1 // SPDX-License-Identifier: GPL-2.0
4 * fs/ext4/fast_commit.c
6 * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com>
8 * Ext4 fast commits routines.
11 #include "ext4_jbd2.h"
12 #include "ext4_extents.h"
19 * Ext4 fast commits implement fine grained journalling for Ext4.
21 * Fast commits are organized as a log of tag-length-value (TLV) structs. (See
22 * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by
23 * TLV during the recovery phase. For the scenarios for which we currently
24 * don't have replay code, fast commit falls back to full commits.
25 * Fast commits record delta in one of the following three categories.
27 * (A) Directory entry updates:
29 * - EXT4_FC_TAG_UNLINK - records directory entry unlink
30 * - EXT4_FC_TAG_LINK - records directory entry link
31 * - EXT4_FC_TAG_CREAT - records inode and directory entry creation
33 * (B) File specific data range updates:
35 * - EXT4_FC_TAG_ADD_RANGE - records addition of new blocks to an inode
36 * - EXT4_FC_TAG_DEL_RANGE - records deletion of blocks from an inode
38 * (C) Inode metadata (mtime / ctime etc):
40 * - EXT4_FC_TAG_INODE - record the inode that should be replayed
41 * during recovery. Note that iblocks field is
42 * not replayed and instead derived during
46 * With fast commits, we maintain all the directory entry operations in the
47 * order in which they are issued in an in-memory queue. This queue is flushed
48 * to disk during the commit operation. We also maintain a list of inodes
49 * that need to be committed during a fast commit in another in memory queue of
50 * inodes. During the commit operation, we commit in the following order:
52 * [1] Lock inodes for any further data updates by setting COMMITTING state
53 * [2] Submit data buffers of all the inodes
54 * [3] Wait for [2] to complete
55 * [4] Commit all the directory entry updates in the fast commit space
56 * [5] Commit all the changed inode structures
57 * [6] Write tail tag (this tag ensures the atomicity, please read the following
58 * section for more details).
59 * [7] Wait for [4], [5] and [6] to complete.
61 * All the inode updates must call ext4_fc_start_update() before starting an
62 * update. If such an ongoing update is present, fast commit waits for it to
63 * complete. The completion of such an update is marked by
64 * ext4_fc_stop_update().
66 * Fast Commit Ineligibility
67 * -------------------------
68 * Not all operations are supported by fast commits today (e.g extended
69 * attributes). Fast commit ineligibility is marked by calling one of the
70 * two following functions:
72 * - ext4_fc_mark_ineligible(): This makes next fast commit operation to fall
73 * back to full commit. This is useful in case of transient errors.
75 * - ext4_fc_start_ineligible() and ext4_fc_stop_ineligible() - This makes all
76 * the fast commits happening between ext4_fc_start_ineligible() and
77 * ext4_fc_stop_ineligible() and one fast commit after the call to
78 * ext4_fc_stop_ineligible() to fall back to full commits. It is important to
79 * make one more fast commit to fall back to full commit after stop call so
80 * that it guaranteed that the fast commit ineligible operation contained
81 * within ext4_fc_start_ineligible() and ext4_fc_stop_ineligible() is
82 * followed by at least 1 full commit.
84 * Atomicity of commits
85 * --------------------
86 * In order to guarantee atomicity during the commit operation, fast commit
87 * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail
88 * tag contains CRC of the contents and TID of the transaction after which
89 * this fast commit should be applied. Recovery code replays fast commit
90 * logs only if there's at least 1 valid tail present. For every fast commit
91 * operation, there is 1 tail. This means, we may end up with multiple tails
92 * in the fast commit space. Here's an example:
94 * - Create a new file A and remove existing file B
96 * - Append contents to file A
100 * The fast commit space at the end of above operations would look like this:
101 * [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL]
102 * |<--- Fast Commit 1 --->|<--- Fast Commit 2 ---->|
104 * Replay code should thus check for all the valid tails in the FC area.
106 * Fast Commit Replay Idempotence
107 * ------------------------------
109 * Fast commits tags are idempotent in nature provided the recovery code follows
110 * certain rules. The guiding principle that the commit path follows while
111 * committing is that it stores the result of a particular operation instead of
112 * storing the procedure.
114 * Let's consider this rename operation: 'mv /a /b'. Let's assume dirent '/a'
115 * was associated with inode 10. During fast commit, instead of storing this
116 * operation as a procedure "rename a to b", we store the resulting file system
117 * state as a "series" of outcomes:
119 * - Link dirent b to inode 10
121 * - Inode <10> with valid refcount
123 * Now when recovery code runs, it needs "enforce" this state on the file
124 * system. This is what guarantees idempotence of fast commit replay.
126 * Let's take an example of a procedure that is not idempotent and see how fast
127 * commits make it idempotent. Consider following sequence of operations:
129 * rm A; mv B A; read A
132 * (x), (y) and (z) are the points at which we can crash. If we store this
133 * sequence of operations as is then the replay is not idempotent. Let's say
134 * while in replay, we crash at (z). During the second replay, file A (which was
135 * actually created as a result of "mv B A" operation) would get deleted. Thus,
136 * file named A would be absent when we try to read A. So, this sequence of
137 * operations is not idempotent. However, as mentioned above, instead of storing
138 * the procedure fast commits store the outcome of each procedure. Thus the fast
139 * commit log for above procedure would be as follows:
141 * (Let's assume dirent A was linked to inode 10 and dirent B was linked to
142 * inode 11 before the replay)
144 * [Unlink A] [Link A to inode 11] [Unlink B] [Inode 11]
147 * If we crash at (z), we will have file A linked to inode 11. During the second
148 * replay, we will remove file A (inode 11). But we will create it back and make
149 * it point to inode 11. We won't find B, so we'll just skip that step. At this
150 * point, the refcount for inode 11 is not reliable, but that gets fixed by the
151 * replay of last inode 11 tag. Crashes at points (w), (x) and (y) get handled
152 * similarly. Thus, by converting a non-idempotent procedure into a series of
153 * idempotent outcomes, fast commits ensured idempotence during the replay.
158 * 0) Fast commit replay path hardening: Fast commit replay code should use
159 * journal handles to make sure all the updates it does during the replay
160 * path are atomic. With that if we crash during fast commit replay, after
161 * trying to do recovery again, we will find a file system where fast commit
162 * area is invalid (because new full commit would be found). In order to deal
163 * with that, fast commit replay code should ensure that the "FC_REPLAY"
164 * superblock state is persisted before starting the replay, so that after
165 * the crash, fast commit recovery code can look at that flag and perform
166 * fast commit recovery even if that area is invalidated by later full
169 * 1) Make fast commit atomic updates more fine grained. Today, a fast commit
170 * eligible update must be protected within ext4_fc_start_update() and
171 * ext4_fc_stop_update(). These routines are called at much higher
172 * routines. This can be made more fine grained by combining with
173 * ext4_journal_start().
175 * 2) Same above for ext4_fc_start_ineligible() and ext4_fc_stop_ineligible()
177 * 3) Handle more ineligible cases.
180 #include <trace/events/ext4.h>
181 static struct kmem_cache *ext4_fc_dentry_cachep;
183 static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
185 BUFFER_TRACE(bh, "");
187 ext4_debug("%s: Block %lld up-to-date",
188 __func__, bh->b_blocknr);
189 set_buffer_uptodate(bh);
191 ext4_debug("%s: Block %lld not up-to-date",
192 __func__, bh->b_blocknr);
193 clear_buffer_uptodate(bh);
199 static inline void ext4_fc_reset_inode(struct inode *inode)
201 struct ext4_inode_info *ei = EXT4_I(inode);
203 ei->i_fc_lblk_start = 0;
204 ei->i_fc_lblk_len = 0;
207 void ext4_fc_init_inode(struct inode *inode)
209 struct ext4_inode_info *ei = EXT4_I(inode);
211 ext4_fc_reset_inode(inode);
212 ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING);
213 INIT_LIST_HEAD(&ei->i_fc_list);
214 init_waitqueue_head(&ei->i_fc_wait);
215 atomic_set(&ei->i_fc_updates, 0);
218 /* This function must be called with sbi->s_fc_lock held. */
219 static void ext4_fc_wait_committing_inode(struct inode *inode)
220 __releases(&EXT4_SB(inode->i_sb)->s_fc_lock)
222 wait_queue_head_t *wq;
223 struct ext4_inode_info *ei = EXT4_I(inode);
225 #if (BITS_PER_LONG < 64)
226 DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
227 EXT4_STATE_FC_COMMITTING);
228 wq = bit_waitqueue(&ei->i_state_flags,
229 EXT4_STATE_FC_COMMITTING);
231 DEFINE_WAIT_BIT(wait, &ei->i_flags,
232 EXT4_STATE_FC_COMMITTING);
233 wq = bit_waitqueue(&ei->i_flags,
234 EXT4_STATE_FC_COMMITTING);
236 lockdep_assert_held(&EXT4_SB(inode->i_sb)->s_fc_lock);
237 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
238 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
240 finish_wait(wq, &wait.wq_entry);
244 * Inform Ext4's fast about start of an inode update
246 * This function is called by the high level call VFS callbacks before
247 * performing any inode update. This function blocks if there's an ongoing
248 * fast commit on the inode in question.
250 void ext4_fc_start_update(struct inode *inode)
252 struct ext4_inode_info *ei = EXT4_I(inode);
254 if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
255 (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
259 spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
260 if (list_empty(&ei->i_fc_list))
263 if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
264 ext4_fc_wait_committing_inode(inode);
268 atomic_inc(&ei->i_fc_updates);
269 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
273 * Stop inode update and wake up waiting fast commits if any.
275 void ext4_fc_stop_update(struct inode *inode)
277 struct ext4_inode_info *ei = EXT4_I(inode);
279 if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
280 (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
283 if (atomic_dec_and_test(&ei->i_fc_updates))
284 wake_up_all(&ei->i_fc_wait);
288 * Remove inode from fast commit list. If the inode is being committed
289 * we wait until inode commit is done.
291 void ext4_fc_del(struct inode *inode)
293 struct ext4_inode_info *ei = EXT4_I(inode);
295 if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
296 (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
300 spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
301 if (list_empty(&ei->i_fc_list)) {
302 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
306 if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
307 ext4_fc_wait_committing_inode(inode);
310 list_del_init(&ei->i_fc_list);
311 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
315 * Mark file system as fast commit ineligible. This means that next commit
316 * operation would result in a full jbd2 commit.
318 void ext4_fc_mark_ineligible(struct super_block *sb, int reason)
320 struct ext4_sb_info *sbi = EXT4_SB(sb);
322 if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
323 (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))
326 ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
327 WARN_ON(reason >= EXT4_FC_REASON_MAX);
328 sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
332 * Start a fast commit ineligible update. Any commits that happen while
333 * such an operation is in progress fall back to full commits.
335 void ext4_fc_start_ineligible(struct super_block *sb, int reason)
337 struct ext4_sb_info *sbi = EXT4_SB(sb);
339 if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
340 (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))
343 WARN_ON(reason >= EXT4_FC_REASON_MAX);
344 sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
345 atomic_inc(&sbi->s_fc_ineligible_updates);
349 * Stop a fast commit ineligible update. We set EXT4_MF_FC_INELIGIBLE flag here
350 * to ensure that after stopping the ineligible update, at least one full
351 * commit takes place.
353 void ext4_fc_stop_ineligible(struct super_block *sb)
355 if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
356 (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))
359 ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
360 atomic_dec(&EXT4_SB(sb)->s_fc_ineligible_updates);
363 static inline int ext4_fc_is_ineligible(struct super_block *sb)
365 return (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE) ||
366 atomic_read(&EXT4_SB(sb)->s_fc_ineligible_updates));
370 * Generic fast commit tracking function. If this is the first time this we are
371 * called after a full commit, we initialize fast commit fields and then call
372 * __fc_track_fn() with update = 0. If we have already been called after a full
373 * commit, we pass update = 1. Based on that, the track function can determine
374 * if it needs to track a field for the first time or if it needs to just
375 * update the previously tracked value.
377 * If enqueue is set, this function enqueues the inode in fast commit list.
379 static int ext4_fc_track_template(
380 handle_t *handle, struct inode *inode,
381 int (*__fc_track_fn)(struct inode *, void *, bool),
382 void *args, int enqueue)
385 struct ext4_inode_info *ei = EXT4_I(inode);
386 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
390 if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
391 (sbi->s_mount_state & EXT4_FC_REPLAY))
394 if (ext4_fc_is_ineligible(inode->i_sb))
397 tid = handle->h_transaction->t_tid;
398 mutex_lock(&ei->i_fc_lock);
399 if (tid == ei->i_sync_tid) {
402 ext4_fc_reset_inode(inode);
403 ei->i_sync_tid = tid;
405 ret = __fc_track_fn(inode, args, update);
406 mutex_unlock(&ei->i_fc_lock);
411 spin_lock(&sbi->s_fc_lock);
412 if (list_empty(&EXT4_I(inode)->i_fc_list))
413 list_add_tail(&EXT4_I(inode)->i_fc_list,
414 (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_COMMITTING)) ?
415 &sbi->s_fc_q[FC_Q_STAGING] :
416 &sbi->s_fc_q[FC_Q_MAIN]);
417 spin_unlock(&sbi->s_fc_lock);
422 struct __track_dentry_update_args {
423 struct dentry *dentry;
427 /* __track_fn for directory entry updates. Called with ei->i_fc_lock. */
428 static int __track_dentry_update(struct inode *inode, void *arg, bool update)
430 struct ext4_fc_dentry_update *node;
431 struct ext4_inode_info *ei = EXT4_I(inode);
432 struct __track_dentry_update_args *dentry_update =
433 (struct __track_dentry_update_args *)arg;
434 struct dentry *dentry = dentry_update->dentry;
435 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
437 mutex_unlock(&ei->i_fc_lock);
438 node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS);
440 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM);
441 mutex_lock(&ei->i_fc_lock);
445 node->fcd_op = dentry_update->op;
446 node->fcd_parent = dentry->d_parent->d_inode->i_ino;
447 node->fcd_ino = inode->i_ino;
448 if (dentry->d_name.len > DNAME_INLINE_LEN) {
449 node->fcd_name.name = kmalloc(dentry->d_name.len, GFP_NOFS);
450 if (!node->fcd_name.name) {
451 kmem_cache_free(ext4_fc_dentry_cachep, node);
452 ext4_fc_mark_ineligible(inode->i_sb,
453 EXT4_FC_REASON_NOMEM);
454 mutex_lock(&ei->i_fc_lock);
457 memcpy((u8 *)node->fcd_name.name, dentry->d_name.name,
460 memcpy(node->fcd_iname, dentry->d_name.name,
462 node->fcd_name.name = node->fcd_iname;
464 node->fcd_name.len = dentry->d_name.len;
466 spin_lock(&sbi->s_fc_lock);
467 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_COMMITTING))
468 list_add_tail(&node->fcd_list,
469 &sbi->s_fc_dentry_q[FC_Q_STAGING]);
471 list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]);
472 spin_unlock(&sbi->s_fc_lock);
473 mutex_lock(&ei->i_fc_lock);
478 void __ext4_fc_track_unlink(handle_t *handle,
479 struct inode *inode, struct dentry *dentry)
481 struct __track_dentry_update_args args;
484 args.dentry = dentry;
485 args.op = EXT4_FC_TAG_UNLINK;
487 ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
489 trace_ext4_fc_track_unlink(inode, dentry, ret);
492 void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry)
494 __ext4_fc_track_unlink(handle, d_inode(dentry), dentry);
497 void __ext4_fc_track_link(handle_t *handle,
498 struct inode *inode, struct dentry *dentry)
500 struct __track_dentry_update_args args;
503 args.dentry = dentry;
504 args.op = EXT4_FC_TAG_LINK;
506 ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
508 trace_ext4_fc_track_link(inode, dentry, ret);
511 void ext4_fc_track_link(handle_t *handle, struct dentry *dentry)
513 __ext4_fc_track_link(handle, d_inode(dentry), dentry);
516 void __ext4_fc_track_create(handle_t *handle, struct inode *inode,
517 struct dentry *dentry)
519 struct __track_dentry_update_args args;
522 args.dentry = dentry;
523 args.op = EXT4_FC_TAG_CREAT;
525 ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
527 trace_ext4_fc_track_create(inode, dentry, ret);
530 void ext4_fc_track_create(handle_t *handle, struct dentry *dentry)
532 __ext4_fc_track_create(handle, d_inode(dentry), dentry);
535 /* __track_fn for inode tracking */
536 static int __track_inode(struct inode *inode, void *arg, bool update)
541 EXT4_I(inode)->i_fc_lblk_len = 0;
546 void ext4_fc_track_inode(handle_t *handle, struct inode *inode)
550 if (S_ISDIR(inode->i_mode))
553 if (ext4_should_journal_data(inode)) {
554 ext4_fc_mark_ineligible(inode->i_sb,
555 EXT4_FC_REASON_INODE_JOURNAL_DATA);
559 ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1);
560 trace_ext4_fc_track_inode(inode, ret);
563 struct __track_range_args {
564 ext4_lblk_t start, end;
567 /* __track_fn for tracking data updates */
568 static int __track_range(struct inode *inode, void *arg, bool update)
570 struct ext4_inode_info *ei = EXT4_I(inode);
571 ext4_lblk_t oldstart;
572 struct __track_range_args *__arg =
573 (struct __track_range_args *)arg;
575 if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) {
576 ext4_debug("Special inode %ld being modified\n", inode->i_ino);
580 oldstart = ei->i_fc_lblk_start;
582 if (update && ei->i_fc_lblk_len > 0) {
583 ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start);
585 max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) -
586 ei->i_fc_lblk_start + 1;
588 ei->i_fc_lblk_start = __arg->start;
589 ei->i_fc_lblk_len = __arg->end - __arg->start + 1;
595 void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start,
598 struct __track_range_args args;
601 if (S_ISDIR(inode->i_mode))
607 ret = ext4_fc_track_template(handle, inode, __track_range, &args, 1);
609 trace_ext4_fc_track_range(inode, start, end, ret);
612 static void ext4_fc_submit_bh(struct super_block *sb, bool is_tail)
614 int write_flags = REQ_SYNC;
615 struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh;
617 /* Add REQ_FUA | REQ_PREFLUSH only its tail */
618 if (test_opt(sb, BARRIER) && is_tail)
619 write_flags |= REQ_FUA | REQ_PREFLUSH;
621 set_buffer_dirty(bh);
622 set_buffer_uptodate(bh);
623 bh->b_end_io = ext4_end_buffer_io_sync;
624 submit_bh(REQ_OP_WRITE, write_flags, bh);
625 EXT4_SB(sb)->s_fc_bh = NULL;
628 /* Ext4 commit path routines */
630 /* memzero and update CRC */
631 static void *ext4_fc_memzero(struct super_block *sb, void *dst, int len,
636 ret = memset(dst, 0, len);
638 *crc = ext4_chksum(EXT4_SB(sb), *crc, dst, len);
643 * Allocate len bytes on a fast commit buffer.
645 * During the commit time this function is used to manage fast commit
646 * block space. We don't split a fast commit log onto different
647 * blocks. So this function makes sure that if there's not enough space
648 * on the current block, the remaining space in the current block is
649 * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case,
650 * new block is from jbd2 and CRC is updated to reflect the padding
653 static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc)
655 struct ext4_fc_tl *tl;
656 struct ext4_sb_info *sbi = EXT4_SB(sb);
657 struct buffer_head *bh;
658 int bsize = sbi->s_journal->j_blocksize;
659 int ret, off = sbi->s_fc_bytes % bsize;
663 * After allocating len, we should have space at least for a 0 byte
666 if (len + sizeof(struct ext4_fc_tl) > bsize)
669 if (bsize - off - 1 > len + sizeof(struct ext4_fc_tl)) {
671 * Only allocate from current buffer if we have enough space for
672 * this request AND we have space to add a zero byte padding.
675 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
680 sbi->s_fc_bytes += len;
681 return sbi->s_fc_bh->b_data + off;
683 /* Need to add PAD tag */
684 tl = (struct ext4_fc_tl *)(sbi->s_fc_bh->b_data + off);
685 tl->fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD);
686 pad_len = bsize - off - 1 - sizeof(struct ext4_fc_tl);
687 tl->fc_len = cpu_to_le16(pad_len);
689 *crc = ext4_chksum(sbi, *crc, tl, sizeof(*tl));
691 ext4_fc_memzero(sb, tl + 1, pad_len, crc);
692 ext4_fc_submit_bh(sb, false);
694 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
698 sbi->s_fc_bytes = (sbi->s_fc_bytes / bsize + 1) * bsize + len;
699 return sbi->s_fc_bh->b_data;
702 /* memcpy to fc reserved space and update CRC */
703 static void *ext4_fc_memcpy(struct super_block *sb, void *dst, const void *src,
707 *crc = ext4_chksum(EXT4_SB(sb), *crc, src, len);
708 return memcpy(dst, src, len);
712 * Complete a fast commit by writing tail tag.
714 * Writing tail tag marks the end of a fast commit. In order to guarantee
715 * atomicity, after writing tail tag, even if there's space remaining
716 * in the block, next commit shouldn't use it. That's why tail tag
717 * has the length as that of the remaining space on the block.
719 static int ext4_fc_write_tail(struct super_block *sb, u32 crc)
721 struct ext4_sb_info *sbi = EXT4_SB(sb);
722 struct ext4_fc_tl tl;
723 struct ext4_fc_tail tail;
724 int off, bsize = sbi->s_journal->j_blocksize;
728 * ext4_fc_reserve_space takes care of allocating an extra block if
729 * there's no enough space on this block for accommodating this tail.
731 dst = ext4_fc_reserve_space(sb, sizeof(tl) + sizeof(tail), &crc);
735 off = sbi->s_fc_bytes % bsize;
737 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL);
738 tl.fc_len = cpu_to_le16(bsize - off - 1 + sizeof(struct ext4_fc_tail));
739 sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize);
741 ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), &crc);
743 tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid);
744 ext4_fc_memcpy(sb, dst, &tail.fc_tid, sizeof(tail.fc_tid), &crc);
745 dst += sizeof(tail.fc_tid);
746 tail.fc_crc = cpu_to_le32(crc);
747 ext4_fc_memcpy(sb, dst, &tail.fc_crc, sizeof(tail.fc_crc), NULL);
749 ext4_fc_submit_bh(sb, true);
755 * Adds tag, length, value and updates CRC. Returns true if tlv was added.
756 * Returns false if there's not enough space.
758 static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val,
761 struct ext4_fc_tl tl;
764 dst = ext4_fc_reserve_space(sb, sizeof(tl) + len, crc);
768 tl.fc_tag = cpu_to_le16(tag);
769 tl.fc_len = cpu_to_le16(len);
771 ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), crc);
772 ext4_fc_memcpy(sb, dst + sizeof(tl), val, len, crc);
777 /* Same as above, but adds dentry tlv. */
778 static bool ext4_fc_add_dentry_tlv(struct super_block *sb, u32 *crc,
779 struct ext4_fc_dentry_update *fc_dentry)
781 struct ext4_fc_dentry_info fcd;
782 struct ext4_fc_tl tl;
783 int dlen = fc_dentry->fcd_name.len;
784 u8 *dst = ext4_fc_reserve_space(sb, sizeof(tl) + sizeof(fcd) + dlen,
790 fcd.fc_parent_ino = cpu_to_le32(fc_dentry->fcd_parent);
791 fcd.fc_ino = cpu_to_le32(fc_dentry->fcd_ino);
792 tl.fc_tag = cpu_to_le16(fc_dentry->fcd_op);
793 tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen);
794 ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), crc);
796 ext4_fc_memcpy(sb, dst, &fcd, sizeof(fcd), crc);
798 ext4_fc_memcpy(sb, dst, fc_dentry->fcd_name.name, dlen, crc);
805 * Writes inode in the fast commit space under TLV with tag @tag.
806 * Returns 0 on success, error on failure.
808 static int ext4_fc_write_inode(struct inode *inode, u32 *crc)
810 struct ext4_inode_info *ei = EXT4_I(inode);
811 int inode_len = EXT4_GOOD_OLD_INODE_SIZE;
813 struct ext4_iloc iloc;
814 struct ext4_fc_inode fc_inode;
815 struct ext4_fc_tl tl;
818 ret = ext4_get_inode_loc(inode, &iloc);
822 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE)
823 inode_len += ei->i_extra_isize;
825 fc_inode.fc_ino = cpu_to_le32(inode->i_ino);
826 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE);
827 tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino));
829 dst = ext4_fc_reserve_space(inode->i_sb,
830 sizeof(tl) + inode_len + sizeof(fc_inode.fc_ino), crc);
834 if (!ext4_fc_memcpy(inode->i_sb, dst, &tl, sizeof(tl), crc))
837 if (!ext4_fc_memcpy(inode->i_sb, dst, &fc_inode, sizeof(fc_inode), crc))
839 dst += sizeof(fc_inode);
840 if (!ext4_fc_memcpy(inode->i_sb, dst, (u8 *)ext4_raw_inode(&iloc),
848 * Writes updated data ranges for the inode in question. Updates CRC.
849 * Returns 0 on success, error otherwise.
851 static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc)
853 ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size;
854 struct ext4_inode_info *ei = EXT4_I(inode);
855 struct ext4_map_blocks map;
856 struct ext4_fc_add_range fc_ext;
857 struct ext4_fc_del_range lrange;
858 struct ext4_extent *ex;
861 mutex_lock(&ei->i_fc_lock);
862 if (ei->i_fc_lblk_len == 0) {
863 mutex_unlock(&ei->i_fc_lock);
866 old_blk_size = ei->i_fc_lblk_start;
867 new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1;
868 ei->i_fc_lblk_len = 0;
869 mutex_unlock(&ei->i_fc_lock);
871 cur_lblk_off = old_blk_size;
872 jbd_debug(1, "%s: will try writing %d to %d for inode %ld\n",
873 __func__, cur_lblk_off, new_blk_size, inode->i_ino);
875 while (cur_lblk_off <= new_blk_size) {
876 map.m_lblk = cur_lblk_off;
877 map.m_len = new_blk_size - cur_lblk_off + 1;
878 ret = ext4_map_blocks(NULL, inode, &map, 0);
882 if (map.m_len == 0) {
888 lrange.fc_ino = cpu_to_le32(inode->i_ino);
889 lrange.fc_lblk = cpu_to_le32(map.m_lblk);
890 lrange.fc_len = cpu_to_le32(map.m_len);
891 if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE,
892 sizeof(lrange), (u8 *)&lrange, crc))
895 unsigned int max = (map.m_flags & EXT4_MAP_UNWRITTEN) ?
896 EXT_UNWRITTEN_MAX_LEN : EXT_INIT_MAX_LEN;
898 /* Limit the number of blocks in one extent */
899 map.m_len = min(max, map.m_len);
901 fc_ext.fc_ino = cpu_to_le32(inode->i_ino);
902 ex = (struct ext4_extent *)&fc_ext.fc_ex;
903 ex->ee_block = cpu_to_le32(map.m_lblk);
904 ex->ee_len = cpu_to_le16(map.m_len);
905 ext4_ext_store_pblock(ex, map.m_pblk);
906 if (map.m_flags & EXT4_MAP_UNWRITTEN)
907 ext4_ext_mark_unwritten(ex);
909 ext4_ext_mark_initialized(ex);
910 if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE,
911 sizeof(fc_ext), (u8 *)&fc_ext, crc))
915 cur_lblk_off += map.m_len;
922 /* Submit data for all the fast commit inodes */
923 static int ext4_fc_submit_inode_data_all(journal_t *journal)
925 struct super_block *sb = (struct super_block *)(journal->j_private);
926 struct ext4_sb_info *sbi = EXT4_SB(sb);
927 struct ext4_inode_info *ei;
930 spin_lock(&sbi->s_fc_lock);
931 ext4_set_mount_flag(sb, EXT4_MF_FC_COMMITTING);
932 list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
933 ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING);
934 while (atomic_read(&ei->i_fc_updates)) {
937 prepare_to_wait(&ei->i_fc_wait, &wait,
938 TASK_UNINTERRUPTIBLE);
939 if (atomic_read(&ei->i_fc_updates)) {
940 spin_unlock(&sbi->s_fc_lock);
942 spin_lock(&sbi->s_fc_lock);
944 finish_wait(&ei->i_fc_wait, &wait);
946 spin_unlock(&sbi->s_fc_lock);
947 ret = jbd2_submit_inode_data(ei->jinode);
950 spin_lock(&sbi->s_fc_lock);
952 spin_unlock(&sbi->s_fc_lock);
957 /* Wait for completion of data for all the fast commit inodes */
958 static int ext4_fc_wait_inode_data_all(journal_t *journal)
960 struct super_block *sb = (struct super_block *)(journal->j_private);
961 struct ext4_sb_info *sbi = EXT4_SB(sb);
962 struct ext4_inode_info *pos, *n;
965 spin_lock(&sbi->s_fc_lock);
966 list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
967 if (!ext4_test_inode_state(&pos->vfs_inode,
968 EXT4_STATE_FC_COMMITTING))
970 spin_unlock(&sbi->s_fc_lock);
972 ret = jbd2_wait_inode_data(journal, pos->jinode);
975 spin_lock(&sbi->s_fc_lock);
977 spin_unlock(&sbi->s_fc_lock);
982 /* Commit all the directory entry updates */
983 static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc)
984 __acquires(&sbi->s_fc_lock)
985 __releases(&sbi->s_fc_lock)
987 struct super_block *sb = (struct super_block *)(journal->j_private);
988 struct ext4_sb_info *sbi = EXT4_SB(sb);
989 struct ext4_fc_dentry_update *fc_dentry, *fc_dentry_n;
991 struct ext4_inode_info *ei, *ei_n;
994 if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN]))
996 list_for_each_entry_safe(fc_dentry, fc_dentry_n,
997 &sbi->s_fc_dentry_q[FC_Q_MAIN], fcd_list) {
998 if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) {
999 spin_unlock(&sbi->s_fc_lock);
1000 if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
1004 spin_lock(&sbi->s_fc_lock);
1009 list_for_each_entry_safe(ei, ei_n, &sbi->s_fc_q[FC_Q_MAIN],
1011 if (ei->vfs_inode.i_ino == fc_dentry->fcd_ino) {
1012 inode = &ei->vfs_inode;
1017 * If we don't find inode in our list, then it was deleted,
1018 * in which case, we don't need to record it's create tag.
1022 spin_unlock(&sbi->s_fc_lock);
1025 * We first write the inode and then the create dirent. This
1026 * allows the recovery code to create an unnamed inode first
1027 * and then link it to a directory entry. This allows us
1028 * to use namei.c routines almost as is and simplifies
1029 * the recovery code.
1031 ret = ext4_fc_write_inode(inode, crc);
1035 ret = ext4_fc_write_inode_data(inode, crc);
1039 if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
1044 spin_lock(&sbi->s_fc_lock);
1048 spin_lock(&sbi->s_fc_lock);
1052 static int ext4_fc_perform_commit(journal_t *journal)
1054 struct super_block *sb = (struct super_block *)(journal->j_private);
1055 struct ext4_sb_info *sbi = EXT4_SB(sb);
1056 struct ext4_inode_info *iter;
1057 struct ext4_fc_head head;
1058 struct inode *inode;
1059 struct blk_plug plug;
1063 ret = ext4_fc_submit_inode_data_all(journal);
1067 ret = ext4_fc_wait_inode_data_all(journal);
1072 * If file system device is different from journal device, issue a cache
1073 * flush before we start writing fast commit blocks.
1075 if (journal->j_fs_dev != journal->j_dev)
1076 blkdev_issue_flush(journal->j_fs_dev);
1078 blk_start_plug(&plug);
1079 if (sbi->s_fc_bytes == 0) {
1081 * Add a head tag only if this is the first fast commit
1084 head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES);
1085 head.fc_tid = cpu_to_le32(
1086 sbi->s_journal->j_running_transaction->t_tid);
1087 if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head),
1088 (u8 *)&head, &crc)) {
1094 spin_lock(&sbi->s_fc_lock);
1095 ret = ext4_fc_commit_dentry_updates(journal, &crc);
1097 spin_unlock(&sbi->s_fc_lock);
1101 list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1102 inode = &iter->vfs_inode;
1103 if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING))
1106 spin_unlock(&sbi->s_fc_lock);
1107 ret = ext4_fc_write_inode_data(inode, &crc);
1110 ret = ext4_fc_write_inode(inode, &crc);
1113 spin_lock(&sbi->s_fc_lock);
1115 spin_unlock(&sbi->s_fc_lock);
1117 ret = ext4_fc_write_tail(sb, crc);
1120 blk_finish_plug(&plug);
1125 * The main commit entry point. Performs a fast commit for transaction
1126 * commit_tid if needed. If it's not possible to perform a fast commit
1127 * due to various reasons, we fall back to full commit. Returns 0
1128 * on success, error otherwise.
1130 int ext4_fc_commit(journal_t *journal, tid_t commit_tid)
1132 struct super_block *sb = (struct super_block *)(journal->j_private);
1133 struct ext4_sb_info *sbi = EXT4_SB(sb);
1134 int nblks = 0, ret, bsize = journal->j_blocksize;
1135 int subtid = atomic_read(&sbi->s_fc_subtid);
1136 int reason = EXT4_FC_REASON_OK, fc_bufs_before = 0;
1137 ktime_t start_time, commit_time;
1139 trace_ext4_fc_commit_start(sb);
1141 start_time = ktime_get();
1143 if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
1144 (ext4_fc_is_ineligible(sb))) {
1145 reason = EXT4_FC_REASON_INELIGIBLE;
1150 ret = jbd2_fc_begin_commit(journal, commit_tid);
1151 if (ret == -EALREADY) {
1152 /* There was an ongoing commit, check if we need to restart */
1153 if (atomic_read(&sbi->s_fc_subtid) <= subtid &&
1154 commit_tid > journal->j_commit_sequence)
1156 reason = EXT4_FC_REASON_ALREADY_COMMITTED;
1159 sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1160 reason = EXT4_FC_REASON_FC_START_FAILED;
1164 fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize;
1165 ret = ext4_fc_perform_commit(journal);
1167 sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1168 reason = EXT4_FC_REASON_FC_FAILED;
1171 nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before;
1172 ret = jbd2_fc_wait_bufs(journal, nblks);
1174 sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1175 reason = EXT4_FC_REASON_FC_FAILED;
1178 atomic_inc(&sbi->s_fc_subtid);
1179 jbd2_fc_end_commit(journal);
1181 /* Has any ineligible update happened since we started? */
1182 if (reason == EXT4_FC_REASON_OK && ext4_fc_is_ineligible(sb)) {
1183 sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1184 reason = EXT4_FC_REASON_INELIGIBLE;
1187 spin_lock(&sbi->s_fc_lock);
1188 if (reason != EXT4_FC_REASON_OK &&
1189 reason != EXT4_FC_REASON_ALREADY_COMMITTED) {
1190 sbi->s_fc_stats.fc_ineligible_commits++;
1192 sbi->s_fc_stats.fc_num_commits++;
1193 sbi->s_fc_stats.fc_numblks += nblks;
1195 spin_unlock(&sbi->s_fc_lock);
1196 nblks = (reason == EXT4_FC_REASON_OK) ? nblks : 0;
1197 trace_ext4_fc_commit_stop(sb, nblks, reason);
1198 commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1200 * weight the commit time higher than the average time so we don't
1201 * react too strongly to vast changes in the commit time
1203 if (likely(sbi->s_fc_avg_commit_time))
1204 sbi->s_fc_avg_commit_time = (commit_time +
1205 sbi->s_fc_avg_commit_time * 3) / 4;
1207 sbi->s_fc_avg_commit_time = commit_time;
1209 "Fast commit ended with blks = %d, reason = %d, subtid - %d",
1210 nblks, reason, subtid);
1211 if (reason == EXT4_FC_REASON_FC_FAILED)
1212 return jbd2_fc_end_commit_fallback(journal);
1213 if (reason == EXT4_FC_REASON_FC_START_FAILED ||
1214 reason == EXT4_FC_REASON_INELIGIBLE)
1215 return jbd2_complete_transaction(journal, commit_tid);
1220 * Fast commit cleanup routine. This is called after every fast commit and
1221 * full commit. full is true if we are called after a full commit.
1223 static void ext4_fc_cleanup(journal_t *journal, int full)
1225 struct super_block *sb = journal->j_private;
1226 struct ext4_sb_info *sbi = EXT4_SB(sb);
1227 struct ext4_inode_info *iter, *iter_n;
1228 struct ext4_fc_dentry_update *fc_dentry;
1230 if (full && sbi->s_fc_bh)
1231 sbi->s_fc_bh = NULL;
1233 jbd2_fc_release_bufs(journal);
1235 spin_lock(&sbi->s_fc_lock);
1236 list_for_each_entry_safe(iter, iter_n, &sbi->s_fc_q[FC_Q_MAIN],
1238 list_del_init(&iter->i_fc_list);
1239 ext4_clear_inode_state(&iter->vfs_inode,
1240 EXT4_STATE_FC_COMMITTING);
1241 ext4_fc_reset_inode(&iter->vfs_inode);
1242 /* Make sure EXT4_STATE_FC_COMMITTING bit is clear */
1244 #if (BITS_PER_LONG < 64)
1245 wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING);
1247 wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING);
1251 while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) {
1252 fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN],
1253 struct ext4_fc_dentry_update,
1255 list_del_init(&fc_dentry->fcd_list);
1256 spin_unlock(&sbi->s_fc_lock);
1258 if (fc_dentry->fcd_name.name &&
1259 fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
1260 kfree(fc_dentry->fcd_name.name);
1261 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
1262 spin_lock(&sbi->s_fc_lock);
1265 list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING],
1266 &sbi->s_fc_dentry_q[FC_Q_MAIN]);
1267 list_splice_init(&sbi->s_fc_q[FC_Q_STAGING],
1268 &sbi->s_fc_q[FC_Q_MAIN]);
1270 ext4_clear_mount_flag(sb, EXT4_MF_FC_COMMITTING);
1271 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
1274 sbi->s_fc_bytes = 0;
1275 spin_unlock(&sbi->s_fc_lock);
1276 trace_ext4_fc_stats(sb);
1279 /* Ext4 Replay Path Routines */
1281 /* Helper struct for dentry replay routines */
1282 struct dentry_info_args {
1283 int parent_ino, dname_len, ino, inode_len;
1287 static inline void tl_to_darg(struct dentry_info_args *darg,
1288 struct ext4_fc_tl *tl, u8 *val)
1290 struct ext4_fc_dentry_info fcd;
1292 memcpy(&fcd, val, sizeof(fcd));
1294 darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino);
1295 darg->ino = le32_to_cpu(fcd.fc_ino);
1296 darg->dname = val + offsetof(struct ext4_fc_dentry_info, fc_dname);
1297 darg->dname_len = le16_to_cpu(tl->fc_len) -
1298 sizeof(struct ext4_fc_dentry_info);
1301 /* Unlink replay function */
1302 static int ext4_fc_replay_unlink(struct super_block *sb, struct ext4_fc_tl *tl,
1305 struct inode *inode, *old_parent;
1307 struct dentry_info_args darg;
1310 tl_to_darg(&darg, tl, val);
1312 trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino,
1313 darg.parent_ino, darg.dname_len);
1315 entry.name = darg.dname;
1316 entry.len = darg.dname_len;
1317 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1319 if (IS_ERR(inode)) {
1320 jbd_debug(1, "Inode %d not found", darg.ino);
1324 old_parent = ext4_iget(sb, darg.parent_ino,
1326 if (IS_ERR(old_parent)) {
1327 jbd_debug(1, "Dir with inode %d not found", darg.parent_ino);
1332 ret = __ext4_unlink(NULL, old_parent, &entry, inode);
1333 /* -ENOENT ok coz it might not exist anymore. */
1341 static int ext4_fc_replay_link_internal(struct super_block *sb,
1342 struct dentry_info_args *darg,
1343 struct inode *inode)
1345 struct inode *dir = NULL;
1346 struct dentry *dentry_dir = NULL, *dentry_inode = NULL;
1347 struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len);
1350 dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL);
1352 jbd_debug(1, "Dir with inode %d not found.", darg->parent_ino);
1357 dentry_dir = d_obtain_alias(dir);
1358 if (IS_ERR(dentry_dir)) {
1359 jbd_debug(1, "Failed to obtain dentry");
1364 dentry_inode = d_alloc(dentry_dir, &qstr_dname);
1365 if (!dentry_inode) {
1366 jbd_debug(1, "Inode dentry not created.");
1371 ret = __ext4_link(dir, inode, dentry_inode);
1373 * It's possible that link already existed since data blocks
1374 * for the dir in question got persisted before we crashed OR
1375 * we replayed this tag and crashed before the entire replay
1378 if (ret && ret != -EEXIST) {
1379 jbd_debug(1, "Failed to link\n");
1392 d_drop(dentry_inode);
1399 /* Link replay function */
1400 static int ext4_fc_replay_link(struct super_block *sb, struct ext4_fc_tl *tl,
1403 struct inode *inode;
1404 struct dentry_info_args darg;
1407 tl_to_darg(&darg, tl, val);
1408 trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino,
1409 darg.parent_ino, darg.dname_len);
1411 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1412 if (IS_ERR(inode)) {
1413 jbd_debug(1, "Inode not found.");
1417 ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1423 * Record all the modified inodes during replay. We use this later to setup
1424 * block bitmaps correctly.
1426 static int ext4_fc_record_modified_inode(struct super_block *sb, int ino)
1428 struct ext4_fc_replay_state *state;
1431 state = &EXT4_SB(sb)->s_fc_replay_state;
1432 for (i = 0; i < state->fc_modified_inodes_used; i++)
1433 if (state->fc_modified_inodes[i] == ino)
1435 if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) {
1436 state->fc_modified_inodes_size +=
1437 EXT4_FC_REPLAY_REALLOC_INCREMENT;
1438 state->fc_modified_inodes = krealloc(
1439 state->fc_modified_inodes, sizeof(int) *
1440 state->fc_modified_inodes_size,
1442 if (!state->fc_modified_inodes)
1445 state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino;
1450 * Inode replay function
1452 static int ext4_fc_replay_inode(struct super_block *sb, struct ext4_fc_tl *tl,
1455 struct ext4_fc_inode fc_inode;
1456 struct ext4_inode *raw_inode;
1457 struct ext4_inode *raw_fc_inode;
1458 struct inode *inode = NULL;
1459 struct ext4_iloc iloc;
1460 int inode_len, ino, ret, tag = le16_to_cpu(tl->fc_tag);
1461 struct ext4_extent_header *eh;
1463 memcpy(&fc_inode, val, sizeof(fc_inode));
1465 ino = le32_to_cpu(fc_inode.fc_ino);
1466 trace_ext4_fc_replay(sb, tag, ino, 0, 0);
1468 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1469 if (!IS_ERR(inode)) {
1470 ext4_ext_clear_bb(inode);
1475 ext4_fc_record_modified_inode(sb, ino);
1477 raw_fc_inode = (struct ext4_inode *)
1478 (val + offsetof(struct ext4_fc_inode, fc_raw_inode));
1479 ret = ext4_get_fc_inode_loc(sb, ino, &iloc);
1483 inode_len = le16_to_cpu(tl->fc_len) - sizeof(struct ext4_fc_inode);
1484 raw_inode = ext4_raw_inode(&iloc);
1486 memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block));
1487 memcpy(&raw_inode->i_generation, &raw_fc_inode->i_generation,
1488 inode_len - offsetof(struct ext4_inode, i_generation));
1489 if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) {
1490 eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]);
1491 if (eh->eh_magic != EXT4_EXT_MAGIC) {
1492 memset(eh, 0, sizeof(*eh));
1493 eh->eh_magic = EXT4_EXT_MAGIC;
1494 eh->eh_max = cpu_to_le16(
1495 (sizeof(raw_inode->i_block) -
1496 sizeof(struct ext4_extent_header))
1497 / sizeof(struct ext4_extent));
1499 } else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) {
1500 memcpy(raw_inode->i_block, raw_fc_inode->i_block,
1501 sizeof(raw_inode->i_block));
1504 /* Immediately update the inode on disk. */
1505 ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1508 ret = sync_dirty_buffer(iloc.bh);
1511 ret = ext4_mark_inode_used(sb, ino);
1515 /* Given that we just wrote the inode on disk, this SHOULD succeed. */
1516 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1517 if (IS_ERR(inode)) {
1518 jbd_debug(1, "Inode not found.");
1519 return -EFSCORRUPTED;
1523 * Our allocator could have made different decisions than before
1524 * crashing. This should be fixed but until then, we calculate
1525 * the number of blocks the inode.
1527 ext4_ext_replay_set_iblocks(inode);
1529 inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation);
1530 ext4_reset_inode_seed(inode);
1532 ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode));
1533 ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1534 sync_dirty_buffer(iloc.bh);
1539 blkdev_issue_flush(sb->s_bdev);
1545 * Dentry create replay function.
1547 * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the
1548 * inode for which we are trying to create a dentry here, should already have
1549 * been replayed before we start here.
1551 static int ext4_fc_replay_create(struct super_block *sb, struct ext4_fc_tl *tl,
1555 struct inode *inode = NULL;
1556 struct inode *dir = NULL;
1557 struct dentry_info_args darg;
1559 tl_to_darg(&darg, tl, val);
1561 trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino,
1562 darg.parent_ino, darg.dname_len);
1564 /* This takes care of update group descriptor and other metadata */
1565 ret = ext4_mark_inode_used(sb, darg.ino);
1569 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1570 if (IS_ERR(inode)) {
1571 jbd_debug(1, "inode %d not found.", darg.ino);
1577 if (S_ISDIR(inode->i_mode)) {
1579 * If we are creating a directory, we need to make sure that the
1580 * dot and dot dot dirents are setup properly.
1582 dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL);
1584 jbd_debug(1, "Dir %d not found.", darg.ino);
1587 ret = ext4_init_new_dir(NULL, dir, inode);
1594 ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1597 set_nlink(inode, 1);
1598 ext4_mark_inode_dirty(NULL, inode);
1606 * Record physical disk regions which are in use as per fast commit area. Our
1607 * simple replay phase allocator excludes these regions from allocation.
1609 static int ext4_fc_record_regions(struct super_block *sb, int ino,
1610 ext4_lblk_t lblk, ext4_fsblk_t pblk, int len)
1612 struct ext4_fc_replay_state *state;
1613 struct ext4_fc_alloc_region *region;
1615 state = &EXT4_SB(sb)->s_fc_replay_state;
1616 if (state->fc_regions_used == state->fc_regions_size) {
1617 state->fc_regions_size +=
1618 EXT4_FC_REPLAY_REALLOC_INCREMENT;
1619 state->fc_regions = krealloc(
1621 state->fc_regions_size *
1622 sizeof(struct ext4_fc_alloc_region),
1624 if (!state->fc_regions)
1627 region = &state->fc_regions[state->fc_regions_used++];
1629 region->lblk = lblk;
1630 region->pblk = pblk;
1636 /* Replay add range tag */
1637 static int ext4_fc_replay_add_range(struct super_block *sb,
1638 struct ext4_fc_tl *tl, u8 *val)
1640 struct ext4_fc_add_range fc_add_ex;
1641 struct ext4_extent newex, *ex;
1642 struct inode *inode;
1643 ext4_lblk_t start, cur;
1645 ext4_fsblk_t start_pblk;
1646 struct ext4_map_blocks map;
1647 struct ext4_ext_path *path = NULL;
1650 memcpy(&fc_add_ex, val, sizeof(fc_add_ex));
1651 ex = (struct ext4_extent *)&fc_add_ex.fc_ex;
1653 trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE,
1654 le32_to_cpu(fc_add_ex.fc_ino), le32_to_cpu(ex->ee_block),
1655 ext4_ext_get_actual_len(ex));
1657 inode = ext4_iget(sb, le32_to_cpu(fc_add_ex.fc_ino), EXT4_IGET_NORMAL);
1658 if (IS_ERR(inode)) {
1659 jbd_debug(1, "Inode not found.");
1663 ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1665 start = le32_to_cpu(ex->ee_block);
1666 start_pblk = ext4_ext_pblock(ex);
1667 len = ext4_ext_get_actual_len(ex);
1671 jbd_debug(1, "ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n",
1672 start, start_pblk, len, ext4_ext_is_unwritten(ex),
1675 while (remaining > 0) {
1677 map.m_len = remaining;
1679 ret = ext4_map_blocks(NULL, inode, &map, 0);
1687 /* Range is not mapped */
1688 path = ext4_find_extent(inode, cur, NULL, 0);
1693 memset(&newex, 0, sizeof(newex));
1694 newex.ee_block = cpu_to_le32(cur);
1695 ext4_ext_store_pblock(
1696 &newex, start_pblk + cur - start);
1697 newex.ee_len = cpu_to_le16(map.m_len);
1698 if (ext4_ext_is_unwritten(ex))
1699 ext4_ext_mark_unwritten(&newex);
1700 down_write(&EXT4_I(inode)->i_data_sem);
1701 ret = ext4_ext_insert_extent(
1702 NULL, inode, &path, &newex, 0);
1703 up_write((&EXT4_I(inode)->i_data_sem));
1704 ext4_ext_drop_refs(path);
1713 if (start_pblk + cur - start != map.m_pblk) {
1715 * Logical to physical mapping changed. This can happen
1716 * if this range was removed and then reallocated to
1717 * map to new physical blocks during a fast commit.
1719 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1720 ext4_ext_is_unwritten(ex),
1721 start_pblk + cur - start);
1727 * Mark the old blocks as free since they aren't used
1728 * anymore. We maintain an array of all the modified
1729 * inodes. In case these blocks are still used at either
1730 * a different logical range in the same inode or in
1731 * some different inode, we will mark them as allocated
1732 * at the end of the FC replay using our array of
1735 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1739 /* Range is mapped and needs a state change */
1740 jbd_debug(1, "Converting from %ld to %d %lld",
1741 map.m_flags & EXT4_MAP_UNWRITTEN,
1742 ext4_ext_is_unwritten(ex), map.m_pblk);
1743 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1744 ext4_ext_is_unwritten(ex), map.m_pblk);
1750 * We may have split the extent tree while toggling the state.
1751 * Try to shrink the extent tree now.
1753 ext4_ext_replay_shrink_inode(inode, start + len);
1756 remaining -= map.m_len;
1758 ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >>
1759 sb->s_blocksize_bits);
1764 /* Replay DEL_RANGE tag */
1766 ext4_fc_replay_del_range(struct super_block *sb, struct ext4_fc_tl *tl,
1769 struct inode *inode;
1770 struct ext4_fc_del_range lrange;
1771 struct ext4_map_blocks map;
1772 ext4_lblk_t cur, remaining;
1775 memcpy(&lrange, val, sizeof(lrange));
1776 cur = le32_to_cpu(lrange.fc_lblk);
1777 remaining = le32_to_cpu(lrange.fc_len);
1779 trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE,
1780 le32_to_cpu(lrange.fc_ino), cur, remaining);
1782 inode = ext4_iget(sb, le32_to_cpu(lrange.fc_ino), EXT4_IGET_NORMAL);
1783 if (IS_ERR(inode)) {
1784 jbd_debug(1, "Inode %d not found", le32_to_cpu(lrange.fc_ino));
1788 ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1790 jbd_debug(1, "DEL_RANGE, inode %ld, lblk %d, len %d\n",
1791 inode->i_ino, le32_to_cpu(lrange.fc_lblk),
1792 le32_to_cpu(lrange.fc_len));
1793 while (remaining > 0) {
1795 map.m_len = remaining;
1797 ret = ext4_map_blocks(NULL, inode, &map, 0);
1805 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1807 remaining -= map.m_len;
1812 ret = ext4_punch_hole(inode,
1813 le32_to_cpu(lrange.fc_lblk) << sb->s_blocksize_bits,
1814 le32_to_cpu(lrange.fc_len) << sb->s_blocksize_bits);
1816 jbd_debug(1, "ext4_punch_hole returned %d", ret);
1817 ext4_ext_replay_shrink_inode(inode,
1818 i_size_read(inode) >> sb->s_blocksize_bits);
1819 ext4_mark_inode_dirty(NULL, inode);
1825 static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb)
1827 struct ext4_fc_replay_state *state;
1828 struct inode *inode;
1829 struct ext4_ext_path *path = NULL;
1830 struct ext4_map_blocks map;
1832 ext4_lblk_t cur, end;
1834 state = &EXT4_SB(sb)->s_fc_replay_state;
1835 for (i = 0; i < state->fc_modified_inodes_used; i++) {
1836 inode = ext4_iget(sb, state->fc_modified_inodes[i],
1838 if (IS_ERR(inode)) {
1839 jbd_debug(1, "Inode %d not found.",
1840 state->fc_modified_inodes[i]);
1844 end = EXT_MAX_BLOCKS;
1847 map.m_len = end - cur;
1849 ret = ext4_map_blocks(NULL, inode, &map, 0);
1854 path = ext4_find_extent(inode, map.m_lblk, NULL, 0);
1855 if (!IS_ERR(path)) {
1856 for (j = 0; j < path->p_depth; j++)
1857 ext4_mb_mark_bb(inode->i_sb,
1858 path[j].p_block, 1, 1);
1859 ext4_ext_drop_refs(path);
1863 ext4_mb_mark_bb(inode->i_sb, map.m_pblk,
1866 cur = cur + (map.m_len ? map.m_len : 1);
1874 * Check if block is in excluded regions for block allocation. The simple
1875 * allocator that runs during replay phase is calls this function to see
1876 * if it is okay to use a block.
1878 bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk)
1881 struct ext4_fc_replay_state *state;
1883 state = &EXT4_SB(sb)->s_fc_replay_state;
1884 for (i = 0; i < state->fc_regions_valid; i++) {
1885 if (state->fc_regions[i].ino == 0 ||
1886 state->fc_regions[i].len == 0)
1888 if (blk >= state->fc_regions[i].pblk &&
1889 blk < state->fc_regions[i].pblk + state->fc_regions[i].len)
1895 /* Cleanup function called after replay */
1896 void ext4_fc_replay_cleanup(struct super_block *sb)
1898 struct ext4_sb_info *sbi = EXT4_SB(sb);
1900 sbi->s_mount_state &= ~EXT4_FC_REPLAY;
1901 kfree(sbi->s_fc_replay_state.fc_regions);
1902 kfree(sbi->s_fc_replay_state.fc_modified_inodes);
1906 * Recovery Scan phase handler
1908 * This function is called during the scan phase and is responsible
1909 * for doing following things:
1910 * - Make sure the fast commit area has valid tags for replay
1911 * - Count number of tags that need to be replayed by the replay handler
1913 * - Create a list of excluded blocks for allocation during replay phase
1915 * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is
1916 * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP
1917 * to indicate that scan has finished and JBD2 can now start replay phase.
1918 * It returns a negative error to indicate that there was an error. At the end
1919 * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set
1920 * to indicate the number of tags that need to replayed during the replay phase.
1922 static int ext4_fc_replay_scan(journal_t *journal,
1923 struct buffer_head *bh, int off,
1926 struct super_block *sb = journal->j_private;
1927 struct ext4_sb_info *sbi = EXT4_SB(sb);
1928 struct ext4_fc_replay_state *state;
1929 int ret = JBD2_FC_REPLAY_CONTINUE;
1930 struct ext4_fc_add_range ext;
1931 struct ext4_fc_tl tl;
1932 struct ext4_fc_tail tail;
1933 __u8 *start, *end, *cur, *val;
1934 struct ext4_fc_head head;
1935 struct ext4_extent *ex;
1937 state = &sbi->s_fc_replay_state;
1939 start = (u8 *)bh->b_data;
1940 end = (__u8 *)bh->b_data + journal->j_blocksize - 1;
1942 if (state->fc_replay_expected_off == 0) {
1943 state->fc_cur_tag = 0;
1944 state->fc_replay_num_tags = 0;
1946 state->fc_regions = NULL;
1947 state->fc_regions_valid = state->fc_regions_used =
1948 state->fc_regions_size = 0;
1949 /* Check if we can stop early */
1950 if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag)
1951 != EXT4_FC_TAG_HEAD)
1955 if (off != state->fc_replay_expected_off) {
1956 ret = -EFSCORRUPTED;
1960 state->fc_replay_expected_off++;
1961 for (cur = start; cur < end; cur = cur + sizeof(tl) + le16_to_cpu(tl.fc_len)) {
1962 memcpy(&tl, cur, sizeof(tl));
1963 val = cur + sizeof(tl);
1964 jbd_debug(3, "Scan phase, tag:%s, blk %lld\n",
1965 tag2str(le16_to_cpu(tl.fc_tag)), bh->b_blocknr);
1966 switch (le16_to_cpu(tl.fc_tag)) {
1967 case EXT4_FC_TAG_ADD_RANGE:
1968 memcpy(&ext, val, sizeof(ext));
1969 ex = (struct ext4_extent *)&ext.fc_ex;
1970 ret = ext4_fc_record_regions(sb,
1971 le32_to_cpu(ext.fc_ino),
1972 le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex),
1973 ext4_ext_get_actual_len(ex));
1976 ret = JBD2_FC_REPLAY_CONTINUE;
1978 case EXT4_FC_TAG_DEL_RANGE:
1979 case EXT4_FC_TAG_LINK:
1980 case EXT4_FC_TAG_UNLINK:
1981 case EXT4_FC_TAG_CREAT:
1982 case EXT4_FC_TAG_INODE:
1983 case EXT4_FC_TAG_PAD:
1984 state->fc_cur_tag++;
1985 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
1986 sizeof(tl) + le16_to_cpu(tl.fc_len));
1988 case EXT4_FC_TAG_TAIL:
1989 state->fc_cur_tag++;
1990 memcpy(&tail, val, sizeof(tail));
1991 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
1993 offsetof(struct ext4_fc_tail,
1995 if (le32_to_cpu(tail.fc_tid) == expected_tid &&
1996 le32_to_cpu(tail.fc_crc) == state->fc_crc) {
1997 state->fc_replay_num_tags = state->fc_cur_tag;
1998 state->fc_regions_valid =
1999 state->fc_regions_used;
2001 ret = state->fc_replay_num_tags ?
2002 JBD2_FC_REPLAY_STOP : -EFSBADCRC;
2006 case EXT4_FC_TAG_HEAD:
2007 memcpy(&head, val, sizeof(head));
2008 if (le32_to_cpu(head.fc_features) &
2009 ~EXT4_FC_SUPPORTED_FEATURES) {
2013 if (le32_to_cpu(head.fc_tid) != expected_tid) {
2014 ret = JBD2_FC_REPLAY_STOP;
2017 state->fc_cur_tag++;
2018 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2019 sizeof(tl) + le16_to_cpu(tl.fc_len));
2022 ret = state->fc_replay_num_tags ?
2023 JBD2_FC_REPLAY_STOP : -ECANCELED;
2025 if (ret < 0 || ret == JBD2_FC_REPLAY_STOP)
2030 trace_ext4_fc_replay_scan(sb, ret, off);
2035 * Main recovery path entry point.
2036 * The meaning of return codes is similar as above.
2038 static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh,
2039 enum passtype pass, int off, tid_t expected_tid)
2041 struct super_block *sb = journal->j_private;
2042 struct ext4_sb_info *sbi = EXT4_SB(sb);
2043 struct ext4_fc_tl tl;
2044 __u8 *start, *end, *cur, *val;
2045 int ret = JBD2_FC_REPLAY_CONTINUE;
2046 struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state;
2047 struct ext4_fc_tail tail;
2049 if (pass == PASS_SCAN) {
2050 state->fc_current_pass = PASS_SCAN;
2051 return ext4_fc_replay_scan(journal, bh, off, expected_tid);
2054 if (state->fc_current_pass != pass) {
2055 state->fc_current_pass = pass;
2056 sbi->s_mount_state |= EXT4_FC_REPLAY;
2058 if (!sbi->s_fc_replay_state.fc_replay_num_tags) {
2059 jbd_debug(1, "Replay stops\n");
2060 ext4_fc_set_bitmaps_and_counters(sb);
2064 #ifdef CONFIG_EXT4_DEBUG
2065 if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) {
2066 pr_warn("Dropping fc block %d because max_replay set\n", off);
2067 return JBD2_FC_REPLAY_STOP;
2071 start = (u8 *)bh->b_data;
2072 end = (__u8 *)bh->b_data + journal->j_blocksize - 1;
2074 for (cur = start; cur < end; cur = cur + sizeof(tl) + le16_to_cpu(tl.fc_len)) {
2075 memcpy(&tl, cur, sizeof(tl));
2076 val = cur + sizeof(tl);
2078 if (state->fc_replay_num_tags == 0) {
2079 ret = JBD2_FC_REPLAY_STOP;
2080 ext4_fc_set_bitmaps_and_counters(sb);
2083 jbd_debug(3, "Replay phase, tag:%s\n",
2084 tag2str(le16_to_cpu(tl.fc_tag)));
2085 state->fc_replay_num_tags--;
2086 switch (le16_to_cpu(tl.fc_tag)) {
2087 case EXT4_FC_TAG_LINK:
2088 ret = ext4_fc_replay_link(sb, &tl, val);
2090 case EXT4_FC_TAG_UNLINK:
2091 ret = ext4_fc_replay_unlink(sb, &tl, val);
2093 case EXT4_FC_TAG_ADD_RANGE:
2094 ret = ext4_fc_replay_add_range(sb, &tl, val);
2096 case EXT4_FC_TAG_CREAT:
2097 ret = ext4_fc_replay_create(sb, &tl, val);
2099 case EXT4_FC_TAG_DEL_RANGE:
2100 ret = ext4_fc_replay_del_range(sb, &tl, val);
2102 case EXT4_FC_TAG_INODE:
2103 ret = ext4_fc_replay_inode(sb, &tl, val);
2105 case EXT4_FC_TAG_PAD:
2106 trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0,
2107 le16_to_cpu(tl.fc_len), 0);
2109 case EXT4_FC_TAG_TAIL:
2110 trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL, 0,
2111 le16_to_cpu(tl.fc_len), 0);
2112 memcpy(&tail, val, sizeof(tail));
2113 WARN_ON(le32_to_cpu(tail.fc_tid) != expected_tid);
2115 case EXT4_FC_TAG_HEAD:
2118 trace_ext4_fc_replay(sb, le16_to_cpu(tl.fc_tag), 0,
2119 le16_to_cpu(tl.fc_len), 0);
2125 ret = JBD2_FC_REPLAY_CONTINUE;
2130 void ext4_fc_init(struct super_block *sb, journal_t *journal)
2133 * We set replay callback even if fast commit disabled because we may
2134 * could still have fast commit blocks that need to be replayed even if
2135 * fast commit has now been turned off.
2137 journal->j_fc_replay_callback = ext4_fc_replay;
2138 if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
2140 journal->j_fc_cleanup_callback = ext4_fc_cleanup;
2143 static const char *fc_ineligible_reasons[] = {
2144 "Extended attributes changed",
2146 "Journal flag changed",
2147 "Insufficient memory",
2156 int ext4_fc_info_show(struct seq_file *seq, void *v)
2158 struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private);
2159 struct ext4_fc_stats *stats = &sbi->s_fc_stats;
2162 if (v != SEQ_START_TOKEN)
2166 "fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n",
2167 stats->fc_num_commits, stats->fc_ineligible_commits,
2169 div_u64(sbi->s_fc_avg_commit_time, 1000));
2170 seq_puts(seq, "Ineligible reasons:\n");
2171 for (i = 0; i < EXT4_FC_REASON_MAX; i++)
2172 seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i],
2173 stats->fc_ineligible_reason_count[i]);
2178 int __init ext4_fc_init_dentry_cache(void)
2180 ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update,
2181 SLAB_RECLAIM_ACCOUNT);
2183 if (ext4_fc_dentry_cachep == NULL)