG_BASE_LEN);
1359 tl->fc_len = le16_to_cpu(tl_disk.fc_len);
1360 tl->fc_tag = le16_to_cpu(tl_disk.fc_tag);
1363 /* Unlink replay function */
1364 static int ext4_fc_replay_unlink(struct super_block *sb,
1365 struct ext4_fc_tl_mem *tl, u8 *val)
1367 struct inode *inode, *old_parent;
1369 struct dentry_info_args darg;
1372 tl_to_darg(&darg, tl, val);
1374 trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino,
1375 darg.parent_ino, darg.dname_len);
1377 entry.name = darg.dname;
1378 entry.len = darg.dname_len;
1379 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1381 if (IS_ERR(inode)) {
1382 ext4_debug("Inode %d not found", darg.ino);
1386 old_parent = ext4_iget(sb, darg.parent_ino,
1388 if (IS_ERR(old_parent)) {
1389 ext4_debug("Dir with inode %d not found", darg.parent_ino);
1394 ret = __ext4_unlink(old_parent, &entry, inode, NULL);
1395 /* -ENOENT ok coz it might not exist anymore. */
1403 static int ext4_fc_replay_link_internal(struct super_block *sb,
1404 struct dentry_info_args *darg,
1405 struct inode *inode)
1407 struct inode *dir = NULL;
1408 struct dentry *dentry_dir = NULL, *dentry_inode = NULL;
1409 struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len);
1412 dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL);
1414 ext4_debug("Dir with inode %d not found.", darg->parent_ino);
1419 dentry_dir = d_obtain_alias(dir);
1420 if (IS_ERR(dentry_dir)) {
1421 ext4_debug("Failed to obtain dentry");
1426 dentry_inode = d_alloc(dentry_dir, &qstr_dname);
1427 if (!dentry_inode) {
1428 ext4_debug("Inode dentry not created.");
1433 ret = __ext4_link(dir, inode, dentry_inode);
1435 * It's possible that link already existed since data blocks
1436 * for the dir in question got persisted before we crashed OR
1437 * we replayed this tag and crashed before the entire replay
1440 if (ret && ret != -EEXIST) {
1441 ext4_debug("Failed to link\n");
1454 d_drop(dentry_inode);
1461 /* Link replay function */
1462 static int ext4_fc_replay_link(struct super_block *sb,
1463 struct ext4_fc_tl_mem *tl, u8 *val)
1465 struct inode *inode;
1466 struct dentry_info_args darg;
1469 tl_to_darg(&darg, tl, val);
1470 trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino,
1471 darg.parent_ino, darg.dname_len);
1473 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1474 if (IS_ERR(inode)) {
1475 ext4_debug("Inode not found.");
1479 ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1485 * Record all the modified inodes during replay. We use this later to setup
1486 * block bitmaps correctly.
1488 static int ext4_fc_record_modified_inode(struct super_block *sb, int ino)
1490 struct ext4_fc_replay_state *state;
1493 state = &EXT4_SB(sb)->s_fc_replay_state;
1494 for (i = 0; i < state->fc_modified_inodes_used; i++)
1495 if (state->fc_modified_inodes[i] == ino)
1497 if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) {
1498 int *fc_modified_inodes;
1500 fc_modified_inodes = krealloc(state->fc_modified_inodes,
1501 sizeof(int) * (state->fc_modified_inodes_size +
1502 EXT4_FC_REPLAY_REALLOC_INCREMENT),
1504 if (!fc_modified_inodes)
1506 state->fc_modified_inodes = fc_modified_inodes;
1507 state->fc_modified_inodes_size +=
1508 EXT4_FC_REPLAY_REALLOC_INCREMENT;
1510 state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino;
1515 * Inode replay function
1517 static int ext4_fc_replay_inode(struct super_block *sb,
1518 struct ext4_fc_tl_mem *tl, u8 *val)
1520 struct ext4_fc_inode fc_inode;
1521 struct ext4_inode *raw_inode;
1522 struct ext4_inode *raw_fc_inode;
1523 struct inode *inode = NULL;
1524 struct ext4_iloc iloc;
1525 int inode_len, ino, ret, tag = tl->fc_tag;
1526 struct ext4_extent_header *eh;
1527 size_t off_gen = offsetof(struct ext4_inode, i_generation);
1529 memcpy(&fc_inode, val, sizeof(fc_inode));
1531 ino = le32_to_cpu(fc_inode.fc_ino);
1532 trace_ext4_fc_replay(sb, tag, ino, 0, 0);
1534 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1535 if (!IS_ERR(inode)) {
1536 ext4_ext_clear_bb(inode);
1541 ret = ext4_fc_record_modified_inode(sb, ino);
1545 raw_fc_inode = (struct ext4_inode *)
1546 (val + offsetof(struct ext4_fc_inode, fc_raw_inode));
1547 ret = ext4_get_fc_inode_loc(sb, ino, &iloc);
1551 inode_len = tl->fc_len - sizeof(struct ext4_fc_inode);
1552 raw_inode = ext4_raw_inode(&iloc);
1554 memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block));
1555 memcpy((u8 *)raw_inode + off_gen, (u8 *)raw_fc_inode + off_gen,
1556 inode_len - off_gen);
1557 if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) {
1558 eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]);
1559 if (eh->eh_magic != EXT4_EXT_MAGIC) {
1560 memset(eh, 0, sizeof(*eh));
1561 eh->eh_magic = EXT4_EXT_MAGIC;
1562 eh->eh_max = cpu_to_le16(
1563 (sizeof(raw_inode->i_block) -
1564 sizeof(struct ext4_extent_header))
1565 / sizeof(struct ext4_extent));
1567 } else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) {
1568 memcpy(raw_inode->i_block, raw_fc_inode->i_block,
1569 sizeof(raw_inode->i_block));
1572 /* Immediately update the inode on disk. */
1573 ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1576 ret = sync_dirty_buffer(iloc.bh);
1579 ret = ext4_mark_inode_used(sb, ino);
1583 /* Given that we just wrote the inode on disk, this SHOULD succeed. */
1584 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1585 if (IS_ERR(inode)) {
1586 ext4_debug("Inode not found.");
1587 return -EFSCORRUPTED;
1591 * Our allocator could have made different decisions than before
1592 * crashing. This should be fixed but until then, we calculate
1593 * the number of blocks the inode.
1595 if (!ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
1596 ext4_ext_replay_set_iblocks(inode);
1598 inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation);
1599 ext4_reset_inode_seed(inode);
1601 ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode));
1602 ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1603 sync_dirty_buffer(iloc.bh);
1608 blkdev_issue_flush(sb->s_bdev);
1614 * Dentry create replay function.
1616 * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the
1617 * inode for which we are trying to create a dentry here, should already have
1618 * been replayed before we start here.
1620 static int ext4_fc_replay_create(struct super_block *sb,
1621 struct ext4_fc_tl_mem *tl, u8 *val)
1624 struct inode *inode = NULL;
1625 struct inode *dir = NULL;
1626 struct dentry_info_args darg;
1628 tl_to_darg(&darg, tl, val);
1630 trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino,
1631 darg.parent_ino, darg.dname_len);
1633 /* This takes care of update group descriptor and other metadata */
1634 ret = ext4_mark_inode_used(sb, darg.ino);
1638 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1639 if (IS_ERR(inode)) {
1640 ext4_debug("inode %d not found.", darg.ino);
1646 if (S_ISDIR(inode->i_mode)) {
1648 * If we are creating a directory, we need to make sure that the
1649 * dot and dot dot dirents are setup properly.
1651 dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL);
1653 ext4_debug("Dir %d not found.", darg.ino);
1656 ret = ext4_init_new_dir(NULL, dir, inode);
1663 ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1666 set_nlink(inode, 1);
1667 ext4_mark_inode_dirty(NULL, inode);
1674 * Record physical disk regions which are in use as per fast commit area,
1675 * and used by inodes during replay phase. Our simple replay phase
1676 * allocator excludes these regions from allocation.
1678 int ext4_fc_record_regions(struct super_block *sb, int ino,
1679 ext4_lblk_t lblk, ext4_fsblk_t pblk, int len, int replay)
1681 struct ext4_fc_replay_state *state;
1682 struct ext4_fc_alloc_region *region;
1684 state = &EXT4_SB(sb)->s_fc_replay_state;
1686 * during replay phase, the fc_regions_valid may not same as
1687 * fc_regions_used, update it when do new additions.
1689 if (replay && state->fc_regions_used != state->fc_regions_valid)
1690 state->fc_regions_used = state->fc_regions_valid;
1691 if (state->fc_regions_used == state->fc_regions_size) {
1692 struct ext4_fc_alloc_region *fc_regions;
1694 fc_regions = krealloc(state->fc_regions,
1695 sizeof(struct ext4_fc_alloc_region) *
1696 (state->fc_regions_size +
1697 EXT4_FC_REPLAY_REALLOC_INCREMENT),
1701 state->fc_regions_size +=
1702 EXT4_FC_REPLAY_REALLOC_INCREMENT;
1703 state->fc_regions = fc_regions;
1705 region = &state->fc_regions[state->fc_regions_used++];
1707 region->lblk = lblk;
1708 region->pblk = pblk;
1712 state->fc_regions_valid++;
1717 /* Replay add range tag */
1718 static int ext4_fc_replay_add_range(struct super_block *sb,
1719 struct ext4_fc_tl_mem *tl, u8 *val)
1721 struct ext4_fc_add_range fc_add_ex;
1722 struct ext4_extent newex, *ex;
1723 struct inode *inode;
1724 ext4_lblk_t start, cur;
1726 ext4_fsblk_t start_pblk;
1727 struct ext4_map_blocks map;
1728 struct ext4_ext_path *path = NULL;
1731 memcpy(&fc_add_ex, val, sizeof(fc_add_ex));
1732 ex = (struct ext4_extent *)&fc_add_ex.fc_ex;
1734 trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE,
1735 le32_to_cpu(fc_add_ex.fc_ino), le32_to_cpu(ex->ee_block),
1736 ext4_ext_get_actual_len(ex));
1738 inode = ext4_iget(sb, le32_to_cpu(fc_add_ex.fc_ino), EXT4_IGET_NORMAL);
1739 if (IS_ERR(inode)) {
1740 ext4_debug("Inode not found.");
1744 ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1748 start = le32_to_cpu(ex->ee_block);
1749 start_pblk = ext4_ext_pblock(ex);
1750 len = ext4_ext_get_actual_len(ex);
1754 ext4_debug("ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n",
1755 start, start_pblk, len, ext4_ext_is_unwritten(ex),
1758 while (remaining > 0) {
1760 map.m_len = remaining;
1762 ret = ext4_map_blocks(NULL, inode, &map, 0);
1768 /* Range is not mapped */
1769 path = ext4_find_extent(inode, cur, NULL, 0);
1772 memset(&newex, 0, sizeof(newex));
1773 newex.ee_block = cpu_to_le32(cur);
1774 ext4_ext_store_pblock(
1775 &newex, start_pblk + cur - start);
1776 newex.ee_len = cpu_to_le16(map.m_len);
1777 if (ext4_ext_is_unwritten(ex))
1778 ext4_ext_mark_unwritten(&newex);
1779 down_write(&EXT4_I(inode)->i_data_sem);
1780 ret = ext4_ext_insert_extent(
1781 NULL, inode, &path, &newex, 0);
1782 up_write((&EXT4_I(inode)->i_data_sem));
1783 ext4_free_ext_path(path);
1789 if (start_pblk + cur - start != map.m_pblk) {
1791 * Logical to physical mapping changed. This can happen
1792 * if this range was removed and then reallocated to
1793 * map to new physical blocks during a fast commit.
1795 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1796 ext4_ext_is_unwritten(ex),
1797 start_pblk + cur - start);
1801 * Mark the old blocks as free since they aren't used
1802 * anymore. We maintain an array of all the modified
1803 * inodes. In case these blocks are still used at either
1804 * a different logical range in the same inode or in
1805 * some different inode, we will mark them as allocated
1806 * at the end of the FC replay using our array of
1809 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1813 /* Range is mapped and needs a state change */
1814 ext4_debug("Converting from %ld to %d %lld",
1815 map.m_flags & EXT4_MAP_UNWRITTEN,
1816 ext4_ext_is_unwritten(ex), map.m_pblk);
1817 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1818 ext4_ext_is_unwritten(ex), map.m_pblk);
1822 * We may have split the extent tree while toggling the state.
1823 * Try to shrink the extent tree now.
1825 ext4_ext_replay_shrink_inode(inode, start + len);
1828 remaining -= map.m_len;
1830 ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >>
1831 sb->s_blocksize_bits);
1837 /* Replay DEL_RANGE tag */
1839 ext4_fc_replay_del_range(struct super_block *sb,
1840 struct ext4_fc_tl_mem *tl, u8 *val)
1842 struct inode *inode;
1843 struct ext4_fc_del_range lrange;
1844 struct ext4_map_blocks map;
1845 ext4_lblk_t cur, remaining;
1848 memcpy(&lrange, val, sizeof(lrange));
1849 cur = le32_to_cpu(lrange.fc_lblk);
1850 remaining = le32_to_cpu(lrange.fc_len);
1852 trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE,
1853 le32_to_cpu(lrange.fc_ino), cur, remaining);
1855 inode = ext4_iget(sb, le32_to_cpu(lrange.fc_ino), EXT4_IGET_NORMAL);
1856 if (IS_ERR(inode)) {
1857 ext4_debug("Inode %d not found", le32_to_cpu(lrange.fc_ino));
1861 ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1865 ext4_debug("DEL_RANGE, inode %ld, lblk %d, len %d\n",
1866 inode->i_ino, le32_to_cpu(lrange.fc_lblk),
1867 le32_to_cpu(lrange.fc_len));
1868 while (remaining > 0) {
1870 map.m_len = remaining;
1872 ret = ext4_map_blocks(NULL, inode, &map, 0);
1878 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1880 remaining -= map.m_len;
1885 down_write(&EXT4_I(inode)->i_data_sem);
1886 ret = ext4_ext_remove_space(inode, le32_to_cpu(lrange.fc_lblk),
1887 le32_to_cpu(lrange.fc_lblk) +
1888 le32_to_cpu(lrange.fc_len) - 1);
1889 up_write(&EXT4_I(inode)->i_data_sem);
1892 ext4_ext_replay_shrink_inode(inode,
1893 i_size_read(inode) >> sb->s_blocksize_bits);
1894 ext4_mark_inode_dirty(NULL, inode);
1900 static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb)
1902 struct ext4_fc_replay_state *state;
1903 struct inode *inode;
1904 struct ext4_ext_path *path = NULL;
1905 struct ext4_map_blocks map;
1907 ext4_lblk_t cur, end;
1909 state = &EXT4_SB(sb)->s_fc_replay_state;
1910 for (i = 0; i < state->fc_modified_inodes_used; i++) {
1911 inode = ext4_iget(sb, state->fc_modified_inodes[i],
1913 if (IS_ERR(inode)) {
1914 ext4_debug("Inode %d not found.",
1915 state->fc_modified_inodes[i]);
1919 end = EXT_MAX_BLOCKS;
1920 if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) {
1926 map.m_len = end - cur;
1928 ret = ext4_map_blocks(NULL, inode, &map, 0);
1933 path = ext4_find_extent(inode, map.m_lblk, NULL, 0);
1934 if (!IS_ERR(path)) {
1935 for (j = 0; j < path->p_depth; j++)
1936 ext4_mb_mark_bb(inode->i_sb,
1937 path[j].p_block, 1, 1);
1938 ext4_free_ext_path(path);
1941 ext4_mb_mark_bb(inode->i_sb, map.m_pblk,
1944 cur = cur + (map.m_len ? map.m_len : 1);
1952 * Check if block is in excluded regions for block allocation. The simple
1953 * allocator that runs during replay phase is calls this function to see
1954 * if it is okay to use a block.
1956 bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk)
1959 struct ext4_fc_replay_state *state;
1961 state = &EXT4_SB(sb)->s_fc_replay_state;
1962 for (i = 0; i < state->fc_regions_valid; i++) {
1963 if (state->fc_regions[i].ino == 0 ||
1964 state->fc_regions[i].len == 0)
1966 if (in_range(blk, state->fc_regions[i].pblk,
1967 state->fc_regions[i].len))
1973 /* Cleanup function called after replay */
1974 void ext4_fc_replay_cleanup(struct super_block *sb)
1976 struct ext4_sb_info *sbi = EXT4_SB(sb);
1978 sbi->s_mount_state &= ~EXT4_FC_REPLAY;
1979 kfree(sbi->s_fc_replay_state.fc_regions);
1980 kfree(sbi->s_fc_replay_state.fc_modified_inodes);
1983 static bool ext4_fc_value_len_isvalid(struct ext4_sb_info *sbi,
1987 case EXT4_FC_TAG_ADD_RANGE:
1988 return len == sizeof(struct ext4_fc_add_range);
1989 case EXT4_FC_TAG_DEL_RANGE:
1990 return len == sizeof(struct ext4_fc_del_range);
1991 case EXT4_FC_TAG_CREAT:
1992 case EXT4_FC_TAG_LINK:
1993 case EXT4_FC_TAG_UNLINK:
1994 len -= sizeof(struct ext4_fc_dentry_info);
1995 return len >= 1 && len <= EXT4_NAME_LEN;
1996 case EXT4_FC_TAG_INODE:
1997 len -= sizeof(struct ext4_fc_inode);
1998 return len >= EXT4_GOOD_OLD_INODE_SIZE &&
1999 len <= sbi->s_inode_size;
2000 case EXT4_FC_TAG_PAD:
2001 return true; /* padding can have any length */
2002 case EXT4_FC_TAG_TAIL:
2003 return len >= sizeof(struct ext4_fc_tail);
2004 case EXT4_FC_TAG_HEAD:
2005 return len == sizeof(struct ext4_fc_head);
2011 * Recovery Scan phase handler
2013 * This function is called during the scan phase and is responsible
2014 * for doing following things:
2015 * - Make sure the fast commit area has valid tags for replay
2016 * - Count number of tags that need to be replayed by the replay handler
2018 * - Create a list of excluded blocks for allocation during replay phase
2020 * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is
2021 * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP
2022 * to indicate that scan has finished and JBD2 can now start replay phase.
2023 * It returns a negative error to indicate that there was an error. At the end
2024 * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set
2025 * to indicate the number of tags that need to replayed during the replay phase.
2027 static int ext4_fc_replay_scan(journal_t *journal,
2028 struct buffer_head *bh, int off,
2031 struct super_block *sb = journal->j_private;
2032 struct ext4_sb_info *sbi = EXT4_SB(sb);
2033 struct ext4_fc_replay_state *state;
2034 int ret = JBD2_FC_REPLAY_CONTINUE;
2035 struct ext4_fc_add_range ext;
2036 struct ext4_fc_tl_mem tl;
2037 struct ext4_fc_tail tail;
2038 __u8 *start, *end, *cur, *val;
2039 struct ext4_fc_head head;
2040 struct ext4_extent *ex;
2042 state = &sbi->s_fc_replay_state;
2044 start = (u8 *)bh->b_data;
2045 end = start + journal->j_blocksize;
2047 if (state->fc_replay_expected_off == 0) {
2048 state->fc_cur_tag = 0;
2049 state->fc_replay_num_tags = 0;
2051 state->fc_regions = NULL;
2052 state->fc_regions_valid = state->fc_regions_used =
2053 state->fc_regions_size = 0;
2054 /* Check if we can stop early */
2055 if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag)
2056 != EXT4_FC_TAG_HEAD)
2060 if (off != state->fc_replay_expected_off) {
2061 ret = -EFSCORRUPTED;
2065 state->fc_replay_expected_off++;
2066 for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
2067 cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2068 ext4_fc_get_tl(&tl, cur);
2069 val = cur + EXT4_FC_TAG_BASE_LEN;
2070 if (tl.fc_len > end - val ||
2071 !ext4_fc_value_len_isvalid(sbi, tl.fc_tag, tl.fc_len)) {
2072 ret = state->fc_replay_num_tags ?
2073 JBD2_FC_REPLAY_STOP : -ECANCELED;
2076 ext4_debug("Scan phase, tag:%s, blk %lld\n",
2077 tag2str(tl.fc_tag), bh->b_blocknr);
2078 switch (tl.fc_tag) {
2079 case EXT4_FC_TAG_ADD_RANGE:
2080 memcpy(&ext, val, sizeof(ext));
2081 ex = (struct ext4_extent *)&ext.fc_ex;
2082 ret = ext4_fc_record_regions(sb,
2083 le32_to_cpu(ext.fc_ino),
2084 le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex),
2085 ext4_ext_get_actual_len(ex), 0);
2088 ret = JBD2_FC_REPLAY_CONTINUE;
2090 case EXT4_FC_TAG_DEL_RANGE:
2091 case EXT4_FC_TAG_LINK:
2092 case EXT4_FC_TAG_UNLINK:
2093 case EXT4_FC_TAG_CREAT:
2094 case EXT4_FC_TAG_INODE:
2095 case EXT4_FC_TAG_PAD:
2096 state->fc_cur_tag++;
2097 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2098 EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2100 case EXT4_FC_TAG_TAIL:
2101 state->fc_cur_tag++;
2102 memcpy(&tail, val, sizeof(tail));
2103 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2104 EXT4_FC_TAG_BASE_LEN +
2105 offsetof(struct ext4_fc_tail,
2107 if (le32_to_cpu(tail.fc_tid) == expected_tid &&
2108 le32_to_cpu(tail.fc_crc) == state->fc_crc) {
2109 state->fc_replay_num_tags = state->fc_cur_tag;
2110 state->fc_regions_valid =
2111 state->fc_regions_used;
2113 ret = state->fc_replay_num_tags ?
2114 JBD2_FC_REPLAY_STOP : -EFSBADCRC;
2118 case EXT4_FC_TAG_HEAD:
2119 memcpy(&head, val, sizeof(head));
2120 if (le32_to_cpu(head.fc_features) &
2121 ~EXT4_FC_SUPPORTED_FEATURES) {
2125 if (le32_to_cpu(head.fc_tid) != expected_tid) {
2126 ret = JBD2_FC_REPLAY_STOP;
2129 state->fc_cur_tag++;
2130 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2131 EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2134 ret = state->fc_replay_num_tags ?
2135 JBD2_FC_REPLAY_STOP : -ECANCELED;
2137 if (ret < 0 || ret == JBD2_FC_REPLAY_STOP)
2142 trace_ext4_fc_replay_scan(sb, ret, off);
2147 * Main recovery path entry point.
2148 * The meaning of return codes is similar as above.
2150 static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh,
2151 enum passtype pass, int off, tid_t expected_tid)
2153 struct super_block *sb = journal->j_private;
2154 struct ext4_sb_info *sbi = EXT4_SB(sb);
2155 struct ext4_fc_tl_mem tl;
2156 __u8 *start, *end, *cur, *val;
2157 int ret = JBD2_FC_REPLAY_CONTINUE;
2158 struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state;
2159 struct ext4_fc_tail tail;
2161 if (pass == PASS_SCAN) {
2162 state->fc_current_pass = PASS_SCAN;
2163 return ext4_fc_replay_scan(journal, bh, off, expected_tid);
2166 if (state->fc_current_pass != pass) {
2167 state->fc_current_pass = pass;
2168 sbi->s_mount_state |= EXT4_FC_REPLAY;
2170 if (!sbi->s_fc_replay_state.fc_replay_num_tags) {
2171 ext4_debug("Replay stops\n");
2172 ext4_fc_set_bitmaps_and_counters(sb);
2176 #ifdef CONFIG_EXT4_DEBUG
2177 if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) {
2178 pr_warn("Dropping fc block %d because max_replay set\n", off);
2179 return JBD2_FC_REPLAY_STOP;
2183 start = (u8 *)bh->b_data;
2184 end = start + journal->j_blocksize;
2186 for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
2187 cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2188 ext4_fc_get_tl(&tl, cur);
2189 val = cur + EXT4_FC_TAG_BASE_LEN;
2191 if (state->fc_replay_num_tags == 0) {
2192 ret = JBD2_FC_REPLAY_STOP;
2193 ext4_fc_set_bitmaps_and_counters(sb);
2197 ext4_debug("Replay phase, tag:%s\n", tag2str(tl.fc_tag));
2198 state->fc_replay_num_tags--;
2199 switch (tl.fc_tag) {
2200 case EXT4_FC_TAG_LINK:
2201 ret = ext4_fc_replay_link(sb, &tl, val);
2203 case EXT4_FC_TAG_UNLINK:
2204 ret = ext4_fc_replay_unlink(sb, &tl, val);
2206 case EXT4_FC_TAG_ADD_RANGE:
2207 ret = ext4_fc_replay_add_range(sb, &tl, val);
2209 case EXT4_FC_TAG_CREAT:
2210 ret = ext4_fc_replay_create(sb, &tl, val);
2212 case EXT4_FC_TAG_DEL_RANGE:
2213 ret = ext4_fc_replay_del_range(sb, &tl, val);
2215 case EXT4_FC_TAG_INODE:
2216 ret = ext4_fc_replay_inode(sb, &tl, val);
2218 case EXT4_FC_TAG_PAD:
2219 trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0,
2222 case EXT4_FC_TAG_TAIL:
2223 trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL,
2225 memcpy(&tail, val, sizeof(tail));
2226 WARN_ON(le32_to_cpu(tail.fc_tid) != expected_tid);
2228 case EXT4_FC_TAG_HEAD:
2231 trace_ext4_fc_replay(sb, tl.fc_tag, 0, tl.fc_len, 0);
2237 ret = JBD2_FC_REPLAY_CONTINUE;
2242 void ext4_fc_init(struct super_block *sb, journal_t *journal)
2245 * We set replay callback even if fast commit disabled because we may
2246 * could still have fast commit blocks that need to be replayed even if
2247 * fast commit has now been turned off.
2249 journal->j_fc_replay_callback = ext4_fc_replay;
2250 if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
2252 journal->j_fc_cleanup_callback = ext4_fc_cleanup;
2255 static const char * const fc_ineligible_reasons[] = {
2256 [EXT4_FC_REASON_XATTR] = "Extended attributes changed",
2257 [EXT4_FC_REASON_CROSS_RENAME] = "Cross rename",
2258 [EXT4_FC_REASON_JOURNAL_FLAG_CHANGE] = "Journal flag changed",
2259 [EXT4_FC_REASON_NOMEM] = "Insufficient memory",
2260 [EXT4_FC_REASON_SWAP_BOOT] = "Swap boot",
2261 [EXT4_FC_REASON_RESIZE] = "Resize",
2262 [EXT4_FC_REASON_RENAME_DIR] = "Dir renamed",
2263 [EXT4_FC_REASON_FALLOC_RANGE] = "Falloc range op",
2264 [EXT4_FC_REASON_INODE_JOURNAL_DATA] = "Data journalling",
2265 [EXT4_FC_REASON_ENCRYPTED_FILENAME] = "Encrypted filename",
2268 int ext4_fc_info_show(struct seq_file *seq, void *v)
2270 struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private);
2271 struct ext4_fc_stats *stats = &sbi->s_fc_stats;
2274 if (v != SEQ_START_TOKEN)
2278 "fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n",
2279 stats->fc_num_commits, stats->fc_ineligible_commits,
2281 div_u64(stats->s_fc_avg_commit_time, 1000));
2282 seq_puts(seq, "Ineligible reasons:\n");
2283 for (i = 0; i < EXT4_FC_REASON_MAX; i++)
2284 seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i],
2285 stats->fc_ineligible_reason_count[i]);
2290 int __init ext4_fc_init_dentry_cache(void)
2292 ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update,
2293 SLAB_RECLAIM_ACCOUNT);
2295 if (ext4_fc_dentry_cachep == NULL)
2301 void ext4_fc_destroy_dentry_cache(void)
2303 kmem_cache_destroy(ext4_fc_dentry_cachep);