1 // SPDX-License-Identifier: GPL-2.0
4 * fs/ext4/fast_commit.c
6 * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com>
8 * Ext4 fast commits routines.
11 #include "ext4_jbd2.h"
12 #include "ext4_extents.h"
19 * Ext4 fast commits implement fine grained journalling for Ext4.
21 * Fast commits are organized as a log of tag-length-value (TLV) structs. (See
22 * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by
23 * TLV during the recovery phase. For the scenarios for which we currently
24 * don't have replay code, fast commit falls back to full commits.
25 * Fast commits record delta in one of the following three categories.
27 * (A) Directory entry updates:
29 * - EXT4_FC_TAG_UNLINK - records directory entry unlink
30 * - EXT4_FC_TAG_LINK - records directory entry link
31 * - EXT4_FC_TAG_CREAT - records inode and directory entry creation
33 * (B) File specific data range updates:
35 * - EXT4_FC_TAG_ADD_RANGE - records addition of new blocks to an inode
36 * - EXT4_FC_TAG_DEL_RANGE - records deletion of blocks from an inode
38 * (C) Inode metadata (mtime / ctime etc):
40 * - EXT4_FC_TAG_INODE - record the inode that should be replayed
41 * during recovery. Note that iblocks field is
42 * not replayed and instead derived during
46 * With fast commits, we maintain all the directory entry operations in the
47 * order in which they are issued in an in-memory queue. This queue is flushed
48 * to disk during the commit operation. We also maintain a list of inodes
49 * that need to be committed during a fast commit in another in memory queue of
50 * inodes. During the commit operation, we commit in the following order:
52 * [1] Lock inodes for any further data updates by setting COMMITTING state
53 * [2] Submit data buffers of all the inodes
54 * [3] Wait for [2] to complete
55 * [4] Commit all the directory entry updates in the fast commit space
56 * [5] Commit all the changed inode structures
57 * [6] Write tail tag (this tag ensures the atomicity, please read the following
58 * section for more details).
59 * [7] Wait for [4], [5] and [6] to complete.
61 * All the inode updates must call ext4_fc_start_update() before starting an
62 * update. If such an ongoing update is present, fast commit waits for it to
63 * complete. The completion of such an update is marked by
64 * ext4_fc_stop_update().
66 * Fast Commit Ineligibility
67 * -------------------------
68 * Not all operations are supported by fast commits today (e.g extended
69 * attributes). Fast commit ineligiblity is marked by calling one of the
70 * two following functions:
72 * - ext4_fc_mark_ineligible(): This makes next fast commit operation to fall
73 * back to full commit. This is useful in case of transient errors.
75 * - ext4_fc_start_ineligible() and ext4_fc_stop_ineligible() - This makes all
76 * the fast commits happening between ext4_fc_start_ineligible() and
77 * ext4_fc_stop_ineligible() and one fast commit after the call to
78 * ext4_fc_stop_ineligible() to fall back to full commits. It is important to
79 * make one more fast commit to fall back to full commit after stop call so
80 * that it guaranteed that the fast commit ineligible operation contained
81 * within ext4_fc_start_ineligible() and ext4_fc_stop_ineligible() is
82 * followed by at least 1 full commit.
84 * Atomicity of commits
85 * --------------------
86 * In order to gaurantee atomicity during the commit operation, fast commit
87 * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail
88 * tag contains CRC of the contents and TID of the transaction after which
89 * this fast commit should be applied. Recovery code replays fast commit
90 * logs only if there's at least 1 valid tail present. For every fast commit
91 * operation, there is 1 tail. This means, we may end up with multiple tails
92 * in the fast commit space. Here's an example:
94 * - Create a new file A and remove existing file B
96 * - Append contents to file A
100 * The fast commit space at the end of above operations would look like this:
101 * [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL]
102 * |<--- Fast Commit 1 --->|<--- Fast Commit 2 ---->|
104 * Replay code should thus check for all the valid tails in the FC area.
108 * 1) Make fast commit atomic updates more fine grained. Today, a fast commit
109 * eligible update must be protected within ext4_fc_start_update() and
110 * ext4_fc_stop_update(). These routines are called at much higher
111 * routines. This can be made more fine grained by combining with
112 * ext4_journal_start().
114 * 2) Same above for ext4_fc_start_ineligible() and ext4_fc_stop_ineligible()
116 * 3) Handle more ineligible cases.
119 #include <trace/events/ext4.h>
120 static struct kmem_cache *ext4_fc_dentry_cachep;
122 static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
124 BUFFER_TRACE(bh, "");
126 ext4_debug("%s: Block %lld up-to-date",
127 __func__, bh->b_blocknr);
128 set_buffer_uptodate(bh);
130 ext4_debug("%s: Block %lld not up-to-date",
131 __func__, bh->b_blocknr);
132 clear_buffer_uptodate(bh);
138 static inline void ext4_fc_reset_inode(struct inode *inode)
140 struct ext4_inode_info *ei = EXT4_I(inode);
142 ei->i_fc_lblk_start = 0;
143 ei->i_fc_lblk_len = 0;
146 void ext4_fc_init_inode(struct inode *inode)
148 struct ext4_inode_info *ei = EXT4_I(inode);
150 ext4_fc_reset_inode(inode);
151 ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING);
152 INIT_LIST_HEAD(&ei->i_fc_list);
153 init_waitqueue_head(&ei->i_fc_wait);
154 atomic_set(&ei->i_fc_updates, 0);
155 ei->i_fc_committed_subtid = 0;
159 * Inform Ext4's fast about start of an inode update
161 * This function is called by the high level call VFS callbacks before
162 * performing any inode update. This function blocks if there's an ongoing
163 * fast commit on the inode in question.
165 void ext4_fc_start_update(struct inode *inode)
167 struct ext4_inode_info *ei = EXT4_I(inode);
169 if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
170 (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
174 spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
175 if (list_empty(&ei->i_fc_list))
178 if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
179 wait_queue_head_t *wq;
180 #if (BITS_PER_LONG < 64)
181 DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
182 EXT4_STATE_FC_COMMITTING);
183 wq = bit_waitqueue(&ei->i_state_flags,
184 EXT4_STATE_FC_COMMITTING);
186 DEFINE_WAIT_BIT(wait, &ei->i_flags,
187 EXT4_STATE_FC_COMMITTING);
188 wq = bit_waitqueue(&ei->i_flags,
189 EXT4_STATE_FC_COMMITTING);
191 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
192 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
194 finish_wait(wq, &wait.wq_entry);
198 atomic_inc(&ei->i_fc_updates);
199 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
203 * Stop inode update and wake up waiting fast commits if any.
205 void ext4_fc_stop_update(struct inode *inode)
207 struct ext4_inode_info *ei = EXT4_I(inode);
209 if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
210 (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
213 if (atomic_dec_and_test(&ei->i_fc_updates))
214 wake_up_all(&ei->i_fc_wait);
218 * Remove inode from fast commit list. If the inode is being committed
219 * we wait until inode commit is done.
221 void ext4_fc_del(struct inode *inode)
223 struct ext4_inode_info *ei = EXT4_I(inode);
225 if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
226 (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
230 spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
231 if (list_empty(&ei->i_fc_list)) {
232 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
236 if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
237 wait_queue_head_t *wq;
238 #if (BITS_PER_LONG < 64)
239 DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
240 EXT4_STATE_FC_COMMITTING);
241 wq = bit_waitqueue(&ei->i_state_flags,
242 EXT4_STATE_FC_COMMITTING);
244 DEFINE_WAIT_BIT(wait, &ei->i_flags,
245 EXT4_STATE_FC_COMMITTING);
246 wq = bit_waitqueue(&ei->i_flags,
247 EXT4_STATE_FC_COMMITTING);
249 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
250 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
252 finish_wait(wq, &wait.wq_entry);
255 if (!list_empty(&ei->i_fc_list))
256 list_del_init(&ei->i_fc_list);
257 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
261 * Mark file system as fast commit ineligible. This means that next commit
262 * operation would result in a full jbd2 commit.
264 void ext4_fc_mark_ineligible(struct super_block *sb, int reason)
266 struct ext4_sb_info *sbi = EXT4_SB(sb);
268 if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
269 (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))
272 sbi->s_mount_flags |= EXT4_MF_FC_INELIGIBLE;
273 WARN_ON(reason >= EXT4_FC_REASON_MAX);
274 sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
278 * Start a fast commit ineligible update. Any commits that happen while
279 * such an operation is in progress fall back to full commits.
281 void ext4_fc_start_ineligible(struct super_block *sb, int reason)
283 struct ext4_sb_info *sbi = EXT4_SB(sb);
285 if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
286 (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))
289 WARN_ON(reason >= EXT4_FC_REASON_MAX);
290 sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
291 atomic_inc(&sbi->s_fc_ineligible_updates);
295 * Stop a fast commit ineligible update. We set EXT4_MF_FC_INELIGIBLE flag here
296 * to ensure that after stopping the ineligible update, at least one full
297 * commit takes place.
299 void ext4_fc_stop_ineligible(struct super_block *sb)
301 if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
302 (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))
305 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FC_INELIGIBLE;
306 atomic_dec(&EXT4_SB(sb)->s_fc_ineligible_updates);
309 static inline int ext4_fc_is_ineligible(struct super_block *sb)
311 return (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FC_INELIGIBLE) ||
312 atomic_read(&EXT4_SB(sb)->s_fc_ineligible_updates);
316 * Generic fast commit tracking function. If this is the first time this we are
317 * called after a full commit, we initialize fast commit fields and then call
318 * __fc_track_fn() with update = 0. If we have already been called after a full
319 * commit, we pass update = 1. Based on that, the track function can determine
320 * if it needs to track a field for the first time or if it needs to just
321 * update the previously tracked value.
323 * If enqueue is set, this function enqueues the inode in fast commit list.
325 static int ext4_fc_track_template(
326 struct inode *inode, int (*__fc_track_fn)(struct inode *, void *, bool),
327 void *args, int enqueue)
329 tid_t running_txn_tid;
331 struct ext4_inode_info *ei = EXT4_I(inode);
332 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
335 if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
336 (sbi->s_mount_state & EXT4_FC_REPLAY))
339 if (ext4_fc_is_ineligible(inode->i_sb))
342 running_txn_tid = sbi->s_journal ?
343 sbi->s_journal->j_commit_sequence + 1 : 0;
345 mutex_lock(&ei->i_fc_lock);
346 if (running_txn_tid == ei->i_sync_tid) {
349 ext4_fc_reset_inode(inode);
350 ei->i_sync_tid = running_txn_tid;
352 ret = __fc_track_fn(inode, args, update);
353 mutex_unlock(&ei->i_fc_lock);
358 spin_lock(&sbi->s_fc_lock);
359 if (list_empty(&EXT4_I(inode)->i_fc_list))
360 list_add_tail(&EXT4_I(inode)->i_fc_list,
361 (sbi->s_mount_flags & EXT4_MF_FC_COMMITTING) ?
362 &sbi->s_fc_q[FC_Q_STAGING] :
363 &sbi->s_fc_q[FC_Q_MAIN]);
364 spin_unlock(&sbi->s_fc_lock);
369 struct __track_dentry_update_args {
370 struct dentry *dentry;
374 /* __track_fn for directory entry updates. Called with ei->i_fc_lock. */
375 static int __track_dentry_update(struct inode *inode, void *arg, bool update)
377 struct ext4_fc_dentry_update *node;
378 struct ext4_inode_info *ei = EXT4_I(inode);
379 struct __track_dentry_update_args *dentry_update =
380 (struct __track_dentry_update_args *)arg;
381 struct dentry *dentry = dentry_update->dentry;
382 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
384 mutex_unlock(&ei->i_fc_lock);
385 node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS);
387 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_MEM);
388 mutex_lock(&ei->i_fc_lock);
392 node->fcd_op = dentry_update->op;
393 node->fcd_parent = dentry->d_parent->d_inode->i_ino;
394 node->fcd_ino = inode->i_ino;
395 if (dentry->d_name.len > DNAME_INLINE_LEN) {
396 node->fcd_name.name = kmalloc(dentry->d_name.len, GFP_NOFS);
397 if (!node->fcd_name.name) {
398 kmem_cache_free(ext4_fc_dentry_cachep, node);
399 ext4_fc_mark_ineligible(inode->i_sb,
401 mutex_lock(&ei->i_fc_lock);
404 memcpy((u8 *)node->fcd_name.name, dentry->d_name.name,
407 memcpy(node->fcd_iname, dentry->d_name.name,
409 node->fcd_name.name = node->fcd_iname;
411 node->fcd_name.len = dentry->d_name.len;
413 spin_lock(&sbi->s_fc_lock);
414 if (sbi->s_mount_flags & EXT4_MF_FC_COMMITTING)
415 list_add_tail(&node->fcd_list,
416 &sbi->s_fc_dentry_q[FC_Q_STAGING]);
418 list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]);
419 spin_unlock(&sbi->s_fc_lock);
420 mutex_lock(&ei->i_fc_lock);
425 void ext4_fc_track_unlink(struct inode *inode, struct dentry *dentry)
427 struct __track_dentry_update_args args;
430 args.dentry = dentry;
431 args.op = EXT4_FC_TAG_UNLINK;
433 ret = ext4_fc_track_template(inode, __track_dentry_update,
435 trace_ext4_fc_track_unlink(inode, dentry, ret);
438 void ext4_fc_track_link(struct inode *inode, struct dentry *dentry)
440 struct __track_dentry_update_args args;
443 args.dentry = dentry;
444 args.op = EXT4_FC_TAG_LINK;
446 ret = ext4_fc_track_template(inode, __track_dentry_update,
448 trace_ext4_fc_track_link(inode, dentry, ret);
451 void ext4_fc_track_create(struct inode *inode, struct dentry *dentry)
453 struct __track_dentry_update_args args;
456 args.dentry = dentry;
457 args.op = EXT4_FC_TAG_CREAT;
459 ret = ext4_fc_track_template(inode, __track_dentry_update,
461 trace_ext4_fc_track_create(inode, dentry, ret);
464 /* __track_fn for inode tracking */
465 static int __track_inode(struct inode *inode, void *arg, bool update)
470 EXT4_I(inode)->i_fc_lblk_len = 0;
475 void ext4_fc_track_inode(struct inode *inode)
479 if (S_ISDIR(inode->i_mode))
482 ret = ext4_fc_track_template(inode, __track_inode, NULL, 1);
483 trace_ext4_fc_track_inode(inode, ret);
486 struct __track_range_args {
487 ext4_lblk_t start, end;
490 /* __track_fn for tracking data updates */
491 static int __track_range(struct inode *inode, void *arg, bool update)
493 struct ext4_inode_info *ei = EXT4_I(inode);
494 ext4_lblk_t oldstart;
495 struct __track_range_args *__arg =
496 (struct __track_range_args *)arg;
498 if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) {
499 ext4_debug("Special inode %ld being modified\n", inode->i_ino);
503 oldstart = ei->i_fc_lblk_start;
505 if (update && ei->i_fc_lblk_len > 0) {
506 ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start);
508 max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) -
509 ei->i_fc_lblk_start + 1;
511 ei->i_fc_lblk_start = __arg->start;
512 ei->i_fc_lblk_len = __arg->end - __arg->start + 1;
518 void ext4_fc_track_range(struct inode *inode, ext4_lblk_t start,
521 struct __track_range_args args;
524 if (S_ISDIR(inode->i_mode))
530 ret = ext4_fc_track_template(inode, __track_range, &args, 1);
532 trace_ext4_fc_track_range(inode, start, end, ret);
535 static void ext4_fc_submit_bh(struct super_block *sb)
537 int write_flags = REQ_SYNC;
538 struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh;
540 if (test_opt(sb, BARRIER))
541 write_flags |= REQ_FUA | REQ_PREFLUSH;
543 clear_buffer_dirty(bh);
544 set_buffer_uptodate(bh);
545 bh->b_end_io = ext4_end_buffer_io_sync;
546 submit_bh(REQ_OP_WRITE, write_flags, bh);
547 EXT4_SB(sb)->s_fc_bh = NULL;
550 /* Ext4 commit path routines */
552 /* memzero and update CRC */
553 static void *ext4_fc_memzero(struct super_block *sb, void *dst, int len,
558 ret = memset(dst, 0, len);
560 *crc = ext4_chksum(EXT4_SB(sb), *crc, dst, len);
565 * Allocate len bytes on a fast commit buffer.
567 * During the commit time this function is used to manage fast commit
568 * block space. We don't split a fast commit log onto different
569 * blocks. So this function makes sure that if there's not enough space
570 * on the current block, the remaining space in the current block is
571 * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case,
572 * new block is from jbd2 and CRC is updated to reflect the padding
575 static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc)
577 struct ext4_fc_tl *tl;
578 struct ext4_sb_info *sbi = EXT4_SB(sb);
579 struct buffer_head *bh;
580 int bsize = sbi->s_journal->j_blocksize;
581 int ret, off = sbi->s_fc_bytes % bsize;
585 * After allocating len, we should have space at least for a 0 byte
588 if (len + sizeof(struct ext4_fc_tl) > bsize)
591 if (bsize - off - 1 > len + sizeof(struct ext4_fc_tl)) {
593 * Only allocate from current buffer if we have enough space for
594 * this request AND we have space to add a zero byte padding.
597 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
602 sbi->s_fc_bytes += len;
603 return sbi->s_fc_bh->b_data + off;
605 /* Need to add PAD tag */
606 tl = (struct ext4_fc_tl *)(sbi->s_fc_bh->b_data + off);
607 tl->fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD);
608 pad_len = bsize - off - 1 - sizeof(struct ext4_fc_tl);
609 tl->fc_len = cpu_to_le16(pad_len);
611 *crc = ext4_chksum(sbi, *crc, tl, sizeof(*tl));
613 ext4_fc_memzero(sb, tl + 1, pad_len, crc);
614 ext4_fc_submit_bh(sb);
616 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
620 sbi->s_fc_bytes = (sbi->s_fc_bytes / bsize + 1) * bsize + len;
621 return sbi->s_fc_bh->b_data;
624 /* memcpy to fc reserved space and update CRC */
625 static void *ext4_fc_memcpy(struct super_block *sb, void *dst, const void *src,
629 *crc = ext4_chksum(EXT4_SB(sb), *crc, src, len);
630 return memcpy(dst, src, len);
634 * Complete a fast commit by writing tail tag.
636 * Writing tail tag marks the end of a fast commit. In order to guarantee
637 * atomicity, after writing tail tag, even if there's space remaining
638 * in the block, next commit shouldn't use it. That's why tail tag
639 * has the length as that of the remaining space on the block.
641 static int ext4_fc_write_tail(struct super_block *sb, u32 crc)
643 struct ext4_sb_info *sbi = EXT4_SB(sb);
644 struct ext4_fc_tl tl;
645 struct ext4_fc_tail tail;
646 int off, bsize = sbi->s_journal->j_blocksize;
650 * ext4_fc_reserve_space takes care of allocating an extra block if
651 * there's no enough space on this block for accommodating this tail.
653 dst = ext4_fc_reserve_space(sb, sizeof(tl) + sizeof(tail), &crc);
657 off = sbi->s_fc_bytes % bsize;
659 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL);
660 tl.fc_len = cpu_to_le16(bsize - off - 1 + sizeof(struct ext4_fc_tail));
661 sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize);
663 ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), &crc);
665 tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid);
666 ext4_fc_memcpy(sb, dst, &tail.fc_tid, sizeof(tail.fc_tid), &crc);
667 dst += sizeof(tail.fc_tid);
668 tail.fc_crc = cpu_to_le32(crc);
669 ext4_fc_memcpy(sb, dst, &tail.fc_crc, sizeof(tail.fc_crc), NULL);
671 ext4_fc_submit_bh(sb);
677 * Adds tag, length, value and updates CRC. Returns true if tlv was added.
678 * Returns false if there's not enough space.
680 static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val,
683 struct ext4_fc_tl tl;
686 dst = ext4_fc_reserve_space(sb, sizeof(tl) + len, crc);
690 tl.fc_tag = cpu_to_le16(tag);
691 tl.fc_len = cpu_to_le16(len);
693 ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), crc);
694 ext4_fc_memcpy(sb, dst + sizeof(tl), val, len, crc);
699 /* Same as above, but adds dentry tlv. */
700 static bool ext4_fc_add_dentry_tlv(struct super_block *sb, u16 tag,
701 int parent_ino, int ino, int dlen,
702 const unsigned char *dname,
705 struct ext4_fc_dentry_info fcd;
706 struct ext4_fc_tl tl;
707 u8 *dst = ext4_fc_reserve_space(sb, sizeof(tl) + sizeof(fcd) + dlen,
713 fcd.fc_parent_ino = cpu_to_le32(parent_ino);
714 fcd.fc_ino = cpu_to_le32(ino);
715 tl.fc_tag = cpu_to_le16(tag);
716 tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen);
717 ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), crc);
719 ext4_fc_memcpy(sb, dst, &fcd, sizeof(fcd), crc);
721 ext4_fc_memcpy(sb, dst, dname, dlen, crc);
728 * Writes inode in the fast commit space under TLV with tag @tag.
729 * Returns 0 on success, error on failure.
731 static int ext4_fc_write_inode(struct inode *inode, u32 *crc)
733 struct ext4_inode_info *ei = EXT4_I(inode);
734 int inode_len = EXT4_GOOD_OLD_INODE_SIZE;
736 struct ext4_iloc iloc;
737 struct ext4_fc_inode fc_inode;
738 struct ext4_fc_tl tl;
741 ret = ext4_get_inode_loc(inode, &iloc);
745 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE)
746 inode_len += ei->i_extra_isize;
748 fc_inode.fc_ino = cpu_to_le32(inode->i_ino);
749 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE);
750 tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino));
752 dst = ext4_fc_reserve_space(inode->i_sb,
753 sizeof(tl) + inode_len + sizeof(fc_inode.fc_ino), crc);
757 if (!ext4_fc_memcpy(inode->i_sb, dst, &tl, sizeof(tl), crc))
760 if (!ext4_fc_memcpy(inode->i_sb, dst, &fc_inode, sizeof(fc_inode), crc))
762 dst += sizeof(fc_inode);
763 if (!ext4_fc_memcpy(inode->i_sb, dst, (u8 *)ext4_raw_inode(&iloc),
771 * Writes updated data ranges for the inode in question. Updates CRC.
772 * Returns 0 on success, error otherwise.
774 static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc)
776 ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size;
777 struct ext4_inode_info *ei = EXT4_I(inode);
778 struct ext4_map_blocks map;
779 struct ext4_fc_add_range fc_ext;
780 struct ext4_fc_del_range lrange;
781 struct ext4_extent *ex;
784 mutex_lock(&ei->i_fc_lock);
785 if (ei->i_fc_lblk_len == 0) {
786 mutex_unlock(&ei->i_fc_lock);
789 old_blk_size = ei->i_fc_lblk_start;
790 new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1;
791 ei->i_fc_lblk_len = 0;
792 mutex_unlock(&ei->i_fc_lock);
794 cur_lblk_off = old_blk_size;
795 jbd_debug(1, "%s: will try writing %d to %d for inode %ld\n",
796 __func__, cur_lblk_off, new_blk_size, inode->i_ino);
798 while (cur_lblk_off <= new_blk_size) {
799 map.m_lblk = cur_lblk_off;
800 map.m_len = new_blk_size - cur_lblk_off + 1;
801 ret = ext4_map_blocks(NULL, inode, &map, 0);
805 if (map.m_len == 0) {
811 lrange.fc_ino = cpu_to_le32(inode->i_ino);
812 lrange.fc_lblk = cpu_to_le32(map.m_lblk);
813 lrange.fc_len = cpu_to_le32(map.m_len);
814 if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE,
815 sizeof(lrange), (u8 *)&lrange, crc))
818 fc_ext.fc_ino = cpu_to_le32(inode->i_ino);
819 ex = (struct ext4_extent *)&fc_ext.fc_ex;
820 ex->ee_block = cpu_to_le32(map.m_lblk);
821 ex->ee_len = cpu_to_le16(map.m_len);
822 ext4_ext_store_pblock(ex, map.m_pblk);
823 if (map.m_flags & EXT4_MAP_UNWRITTEN)
824 ext4_ext_mark_unwritten(ex);
826 ext4_ext_mark_initialized(ex);
827 if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE,
828 sizeof(fc_ext), (u8 *)&fc_ext, crc))
832 cur_lblk_off += map.m_len;
839 /* Submit data for all the fast commit inodes */
840 static int ext4_fc_submit_inode_data_all(journal_t *journal)
842 struct super_block *sb = (struct super_block *)(journal->j_private);
843 struct ext4_sb_info *sbi = EXT4_SB(sb);
844 struct ext4_inode_info *ei;
845 struct list_head *pos;
848 spin_lock(&sbi->s_fc_lock);
849 sbi->s_mount_flags |= EXT4_MF_FC_COMMITTING;
850 list_for_each(pos, &sbi->s_fc_q[FC_Q_MAIN]) {
851 ei = list_entry(pos, struct ext4_inode_info, i_fc_list);
852 ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING);
853 while (atomic_read(&ei->i_fc_updates)) {
856 prepare_to_wait(&ei->i_fc_wait, &wait,
857 TASK_UNINTERRUPTIBLE);
858 if (atomic_read(&ei->i_fc_updates)) {
859 spin_unlock(&sbi->s_fc_lock);
861 spin_lock(&sbi->s_fc_lock);
863 finish_wait(&ei->i_fc_wait, &wait);
865 spin_unlock(&sbi->s_fc_lock);
866 ret = jbd2_submit_inode_data(ei->jinode);
869 spin_lock(&sbi->s_fc_lock);
871 spin_unlock(&sbi->s_fc_lock);
876 /* Wait for completion of data for all the fast commit inodes */
877 static int ext4_fc_wait_inode_data_all(journal_t *journal)
879 struct super_block *sb = (struct super_block *)(journal->j_private);
880 struct ext4_sb_info *sbi = EXT4_SB(sb);
881 struct ext4_inode_info *pos, *n;
884 spin_lock(&sbi->s_fc_lock);
885 list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
886 if (!ext4_test_inode_state(&pos->vfs_inode,
887 EXT4_STATE_FC_COMMITTING))
889 spin_unlock(&sbi->s_fc_lock);
891 ret = jbd2_wait_inode_data(journal, pos->jinode);
894 spin_lock(&sbi->s_fc_lock);
896 spin_unlock(&sbi->s_fc_lock);
901 /* Commit all the directory entry updates */
902 static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc)
904 struct super_block *sb = (struct super_block *)(journal->j_private);
905 struct ext4_sb_info *sbi = EXT4_SB(sb);
906 struct ext4_fc_dentry_update *fc_dentry;
908 struct list_head *pos, *n, *fcd_pos, *fcd_n;
909 struct ext4_inode_info *ei;
912 if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN]))
914 list_for_each_safe(fcd_pos, fcd_n, &sbi->s_fc_dentry_q[FC_Q_MAIN]) {
915 fc_dentry = list_entry(fcd_pos, struct ext4_fc_dentry_update,
917 if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) {
918 spin_unlock(&sbi->s_fc_lock);
919 if (!ext4_fc_add_dentry_tlv(
920 sb, fc_dentry->fcd_op,
921 fc_dentry->fcd_parent, fc_dentry->fcd_ino,
922 fc_dentry->fcd_name.len,
923 fc_dentry->fcd_name.name, crc)) {
927 spin_lock(&sbi->s_fc_lock);
932 list_for_each_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN]) {
933 ei = list_entry(pos, struct ext4_inode_info, i_fc_list);
934 if (ei->vfs_inode.i_ino == fc_dentry->fcd_ino) {
935 inode = &ei->vfs_inode;
940 * If we don't find inode in our list, then it was deleted,
941 * in which case, we don't need to record it's create tag.
945 spin_unlock(&sbi->s_fc_lock);
948 * We first write the inode and then the create dirent. This
949 * allows the recovery code to create an unnamed inode first
950 * and then link it to a directory entry. This allows us
951 * to use namei.c routines almost as is and simplifies
954 ret = ext4_fc_write_inode(inode, crc);
958 ret = ext4_fc_write_inode_data(inode, crc);
962 if (!ext4_fc_add_dentry_tlv(
963 sb, fc_dentry->fcd_op,
964 fc_dentry->fcd_parent, fc_dentry->fcd_ino,
965 fc_dentry->fcd_name.len,
966 fc_dentry->fcd_name.name, crc)) {
971 spin_lock(&sbi->s_fc_lock);
975 spin_lock(&sbi->s_fc_lock);
979 static int ext4_fc_perform_commit(journal_t *journal)
981 struct super_block *sb = (struct super_block *)(journal->j_private);
982 struct ext4_sb_info *sbi = EXT4_SB(sb);
983 struct ext4_inode_info *iter;
984 struct ext4_fc_head head;
985 struct list_head *pos;
987 struct blk_plug plug;
991 ret = ext4_fc_submit_inode_data_all(journal);
995 ret = ext4_fc_wait_inode_data_all(journal);
999 blk_start_plug(&plug);
1000 if (sbi->s_fc_bytes == 0) {
1002 * Add a head tag only if this is the first fast commit
1005 head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES);
1006 head.fc_tid = cpu_to_le32(
1007 sbi->s_journal->j_running_transaction->t_tid);
1008 if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head),
1013 spin_lock(&sbi->s_fc_lock);
1014 ret = ext4_fc_commit_dentry_updates(journal, &crc);
1016 spin_unlock(&sbi->s_fc_lock);
1020 list_for_each(pos, &sbi->s_fc_q[FC_Q_MAIN]) {
1021 iter = list_entry(pos, struct ext4_inode_info, i_fc_list);
1022 inode = &iter->vfs_inode;
1023 if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING))
1026 spin_unlock(&sbi->s_fc_lock);
1027 ret = ext4_fc_write_inode_data(inode, &crc);
1030 ret = ext4_fc_write_inode(inode, &crc);
1033 spin_lock(&sbi->s_fc_lock);
1034 EXT4_I(inode)->i_fc_committed_subtid =
1035 atomic_read(&sbi->s_fc_subtid);
1037 spin_unlock(&sbi->s_fc_lock);
1039 ret = ext4_fc_write_tail(sb, crc);
1042 blk_finish_plug(&plug);
1047 * The main commit entry point. Performs a fast commit for transaction
1048 * commit_tid if needed. If it's not possible to perform a fast commit
1049 * due to various reasons, we fall back to full commit. Returns 0
1050 * on success, error otherwise.
1052 int ext4_fc_commit(journal_t *journal, tid_t commit_tid)
1054 struct super_block *sb = (struct super_block *)(journal->j_private);
1055 struct ext4_sb_info *sbi = EXT4_SB(sb);
1056 int nblks = 0, ret, bsize = journal->j_blocksize;
1057 int subtid = atomic_read(&sbi->s_fc_subtid);
1058 int reason = EXT4_FC_REASON_OK, fc_bufs_before = 0;
1059 ktime_t start_time, commit_time;
1061 trace_ext4_fc_commit_start(sb);
1063 start_time = ktime_get();
1065 if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
1066 (ext4_fc_is_ineligible(sb))) {
1067 reason = EXT4_FC_REASON_INELIGIBLE;
1072 ret = jbd2_fc_begin_commit(journal, commit_tid);
1073 if (ret == -EALREADY) {
1074 /* There was an ongoing commit, check if we need to restart */
1075 if (atomic_read(&sbi->s_fc_subtid) <= subtid &&
1076 commit_tid > journal->j_commit_sequence)
1078 reason = EXT4_FC_REASON_ALREADY_COMMITTED;
1081 sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1082 reason = EXT4_FC_REASON_FC_START_FAILED;
1086 fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize;
1087 ret = ext4_fc_perform_commit(journal);
1089 sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1090 reason = EXT4_FC_REASON_FC_FAILED;
1093 nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before;
1094 ret = jbd2_fc_wait_bufs(journal, nblks);
1096 sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1097 reason = EXT4_FC_REASON_FC_FAILED;
1100 atomic_inc(&sbi->s_fc_subtid);
1101 jbd2_fc_end_commit(journal);
1103 /* Has any ineligible update happened since we started? */
1104 if (reason == EXT4_FC_REASON_OK && ext4_fc_is_ineligible(sb)) {
1105 sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1106 reason = EXT4_FC_REASON_INELIGIBLE;
1109 spin_lock(&sbi->s_fc_lock);
1110 if (reason != EXT4_FC_REASON_OK &&
1111 reason != EXT4_FC_REASON_ALREADY_COMMITTED) {
1112 sbi->s_fc_stats.fc_ineligible_commits++;
1114 sbi->s_fc_stats.fc_num_commits++;
1115 sbi->s_fc_stats.fc_numblks += nblks;
1117 spin_unlock(&sbi->s_fc_lock);
1118 nblks = (reason == EXT4_FC_REASON_OK) ? nblks : 0;
1119 trace_ext4_fc_commit_stop(sb, nblks, reason);
1120 commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1122 * weight the commit time higher than the average time so we don't
1123 * react too strongly to vast changes in the commit time
1125 if (likely(sbi->s_fc_avg_commit_time))
1126 sbi->s_fc_avg_commit_time = (commit_time +
1127 sbi->s_fc_avg_commit_time * 3) / 4;
1129 sbi->s_fc_avg_commit_time = commit_time;
1131 "Fast commit ended with blks = %d, reason = %d, subtid - %d",
1132 nblks, reason, subtid);
1133 if (reason == EXT4_FC_REASON_FC_FAILED)
1134 return jbd2_fc_end_commit_fallback(journal, commit_tid);
1135 if (reason == EXT4_FC_REASON_FC_START_FAILED ||
1136 reason == EXT4_FC_REASON_INELIGIBLE)
1137 return jbd2_complete_transaction(journal, commit_tid);
1142 * Fast commit cleanup routine. This is called after every fast commit and
1143 * full commit. full is true if we are called after a full commit.
1145 static void ext4_fc_cleanup(journal_t *journal, int full)
1147 struct super_block *sb = journal->j_private;
1148 struct ext4_sb_info *sbi = EXT4_SB(sb);
1149 struct ext4_inode_info *iter;
1150 struct ext4_fc_dentry_update *fc_dentry;
1151 struct list_head *pos, *n;
1153 if (full && sbi->s_fc_bh)
1154 sbi->s_fc_bh = NULL;
1156 jbd2_fc_release_bufs(journal);
1158 spin_lock(&sbi->s_fc_lock);
1159 list_for_each_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN]) {
1160 iter = list_entry(pos, struct ext4_inode_info, i_fc_list);
1161 list_del_init(&iter->i_fc_list);
1162 ext4_clear_inode_state(&iter->vfs_inode,
1163 EXT4_STATE_FC_COMMITTING);
1164 ext4_fc_reset_inode(&iter->vfs_inode);
1165 /* Make sure EXT4_STATE_FC_COMMITTING bit is clear */
1167 #if (BITS_PER_LONG < 64)
1168 wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING);
1170 wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING);
1174 while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) {
1175 fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN],
1176 struct ext4_fc_dentry_update,
1178 list_del_init(&fc_dentry->fcd_list);
1179 spin_unlock(&sbi->s_fc_lock);
1181 if (fc_dentry->fcd_name.name &&
1182 fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
1183 kfree(fc_dentry->fcd_name.name);
1184 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
1185 spin_lock(&sbi->s_fc_lock);
1188 list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING],
1189 &sbi->s_fc_dentry_q[FC_Q_MAIN]);
1190 list_splice_init(&sbi->s_fc_q[FC_Q_STAGING],
1191 &sbi->s_fc_q[FC_Q_STAGING]);
1193 sbi->s_mount_flags &= ~EXT4_MF_FC_COMMITTING;
1194 sbi->s_mount_flags &= ~EXT4_MF_FC_INELIGIBLE;
1197 sbi->s_fc_bytes = 0;
1198 spin_unlock(&sbi->s_fc_lock);
1199 trace_ext4_fc_stats(sb);
1202 /* Ext4 Replay Path Routines */
1204 /* Get length of a particular tlv */
1205 static inline int ext4_fc_tag_len(struct ext4_fc_tl *tl)
1207 return le16_to_cpu(tl->fc_len);
1210 /* Get a pointer to "value" of a tlv */
1211 static inline u8 *ext4_fc_tag_val(struct ext4_fc_tl *tl)
1213 return (u8 *)tl + sizeof(*tl);
1216 /* Helper struct for dentry replay routines */
1217 struct dentry_info_args {
1218 int parent_ino, dname_len, ino, inode_len;
1222 static inline void tl_to_darg(struct dentry_info_args *darg,
1223 struct ext4_fc_tl *tl)
1225 struct ext4_fc_dentry_info *fcd;
1227 fcd = (struct ext4_fc_dentry_info *)ext4_fc_tag_val(tl);
1229 darg->parent_ino = le32_to_cpu(fcd->fc_parent_ino);
1230 darg->ino = le32_to_cpu(fcd->fc_ino);
1231 darg->dname = fcd->fc_dname;
1232 darg->dname_len = ext4_fc_tag_len(tl) -
1233 sizeof(struct ext4_fc_dentry_info);
1236 /* Unlink replay function */
1237 static int ext4_fc_replay_unlink(struct super_block *sb, struct ext4_fc_tl *tl)
1239 struct inode *inode, *old_parent;
1241 struct dentry_info_args darg;
1244 tl_to_darg(&darg, tl);
1246 trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino,
1247 darg.parent_ino, darg.dname_len);
1249 entry.name = darg.dname;
1250 entry.len = darg.dname_len;
1251 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1253 if (IS_ERR_OR_NULL(inode)) {
1254 jbd_debug(1, "Inode %d not found", darg.ino);
1258 old_parent = ext4_iget(sb, darg.parent_ino,
1260 if (IS_ERR_OR_NULL(old_parent)) {
1261 jbd_debug(1, "Dir with inode %d not found", darg.parent_ino);
1266 ret = __ext4_unlink(old_parent, &entry, inode);
1267 /* -ENOENT ok coz it might not exist anymore. */
1275 static int ext4_fc_replay_link_internal(struct super_block *sb,
1276 struct dentry_info_args *darg,
1277 struct inode *inode)
1279 struct inode *dir = NULL;
1280 struct dentry *dentry_dir = NULL, *dentry_inode = NULL;
1281 struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len);
1284 dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL);
1286 jbd_debug(1, "Dir with inode %d not found.", darg->parent_ino);
1291 dentry_dir = d_obtain_alias(dir);
1292 if (IS_ERR(dentry_dir)) {
1293 jbd_debug(1, "Failed to obtain dentry");
1298 dentry_inode = d_alloc(dentry_dir, &qstr_dname);
1299 if (!dentry_inode) {
1300 jbd_debug(1, "Inode dentry not created.");
1305 ret = __ext4_link(dir, inode, dentry_inode);
1307 * It's possible that link already existed since data blocks
1308 * for the dir in question got persisted before we crashed OR
1309 * we replayed this tag and crashed before the entire replay
1312 if (ret && ret != -EEXIST) {
1313 jbd_debug(1, "Failed to link\n");
1326 d_drop(dentry_inode);
1333 /* Link replay function */
1334 static int ext4_fc_replay_link(struct super_block *sb, struct ext4_fc_tl *tl)
1336 struct inode *inode;
1337 struct dentry_info_args darg;
1340 tl_to_darg(&darg, tl);
1341 trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino,
1342 darg.parent_ino, darg.dname_len);
1344 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1345 if (IS_ERR_OR_NULL(inode)) {
1346 jbd_debug(1, "Inode not found.");
1350 ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1356 * Record all the modified inodes during replay. We use this later to setup
1357 * block bitmaps correctly.
1359 static int ext4_fc_record_modified_inode(struct super_block *sb, int ino)
1361 struct ext4_fc_replay_state *state;
1364 state = &EXT4_SB(sb)->s_fc_replay_state;
1365 for (i = 0; i < state->fc_modified_inodes_used; i++)
1366 if (state->fc_modified_inodes[i] == ino)
1368 if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) {
1369 state->fc_modified_inodes_size +=
1370 EXT4_FC_REPLAY_REALLOC_INCREMENT;
1371 state->fc_modified_inodes = krealloc(
1372 state->fc_modified_inodes, sizeof(int) *
1373 state->fc_modified_inodes_size,
1375 if (!state->fc_modified_inodes)
1378 state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino;
1383 * Inode replay function
1385 static int ext4_fc_replay_inode(struct super_block *sb, struct ext4_fc_tl *tl)
1387 struct ext4_fc_inode *fc_inode;
1388 struct ext4_inode *raw_inode;
1389 struct ext4_inode *raw_fc_inode;
1390 struct inode *inode = NULL;
1391 struct ext4_iloc iloc;
1392 int inode_len, ino, ret, tag = le16_to_cpu(tl->fc_tag);
1393 struct ext4_extent_header *eh;
1395 fc_inode = (struct ext4_fc_inode *)ext4_fc_tag_val(tl);
1397 ino = le32_to_cpu(fc_inode->fc_ino);
1398 trace_ext4_fc_replay(sb, tag, ino, 0, 0);
1400 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1401 if (!IS_ERR_OR_NULL(inode)) {
1402 ext4_ext_clear_bb(inode);
1406 ext4_fc_record_modified_inode(sb, ino);
1408 raw_fc_inode = (struct ext4_inode *)fc_inode->fc_raw_inode;
1409 ret = ext4_get_fc_inode_loc(sb, ino, &iloc);
1413 inode_len = ext4_fc_tag_len(tl) - sizeof(struct ext4_fc_inode);
1414 raw_inode = ext4_raw_inode(&iloc);
1416 memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block));
1417 memcpy(&raw_inode->i_generation, &raw_fc_inode->i_generation,
1418 inode_len - offsetof(struct ext4_inode, i_generation));
1419 if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) {
1420 eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]);
1421 if (eh->eh_magic != EXT4_EXT_MAGIC) {
1422 memset(eh, 0, sizeof(*eh));
1423 eh->eh_magic = EXT4_EXT_MAGIC;
1424 eh->eh_max = cpu_to_le16(
1425 (sizeof(raw_inode->i_block) -
1426 sizeof(struct ext4_extent_header))
1427 / sizeof(struct ext4_extent));
1429 } else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) {
1430 memcpy(raw_inode->i_block, raw_fc_inode->i_block,
1431 sizeof(raw_inode->i_block));
1434 /* Immediately update the inode on disk. */
1435 ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1438 ret = sync_dirty_buffer(iloc.bh);
1441 ret = ext4_mark_inode_used(sb, ino);
1445 /* Given that we just wrote the inode on disk, this SHOULD succeed. */
1446 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1447 if (IS_ERR_OR_NULL(inode)) {
1448 jbd_debug(1, "Inode not found.");
1449 return -EFSCORRUPTED;
1453 * Our allocator could have made different decisions than before
1454 * crashing. This should be fixed but until then, we calculate
1455 * the number of blocks the inode.
1457 ext4_ext_replay_set_iblocks(inode);
1459 inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation);
1460 ext4_reset_inode_seed(inode);
1462 ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode));
1463 ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1464 sync_dirty_buffer(iloc.bh);
1469 blkdev_issue_flush(sb->s_bdev, GFP_KERNEL);
1475 * Dentry create replay function.
1477 * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the
1478 * inode for which we are trying to create a dentry here, should already have
1479 * been replayed before we start here.
1481 static int ext4_fc_replay_create(struct super_block *sb, struct ext4_fc_tl *tl)
1484 struct inode *inode = NULL;
1485 struct inode *dir = NULL;
1486 struct dentry_info_args darg;
1488 tl_to_darg(&darg, tl);
1490 trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino,
1491 darg.parent_ino, darg.dname_len);
1493 /* This takes care of update group descriptor and other metadata */
1494 ret = ext4_mark_inode_used(sb, darg.ino);
1498 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1499 if (IS_ERR_OR_NULL(inode)) {
1500 jbd_debug(1, "inode %d not found.", darg.ino);
1506 if (S_ISDIR(inode->i_mode)) {
1508 * If we are creating a directory, we need to make sure that the
1509 * dot and dot dot dirents are setup properly.
1511 dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL);
1512 if (IS_ERR_OR_NULL(dir)) {
1513 jbd_debug(1, "Dir %d not found.", darg.ino);
1516 ret = ext4_init_new_dir(NULL, dir, inode);
1523 ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1526 set_nlink(inode, 1);
1527 ext4_mark_inode_dirty(NULL, inode);
1535 * Record physical disk regions which are in use as per fast commit area. Our
1536 * simple replay phase allocator excludes these regions from allocation.
1538 static int ext4_fc_record_regions(struct super_block *sb, int ino,
1539 ext4_lblk_t lblk, ext4_fsblk_t pblk, int len)
1541 struct ext4_fc_replay_state *state;
1542 struct ext4_fc_alloc_region *region;
1544 state = &EXT4_SB(sb)->s_fc_replay_state;
1545 if (state->fc_regions_used == state->fc_regions_size) {
1546 state->fc_regions_size +=
1547 EXT4_FC_REPLAY_REALLOC_INCREMENT;
1548 state->fc_regions = krealloc(
1550 state->fc_regions_size *
1551 sizeof(struct ext4_fc_alloc_region),
1553 if (!state->fc_regions)
1556 region = &state->fc_regions[state->fc_regions_used++];
1558 region->lblk = lblk;
1559 region->pblk = pblk;
1565 /* Replay add range tag */
1566 static int ext4_fc_replay_add_range(struct super_block *sb,
1567 struct ext4_fc_tl *tl)
1569 struct ext4_fc_add_range *fc_add_ex;
1570 struct ext4_extent newex, *ex;
1571 struct inode *inode;
1572 ext4_lblk_t start, cur;
1574 ext4_fsblk_t start_pblk;
1575 struct ext4_map_blocks map;
1576 struct ext4_ext_path *path = NULL;
1579 fc_add_ex = (struct ext4_fc_add_range *)ext4_fc_tag_val(tl);
1580 ex = (struct ext4_extent *)&fc_add_ex->fc_ex;
1582 trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE,
1583 le32_to_cpu(fc_add_ex->fc_ino), le32_to_cpu(ex->ee_block),
1584 ext4_ext_get_actual_len(ex));
1586 inode = ext4_iget(sb, le32_to_cpu(fc_add_ex->fc_ino),
1588 if (IS_ERR_OR_NULL(inode)) {
1589 jbd_debug(1, "Inode not found.");
1593 ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1595 start = le32_to_cpu(ex->ee_block);
1596 start_pblk = ext4_ext_pblock(ex);
1597 len = ext4_ext_get_actual_len(ex);
1601 jbd_debug(1, "ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n",
1602 start, start_pblk, len, ext4_ext_is_unwritten(ex),
1605 while (remaining > 0) {
1607 map.m_len = remaining;
1609 ret = ext4_map_blocks(NULL, inode, &map, 0);
1617 /* Range is not mapped */
1618 path = ext4_find_extent(inode, cur, NULL, 0);
1623 memset(&newex, 0, sizeof(newex));
1624 newex.ee_block = cpu_to_le32(cur);
1625 ext4_ext_store_pblock(
1626 &newex, start_pblk + cur - start);
1627 newex.ee_len = cpu_to_le16(map.m_len);
1628 if (ext4_ext_is_unwritten(ex))
1629 ext4_ext_mark_unwritten(&newex);
1630 down_write(&EXT4_I(inode)->i_data_sem);
1631 ret = ext4_ext_insert_extent(
1632 NULL, inode, &path, &newex, 0);
1633 up_write((&EXT4_I(inode)->i_data_sem));
1634 ext4_ext_drop_refs(path);
1643 if (start_pblk + cur - start != map.m_pblk) {
1645 * Logical to physical mapping changed. This can happen
1646 * if this range was removed and then reallocated to
1647 * map to new physical blocks during a fast commit.
1649 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1650 ext4_ext_is_unwritten(ex),
1651 start_pblk + cur - start);
1657 * Mark the old blocks as free since they aren't used
1658 * anymore. We maintain an array of all the modified
1659 * inodes. In case these blocks are still used at either
1660 * a different logical range in the same inode or in
1661 * some different inode, we will mark them as allocated
1662 * at the end of the FC replay using our array of
1665 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1669 /* Range is mapped and needs a state change */
1670 jbd_debug(1, "Converting from %d to %d %lld",
1671 map.m_flags & EXT4_MAP_UNWRITTEN,
1672 ext4_ext_is_unwritten(ex), map.m_pblk);
1673 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1674 ext4_ext_is_unwritten(ex), map.m_pblk);
1680 * We may have split the extent tree while toggling the state.
1681 * Try to shrink the extent tree now.
1683 ext4_ext_replay_shrink_inode(inode, start + len);
1686 remaining -= map.m_len;
1688 ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >>
1689 sb->s_blocksize_bits);
1694 /* Replay DEL_RANGE tag */
1696 ext4_fc_replay_del_range(struct super_block *sb, struct ext4_fc_tl *tl)
1698 struct inode *inode;
1699 struct ext4_fc_del_range *lrange;
1700 struct ext4_map_blocks map;
1701 ext4_lblk_t cur, remaining;
1704 lrange = (struct ext4_fc_del_range *)ext4_fc_tag_val(tl);
1705 cur = le32_to_cpu(lrange->fc_lblk);
1706 remaining = le32_to_cpu(lrange->fc_len);
1708 trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE,
1709 le32_to_cpu(lrange->fc_ino), cur, remaining);
1711 inode = ext4_iget(sb, le32_to_cpu(lrange->fc_ino), EXT4_IGET_NORMAL);
1712 if (IS_ERR_OR_NULL(inode)) {
1713 jbd_debug(1, "Inode %d not found", le32_to_cpu(lrange->fc_ino));
1717 ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1719 jbd_debug(1, "DEL_RANGE, inode %ld, lblk %d, len %d\n",
1720 inode->i_ino, le32_to_cpu(lrange->fc_lblk),
1721 le32_to_cpu(lrange->fc_len));
1722 while (remaining > 0) {
1724 map.m_len = remaining;
1726 ret = ext4_map_blocks(NULL, inode, &map, 0);
1734 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1736 remaining -= map.m_len;
1741 ret = ext4_punch_hole(inode,
1742 le32_to_cpu(lrange->fc_lblk) << sb->s_blocksize_bits,
1743 le32_to_cpu(lrange->fc_len) << sb->s_blocksize_bits);
1745 jbd_debug(1, "ext4_punch_hole returned %d", ret);
1746 ext4_ext_replay_shrink_inode(inode,
1747 i_size_read(inode) >> sb->s_blocksize_bits);
1748 ext4_mark_inode_dirty(NULL, inode);
1754 static inline const char *tag2str(u16 tag)
1757 case EXT4_FC_TAG_LINK:
1758 return "TAG_ADD_ENTRY";
1759 case EXT4_FC_TAG_UNLINK:
1760 return "TAG_DEL_ENTRY";
1761 case EXT4_FC_TAG_ADD_RANGE:
1762 return "TAG_ADD_RANGE";
1763 case EXT4_FC_TAG_CREAT:
1764 return "TAG_CREAT_DENTRY";
1765 case EXT4_FC_TAG_DEL_RANGE:
1766 return "TAG_DEL_RANGE";
1767 case EXT4_FC_TAG_INODE:
1769 case EXT4_FC_TAG_PAD:
1771 case EXT4_FC_TAG_TAIL:
1773 case EXT4_FC_TAG_HEAD:
1780 static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb)
1782 struct ext4_fc_replay_state *state;
1783 struct inode *inode;
1784 struct ext4_ext_path *path = NULL;
1785 struct ext4_map_blocks map;
1787 ext4_lblk_t cur, end;
1789 state = &EXT4_SB(sb)->s_fc_replay_state;
1790 for (i = 0; i < state->fc_modified_inodes_used; i++) {
1791 inode = ext4_iget(sb, state->fc_modified_inodes[i],
1793 if (IS_ERR_OR_NULL(inode)) {
1794 jbd_debug(1, "Inode %d not found.",
1795 state->fc_modified_inodes[i]);
1799 end = EXT_MAX_BLOCKS;
1802 map.m_len = end - cur;
1804 ret = ext4_map_blocks(NULL, inode, &map, 0);
1809 path = ext4_find_extent(inode, map.m_lblk, NULL, 0);
1810 if (!IS_ERR_OR_NULL(path)) {
1811 for (j = 0; j < path->p_depth; j++)
1812 ext4_mb_mark_bb(inode->i_sb,
1813 path[j].p_block, 1, 1);
1814 ext4_ext_drop_refs(path);
1818 ext4_mb_mark_bb(inode->i_sb, map.m_pblk,
1821 cur = cur + (map.m_len ? map.m_len : 1);
1829 * Check if block is in excluded regions for block allocation. The simple
1830 * allocator that runs during replay phase is calls this function to see
1831 * if it is okay to use a block.
1833 bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk)
1836 struct ext4_fc_replay_state *state;
1838 state = &EXT4_SB(sb)->s_fc_replay_state;
1839 for (i = 0; i < state->fc_regions_valid; i++) {
1840 if (state->fc_regions[i].ino == 0 ||
1841 state->fc_regions[i].len == 0)
1843 if (blk >= state->fc_regions[i].pblk &&
1844 blk < state->fc_regions[i].pblk + state->fc_regions[i].len)
1850 /* Cleanup function called after replay */
1851 void ext4_fc_replay_cleanup(struct super_block *sb)
1853 struct ext4_sb_info *sbi = EXT4_SB(sb);
1855 sbi->s_mount_state &= ~EXT4_FC_REPLAY;
1856 kfree(sbi->s_fc_replay_state.fc_regions);
1857 kfree(sbi->s_fc_replay_state.fc_modified_inodes);
1861 * Recovery Scan phase handler
1863 * This function is called during the scan phase and is responsible
1864 * for doing following things:
1865 * - Make sure the fast commit area has valid tags for replay
1866 * - Count number of tags that need to be replayed by the replay handler
1868 * - Create a list of excluded blocks for allocation during replay phase
1870 * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is
1871 * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP
1872 * to indicate that scan has finished and JBD2 can now start replay phase.
1873 * It returns a negative error to indicate that there was an error. At the end
1874 * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set
1875 * to indicate the number of tags that need to replayed during the replay phase.
1877 static int ext4_fc_replay_scan(journal_t *journal,
1878 struct buffer_head *bh, int off,
1881 struct super_block *sb = journal->j_private;
1882 struct ext4_sb_info *sbi = EXT4_SB(sb);
1883 struct ext4_fc_replay_state *state;
1884 int ret = JBD2_FC_REPLAY_CONTINUE;
1885 struct ext4_fc_add_range *ext;
1886 struct ext4_fc_tl *tl;
1887 struct ext4_fc_tail *tail;
1889 struct ext4_fc_head *head;
1890 struct ext4_extent *ex;
1892 state = &sbi->s_fc_replay_state;
1894 start = (u8 *)bh->b_data;
1895 end = (__u8 *)bh->b_data + journal->j_blocksize - 1;
1897 if (state->fc_replay_expected_off == 0) {
1898 state->fc_cur_tag = 0;
1899 state->fc_replay_num_tags = 0;
1901 state->fc_regions = NULL;
1902 state->fc_regions_valid = state->fc_regions_used =
1903 state->fc_regions_size = 0;
1904 /* Check if we can stop early */
1905 if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag)
1906 != EXT4_FC_TAG_HEAD)
1910 if (off != state->fc_replay_expected_off) {
1911 ret = -EFSCORRUPTED;
1915 state->fc_replay_expected_off++;
1916 fc_for_each_tl(start, end, tl) {
1917 jbd_debug(3, "Scan phase, tag:%s, blk %lld\n",
1918 tag2str(le16_to_cpu(tl->fc_tag)), bh->b_blocknr);
1919 switch (le16_to_cpu(tl->fc_tag)) {
1920 case EXT4_FC_TAG_ADD_RANGE:
1921 ext = (struct ext4_fc_add_range *)ext4_fc_tag_val(tl);
1922 ex = (struct ext4_extent *)&ext->fc_ex;
1923 ret = ext4_fc_record_regions(sb,
1924 le32_to_cpu(ext->fc_ino),
1925 le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex),
1926 ext4_ext_get_actual_len(ex));
1929 ret = JBD2_FC_REPLAY_CONTINUE;
1931 case EXT4_FC_TAG_DEL_RANGE:
1932 case EXT4_FC_TAG_LINK:
1933 case EXT4_FC_TAG_UNLINK:
1934 case EXT4_FC_TAG_CREAT:
1935 case EXT4_FC_TAG_INODE:
1936 case EXT4_FC_TAG_PAD:
1937 state->fc_cur_tag++;
1938 state->fc_crc = ext4_chksum(sbi, state->fc_crc, tl,
1939 sizeof(*tl) + ext4_fc_tag_len(tl));
1941 case EXT4_FC_TAG_TAIL:
1942 state->fc_cur_tag++;
1943 tail = (struct ext4_fc_tail *)ext4_fc_tag_val(tl);
1944 state->fc_crc = ext4_chksum(sbi, state->fc_crc, tl,
1946 offsetof(struct ext4_fc_tail,
1948 if (le32_to_cpu(tail->fc_tid) == expected_tid &&
1949 le32_to_cpu(tail->fc_crc) == state->fc_crc) {
1950 state->fc_replay_num_tags = state->fc_cur_tag;
1951 state->fc_regions_valid =
1952 state->fc_regions_used;
1954 ret = state->fc_replay_num_tags ?
1955 JBD2_FC_REPLAY_STOP : -EFSBADCRC;
1959 case EXT4_FC_TAG_HEAD:
1960 head = (struct ext4_fc_head *)ext4_fc_tag_val(tl);
1961 if (le32_to_cpu(head->fc_features) &
1962 ~EXT4_FC_SUPPORTED_FEATURES) {
1966 if (le32_to_cpu(head->fc_tid) != expected_tid) {
1967 ret = JBD2_FC_REPLAY_STOP;
1970 state->fc_cur_tag++;
1971 state->fc_crc = ext4_chksum(sbi, state->fc_crc, tl,
1972 sizeof(*tl) + ext4_fc_tag_len(tl));
1975 ret = state->fc_replay_num_tags ?
1976 JBD2_FC_REPLAY_STOP : -ECANCELED;
1978 if (ret < 0 || ret == JBD2_FC_REPLAY_STOP)
1983 trace_ext4_fc_replay_scan(sb, ret, off);
1988 * Main recovery path entry point.
1989 * The meaning of return codes is similar as above.
1991 static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh,
1992 enum passtype pass, int off, tid_t expected_tid)
1994 struct super_block *sb = journal->j_private;
1995 struct ext4_sb_info *sbi = EXT4_SB(sb);
1996 struct ext4_fc_tl *tl;
1998 int ret = JBD2_FC_REPLAY_CONTINUE;
1999 struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state;
2000 struct ext4_fc_tail *tail;
2002 if (pass == PASS_SCAN) {
2003 state->fc_current_pass = PASS_SCAN;
2004 return ext4_fc_replay_scan(journal, bh, off, expected_tid);
2007 if (state->fc_current_pass != pass) {
2008 state->fc_current_pass = pass;
2009 sbi->s_mount_state |= EXT4_FC_REPLAY;
2011 if (!sbi->s_fc_replay_state.fc_replay_num_tags) {
2012 jbd_debug(1, "Replay stops\n");
2013 ext4_fc_set_bitmaps_and_counters(sb);
2017 #ifdef CONFIG_EXT4_DEBUG
2018 if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) {
2019 pr_warn("Dropping fc block %d because max_replay set\n", off);
2020 return JBD2_FC_REPLAY_STOP;
2024 start = (u8 *)bh->b_data;
2025 end = (__u8 *)bh->b_data + journal->j_blocksize - 1;
2027 fc_for_each_tl(start, end, tl) {
2028 if (state->fc_replay_num_tags == 0) {
2029 ret = JBD2_FC_REPLAY_STOP;
2030 ext4_fc_set_bitmaps_and_counters(sb);
2033 jbd_debug(3, "Replay phase, tag:%s\n",
2034 tag2str(le16_to_cpu(tl->fc_tag)));
2035 state->fc_replay_num_tags--;
2036 switch (le16_to_cpu(tl->fc_tag)) {
2037 case EXT4_FC_TAG_LINK:
2038 ret = ext4_fc_replay_link(sb, tl);
2040 case EXT4_FC_TAG_UNLINK:
2041 ret = ext4_fc_replay_unlink(sb, tl);
2043 case EXT4_FC_TAG_ADD_RANGE:
2044 ret = ext4_fc_replay_add_range(sb, tl);
2046 case EXT4_FC_TAG_CREAT:
2047 ret = ext4_fc_replay_create(sb, tl);
2049 case EXT4_FC_TAG_DEL_RANGE:
2050 ret = ext4_fc_replay_del_range(sb, tl);
2052 case EXT4_FC_TAG_INODE:
2053 ret = ext4_fc_replay_inode(sb, tl);
2055 case EXT4_FC_TAG_PAD:
2056 trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0,
2057 ext4_fc_tag_len(tl), 0);
2059 case EXT4_FC_TAG_TAIL:
2060 trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL, 0,
2061 ext4_fc_tag_len(tl), 0);
2062 tail = (struct ext4_fc_tail *)ext4_fc_tag_val(tl);
2063 WARN_ON(le32_to_cpu(tail->fc_tid) != expected_tid);
2065 case EXT4_FC_TAG_HEAD:
2068 trace_ext4_fc_replay(sb, le16_to_cpu(tl->fc_tag), 0,
2069 ext4_fc_tag_len(tl), 0);
2075 ret = JBD2_FC_REPLAY_CONTINUE;
2080 void ext4_fc_init(struct super_block *sb, journal_t *journal)
2085 * We set replay callback even if fast commit disabled because we may
2086 * could still have fast commit blocks that need to be replayed even if
2087 * fast commit has now been turned off.
2089 journal->j_fc_replay_callback = ext4_fc_replay;
2090 if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
2092 journal->j_fc_cleanup_callback = ext4_fc_cleanup;
2093 if (!buffer_uptodate(journal->j_sb_buffer)
2094 && ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO,
2096 ext4_msg(sb, KERN_ERR, "I/O error on journal");
2099 num_fc_blocks = be32_to_cpu(journal->j_superblock->s_num_fc_blks);
2100 if (jbd2_fc_init(journal, num_fc_blocks ? num_fc_blocks :
2101 EXT4_NUM_FC_BLKS)) {
2102 pr_warn("Error while enabling fast commits, turning off.");
2103 ext4_clear_feature_fast_commit(sb);
2107 const char *fc_ineligible_reasons[] = {
2108 "Extended attributes changed",
2110 "Journal flag changed",
2111 "Insufficient memory",
2119 int ext4_fc_info_show(struct seq_file *seq, void *v)
2121 struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private);
2122 struct ext4_fc_stats *stats = &sbi->s_fc_stats;
2125 if (v != SEQ_START_TOKEN)
2129 "fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n",
2130 stats->fc_num_commits, stats->fc_ineligible_commits,
2132 div_u64(sbi->s_fc_avg_commit_time, 1000));
2133 seq_puts(seq, "Ineligible reasons:\n");
2134 for (i = 0; i < EXT4_FC_REASON_MAX; i++)
2135 seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i],
2136 stats->fc_ineligible_reason_count[i]);
2141 int __init ext4_fc_init_dentry_cache(void)
2143 ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update,
2144 SLAB_RECLAIM_ACCOUNT);
2146 if (ext4_fc_dentry_cachep == NULL)