1 // SPDX-License-Identifier: GPL-2.0
4 * fs/ext4/fast_commit.c
6 * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com>
8 * Ext4 fast commits routines.
11 #include "ext4_jbd2.h"
12 #include "ext4_extents.h"
19 * Ext4 fast commits implement fine grained journalling for Ext4.
21 * Fast commits are organized as a log of tag-length-value (TLV) structs. (See
22 * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by
23 * TLV during the recovery phase. For the scenarios for which we currently
24 * don't have replay code, fast commit falls back to full commits.
25 * Fast commits record delta in one of the following three categories.
27 * (A) Directory entry updates:
29 * - EXT4_FC_TAG_UNLINK - records directory entry unlink
30 * - EXT4_FC_TAG_LINK - records directory entry link
31 * - EXT4_FC_TAG_CREAT - records inode and directory entry creation
33 * (B) File specific data range updates:
35 * - EXT4_FC_TAG_ADD_RANGE - records addition of new blocks to an inode
36 * - EXT4_FC_TAG_DEL_RANGE - records deletion of blocks from an inode
38 * (C) Inode metadata (mtime / ctime etc):
40 * - EXT4_FC_TAG_INODE - record the inode that should be replayed
41 * during recovery. Note that iblocks field is
42 * not replayed and instead derived during
46 * With fast commits, we maintain all the directory entry operations in the
47 * order in which they are issued in an in-memory queue. This queue is flushed
48 * to disk during the commit operation. We also maintain a list of inodes
49 * that need to be committed during a fast commit in another in memory queue of
50 * inodes. During the commit operation, we commit in the following order:
52 * [1] Lock inodes for any further data updates by setting COMMITTING state
53 * [2] Submit data buffers of all the inodes
54 * [3] Wait for [2] to complete
55 * [4] Commit all the directory entry updates in the fast commit space
56 * [5] Commit all the changed inode structures
57 * [6] Write tail tag (this tag ensures the atomicity, please read the following
58 * section for more details).
59 * [7] Wait for [4], [5] and [6] to complete.
61 * All the inode updates must call ext4_fc_start_update() before starting an
62 * update. If such an ongoing update is present, fast commit waits for it to
63 * complete. The completion of such an update is marked by
64 * ext4_fc_stop_update().
66 * Fast Commit Ineligibility
67 * -------------------------
69 * Not all operations are supported by fast commits today (e.g extended
70 * attributes). Fast commit ineligibility is marked by calling
71 * ext4_fc_mark_ineligible(): This makes next fast commit operation to fall back
74 * Atomicity of commits
75 * --------------------
76 * In order to guarantee atomicity during the commit operation, fast commit
77 * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail
78 * tag contains CRC of the contents and TID of the transaction after which
79 * this fast commit should be applied. Recovery code replays fast commit
80 * logs only if there's at least 1 valid tail present. For every fast commit
81 * operation, there is 1 tail. This means, we may end up with multiple tails
82 * in the fast commit space. Here's an example:
84 * - Create a new file A and remove existing file B
86 * - Append contents to file A
90 * The fast commit space at the end of above operations would look like this:
91 * [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL]
92 * |<--- Fast Commit 1 --->|<--- Fast Commit 2 ---->|
94 * Replay code should thus check for all the valid tails in the FC area.
96 * Fast Commit Replay Idempotence
97 * ------------------------------
99 * Fast commits tags are idempotent in nature provided the recovery code follows
100 * certain rules. The guiding principle that the commit path follows while
101 * committing is that it stores the result of a particular operation instead of
102 * storing the procedure.
104 * Let's consider this rename operation: 'mv /a /b'. Let's assume dirent '/a'
105 * was associated with inode 10. During fast commit, instead of storing this
106 * operation as a procedure "rename a to b", we store the resulting file system
107 * state as a "series" of outcomes:
109 * - Link dirent b to inode 10
111 * - Inode <10> with valid refcount
113 * Now when recovery code runs, it needs "enforce" this state on the file
114 * system. This is what guarantees idempotence of fast commit replay.
116 * Let's take an example of a procedure that is not idempotent and see how fast
117 * commits make it idempotent. Consider following sequence of operations:
119 * rm A; mv B A; read A
122 * (x), (y) and (z) are the points at which we can crash. If we store this
123 * sequence of operations as is then the replay is not idempotent. Let's say
124 * while in replay, we crash at (z). During the second replay, file A (which was
125 * actually created as a result of "mv B A" operation) would get deleted. Thus,
126 * file named A would be absent when we try to read A. So, this sequence of
127 * operations is not idempotent. However, as mentioned above, instead of storing
128 * the procedure fast commits store the outcome of each procedure. Thus the fast
129 * commit log for above procedure would be as follows:
131 * (Let's assume dirent A was linked to inode 10 and dirent B was linked to
132 * inode 11 before the replay)
134 * [Unlink A] [Link A to inode 11] [Unlink B] [Inode 11]
137 * If we crash at (z), we will have file A linked to inode 11. During the second
138 * replay, we will remove file A (inode 11). But we will create it back and make
139 * it point to inode 11. We won't find B, so we'll just skip that step. At this
140 * point, the refcount for inode 11 is not reliable, but that gets fixed by the
141 * replay of last inode 11 tag. Crashes at points (w), (x) and (y) get handled
142 * similarly. Thus, by converting a non-idempotent procedure into a series of
143 * idempotent outcomes, fast commits ensured idempotence during the replay.
148 * 0) Fast commit replay path hardening: Fast commit replay code should use
149 * journal handles to make sure all the updates it does during the replay
150 * path are atomic. With that if we crash during fast commit replay, after
151 * trying to do recovery again, we will find a file system where fast commit
152 * area is invalid (because new full commit would be found). In order to deal
153 * with that, fast commit replay code should ensure that the "FC_REPLAY"
154 * superblock state is persisted before starting the replay, so that after
155 * the crash, fast commit recovery code can look at that flag and perform
156 * fast commit recovery even if that area is invalidated by later full
159 * 1) Fast commit's commit path locks the entire file system during fast
160 * commit. This has significant performance penalty. Instead of that, we
161 * should use ext4_fc_start/stop_update functions to start inode level
162 * updates from ext4_journal_start/stop. Once we do that we can drop file
163 * system locking during commit path.
165 * 2) Handle more ineligible cases.
168 #include <trace/events/ext4.h>
169 static struct kmem_cache *ext4_fc_dentry_cachep;
171 static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
173 BUFFER_TRACE(bh, "");
175 ext4_debug("%s: Block %lld up-to-date",
176 __func__, bh->b_blocknr);
177 set_buffer_uptodate(bh);
179 ext4_debug("%s: Block %lld not up-to-date",
180 __func__, bh->b_blocknr);
181 clear_buffer_uptodate(bh);
187 static inline void ext4_fc_reset_inode(struct inode *inode)
189 struct ext4_inode_info *ei = EXT4_I(inode);
191 ei->i_fc_lblk_start = 0;
192 ei->i_fc_lblk_len = 0;
195 void ext4_fc_init_inode(struct inode *inode)
197 struct ext4_inode_info *ei = EXT4_I(inode);
199 ext4_fc_reset_inode(inode);
200 ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING);
201 INIT_LIST_HEAD(&ei->i_fc_list);
202 INIT_LIST_HEAD(&ei->i_fc_dilist);
203 init_waitqueue_head(&ei->i_fc_wait);
204 atomic_set(&ei->i_fc_updates, 0);
207 /* This function must be called with sbi->s_fc_lock held. */
208 static void ext4_fc_wait_committing_inode(struct inode *inode)
209 __releases(&EXT4_SB(inode->i_sb)->s_fc_lock)
211 wait_queue_head_t *wq;
212 struct ext4_inode_info *ei = EXT4_I(inode);
214 #if (BITS_PER_LONG < 64)
215 DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
216 EXT4_STATE_FC_COMMITTING);
217 wq = bit_waitqueue(&ei->i_state_flags,
218 EXT4_STATE_FC_COMMITTING);
220 DEFINE_WAIT_BIT(wait, &ei->i_flags,
221 EXT4_STATE_FC_COMMITTING);
222 wq = bit_waitqueue(&ei->i_flags,
223 EXT4_STATE_FC_COMMITTING);
225 lockdep_assert_held(&EXT4_SB(inode->i_sb)->s_fc_lock);
226 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
227 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
229 finish_wait(wq, &wait.wq_entry);
233 * Inform Ext4's fast about start of an inode update
235 * This function is called by the high level call VFS callbacks before
236 * performing any inode update. This function blocks if there's an ongoing
237 * fast commit on the inode in question.
239 void ext4_fc_start_update(struct inode *inode)
241 struct ext4_inode_info *ei = EXT4_I(inode);
243 if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
244 (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
248 spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
249 if (list_empty(&ei->i_fc_list))
252 if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
253 ext4_fc_wait_committing_inode(inode);
257 atomic_inc(&ei->i_fc_updates);
258 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
262 * Stop inode update and wake up waiting fast commits if any.
264 void ext4_fc_stop_update(struct inode *inode)
266 struct ext4_inode_info *ei = EXT4_I(inode);
268 if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
269 (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
272 if (atomic_dec_and_test(&ei->i_fc_updates))
273 wake_up_all(&ei->i_fc_wait);
277 * Remove inode from fast commit list. If the inode is being committed
278 * we wait until inode commit is done.
280 void ext4_fc_del(struct inode *inode)
282 struct ext4_inode_info *ei = EXT4_I(inode);
283 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
284 struct ext4_fc_dentry_update *fc_dentry;
286 if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
287 (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
291 spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
292 if (list_empty(&ei->i_fc_list) && list_empty(&ei->i_fc_dilist)) {
293 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
297 if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
298 ext4_fc_wait_committing_inode(inode);
302 if (!list_empty(&ei->i_fc_list))
303 list_del_init(&ei->i_fc_list);
306 * Since this inode is getting removed, let's also remove all FC
307 * dentry create references, since it is not needed to log it anyways.
309 if (list_empty(&ei->i_fc_dilist)) {
310 spin_unlock(&sbi->s_fc_lock);
314 fc_dentry = list_first_entry(&ei->i_fc_dilist, struct ext4_fc_dentry_update, fcd_dilist);
315 WARN_ON(fc_dentry->fcd_op != EXT4_FC_TAG_CREAT);
316 list_del_init(&fc_dentry->fcd_list);
317 list_del_init(&fc_dentry->fcd_dilist);
319 WARN_ON(!list_empty(&ei->i_fc_dilist));
320 spin_unlock(&sbi->s_fc_lock);
322 if (fc_dentry->fcd_name.name &&
323 fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
324 kfree(fc_dentry->fcd_name.name);
325 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
331 * Mark file system as fast commit ineligible, and record latest
332 * ineligible transaction tid. This means until the recorded
333 * transaction, commit operation would result in a full jbd2 commit.
335 void ext4_fc_mark_ineligible(struct super_block *sb, int reason, handle_t *handle)
337 struct ext4_sb_info *sbi = EXT4_SB(sb);
340 if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
341 (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))
344 ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
345 if (handle && !IS_ERR(handle))
346 tid = handle->h_transaction->t_tid;
348 read_lock(&sbi->s_journal->j_state_lock);
349 tid = sbi->s_journal->j_running_transaction ?
350 sbi->s_journal->j_running_transaction->t_tid : 0;
351 read_unlock(&sbi->s_journal->j_state_lock);
353 spin_lock(&sbi->s_fc_lock);
354 if (sbi->s_fc_ineligible_tid < tid)
355 sbi->s_fc_ineligible_tid = tid;
356 spin_unlock(&sbi->s_fc_lock);
357 WARN_ON(reason >= EXT4_FC_REASON_MAX);
358 sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
362 * Generic fast commit tracking function. If this is the first time this we are
363 * called after a full commit, we initialize fast commit fields and then call
364 * __fc_track_fn() with update = 0. If we have already been called after a full
365 * commit, we pass update = 1. Based on that, the track function can determine
366 * if it needs to track a field for the first time or if it needs to just
367 * update the previously tracked value.
369 * If enqueue is set, this function enqueues the inode in fast commit list.
371 static int ext4_fc_track_template(
372 handle_t *handle, struct inode *inode,
373 int (*__fc_track_fn)(struct inode *, void *, bool),
374 void *args, int enqueue)
377 struct ext4_inode_info *ei = EXT4_I(inode);
378 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
382 tid = handle->h_transaction->t_tid;
383 mutex_lock(&ei->i_fc_lock);
384 if (tid == ei->i_sync_tid) {
387 ext4_fc_reset_inode(inode);
388 ei->i_sync_tid = tid;
390 ret = __fc_track_fn(inode, args, update);
391 mutex_unlock(&ei->i_fc_lock);
396 spin_lock(&sbi->s_fc_lock);
397 if (list_empty(&EXT4_I(inode)->i_fc_list))
398 list_add_tail(&EXT4_I(inode)->i_fc_list,
399 (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
400 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) ?
401 &sbi->s_fc_q[FC_Q_STAGING] :
402 &sbi->s_fc_q[FC_Q_MAIN]);
403 spin_unlock(&sbi->s_fc_lock);
408 struct __track_dentry_update_args {
409 struct dentry *dentry;
413 /* __track_fn for directory entry updates. Called with ei->i_fc_lock. */
414 static int __track_dentry_update(struct inode *inode, void *arg, bool update)
416 struct ext4_fc_dentry_update *node;
417 struct ext4_inode_info *ei = EXT4_I(inode);
418 struct __track_dentry_update_args *dentry_update =
419 (struct __track_dentry_update_args *)arg;
420 struct dentry *dentry = dentry_update->dentry;
421 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
423 mutex_unlock(&ei->i_fc_lock);
424 node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS);
426 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
427 mutex_lock(&ei->i_fc_lock);
431 node->fcd_op = dentry_update->op;
432 node->fcd_parent = dentry->d_parent->d_inode->i_ino;
433 node->fcd_ino = inode->i_ino;
434 if (dentry->d_name.len > DNAME_INLINE_LEN) {
435 node->fcd_name.name = kmalloc(dentry->d_name.len, GFP_NOFS);
436 if (!node->fcd_name.name) {
437 kmem_cache_free(ext4_fc_dentry_cachep, node);
438 ext4_fc_mark_ineligible(inode->i_sb,
439 EXT4_FC_REASON_NOMEM, NULL);
440 mutex_lock(&ei->i_fc_lock);
443 memcpy((u8 *)node->fcd_name.name, dentry->d_name.name,
446 memcpy(node->fcd_iname, dentry->d_name.name,
448 node->fcd_name.name = node->fcd_iname;
450 node->fcd_name.len = dentry->d_name.len;
451 INIT_LIST_HEAD(&node->fcd_dilist);
452 spin_lock(&sbi->s_fc_lock);
453 if (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
454 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING)
455 list_add_tail(&node->fcd_list,
456 &sbi->s_fc_dentry_q[FC_Q_STAGING]);
458 list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]);
461 * This helps us keep a track of all fc_dentry updates which is part of
462 * this ext4 inode. So in case the inode is getting unlinked, before
463 * even we get a chance to fsync, we could remove all fc_dentry
464 * references while evicting the inode in ext4_fc_del().
465 * Also with this, we don't need to loop over all the inodes in
466 * sbi->s_fc_q to get the corresponding inode in
467 * ext4_fc_commit_dentry_updates().
469 if (dentry_update->op == EXT4_FC_TAG_CREAT) {
470 WARN_ON(!list_empty(&ei->i_fc_dilist));
471 list_add_tail(&node->fcd_dilist, &ei->i_fc_dilist);
473 spin_unlock(&sbi->s_fc_lock);
474 mutex_lock(&ei->i_fc_lock);
479 void __ext4_fc_track_unlink(handle_t *handle,
480 struct inode *inode, struct dentry *dentry)
482 struct __track_dentry_update_args args;
485 args.dentry = dentry;
486 args.op = EXT4_FC_TAG_UNLINK;
488 ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
490 trace_ext4_fc_track_unlink(handle, inode, dentry, ret);
493 void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry)
495 struct inode *inode = d_inode(dentry);
496 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
498 if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
499 (sbi->s_mount_state & EXT4_FC_REPLAY))
502 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
505 __ext4_fc_track_unlink(handle, inode, dentry);
508 void __ext4_fc_track_link(handle_t *handle,
509 struct inode *inode, struct dentry *dentry)
511 struct __track_dentry_update_args args;
514 args.dentry = dentry;
515 args.op = EXT4_FC_TAG_LINK;
517 ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
519 trace_ext4_fc_track_link(handle, inode, dentry, ret);
522 void ext4_fc_track_link(handle_t *handle, struct dentry *dentry)
524 struct inode *inode = d_inode(dentry);
525 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
527 if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
528 (sbi->s_mount_state & EXT4_FC_REPLAY))
531 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
534 __ext4_fc_track_link(handle, inode, dentry);
537 void __ext4_fc_track_create(handle_t *handle, struct inode *inode,
538 struct dentry *dentry)
540 struct __track_dentry_update_args args;
543 args.dentry = dentry;
544 args.op = EXT4_FC_TAG_CREAT;
546 ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
548 trace_ext4_fc_track_create(handle, inode, dentry, ret);
551 void ext4_fc_track_create(handle_t *handle, struct dentry *dentry)
553 struct inode *inode = d_inode(dentry);
554 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
556 if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
557 (sbi->s_mount_state & EXT4_FC_REPLAY))
560 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
563 __ext4_fc_track_create(handle, inode, dentry);
566 /* __track_fn for inode tracking */
567 static int __track_inode(struct inode *inode, void *arg, bool update)
572 EXT4_I(inode)->i_fc_lblk_len = 0;
577 void ext4_fc_track_inode(handle_t *handle, struct inode *inode)
579 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
582 if (S_ISDIR(inode->i_mode))
585 if (ext4_should_journal_data(inode)) {
586 ext4_fc_mark_ineligible(inode->i_sb,
587 EXT4_FC_REASON_INODE_JOURNAL_DATA, handle);
591 if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
592 (sbi->s_mount_state & EXT4_FC_REPLAY))
595 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
598 ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1);
599 trace_ext4_fc_track_inode(handle, inode, ret);
602 struct __track_range_args {
603 ext4_lblk_t start, end;
606 /* __track_fn for tracking data updates */
607 static int __track_range(struct inode *inode, void *arg, bool update)
609 struct ext4_inode_info *ei = EXT4_I(inode);
610 ext4_lblk_t oldstart;
611 struct __track_range_args *__arg =
612 (struct __track_range_args *)arg;
614 if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) {
615 ext4_debug("Special inode %ld being modified\n", inode->i_ino);
619 oldstart = ei->i_fc_lblk_start;
621 if (update && ei->i_fc_lblk_len > 0) {
622 ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start);
624 max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) -
625 ei->i_fc_lblk_start + 1;
627 ei->i_fc_lblk_start = __arg->start;
628 ei->i_fc_lblk_len = __arg->end - __arg->start + 1;
634 void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start,
637 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
638 struct __track_range_args args;
641 if (S_ISDIR(inode->i_mode))
644 if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
645 (sbi->s_mount_state & EXT4_FC_REPLAY))
648 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
654 ret = ext4_fc_track_template(handle, inode, __track_range, &args, 1);
656 trace_ext4_fc_track_range(handle, inode, start, end, ret);
659 static void ext4_fc_submit_bh(struct super_block *sb, bool is_tail)
661 int write_flags = REQ_SYNC;
662 struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh;
664 /* Add REQ_FUA | REQ_PREFLUSH only its tail */
665 if (test_opt(sb, BARRIER) && is_tail)
666 write_flags |= REQ_FUA | REQ_PREFLUSH;
668 set_buffer_dirty(bh);
669 set_buffer_uptodate(bh);
670 bh->b_end_io = ext4_end_buffer_io_sync;
671 submit_bh(REQ_OP_WRITE, write_flags, bh);
672 EXT4_SB(sb)->s_fc_bh = NULL;
675 /* Ext4 commit path routines */
677 /* memzero and update CRC */
678 static void *ext4_fc_memzero(struct super_block *sb, void *dst, int len,
683 ret = memset(dst, 0, len);
685 *crc = ext4_chksum(EXT4_SB(sb), *crc, dst, len);
690 * Allocate len bytes on a fast commit buffer.
692 * During the commit time this function is used to manage fast commit
693 * block space. We don't split a fast commit log onto different
694 * blocks. So this function makes sure that if there's not enough space
695 * on the current block, the remaining space in the current block is
696 * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case,
697 * new block is from jbd2 and CRC is updated to reflect the padding
700 static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc)
702 struct ext4_fc_tl *tl;
703 struct ext4_sb_info *sbi = EXT4_SB(sb);
704 struct buffer_head *bh;
705 int bsize = sbi->s_journal->j_blocksize;
706 int ret, off = sbi->s_fc_bytes % bsize;
710 * After allocating len, we should have space at least for a 0 byte
713 if (len + sizeof(struct ext4_fc_tl) > bsize)
716 if (bsize - off - 1 > len + sizeof(struct ext4_fc_tl)) {
718 * Only allocate from current buffer if we have enough space for
719 * this request AND we have space to add a zero byte padding.
722 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
727 sbi->s_fc_bytes += len;
728 return sbi->s_fc_bh->b_data + off;
730 /* Need to add PAD tag */
731 tl = (struct ext4_fc_tl *)(sbi->s_fc_bh->b_data + off);
732 tl->fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD);
733 pad_len = bsize - off - 1 - sizeof(struct ext4_fc_tl);
734 tl->fc_len = cpu_to_le16(pad_len);
736 *crc = ext4_chksum(sbi, *crc, tl, sizeof(*tl));
738 ext4_fc_memzero(sb, tl + 1, pad_len, crc);
739 ext4_fc_submit_bh(sb, false);
741 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
745 sbi->s_fc_bytes = (sbi->s_fc_bytes / bsize + 1) * bsize + len;
746 return sbi->s_fc_bh->b_data;
749 /* memcpy to fc reserved space and update CRC */
750 static void *ext4_fc_memcpy(struct super_block *sb, void *dst, const void *src,
754 *crc = ext4_chksum(EXT4_SB(sb), *crc, src, len);
755 return memcpy(dst, src, len);
759 * Complete a fast commit by writing tail tag.
761 * Writing tail tag marks the end of a fast commit. In order to guarantee
762 * atomicity, after writing tail tag, even if there's space remaining
763 * in the block, next commit shouldn't use it. That's why tail tag
764 * has the length as that of the remaining space on the block.
766 static int ext4_fc_write_tail(struct super_block *sb, u32 crc)
768 struct ext4_sb_info *sbi = EXT4_SB(sb);
769 struct ext4_fc_tl tl;
770 struct ext4_fc_tail tail;
771 int off, bsize = sbi->s_journal->j_blocksize;
775 * ext4_fc_reserve_space takes care of allocating an extra block if
776 * there's no enough space on this block for accommodating this tail.
778 dst = ext4_fc_reserve_space(sb, sizeof(tl) + sizeof(tail), &crc);
782 off = sbi->s_fc_bytes % bsize;
784 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL);
785 tl.fc_len = cpu_to_le16(bsize - off - 1 + sizeof(struct ext4_fc_tail));
786 sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize);
788 ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), &crc);
790 tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid);
791 ext4_fc_memcpy(sb, dst, &tail.fc_tid, sizeof(tail.fc_tid), &crc);
792 dst += sizeof(tail.fc_tid);
793 tail.fc_crc = cpu_to_le32(crc);
794 ext4_fc_memcpy(sb, dst, &tail.fc_crc, sizeof(tail.fc_crc), NULL);
796 ext4_fc_submit_bh(sb, true);
802 * Adds tag, length, value and updates CRC. Returns true if tlv was added.
803 * Returns false if there's not enough space.
805 static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val,
808 struct ext4_fc_tl tl;
811 dst = ext4_fc_reserve_space(sb, sizeof(tl) + len, crc);
815 tl.fc_tag = cpu_to_le16(tag);
816 tl.fc_len = cpu_to_le16(len);
818 ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), crc);
819 ext4_fc_memcpy(sb, dst + sizeof(tl), val, len, crc);
824 /* Same as above, but adds dentry tlv. */
825 static bool ext4_fc_add_dentry_tlv(struct super_block *sb, u32 *crc,
826 struct ext4_fc_dentry_update *fc_dentry)
828 struct ext4_fc_dentry_info fcd;
829 struct ext4_fc_tl tl;
830 int dlen = fc_dentry->fcd_name.len;
831 u8 *dst = ext4_fc_reserve_space(sb, sizeof(tl) + sizeof(fcd) + dlen,
837 fcd.fc_parent_ino = cpu_to_le32(fc_dentry->fcd_parent);
838 fcd.fc_ino = cpu_to_le32(fc_dentry->fcd_ino);
839 tl.fc_tag = cpu_to_le16(fc_dentry->fcd_op);
840 tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen);
841 ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), crc);
843 ext4_fc_memcpy(sb, dst, &fcd, sizeof(fcd), crc);
845 ext4_fc_memcpy(sb, dst, fc_dentry->fcd_name.name, dlen, crc);
851 * Writes inode in the fast commit space under TLV with tag @tag.
852 * Returns 0 on success, error on failure.
854 static int ext4_fc_write_inode(struct inode *inode, u32 *crc)
856 struct ext4_inode_info *ei = EXT4_I(inode);
857 int inode_len = EXT4_GOOD_OLD_INODE_SIZE;
859 struct ext4_iloc iloc;
860 struct ext4_fc_inode fc_inode;
861 struct ext4_fc_tl tl;
864 ret = ext4_get_inode_loc(inode, &iloc);
868 if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
869 inode_len = EXT4_INODE_SIZE(inode->i_sb);
870 else if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE)
871 inode_len += ei->i_extra_isize;
873 fc_inode.fc_ino = cpu_to_le32(inode->i_ino);
874 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE);
875 tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino));
877 dst = ext4_fc_reserve_space(inode->i_sb,
878 sizeof(tl) + inode_len + sizeof(fc_inode.fc_ino), crc);
882 if (!ext4_fc_memcpy(inode->i_sb, dst, &tl, sizeof(tl), crc))
885 if (!ext4_fc_memcpy(inode->i_sb, dst, &fc_inode, sizeof(fc_inode), crc))
887 dst += sizeof(fc_inode);
888 if (!ext4_fc_memcpy(inode->i_sb, dst, (u8 *)ext4_raw_inode(&iloc),
896 * Writes updated data ranges for the inode in question. Updates CRC.
897 * Returns 0 on success, error otherwise.
899 static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc)
901 ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size;
902 struct ext4_inode_info *ei = EXT4_I(inode);
903 struct ext4_map_blocks map;
904 struct ext4_fc_add_range fc_ext;
905 struct ext4_fc_del_range lrange;
906 struct ext4_extent *ex;
909 mutex_lock(&ei->i_fc_lock);
910 if (ei->i_fc_lblk_len == 0) {
911 mutex_unlock(&ei->i_fc_lock);
914 old_blk_size = ei->i_fc_lblk_start;
915 new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1;
916 ei->i_fc_lblk_len = 0;
917 mutex_unlock(&ei->i_fc_lock);
919 cur_lblk_off = old_blk_size;
920 jbd_debug(1, "%s: will try writing %d to %d for inode %ld\n",
921 __func__, cur_lblk_off, new_blk_size, inode->i_ino);
923 while (cur_lblk_off <= new_blk_size) {
924 map.m_lblk = cur_lblk_off;
925 map.m_len = new_blk_size - cur_lblk_off + 1;
926 ret = ext4_map_blocks(NULL, inode, &map, 0);
930 if (map.m_len == 0) {
936 lrange.fc_ino = cpu_to_le32(inode->i_ino);
937 lrange.fc_lblk = cpu_to_le32(map.m_lblk);
938 lrange.fc_len = cpu_to_le32(map.m_len);
939 if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE,
940 sizeof(lrange), (u8 *)&lrange, crc))
943 unsigned int max = (map.m_flags & EXT4_MAP_UNWRITTEN) ?
944 EXT_UNWRITTEN_MAX_LEN : EXT_INIT_MAX_LEN;
946 /* Limit the number of blocks in one extent */
947 map.m_len = min(max, map.m_len);
949 fc_ext.fc_ino = cpu_to_le32(inode->i_ino);
950 ex = (struct ext4_extent *)&fc_ext.fc_ex;
951 ex->ee_block = cpu_to_le32(map.m_lblk);
952 ex->ee_len = cpu_to_le16(map.m_len);
953 ext4_ext_store_pblock(ex, map.m_pblk);
954 if (map.m_flags & EXT4_MAP_UNWRITTEN)
955 ext4_ext_mark_unwritten(ex);
957 ext4_ext_mark_initialized(ex);
958 if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE,
959 sizeof(fc_ext), (u8 *)&fc_ext, crc))
963 cur_lblk_off += map.m_len;
970 /* Submit data for all the fast commit inodes */
971 static int ext4_fc_submit_inode_data_all(journal_t *journal)
973 struct super_block *sb = (struct super_block *)(journal->j_private);
974 struct ext4_sb_info *sbi = EXT4_SB(sb);
975 struct ext4_inode_info *ei;
978 spin_lock(&sbi->s_fc_lock);
979 list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
980 ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING);
981 while (atomic_read(&ei->i_fc_updates)) {
984 prepare_to_wait(&ei->i_fc_wait, &wait,
985 TASK_UNINTERRUPTIBLE);
986 if (atomic_read(&ei->i_fc_updates)) {
987 spin_unlock(&sbi->s_fc_lock);
989 spin_lock(&sbi->s_fc_lock);
991 finish_wait(&ei->i_fc_wait, &wait);
993 spin_unlock(&sbi->s_fc_lock);
994 ret = jbd2_submit_inode_data(ei->jinode);
997 spin_lock(&sbi->s_fc_lock);
999 spin_unlock(&sbi->s_fc_lock);
1004 /* Wait for completion of data for all the fast commit inodes */
1005 static int ext4_fc_wait_inode_data_all(journal_t *journal)
1007 struct super_block *sb = (struct super_block *)(journal->j_private);
1008 struct ext4_sb_info *sbi = EXT4_SB(sb);
1009 struct ext4_inode_info *pos, *n;
1012 spin_lock(&sbi->s_fc_lock);
1013 list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1014 if (!ext4_test_inode_state(&pos->vfs_inode,
1015 EXT4_STATE_FC_COMMITTING))
1017 spin_unlock(&sbi->s_fc_lock);
1019 ret = jbd2_wait_inode_data(journal, pos->jinode);
1022 spin_lock(&sbi->s_fc_lock);
1024 spin_unlock(&sbi->s_fc_lock);
1029 /* Commit all the directory entry updates */
1030 static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc)
1031 __acquires(&sbi->s_fc_lock)
1032 __releases(&sbi->s_fc_lock)
1034 struct super_block *sb = (struct super_block *)(journal->j_private);
1035 struct ext4_sb_info *sbi = EXT4_SB(sb);
1036 struct ext4_fc_dentry_update *fc_dentry, *fc_dentry_n;
1037 struct inode *inode;
1038 struct ext4_inode_info *ei;
1041 if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN]))
1043 list_for_each_entry_safe(fc_dentry, fc_dentry_n,
1044 &sbi->s_fc_dentry_q[FC_Q_MAIN], fcd_list) {
1045 if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) {
1046 spin_unlock(&sbi->s_fc_lock);
1047 if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
1051 spin_lock(&sbi->s_fc_lock);
1055 * With fcd_dilist we need not loop in sbi->s_fc_q to get the
1056 * corresponding inode pointer
1058 WARN_ON(list_empty(&fc_dentry->fcd_dilist));
1059 ei = list_first_entry(&fc_dentry->fcd_dilist,
1060 struct ext4_inode_info, i_fc_dilist);
1061 inode = &ei->vfs_inode;
1062 WARN_ON(inode->i_ino != fc_dentry->fcd_ino);
1064 spin_unlock(&sbi->s_fc_lock);
1067 * We first write the inode and then the create dirent. This
1068 * allows the recovery code to create an unnamed inode first
1069 * and then link it to a directory entry. This allows us
1070 * to use namei.c routines almost as is and simplifies
1071 * the recovery code.
1073 ret = ext4_fc_write_inode(inode, crc);
1077 ret = ext4_fc_write_inode_data(inode, crc);
1081 if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
1086 spin_lock(&sbi->s_fc_lock);
1090 spin_lock(&sbi->s_fc_lock);
1094 static int ext4_fc_perform_commit(journal_t *journal)
1096 struct super_block *sb = (struct super_block *)(journal->j_private);
1097 struct ext4_sb_info *sbi = EXT4_SB(sb);
1098 struct ext4_inode_info *iter;
1099 struct ext4_fc_head head;
1100 struct inode *inode;
1101 struct blk_plug plug;
1105 ret = ext4_fc_submit_inode_data_all(journal);
1109 ret = ext4_fc_wait_inode_data_all(journal);
1114 * If file system device is different from journal device, issue a cache
1115 * flush before we start writing fast commit blocks.
1117 if (journal->j_fs_dev != journal->j_dev)
1118 blkdev_issue_flush(journal->j_fs_dev);
1120 blk_start_plug(&plug);
1121 if (sbi->s_fc_bytes == 0) {
1123 * Add a head tag only if this is the first fast commit
1126 head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES);
1127 head.fc_tid = cpu_to_le32(
1128 sbi->s_journal->j_running_transaction->t_tid);
1129 if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head),
1130 (u8 *)&head, &crc)) {
1136 spin_lock(&sbi->s_fc_lock);
1137 ret = ext4_fc_commit_dentry_updates(journal, &crc);
1139 spin_unlock(&sbi->s_fc_lock);
1143 list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1144 inode = &iter->vfs_inode;
1145 if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING))
1148 spin_unlock(&sbi->s_fc_lock);
1149 ret = ext4_fc_write_inode_data(inode, &crc);
1152 ret = ext4_fc_write_inode(inode, &crc);
1155 spin_lock(&sbi->s_fc_lock);
1157 spin_unlock(&sbi->s_fc_lock);
1159 ret = ext4_fc_write_tail(sb, crc);
1162 blk_finish_plug(&plug);
1166 static void ext4_fc_update_stats(struct super_block *sb, int status,
1167 u64 commit_time, int nblks, tid_t commit_tid)
1169 struct ext4_fc_stats *stats = &EXT4_SB(sb)->s_fc_stats;
1171 jbd_debug(1, "Fast commit ended with status = %d for tid %u",
1172 status, commit_tid);
1173 if (status == EXT4_FC_STATUS_OK) {
1174 stats->fc_num_commits++;
1175 stats->fc_numblks += nblks;
1176 if (likely(stats->s_fc_avg_commit_time))
1177 stats->s_fc_avg_commit_time =
1179 stats->s_fc_avg_commit_time * 3) / 4;
1181 stats->s_fc_avg_commit_time = commit_time;
1182 } else if (status == EXT4_FC_STATUS_FAILED ||
1183 status == EXT4_FC_STATUS_INELIGIBLE) {
1184 if (status == EXT4_FC_STATUS_FAILED)
1185 stats->fc_failed_commits++;
1186 stats->fc_ineligible_commits++;
1188 stats->fc_skipped_commits++;
1190 trace_ext4_fc_commit_stop(sb, nblks, status, commit_tid);
1194 * The main commit entry point. Performs a fast commit for transaction
1195 * commit_tid if needed. If it's not possible to perform a fast commit
1196 * due to various reasons, we fall back to full commit. Returns 0
1197 * on success, error otherwise.
1199 int ext4_fc_commit(journal_t *journal, tid_t commit_tid)
1201 struct super_block *sb = (struct super_block *)(journal->j_private);
1202 struct ext4_sb_info *sbi = EXT4_SB(sb);
1203 int nblks = 0, ret, bsize = journal->j_blocksize;
1204 int subtid = atomic_read(&sbi->s_fc_subtid);
1205 int status = EXT4_FC_STATUS_OK, fc_bufs_before = 0;
1206 ktime_t start_time, commit_time;
1208 if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
1209 return jbd2_complete_transaction(journal, commit_tid);
1211 trace_ext4_fc_commit_start(sb, commit_tid);
1213 start_time = ktime_get();
1216 ret = jbd2_fc_begin_commit(journal, commit_tid);
1217 if (ret == -EALREADY) {
1218 /* There was an ongoing commit, check if we need to restart */
1219 if (atomic_read(&sbi->s_fc_subtid) <= subtid &&
1220 commit_tid > journal->j_commit_sequence)
1222 ext4_fc_update_stats(sb, EXT4_FC_STATUS_SKIPPED, 0, 0,
1227 * Commit couldn't start. Just update stats and perform a
1230 ext4_fc_update_stats(sb, EXT4_FC_STATUS_FAILED, 0, 0,
1232 return jbd2_complete_transaction(journal, commit_tid);
1236 * After establishing journal barrier via jbd2_fc_begin_commit(), check
1237 * if we are fast commit ineligible.
1239 if (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE)) {
1240 status = EXT4_FC_STATUS_INELIGIBLE;
1244 fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize;
1245 ret = ext4_fc_perform_commit(journal);
1247 status = EXT4_FC_STATUS_FAILED;
1250 nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before;
1251 ret = jbd2_fc_wait_bufs(journal, nblks);
1253 status = EXT4_FC_STATUS_FAILED;
1256 atomic_inc(&sbi->s_fc_subtid);
1257 ret = jbd2_fc_end_commit(journal);
1259 * weight the commit time higher than the average time so we
1260 * don't react too strongly to vast changes in the commit time
1262 commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1263 ext4_fc_update_stats(sb, status, commit_time, nblks, commit_tid);
1267 ret = jbd2_fc_end_commit_fallback(journal);
1268 ext4_fc_update_stats(sb, status, 0, 0, commit_tid);
1273 * Fast commit cleanup routine. This is called after every fast commit and
1274 * full commit. full is true if we are called after a full commit.
1276 static void ext4_fc_cleanup(journal_t *journal, int full, tid_t tid)
1278 struct super_block *sb = journal->j_private;
1279 struct ext4_sb_info *sbi = EXT4_SB(sb);
1280 struct ext4_inode_info *iter, *iter_n;
1281 struct ext4_fc_dentry_update *fc_dentry;
1283 if (full && sbi->s_fc_bh)
1284 sbi->s_fc_bh = NULL;
1286 trace_ext4_fc_cleanup(journal, full, tid);
1287 jbd2_fc_release_bufs(journal);
1289 spin_lock(&sbi->s_fc_lock);
1290 list_for_each_entry_safe(iter, iter_n, &sbi->s_fc_q[FC_Q_MAIN],
1292 list_del_init(&iter->i_fc_list);
1293 ext4_clear_inode_state(&iter->vfs_inode,
1294 EXT4_STATE_FC_COMMITTING);
1295 if (iter->i_sync_tid <= tid)
1296 ext4_fc_reset_inode(&iter->vfs_inode);
1297 /* Make sure EXT4_STATE_FC_COMMITTING bit is clear */
1299 #if (BITS_PER_LONG < 64)
1300 wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING);
1302 wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING);
1306 while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) {
1307 fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN],
1308 struct ext4_fc_dentry_update,
1310 list_del_init(&fc_dentry->fcd_list);
1311 list_del_init(&fc_dentry->fcd_dilist);
1312 spin_unlock(&sbi->s_fc_lock);
1314 if (fc_dentry->fcd_name.name &&
1315 fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
1316 kfree(fc_dentry->fcd_name.name);
1317 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
1318 spin_lock(&sbi->s_fc_lock);
1321 list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING],
1322 &sbi->s_fc_dentry_q[FC_Q_MAIN]);
1323 list_splice_init(&sbi->s_fc_q[FC_Q_STAGING],
1324 &sbi->s_fc_q[FC_Q_MAIN]);
1326 if (tid >= sbi->s_fc_ineligible_tid) {
1327 sbi->s_fc_ineligible_tid = 0;
1328 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
1332 sbi->s_fc_bytes = 0;
1333 spin_unlock(&sbi->s_fc_lock);
1334 trace_ext4_fc_stats(sb);
1337 /* Ext4 Replay Path Routines */
1339 /* Helper struct for dentry replay routines */
1340 struct dentry_info_args {
1341 int parent_ino, dname_len, ino, inode_len;
1345 static inline void tl_to_darg(struct dentry_info_args *darg,
1346 struct ext4_fc_tl *tl, u8 *val)
1348 struct ext4_fc_dentry_info fcd;
1350 memcpy(&fcd, val, sizeof(fcd));
1352 darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino);
1353 darg->ino = le32_to_cpu(fcd.fc_ino);
1354 darg->dname = val + offsetof(struct ext4_fc_dentry_info, fc_dname);
1355 darg->dname_len = le16_to_cpu(tl->fc_len) -
1356 sizeof(struct ext4_fc_dentry_info);
1359 /* Unlink replay function */
1360 static int ext4_fc_replay_unlink(struct super_block *sb, struct ext4_fc_tl *tl,
1363 struct inode *inode, *old_parent;
1365 struct dentry_info_args darg;
1368 tl_to_darg(&darg, tl, val);
1370 trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino,
1371 darg.parent_ino, darg.dname_len);
1373 entry.name = darg.dname;
1374 entry.len = darg.dname_len;
1375 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1377 if (IS_ERR(inode)) {
1378 jbd_debug(1, "Inode %d not found", darg.ino);
1382 old_parent = ext4_iget(sb, darg.parent_ino,
1384 if (IS_ERR(old_parent)) {
1385 jbd_debug(1, "Dir with inode %d not found", darg.parent_ino);
1390 ret = __ext4_unlink(NULL, old_parent, &entry, inode);
1391 /* -ENOENT ok coz it might not exist anymore. */
1399 static int ext4_fc_replay_link_internal(struct super_block *sb,
1400 struct dentry_info_args *darg,
1401 struct inode *inode)
1403 struct inode *dir = NULL;
1404 struct dentry *dentry_dir = NULL, *dentry_inode = NULL;
1405 struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len);
1408 dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL);
1410 jbd_debug(1, "Dir with inode %d not found.", darg->parent_ino);
1415 dentry_dir = d_obtain_alias(dir);
1416 if (IS_ERR(dentry_dir)) {
1417 jbd_debug(1, "Failed to obtain dentry");
1422 dentry_inode = d_alloc(dentry_dir, &qstr_dname);
1423 if (!dentry_inode) {
1424 jbd_debug(1, "Inode dentry not created.");
1429 ret = __ext4_link(dir, inode, dentry_inode);
1431 * It's possible that link already existed since data blocks
1432 * for the dir in question got persisted before we crashed OR
1433 * we replayed this tag and crashed before the entire replay
1436 if (ret && ret != -EEXIST) {
1437 jbd_debug(1, "Failed to link\n");
1450 d_drop(dentry_inode);
1457 /* Link replay function */
1458 static int ext4_fc_replay_link(struct super_block *sb, struct ext4_fc_tl *tl,
1461 struct inode *inode;
1462 struct dentry_info_args darg;
1465 tl_to_darg(&darg, tl, val);
1466 trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino,
1467 darg.parent_ino, darg.dname_len);
1469 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1470 if (IS_ERR(inode)) {
1471 jbd_debug(1, "Inode not found.");
1475 ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1481 * Record all the modified inodes during replay. We use this later to setup
1482 * block bitmaps correctly.
1484 static int ext4_fc_record_modified_inode(struct super_block *sb, int ino)
1486 struct ext4_fc_replay_state *state;
1489 state = &EXT4_SB(sb)->s_fc_replay_state;
1490 for (i = 0; i < state->fc_modified_inodes_used; i++)
1491 if (state->fc_modified_inodes[i] == ino)
1493 if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) {
1494 state->fc_modified_inodes = krealloc(
1495 state->fc_modified_inodes,
1496 sizeof(int) * (state->fc_modified_inodes_size +
1497 EXT4_FC_REPLAY_REALLOC_INCREMENT),
1499 if (!state->fc_modified_inodes)
1501 state->fc_modified_inodes_size +=
1502 EXT4_FC_REPLAY_REALLOC_INCREMENT;
1504 state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino;
1509 * Inode replay function
1511 static int ext4_fc_replay_inode(struct super_block *sb, struct ext4_fc_tl *tl,
1514 struct ext4_fc_inode fc_inode;
1515 struct ext4_inode *raw_inode;
1516 struct ext4_inode *raw_fc_inode;
1517 struct inode *inode = NULL;
1518 struct ext4_iloc iloc;
1519 int inode_len, ino, ret, tag = le16_to_cpu(tl->fc_tag);
1520 struct ext4_extent_header *eh;
1522 memcpy(&fc_inode, val, sizeof(fc_inode));
1524 ino = le32_to_cpu(fc_inode.fc_ino);
1525 trace_ext4_fc_replay(sb, tag, ino, 0, 0);
1527 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1528 if (!IS_ERR(inode)) {
1529 ext4_ext_clear_bb(inode);
1534 ret = ext4_fc_record_modified_inode(sb, ino);
1538 raw_fc_inode = (struct ext4_inode *)
1539 (val + offsetof(struct ext4_fc_inode, fc_raw_inode));
1540 ret = ext4_get_fc_inode_loc(sb, ino, &iloc);
1544 inode_len = le16_to_cpu(tl->fc_len) - sizeof(struct ext4_fc_inode);
1545 raw_inode = ext4_raw_inode(&iloc);
1547 memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block));
1548 memcpy(&raw_inode->i_generation, &raw_fc_inode->i_generation,
1549 inode_len - offsetof(struct ext4_inode, i_generation));
1550 if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) {
1551 eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]);
1552 if (eh->eh_magic != EXT4_EXT_MAGIC) {
1553 memset(eh, 0, sizeof(*eh));
1554 eh->eh_magic = EXT4_EXT_MAGIC;
1555 eh->eh_max = cpu_to_le16(
1556 (sizeof(raw_inode->i_block) -
1557 sizeof(struct ext4_extent_header))
1558 / sizeof(struct ext4_extent));
1560 } else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) {
1561 memcpy(raw_inode->i_block, raw_fc_inode->i_block,
1562 sizeof(raw_inode->i_block));
1565 /* Immediately update the inode on disk. */
1566 ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1569 ret = sync_dirty_buffer(iloc.bh);
1572 ret = ext4_mark_inode_used(sb, ino);
1576 /* Given that we just wrote the inode on disk, this SHOULD succeed. */
1577 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1578 if (IS_ERR(inode)) {
1579 jbd_debug(1, "Inode not found.");
1580 return -EFSCORRUPTED;
1584 * Our allocator could have made different decisions than before
1585 * crashing. This should be fixed but until then, we calculate
1586 * the number of blocks the inode.
1588 if (!ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
1589 ext4_ext_replay_set_iblocks(inode);
1591 inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation);
1592 ext4_reset_inode_seed(inode);
1594 ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode));
1595 ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1596 sync_dirty_buffer(iloc.bh);
1601 blkdev_issue_flush(sb->s_bdev);
1607 * Dentry create replay function.
1609 * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the
1610 * inode for which we are trying to create a dentry here, should already have
1611 * been replayed before we start here.
1613 static int ext4_fc_replay_create(struct super_block *sb, struct ext4_fc_tl *tl,
1617 struct inode *inode = NULL;
1618 struct inode *dir = NULL;
1619 struct dentry_info_args darg;
1621 tl_to_darg(&darg, tl, val);
1623 trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino,
1624 darg.parent_ino, darg.dname_len);
1626 /* This takes care of update group descriptor and other metadata */
1627 ret = ext4_mark_inode_used(sb, darg.ino);
1631 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1632 if (IS_ERR(inode)) {
1633 jbd_debug(1, "inode %d not found.", darg.ino);
1639 if (S_ISDIR(inode->i_mode)) {
1641 * If we are creating a directory, we need to make sure that the
1642 * dot and dot dot dirents are setup properly.
1644 dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL);
1646 jbd_debug(1, "Dir %d not found.", darg.ino);
1649 ret = ext4_init_new_dir(NULL, dir, inode);
1656 ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1659 set_nlink(inode, 1);
1660 ext4_mark_inode_dirty(NULL, inode);
1668 * Record physical disk regions which are in use as per fast commit area,
1669 * and used by inodes during replay phase. Our simple replay phase
1670 * allocator excludes these regions from allocation.
1672 int ext4_fc_record_regions(struct super_block *sb, int ino,
1673 ext4_lblk_t lblk, ext4_fsblk_t pblk, int len, int replay)
1675 struct ext4_fc_replay_state *state;
1676 struct ext4_fc_alloc_region *region;
1678 state = &EXT4_SB(sb)->s_fc_replay_state;
1680 * during replay phase, the fc_regions_valid may not same as
1681 * fc_regions_used, update it when do new additions.
1683 if (replay && state->fc_regions_used != state->fc_regions_valid)
1684 state->fc_regions_used = state->fc_regions_valid;
1685 if (state->fc_regions_used == state->fc_regions_size) {
1686 state->fc_regions_size +=
1687 EXT4_FC_REPLAY_REALLOC_INCREMENT;
1688 state->fc_regions = krealloc(
1690 state->fc_regions_size *
1691 sizeof(struct ext4_fc_alloc_region),
1693 if (!state->fc_regions)
1696 region = &state->fc_regions[state->fc_regions_used++];
1698 region->lblk = lblk;
1699 region->pblk = pblk;
1703 state->fc_regions_valid++;
1708 /* Replay add range tag */
1709 static int ext4_fc_replay_add_range(struct super_block *sb,
1710 struct ext4_fc_tl *tl, u8 *val)
1712 struct ext4_fc_add_range fc_add_ex;
1713 struct ext4_extent newex, *ex;
1714 struct inode *inode;
1715 ext4_lblk_t start, cur;
1717 ext4_fsblk_t start_pblk;
1718 struct ext4_map_blocks map;
1719 struct ext4_ext_path *path = NULL;
1722 memcpy(&fc_add_ex, val, sizeof(fc_add_ex));
1723 ex = (struct ext4_extent *)&fc_add_ex.fc_ex;
1725 trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE,
1726 le32_to_cpu(fc_add_ex.fc_ino), le32_to_cpu(ex->ee_block),
1727 ext4_ext_get_actual_len(ex));
1729 inode = ext4_iget(sb, le32_to_cpu(fc_add_ex.fc_ino), EXT4_IGET_NORMAL);
1730 if (IS_ERR(inode)) {
1731 jbd_debug(1, "Inode not found.");
1735 ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1739 start = le32_to_cpu(ex->ee_block);
1740 start_pblk = ext4_ext_pblock(ex);
1741 len = ext4_ext_get_actual_len(ex);
1745 jbd_debug(1, "ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n",
1746 start, start_pblk, len, ext4_ext_is_unwritten(ex),
1749 while (remaining > 0) {
1751 map.m_len = remaining;
1753 ret = ext4_map_blocks(NULL, inode, &map, 0);
1759 /* Range is not mapped */
1760 path = ext4_find_extent(inode, cur, NULL, 0);
1763 memset(&newex, 0, sizeof(newex));
1764 newex.ee_block = cpu_to_le32(cur);
1765 ext4_ext_store_pblock(
1766 &newex, start_pblk + cur - start);
1767 newex.ee_len = cpu_to_le16(map.m_len);
1768 if (ext4_ext_is_unwritten(ex))
1769 ext4_ext_mark_unwritten(&newex);
1770 down_write(&EXT4_I(inode)->i_data_sem);
1771 ret = ext4_ext_insert_extent(
1772 NULL, inode, &path, &newex, 0);
1773 up_write((&EXT4_I(inode)->i_data_sem));
1774 ext4_ext_drop_refs(path);
1781 if (start_pblk + cur - start != map.m_pblk) {
1783 * Logical to physical mapping changed. This can happen
1784 * if this range was removed and then reallocated to
1785 * map to new physical blocks during a fast commit.
1787 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1788 ext4_ext_is_unwritten(ex),
1789 start_pblk + cur - start);
1793 * Mark the old blocks as free since they aren't used
1794 * anymore. We maintain an array of all the modified
1795 * inodes. In case these blocks are still used at either
1796 * a different logical range in the same inode or in
1797 * some different inode, we will mark them as allocated
1798 * at the end of the FC replay using our array of
1801 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1805 /* Range is mapped and needs a state change */
1806 jbd_debug(1, "Converting from %ld to %d %lld",
1807 map.m_flags & EXT4_MAP_UNWRITTEN,
1808 ext4_ext_is_unwritten(ex), map.m_pblk);
1809 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1810 ext4_ext_is_unwritten(ex), map.m_pblk);
1814 * We may have split the extent tree while toggling the state.
1815 * Try to shrink the extent tree now.
1817 ext4_ext_replay_shrink_inode(inode, start + len);
1820 remaining -= map.m_len;
1822 ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >>
1823 sb->s_blocksize_bits);
1829 /* Replay DEL_RANGE tag */
1831 ext4_fc_replay_del_range(struct super_block *sb, struct ext4_fc_tl *tl,
1834 struct inode *inode;
1835 struct ext4_fc_del_range lrange;
1836 struct ext4_map_blocks map;
1837 ext4_lblk_t cur, remaining;
1840 memcpy(&lrange, val, sizeof(lrange));
1841 cur = le32_to_cpu(lrange.fc_lblk);
1842 remaining = le32_to_cpu(lrange.fc_len);
1844 trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE,
1845 le32_to_cpu(lrange.fc_ino), cur, remaining);
1847 inode = ext4_iget(sb, le32_to_cpu(lrange.fc_ino), EXT4_IGET_NORMAL);
1848 if (IS_ERR(inode)) {
1849 jbd_debug(1, "Inode %d not found", le32_to_cpu(lrange.fc_ino));
1853 ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1857 jbd_debug(1, "DEL_RANGE, inode %ld, lblk %d, len %d\n",
1858 inode->i_ino, le32_to_cpu(lrange.fc_lblk),
1859 le32_to_cpu(lrange.fc_len));
1860 while (remaining > 0) {
1862 map.m_len = remaining;
1864 ret = ext4_map_blocks(NULL, inode, &map, 0);
1870 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1872 remaining -= map.m_len;
1877 down_write(&EXT4_I(inode)->i_data_sem);
1878 ret = ext4_ext_remove_space(inode, le32_to_cpu(lrange.fc_lblk),
1879 le32_to_cpu(lrange.fc_lblk) +
1880 le32_to_cpu(lrange.fc_len) - 1);
1881 up_write(&EXT4_I(inode)->i_data_sem);
1884 ext4_ext_replay_shrink_inode(inode,
1885 i_size_read(inode) >> sb->s_blocksize_bits);
1886 ext4_mark_inode_dirty(NULL, inode);
1892 static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb)
1894 struct ext4_fc_replay_state *state;
1895 struct inode *inode;
1896 struct ext4_ext_path *path = NULL;
1897 struct ext4_map_blocks map;
1899 ext4_lblk_t cur, end;
1901 state = &EXT4_SB(sb)->s_fc_replay_state;
1902 for (i = 0; i < state->fc_modified_inodes_used; i++) {
1903 inode = ext4_iget(sb, state->fc_modified_inodes[i],
1905 if (IS_ERR(inode)) {
1906 jbd_debug(1, "Inode %d not found.",
1907 state->fc_modified_inodes[i]);
1911 end = EXT_MAX_BLOCKS;
1912 if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) {
1918 map.m_len = end - cur;
1920 ret = ext4_map_blocks(NULL, inode, &map, 0);
1925 path = ext4_find_extent(inode, map.m_lblk, NULL, 0);
1926 if (!IS_ERR(path)) {
1927 for (j = 0; j < path->p_depth; j++)
1928 ext4_mb_mark_bb(inode->i_sb,
1929 path[j].p_block, 1, 1);
1930 ext4_ext_drop_refs(path);
1934 ext4_mb_mark_bb(inode->i_sb, map.m_pblk,
1937 cur = cur + (map.m_len ? map.m_len : 1);
1945 * Check if block is in excluded regions for block allocation. The simple
1946 * allocator that runs during replay phase is calls this function to see
1947 * if it is okay to use a block.
1949 bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk)
1952 struct ext4_fc_replay_state *state;
1954 state = &EXT4_SB(sb)->s_fc_replay_state;
1955 for (i = 0; i < state->fc_regions_valid; i++) {
1956 if (state->fc_regions[i].ino == 0 ||
1957 state->fc_regions[i].len == 0)
1959 if (in_range(blk, state->fc_regions[i].pblk,
1960 state->fc_regions[i].len))
1966 /* Cleanup function called after replay */
1967 void ext4_fc_replay_cleanup(struct super_block *sb)
1969 struct ext4_sb_info *sbi = EXT4_SB(sb);
1971 sbi->s_mount_state &= ~EXT4_FC_REPLAY;
1972 kfree(sbi->s_fc_replay_state.fc_regions);
1973 kfree(sbi->s_fc_replay_state.fc_modified_inodes);
1977 * Recovery Scan phase handler
1979 * This function is called during the scan phase and is responsible
1980 * for doing following things:
1981 * - Make sure the fast commit area has valid tags for replay
1982 * - Count number of tags that need to be replayed by the replay handler
1984 * - Create a list of excluded blocks for allocation during replay phase
1986 * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is
1987 * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP
1988 * to indicate that scan has finished and JBD2 can now start replay phase.
1989 * It returns a negative error to indicate that there was an error. At the end
1990 * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set
1991 * to indicate the number of tags that need to replayed during the replay phase.
1993 static int ext4_fc_replay_scan(journal_t *journal,
1994 struct buffer_head *bh, int off,
1997 struct super_block *sb = journal->j_private;
1998 struct ext4_sb_info *sbi = EXT4_SB(sb);
1999 struct ext4_fc_replay_state *state;
2000 int ret = JBD2_FC_REPLAY_CONTINUE;
2001 struct ext4_fc_add_range ext;
2002 struct ext4_fc_tl tl;
2003 struct ext4_fc_tail tail;
2004 __u8 *start, *end, *cur, *val;
2005 struct ext4_fc_head head;
2006 struct ext4_extent *ex;
2008 state = &sbi->s_fc_replay_state;
2010 start = (u8 *)bh->b_data;
2011 end = (__u8 *)bh->b_data + journal->j_blocksize - 1;
2013 if (state->fc_replay_expected_off == 0) {
2014 state->fc_cur_tag = 0;
2015 state->fc_replay_num_tags = 0;
2017 state->fc_regions = NULL;
2018 state->fc_regions_valid = state->fc_regions_used =
2019 state->fc_regions_size = 0;
2020 /* Check if we can stop early */
2021 if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag)
2022 != EXT4_FC_TAG_HEAD)
2026 if (off != state->fc_replay_expected_off) {
2027 ret = -EFSCORRUPTED;
2031 state->fc_replay_expected_off++;
2032 for (cur = start; cur < end; cur = cur + sizeof(tl) + le16_to_cpu(tl.fc_len)) {
2033 memcpy(&tl, cur, sizeof(tl));
2034 val = cur + sizeof(tl);
2035 jbd_debug(3, "Scan phase, tag:%s, blk %lld\n",
2036 tag2str(le16_to_cpu(tl.fc_tag)), bh->b_blocknr);
2037 switch (le16_to_cpu(tl.fc_tag)) {
2038 case EXT4_FC_TAG_ADD_RANGE:
2039 memcpy(&ext, val, sizeof(ext));
2040 ex = (struct ext4_extent *)&ext.fc_ex;
2041 ret = ext4_fc_record_regions(sb,
2042 le32_to_cpu(ext.fc_ino),
2043 le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex),
2044 ext4_ext_get_actual_len(ex), 0);
2047 ret = JBD2_FC_REPLAY_CONTINUE;
2049 case EXT4_FC_TAG_DEL_RANGE:
2050 case EXT4_FC_TAG_LINK:
2051 case EXT4_FC_TAG_UNLINK:
2052 case EXT4_FC_TAG_CREAT:
2053 case EXT4_FC_TAG_INODE:
2054 case EXT4_FC_TAG_PAD:
2055 state->fc_cur_tag++;
2056 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2057 sizeof(tl) + le16_to_cpu(tl.fc_len));
2059 case EXT4_FC_TAG_TAIL:
2060 state->fc_cur_tag++;
2061 memcpy(&tail, val, sizeof(tail));
2062 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2064 offsetof(struct ext4_fc_tail,
2066 if (le32_to_cpu(tail.fc_tid) == expected_tid &&
2067 le32_to_cpu(tail.fc_crc) == state->fc_crc) {
2068 state->fc_replay_num_tags = state->fc_cur_tag;
2069 state->fc_regions_valid =
2070 state->fc_regions_used;
2072 ret = state->fc_replay_num_tags ?
2073 JBD2_FC_REPLAY_STOP : -EFSBADCRC;
2077 case EXT4_FC_TAG_HEAD:
2078 memcpy(&head, val, sizeof(head));
2079 if (le32_to_cpu(head.fc_features) &
2080 ~EXT4_FC_SUPPORTED_FEATURES) {
2084 if (le32_to_cpu(head.fc_tid) != expected_tid) {
2085 ret = JBD2_FC_REPLAY_STOP;
2088 state->fc_cur_tag++;
2089 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2090 sizeof(tl) + le16_to_cpu(tl.fc_len));
2093 ret = state->fc_replay_num_tags ?
2094 JBD2_FC_REPLAY_STOP : -ECANCELED;
2096 if (ret < 0 || ret == JBD2_FC_REPLAY_STOP)
2101 trace_ext4_fc_replay_scan(sb, ret, off);
2106 * Main recovery path entry point.
2107 * The meaning of return codes is similar as above.
2109 static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh,
2110 enum passtype pass, int off, tid_t expected_tid)
2112 struct super_block *sb = journal->j_private;
2113 struct ext4_sb_info *sbi = EXT4_SB(sb);
2114 struct ext4_fc_tl tl;
2115 __u8 *start, *end, *cur, *val;
2116 int ret = JBD2_FC_REPLAY_CONTINUE;
2117 struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state;
2118 struct ext4_fc_tail tail;
2120 if (pass == PASS_SCAN) {
2121 state->fc_current_pass = PASS_SCAN;
2122 return ext4_fc_replay_scan(journal, bh, off, expected_tid);
2125 if (state->fc_current_pass != pass) {
2126 state->fc_current_pass = pass;
2127 sbi->s_mount_state |= EXT4_FC_REPLAY;
2129 if (!sbi->s_fc_replay_state.fc_replay_num_tags) {
2130 jbd_debug(1, "Replay stops\n");
2131 ext4_fc_set_bitmaps_and_counters(sb);
2135 #ifdef CONFIG_EXT4_DEBUG
2136 if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) {
2137 pr_warn("Dropping fc block %d because max_replay set\n", off);
2138 return JBD2_FC_REPLAY_STOP;
2142 start = (u8 *)bh->b_data;
2143 end = (__u8 *)bh->b_data + journal->j_blocksize - 1;
2145 for (cur = start; cur < end; cur = cur + sizeof(tl) + le16_to_cpu(tl.fc_len)) {
2146 memcpy(&tl, cur, sizeof(tl));
2147 val = cur + sizeof(tl);
2149 if (state->fc_replay_num_tags == 0) {
2150 ret = JBD2_FC_REPLAY_STOP;
2151 ext4_fc_set_bitmaps_and_counters(sb);
2154 jbd_debug(3, "Replay phase, tag:%s\n",
2155 tag2str(le16_to_cpu(tl.fc_tag)));
2156 state->fc_replay_num_tags--;
2157 switch (le16_to_cpu(tl.fc_tag)) {
2158 case EXT4_FC_TAG_LINK:
2159 ret = ext4_fc_replay_link(sb, &tl, val);
2161 case EXT4_FC_TAG_UNLINK:
2162 ret = ext4_fc_replay_unlink(sb, &tl, val);
2164 case EXT4_FC_TAG_ADD_RANGE:
2165 ret = ext4_fc_replay_add_range(sb, &tl, val);
2167 case EXT4_FC_TAG_CREAT:
2168 ret = ext4_fc_replay_create(sb, &tl, val);
2170 case EXT4_FC_TAG_DEL_RANGE:
2171 ret = ext4_fc_replay_del_range(sb, &tl, val);
2173 case EXT4_FC_TAG_INODE:
2174 ret = ext4_fc_replay_inode(sb, &tl, val);
2176 case EXT4_FC_TAG_PAD:
2177 trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0,
2178 le16_to_cpu(tl.fc_len), 0);
2180 case EXT4_FC_TAG_TAIL:
2181 trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL, 0,
2182 le16_to_cpu(tl.fc_len), 0);
2183 memcpy(&tail, val, sizeof(tail));
2184 WARN_ON(le32_to_cpu(tail.fc_tid) != expected_tid);
2186 case EXT4_FC_TAG_HEAD:
2189 trace_ext4_fc_replay(sb, le16_to_cpu(tl.fc_tag), 0,
2190 le16_to_cpu(tl.fc_len), 0);
2196 ret = JBD2_FC_REPLAY_CONTINUE;
2201 void ext4_fc_init(struct super_block *sb, journal_t *journal)
2204 * We set replay callback even if fast commit disabled because we may
2205 * could still have fast commit blocks that need to be replayed even if
2206 * fast commit has now been turned off.
2208 journal->j_fc_replay_callback = ext4_fc_replay;
2209 if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
2211 journal->j_fc_cleanup_callback = ext4_fc_cleanup;
2214 static const char *fc_ineligible_reasons[] = {
2215 "Extended attributes changed",
2217 "Journal flag changed",
2218 "Insufficient memory",
2227 int ext4_fc_info_show(struct seq_file *seq, void *v)
2229 struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private);
2230 struct ext4_fc_stats *stats = &sbi->s_fc_stats;
2233 if (v != SEQ_START_TOKEN)
2237 "fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n",
2238 stats->fc_num_commits, stats->fc_ineligible_commits,
2240 div_u64(stats->s_fc_avg_commit_time, 1000));
2241 seq_puts(seq, "Ineligible reasons:\n");
2242 for (i = 0; i < EXT4_FC_REASON_MAX; i++)
2243 seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i],
2244 stats->fc_ineligible_reason_count[i]);
2249 int __init ext4_fc_init_dentry_cache(void)
2251 ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update,
2252 SLAB_RECLAIM_ACCOUNT);
2254 if (ext4_fc_dentry_cachep == NULL)
2260 void ext4_fc_destroy_dentry_cache(void)
2262 kmem_cache_destroy(ext4_fc_dentry_cachep);