2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
24 * Extents support for EXT4
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
32 #include <linux/module.h>
34 #include <linux/time.h>
35 #include <linux/jbd2.h>
36 #include <linux/highuid.h>
37 #include <linux/pagemap.h>
38 #include <linux/quotaops.h>
39 #include <linux/string.h>
40 #include <linux/slab.h>
41 #include <linux/falloc.h>
42 #include <asm/uaccess.h>
43 #include <linux/fiemap.h>
44 #include "ext4_jbd2.h"
46 #include <trace/events/ext4.h>
48 static int ext4_split_extent(handle_t *handle,
50 struct ext4_ext_path *path,
51 struct ext4_map_blocks *map,
55 static int ext4_ext_truncate_extend_restart(handle_t *handle,
61 if (!ext4_handle_valid(handle))
63 if (handle->h_buffer_credits > needed)
65 err = ext4_journal_extend(handle, needed);
68 err = ext4_truncate_restart_trans(handle, inode, needed);
80 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
81 struct ext4_ext_path *path)
84 /* path points to block */
85 return ext4_journal_get_write_access(handle, path->p_bh);
87 /* path points to leaf/index in inode body */
88 /* we use in-core data, no need to protect them */
98 #define ext4_ext_dirty(handle, inode, path) \
99 __ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path))
100 static int __ext4_ext_dirty(const char *where, unsigned int line,
101 handle_t *handle, struct inode *inode,
102 struct ext4_ext_path *path)
106 /* path points to block */
107 err = __ext4_handle_dirty_metadata(where, line, handle,
110 /* path points to leaf/index in inode body */
111 err = ext4_mark_inode_dirty(handle, inode);
116 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
117 struct ext4_ext_path *path,
121 int depth = path->p_depth;
122 struct ext4_extent *ex;
125 * Try to predict block placement assuming that we are
126 * filling in a file which will eventually be
127 * non-sparse --- i.e., in the case of libbfd writing
128 * an ELF object sections out-of-order but in a way
129 * the eventually results in a contiguous object or
130 * executable file, or some database extending a table
131 * space file. However, this is actually somewhat
132 * non-ideal if we are writing a sparse file such as
133 * qemu or KVM writing a raw image file that is going
134 * to stay fairly sparse, since it will end up
135 * fragmenting the file system's free space. Maybe we
136 * should have some hueristics or some way to allow
137 * userspace to pass a hint to file system,
138 * especially if the latter case turns out to be
141 ex = path[depth].p_ext;
143 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
144 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
146 if (block > ext_block)
147 return ext_pblk + (block - ext_block);
149 return ext_pblk - (ext_block - block);
152 /* it looks like index is empty;
153 * try to find starting block from index itself */
154 if (path[depth].p_bh)
155 return path[depth].p_bh->b_blocknr;
158 /* OK. use inode's group */
159 return ext4_inode_to_goal_block(inode);
163 * Allocation for a meta data block
166 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
167 struct ext4_ext_path *path,
168 struct ext4_extent *ex, int *err, unsigned int flags)
170 ext4_fsblk_t goal, newblock;
172 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
173 newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
178 static inline int ext4_ext_space_block(struct inode *inode, int check)
182 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
183 / sizeof(struct ext4_extent);
184 #ifdef AGGRESSIVE_TEST
185 if (!check && size > 6)
191 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
195 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
196 / sizeof(struct ext4_extent_idx);
197 #ifdef AGGRESSIVE_TEST
198 if (!check && size > 5)
204 static inline int ext4_ext_space_root(struct inode *inode, int check)
208 size = sizeof(EXT4_I(inode)->i_data);
209 size -= sizeof(struct ext4_extent_header);
210 size /= sizeof(struct ext4_extent);
211 #ifdef AGGRESSIVE_TEST
212 if (!check && size > 3)
218 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
222 size = sizeof(EXT4_I(inode)->i_data);
223 size -= sizeof(struct ext4_extent_header);
224 size /= sizeof(struct ext4_extent_idx);
225 #ifdef AGGRESSIVE_TEST
226 if (!check && size > 4)
233 * Calculate the number of metadata blocks needed
234 * to allocate @blocks
235 * Worse case is one block per extent
237 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
239 struct ext4_inode_info *ei = EXT4_I(inode);
242 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
243 / sizeof(struct ext4_extent_idx));
246 * If the new delayed allocation block is contiguous with the
247 * previous da block, it can share index blocks with the
248 * previous block, so we only need to allocate a new index
249 * block every idxs leaf blocks. At ldxs**2 blocks, we need
250 * an additional index block, and at ldxs**3 blocks, yet
251 * another index blocks.
253 if (ei->i_da_metadata_calc_len &&
254 ei->i_da_metadata_calc_last_lblock+1 == lblock) {
257 if ((ei->i_da_metadata_calc_len % idxs) == 0)
259 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
261 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
263 ei->i_da_metadata_calc_len = 0;
265 ei->i_da_metadata_calc_len++;
266 ei->i_da_metadata_calc_last_lblock++;
271 * In the worst case we need a new set of index blocks at
272 * every level of the inode's extent tree.
274 ei->i_da_metadata_calc_len = 1;
275 ei->i_da_metadata_calc_last_lblock = lblock;
276 return ext_depth(inode) + 1;
280 ext4_ext_max_entries(struct inode *inode, int depth)
284 if (depth == ext_depth(inode)) {
286 max = ext4_ext_space_root(inode, 1);
288 max = ext4_ext_space_root_idx(inode, 1);
291 max = ext4_ext_space_block(inode, 1);
293 max = ext4_ext_space_block_idx(inode, 1);
299 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
301 ext4_fsblk_t block = ext4_ext_pblock(ext);
302 int len = ext4_ext_get_actual_len(ext);
304 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
307 static int ext4_valid_extent_idx(struct inode *inode,
308 struct ext4_extent_idx *ext_idx)
310 ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
312 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
315 static int ext4_valid_extent_entries(struct inode *inode,
316 struct ext4_extent_header *eh,
319 unsigned short entries;
320 if (eh->eh_entries == 0)
323 entries = le16_to_cpu(eh->eh_entries);
327 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
329 if (!ext4_valid_extent(inode, ext))
335 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
337 if (!ext4_valid_extent_idx(inode, ext_idx))
346 static int __ext4_ext_check(const char *function, unsigned int line,
347 struct inode *inode, struct ext4_extent_header *eh,
350 const char *error_msg;
353 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
354 error_msg = "invalid magic";
357 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
358 error_msg = "unexpected eh_depth";
361 if (unlikely(eh->eh_max == 0)) {
362 error_msg = "invalid eh_max";
365 max = ext4_ext_max_entries(inode, depth);
366 if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
367 error_msg = "too large eh_max";
370 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
371 error_msg = "invalid eh_entries";
374 if (!ext4_valid_extent_entries(inode, eh, depth)) {
375 error_msg = "invalid extent entries";
381 ext4_error_inode(inode, function, line, 0,
382 "bad header/extent: %s - magic %x, "
383 "entries %u, max %u(%u), depth %u(%u)",
384 error_msg, le16_to_cpu(eh->eh_magic),
385 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
386 max, le16_to_cpu(eh->eh_depth), depth);
391 #define ext4_ext_check(inode, eh, depth) \
392 __ext4_ext_check(__func__, __LINE__, inode, eh, depth)
394 int ext4_ext_check_inode(struct inode *inode)
396 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
400 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
402 int k, l = path->p_depth;
405 for (k = 0; k <= l; k++, path++) {
407 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
408 ext4_idx_pblock(path->p_idx));
409 } else if (path->p_ext) {
410 ext_debug(" %d:[%d]%d:%llu ",
411 le32_to_cpu(path->p_ext->ee_block),
412 ext4_ext_is_uninitialized(path->p_ext),
413 ext4_ext_get_actual_len(path->p_ext),
414 ext4_ext_pblock(path->p_ext));
421 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
423 int depth = ext_depth(inode);
424 struct ext4_extent_header *eh;
425 struct ext4_extent *ex;
431 eh = path[depth].p_hdr;
432 ex = EXT_FIRST_EXTENT(eh);
434 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
436 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
437 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
438 ext4_ext_is_uninitialized(ex),
439 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
444 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
445 ext4_fsblk_t newblock, int level)
447 int depth = ext_depth(inode);
448 struct ext4_extent *ex;
450 if (depth != level) {
451 struct ext4_extent_idx *idx;
452 idx = path[level].p_idx;
453 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
454 ext_debug("%d: move %d:%llu in new index %llu\n", level,
455 le32_to_cpu(idx->ei_block),
456 ext4_idx_pblock(idx),
464 ex = path[depth].p_ext;
465 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
466 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
467 le32_to_cpu(ex->ee_block),
469 ext4_ext_is_uninitialized(ex),
470 ext4_ext_get_actual_len(ex),
477 #define ext4_ext_show_path(inode, path)
478 #define ext4_ext_show_leaf(inode, path)
479 #define ext4_ext_show_move(inode, path, newblock, level)
482 void ext4_ext_drop_refs(struct ext4_ext_path *path)
484 int depth = path->p_depth;
487 for (i = 0; i <= depth; i++, path++)
495 * ext4_ext_binsearch_idx:
496 * binary search for the closest index of the given block
497 * the header must be checked before calling this
500 ext4_ext_binsearch_idx(struct inode *inode,
501 struct ext4_ext_path *path, ext4_lblk_t block)
503 struct ext4_extent_header *eh = path->p_hdr;
504 struct ext4_extent_idx *r, *l, *m;
507 ext_debug("binsearch for %u(idx): ", block);
509 l = EXT_FIRST_INDEX(eh) + 1;
510 r = EXT_LAST_INDEX(eh);
513 if (block < le32_to_cpu(m->ei_block))
517 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
518 m, le32_to_cpu(m->ei_block),
519 r, le32_to_cpu(r->ei_block));
523 ext_debug(" -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
524 ext4_idx_pblock(path->p_idx));
526 #ifdef CHECK_BINSEARCH
528 struct ext4_extent_idx *chix, *ix;
531 chix = ix = EXT_FIRST_INDEX(eh);
532 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
534 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
535 printk(KERN_DEBUG "k=%d, ix=0x%p, "
537 ix, EXT_FIRST_INDEX(eh));
538 printk(KERN_DEBUG "%u <= %u\n",
539 le32_to_cpu(ix->ei_block),
540 le32_to_cpu(ix[-1].ei_block));
542 BUG_ON(k && le32_to_cpu(ix->ei_block)
543 <= le32_to_cpu(ix[-1].ei_block));
544 if (block < le32_to_cpu(ix->ei_block))
548 BUG_ON(chix != path->p_idx);
555 * ext4_ext_binsearch:
556 * binary search for closest extent of the given block
557 * the header must be checked before calling this
560 ext4_ext_binsearch(struct inode *inode,
561 struct ext4_ext_path *path, ext4_lblk_t block)
563 struct ext4_extent_header *eh = path->p_hdr;
564 struct ext4_extent *r, *l, *m;
566 if (eh->eh_entries == 0) {
568 * this leaf is empty:
569 * we get such a leaf in split/add case
574 ext_debug("binsearch for %u: ", block);
576 l = EXT_FIRST_EXTENT(eh) + 1;
577 r = EXT_LAST_EXTENT(eh);
581 if (block < le32_to_cpu(m->ee_block))
585 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
586 m, le32_to_cpu(m->ee_block),
587 r, le32_to_cpu(r->ee_block));
591 ext_debug(" -> %d:%llu:[%d]%d ",
592 le32_to_cpu(path->p_ext->ee_block),
593 ext4_ext_pblock(path->p_ext),
594 ext4_ext_is_uninitialized(path->p_ext),
595 ext4_ext_get_actual_len(path->p_ext));
597 #ifdef CHECK_BINSEARCH
599 struct ext4_extent *chex, *ex;
602 chex = ex = EXT_FIRST_EXTENT(eh);
603 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
604 BUG_ON(k && le32_to_cpu(ex->ee_block)
605 <= le32_to_cpu(ex[-1].ee_block));
606 if (block < le32_to_cpu(ex->ee_block))
610 BUG_ON(chex != path->p_ext);
616 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
618 struct ext4_extent_header *eh;
620 eh = ext_inode_hdr(inode);
623 eh->eh_magic = EXT4_EXT_MAGIC;
624 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
625 ext4_mark_inode_dirty(handle, inode);
626 ext4_ext_invalidate_cache(inode);
630 struct ext4_ext_path *
631 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
632 struct ext4_ext_path *path)
634 struct ext4_extent_header *eh;
635 struct buffer_head *bh;
636 short int depth, i, ppos = 0, alloc = 0;
638 eh = ext_inode_hdr(inode);
639 depth = ext_depth(inode);
641 /* account possible depth increase */
643 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
646 return ERR_PTR(-ENOMEM);
653 /* walk through the tree */
655 int need_to_validate = 0;
657 ext_debug("depth %d: num %d, max %d\n",
658 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
660 ext4_ext_binsearch_idx(inode, path + ppos, block);
661 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
662 path[ppos].p_depth = i;
663 path[ppos].p_ext = NULL;
665 bh = sb_getblk(inode->i_sb, path[ppos].p_block);
668 if (!bh_uptodate_or_lock(bh)) {
669 trace_ext4_ext_load_extent(inode, block,
671 if (bh_submit_read(bh) < 0) {
675 /* validate the extent entries */
676 need_to_validate = 1;
678 eh = ext_block_hdr(bh);
680 if (unlikely(ppos > depth)) {
682 EXT4_ERROR_INODE(inode,
683 "ppos %d > depth %d", ppos, depth);
686 path[ppos].p_bh = bh;
687 path[ppos].p_hdr = eh;
690 if (need_to_validate && ext4_ext_check(inode, eh, i))
694 path[ppos].p_depth = i;
695 path[ppos].p_ext = NULL;
696 path[ppos].p_idx = NULL;
699 ext4_ext_binsearch(inode, path + ppos, block);
700 /* if not an empty leaf */
701 if (path[ppos].p_ext)
702 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
704 ext4_ext_show_path(inode, path);
709 ext4_ext_drop_refs(path);
712 return ERR_PTR(-EIO);
716 * ext4_ext_insert_index:
717 * insert new index [@logical;@ptr] into the block at @curp;
718 * check where to insert: before @curp or after @curp
720 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
721 struct ext4_ext_path *curp,
722 int logical, ext4_fsblk_t ptr)
724 struct ext4_extent_idx *ix;
727 err = ext4_ext_get_access(handle, inode, curp);
731 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
732 EXT4_ERROR_INODE(inode,
733 "logical %d == ei_block %d!",
734 logical, le32_to_cpu(curp->p_idx->ei_block));
738 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
739 >= le16_to_cpu(curp->p_hdr->eh_max))) {
740 EXT4_ERROR_INODE(inode,
741 "eh_entries %d >= eh_max %d!",
742 le16_to_cpu(curp->p_hdr->eh_entries),
743 le16_to_cpu(curp->p_hdr->eh_max));
747 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
749 ext_debug("insert new index %d after: %llu\n", logical, ptr);
750 ix = curp->p_idx + 1;
753 ext_debug("insert new index %d before: %llu\n", logical, ptr);
757 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
760 ext_debug("insert new index %d: "
761 "move %d indices from 0x%p to 0x%p\n",
762 logical, len, ix, ix + 1);
763 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
766 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
767 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
771 ix->ei_block = cpu_to_le32(logical);
772 ext4_idx_store_pblock(ix, ptr);
773 le16_add_cpu(&curp->p_hdr->eh_entries, 1);
775 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
776 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
780 err = ext4_ext_dirty(handle, inode, curp);
781 ext4_std_error(inode->i_sb, err);
788 * inserts new subtree into the path, using free index entry
790 * - allocates all needed blocks (new leaf and all intermediate index blocks)
791 * - makes decision where to split
792 * - moves remaining extents and index entries (right to the split point)
793 * into the newly allocated blocks
794 * - initializes subtree
796 static int ext4_ext_split(handle_t *handle, struct inode *inode,
798 struct ext4_ext_path *path,
799 struct ext4_extent *newext, int at)
801 struct buffer_head *bh = NULL;
802 int depth = ext_depth(inode);
803 struct ext4_extent_header *neh;
804 struct ext4_extent_idx *fidx;
806 ext4_fsblk_t newblock, oldblock;
808 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
811 /* make decision: where to split? */
812 /* FIXME: now decision is simplest: at current extent */
814 /* if current leaf will be split, then we should use
815 * border from split point */
816 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
817 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
820 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
821 border = path[depth].p_ext[1].ee_block;
822 ext_debug("leaf will be split."
823 " next leaf starts at %d\n",
824 le32_to_cpu(border));
826 border = newext->ee_block;
827 ext_debug("leaf will be added."
828 " next leaf starts at %d\n",
829 le32_to_cpu(border));
833 * If error occurs, then we break processing
834 * and mark filesystem read-only. index won't
835 * be inserted and tree will be in consistent
836 * state. Next mount will repair buffers too.
840 * Get array to track all allocated blocks.
841 * We need this to handle errors and free blocks
844 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
848 /* allocate all needed blocks */
849 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
850 for (a = 0; a < depth - at; a++) {
851 newblock = ext4_ext_new_meta_block(handle, inode, path,
852 newext, &err, flags);
855 ablocks[a] = newblock;
858 /* initialize new leaf */
859 newblock = ablocks[--a];
860 if (unlikely(newblock == 0)) {
861 EXT4_ERROR_INODE(inode, "newblock == 0!");
865 bh = sb_getblk(inode->i_sb, newblock);
872 err = ext4_journal_get_create_access(handle, bh);
876 neh = ext_block_hdr(bh);
878 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
879 neh->eh_magic = EXT4_EXT_MAGIC;
882 /* move remainder of path[depth] to the new leaf */
883 if (unlikely(path[depth].p_hdr->eh_entries !=
884 path[depth].p_hdr->eh_max)) {
885 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
886 path[depth].p_hdr->eh_entries,
887 path[depth].p_hdr->eh_max);
891 /* start copy from next extent */
892 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
893 ext4_ext_show_move(inode, path, newblock, depth);
895 struct ext4_extent *ex;
896 ex = EXT_FIRST_EXTENT(neh);
897 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
898 le16_add_cpu(&neh->eh_entries, m);
901 set_buffer_uptodate(bh);
904 err = ext4_handle_dirty_metadata(handle, inode, bh);
910 /* correct old leaf */
912 err = ext4_ext_get_access(handle, inode, path + depth);
915 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
916 err = ext4_ext_dirty(handle, inode, path + depth);
922 /* create intermediate indexes */
924 if (unlikely(k < 0)) {
925 EXT4_ERROR_INODE(inode, "k %d < 0!", k);
930 ext_debug("create %d intermediate indices\n", k);
931 /* insert new index into current index block */
932 /* current depth stored in i var */
936 newblock = ablocks[--a];
937 bh = sb_getblk(inode->i_sb, newblock);
944 err = ext4_journal_get_create_access(handle, bh);
948 neh = ext_block_hdr(bh);
949 neh->eh_entries = cpu_to_le16(1);
950 neh->eh_magic = EXT4_EXT_MAGIC;
951 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
952 neh->eh_depth = cpu_to_le16(depth - i);
953 fidx = EXT_FIRST_INDEX(neh);
954 fidx->ei_block = border;
955 ext4_idx_store_pblock(fidx, oldblock);
957 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
958 i, newblock, le32_to_cpu(border), oldblock);
960 /* move remainder of path[i] to the new index block */
961 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
962 EXT_LAST_INDEX(path[i].p_hdr))) {
963 EXT4_ERROR_INODE(inode,
964 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
965 le32_to_cpu(path[i].p_ext->ee_block));
969 /* start copy indexes */
970 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
971 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
972 EXT_MAX_INDEX(path[i].p_hdr));
973 ext4_ext_show_move(inode, path, newblock, i);
975 memmove(++fidx, path[i].p_idx,
976 sizeof(struct ext4_extent_idx) * m);
977 le16_add_cpu(&neh->eh_entries, m);
979 set_buffer_uptodate(bh);
982 err = ext4_handle_dirty_metadata(handle, inode, bh);
988 /* correct old index */
990 err = ext4_ext_get_access(handle, inode, path + i);
993 le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
994 err = ext4_ext_dirty(handle, inode, path + i);
1002 /* insert new index */
1003 err = ext4_ext_insert_index(handle, inode, path + at,
1004 le32_to_cpu(border), newblock);
1008 if (buffer_locked(bh))
1014 /* free all allocated blocks in error case */
1015 for (i = 0; i < depth; i++) {
1018 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1019 EXT4_FREE_BLOCKS_METADATA);
1028 * ext4_ext_grow_indepth:
1029 * implements tree growing procedure:
1030 * - allocates new block
1031 * - moves top-level data (index block or leaf) into the new block
1032 * - initializes new top-level, creating index that points to the
1033 * just created block
1035 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1037 struct ext4_extent *newext)
1039 struct ext4_extent_header *neh;
1040 struct buffer_head *bh;
1041 ext4_fsblk_t newblock;
1044 newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1045 newext, &err, flags);
1049 bh = sb_getblk(inode->i_sb, newblock);
1052 ext4_std_error(inode->i_sb, err);
1057 err = ext4_journal_get_create_access(handle, bh);
1063 /* move top-level index/leaf into new block */
1064 memmove(bh->b_data, EXT4_I(inode)->i_data,
1065 sizeof(EXT4_I(inode)->i_data));
1067 /* set size of new block */
1068 neh = ext_block_hdr(bh);
1069 /* old root could have indexes or leaves
1070 * so calculate e_max right way */
1071 if (ext_depth(inode))
1072 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1074 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1075 neh->eh_magic = EXT4_EXT_MAGIC;
1076 set_buffer_uptodate(bh);
1079 err = ext4_handle_dirty_metadata(handle, inode, bh);
1083 /* Update top-level index: num,max,pointer */
1084 neh = ext_inode_hdr(inode);
1085 neh->eh_entries = cpu_to_le16(1);
1086 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1087 if (neh->eh_depth == 0) {
1088 /* Root extent block becomes index block */
1089 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1090 EXT_FIRST_INDEX(neh)->ei_block =
1091 EXT_FIRST_EXTENT(neh)->ee_block;
1093 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1094 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1095 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1096 ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1098 neh->eh_depth = cpu_to_le16(le16_to_cpu(neh->eh_depth) + 1);
1099 ext4_mark_inode_dirty(handle, inode);
1107 * ext4_ext_create_new_leaf:
1108 * finds empty index and adds new leaf.
1109 * if no free index is found, then it requests in-depth growing.
1111 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1113 struct ext4_ext_path *path,
1114 struct ext4_extent *newext)
1116 struct ext4_ext_path *curp;
1117 int depth, i, err = 0;
1120 i = depth = ext_depth(inode);
1122 /* walk up to the tree and look for free index entry */
1123 curp = path + depth;
1124 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1129 /* we use already allocated block for index block,
1130 * so subsequent data blocks should be contiguous */
1131 if (EXT_HAS_FREE_INDEX(curp)) {
1132 /* if we found index with free entry, then use that
1133 * entry: create all needed subtree and add new leaf */
1134 err = ext4_ext_split(handle, inode, flags, path, newext, i);
1139 ext4_ext_drop_refs(path);
1140 path = ext4_ext_find_extent(inode,
1141 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1144 err = PTR_ERR(path);
1146 /* tree is full, time to grow in depth */
1147 err = ext4_ext_grow_indepth(handle, inode, flags, newext);
1152 ext4_ext_drop_refs(path);
1153 path = ext4_ext_find_extent(inode,
1154 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1157 err = PTR_ERR(path);
1162 * only first (depth 0 -> 1) produces free space;
1163 * in all other cases we have to split the grown tree
1165 depth = ext_depth(inode);
1166 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1167 /* now we need to split */
1177 * search the closest allocated block to the left for *logical
1178 * and returns it at @logical + it's physical address at @phys
1179 * if *logical is the smallest allocated block, the function
1180 * returns 0 at @phys
1181 * return value contains 0 (success) or error code
1183 static int ext4_ext_search_left(struct inode *inode,
1184 struct ext4_ext_path *path,
1185 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1187 struct ext4_extent_idx *ix;
1188 struct ext4_extent *ex;
1191 if (unlikely(path == NULL)) {
1192 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1195 depth = path->p_depth;
1198 if (depth == 0 && path->p_ext == NULL)
1201 /* usually extent in the path covers blocks smaller
1202 * then *logical, but it can be that extent is the
1203 * first one in the file */
1205 ex = path[depth].p_ext;
1206 ee_len = ext4_ext_get_actual_len(ex);
1207 if (*logical < le32_to_cpu(ex->ee_block)) {
1208 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1209 EXT4_ERROR_INODE(inode,
1210 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1211 *logical, le32_to_cpu(ex->ee_block));
1214 while (--depth >= 0) {
1215 ix = path[depth].p_idx;
1216 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1217 EXT4_ERROR_INODE(inode,
1218 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1219 ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1220 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1221 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1229 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1230 EXT4_ERROR_INODE(inode,
1231 "logical %d < ee_block %d + ee_len %d!",
1232 *logical, le32_to_cpu(ex->ee_block), ee_len);
1236 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1237 *phys = ext4_ext_pblock(ex) + ee_len - 1;
1242 * search the closest allocated block to the right for *logical
1243 * and returns it at @logical + it's physical address at @phys
1244 * if *logical is the largest allocated block, the function
1245 * returns 0 at @phys
1246 * return value contains 0 (success) or error code
1248 static int ext4_ext_search_right(struct inode *inode,
1249 struct ext4_ext_path *path,
1250 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1251 struct ext4_extent **ret_ex)
1253 struct buffer_head *bh = NULL;
1254 struct ext4_extent_header *eh;
1255 struct ext4_extent_idx *ix;
1256 struct ext4_extent *ex;
1258 int depth; /* Note, NOT eh_depth; depth from top of tree */
1261 if (unlikely(path == NULL)) {
1262 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1265 depth = path->p_depth;
1268 if (depth == 0 && path->p_ext == NULL)
1271 /* usually extent in the path covers blocks smaller
1272 * then *logical, but it can be that extent is the
1273 * first one in the file */
1275 ex = path[depth].p_ext;
1276 ee_len = ext4_ext_get_actual_len(ex);
1277 if (*logical < le32_to_cpu(ex->ee_block)) {
1278 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1279 EXT4_ERROR_INODE(inode,
1280 "first_extent(path[%d].p_hdr) != ex",
1284 while (--depth >= 0) {
1285 ix = path[depth].p_idx;
1286 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1287 EXT4_ERROR_INODE(inode,
1288 "ix != EXT_FIRST_INDEX *logical %d!",
1296 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1297 EXT4_ERROR_INODE(inode,
1298 "logical %d < ee_block %d + ee_len %d!",
1299 *logical, le32_to_cpu(ex->ee_block), ee_len);
1303 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1304 /* next allocated block in this leaf */
1309 /* go up and search for index to the right */
1310 while (--depth >= 0) {
1311 ix = path[depth].p_idx;
1312 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1316 /* we've gone up to the root and found no index to the right */
1320 /* we've found index to the right, let's
1321 * follow it and find the closest allocated
1322 * block to the right */
1324 block = ext4_idx_pblock(ix);
1325 while (++depth < path->p_depth) {
1326 bh = sb_bread(inode->i_sb, block);
1329 eh = ext_block_hdr(bh);
1330 /* subtract from p_depth to get proper eh_depth */
1331 if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1335 ix = EXT_FIRST_INDEX(eh);
1336 block = ext4_idx_pblock(ix);
1340 bh = sb_bread(inode->i_sb, block);
1343 eh = ext_block_hdr(bh);
1344 if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1348 ex = EXT_FIRST_EXTENT(eh);
1350 *logical = le32_to_cpu(ex->ee_block);
1351 *phys = ext4_ext_pblock(ex);
1359 * ext4_ext_next_allocated_block:
1360 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1361 * NOTE: it considers block number from index entry as
1362 * allocated block. Thus, index entries have to be consistent
1366 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1370 BUG_ON(path == NULL);
1371 depth = path->p_depth;
1373 if (depth == 0 && path->p_ext == NULL)
1374 return EXT_MAX_BLOCKS;
1376 while (depth >= 0) {
1377 if (depth == path->p_depth) {
1379 if (path[depth].p_ext &&
1380 path[depth].p_ext !=
1381 EXT_LAST_EXTENT(path[depth].p_hdr))
1382 return le32_to_cpu(path[depth].p_ext[1].ee_block);
1385 if (path[depth].p_idx !=
1386 EXT_LAST_INDEX(path[depth].p_hdr))
1387 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1392 return EXT_MAX_BLOCKS;
1396 * ext4_ext_next_leaf_block:
1397 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1399 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1403 BUG_ON(path == NULL);
1404 depth = path->p_depth;
1406 /* zero-tree has no leaf blocks at all */
1408 return EXT_MAX_BLOCKS;
1410 /* go to index block */
1413 while (depth >= 0) {
1414 if (path[depth].p_idx !=
1415 EXT_LAST_INDEX(path[depth].p_hdr))
1416 return (ext4_lblk_t)
1417 le32_to_cpu(path[depth].p_idx[1].ei_block);
1421 return EXT_MAX_BLOCKS;
1425 * ext4_ext_correct_indexes:
1426 * if leaf gets modified and modified extent is first in the leaf,
1427 * then we have to correct all indexes above.
1428 * TODO: do we need to correct tree in all cases?
1430 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1431 struct ext4_ext_path *path)
1433 struct ext4_extent_header *eh;
1434 int depth = ext_depth(inode);
1435 struct ext4_extent *ex;
1439 eh = path[depth].p_hdr;
1440 ex = path[depth].p_ext;
1442 if (unlikely(ex == NULL || eh == NULL)) {
1443 EXT4_ERROR_INODE(inode,
1444 "ex %p == NULL or eh %p == NULL", ex, eh);
1449 /* there is no tree at all */
1453 if (ex != EXT_FIRST_EXTENT(eh)) {
1454 /* we correct tree if first leaf got modified only */
1459 * TODO: we need correction if border is smaller than current one
1462 border = path[depth].p_ext->ee_block;
1463 err = ext4_ext_get_access(handle, inode, path + k);
1466 path[k].p_idx->ei_block = border;
1467 err = ext4_ext_dirty(handle, inode, path + k);
1472 /* change all left-side indexes */
1473 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1475 err = ext4_ext_get_access(handle, inode, path + k);
1478 path[k].p_idx->ei_block = border;
1479 err = ext4_ext_dirty(handle, inode, path + k);
1488 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1489 struct ext4_extent *ex2)
1491 unsigned short ext1_ee_len, ext2_ee_len, max_len;
1494 * Make sure that either both extents are uninitialized, or
1497 if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1500 if (ext4_ext_is_uninitialized(ex1))
1501 max_len = EXT_UNINIT_MAX_LEN;
1503 max_len = EXT_INIT_MAX_LEN;
1505 ext1_ee_len = ext4_ext_get_actual_len(ex1);
1506 ext2_ee_len = ext4_ext_get_actual_len(ex2);
1508 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1509 le32_to_cpu(ex2->ee_block))
1513 * To allow future support for preallocated extents to be added
1514 * as an RO_COMPAT feature, refuse to merge to extents if
1515 * this can result in the top bit of ee_len being set.
1517 if (ext1_ee_len + ext2_ee_len > max_len)
1519 #ifdef AGGRESSIVE_TEST
1520 if (ext1_ee_len >= 4)
1524 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1530 * This function tries to merge the "ex" extent to the next extent in the tree.
1531 * It always tries to merge towards right. If you want to merge towards
1532 * left, pass "ex - 1" as argument instead of "ex".
1533 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1534 * 1 if they got merged.
1536 static int ext4_ext_try_to_merge_right(struct inode *inode,
1537 struct ext4_ext_path *path,
1538 struct ext4_extent *ex)
1540 struct ext4_extent_header *eh;
1541 unsigned int depth, len;
1543 int uninitialized = 0;
1545 depth = ext_depth(inode);
1546 BUG_ON(path[depth].p_hdr == NULL);
1547 eh = path[depth].p_hdr;
1549 while (ex < EXT_LAST_EXTENT(eh)) {
1550 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1552 /* merge with next extent! */
1553 if (ext4_ext_is_uninitialized(ex))
1555 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1556 + ext4_ext_get_actual_len(ex + 1));
1558 ext4_ext_mark_uninitialized(ex);
1560 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1561 len = (EXT_LAST_EXTENT(eh) - ex - 1)
1562 * sizeof(struct ext4_extent);
1563 memmove(ex + 1, ex + 2, len);
1565 le16_add_cpu(&eh->eh_entries, -1);
1567 WARN_ON(eh->eh_entries == 0);
1568 if (!eh->eh_entries)
1569 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1576 * This function tries to merge the @ex extent to neighbours in the tree.
1577 * return 1 if merge left else 0.
1579 static int ext4_ext_try_to_merge(struct inode *inode,
1580 struct ext4_ext_path *path,
1581 struct ext4_extent *ex) {
1582 struct ext4_extent_header *eh;
1587 depth = ext_depth(inode);
1588 BUG_ON(path[depth].p_hdr == NULL);
1589 eh = path[depth].p_hdr;
1591 if (ex > EXT_FIRST_EXTENT(eh))
1592 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1595 ret = ext4_ext_try_to_merge_right(inode, path, ex);
1601 * check if a portion of the "newext" extent overlaps with an
1604 * If there is an overlap discovered, it updates the length of the newext
1605 * such that there will be no overlap, and then returns 1.
1606 * If there is no overlap found, it returns 0.
1608 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1609 struct inode *inode,
1610 struct ext4_extent *newext,
1611 struct ext4_ext_path *path)
1614 unsigned int depth, len1;
1615 unsigned int ret = 0;
1617 b1 = le32_to_cpu(newext->ee_block);
1618 len1 = ext4_ext_get_actual_len(newext);
1619 depth = ext_depth(inode);
1620 if (!path[depth].p_ext)
1622 b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1623 b2 &= ~(sbi->s_cluster_ratio - 1);
1626 * get the next allocated block if the extent in the path
1627 * is before the requested block(s)
1630 b2 = ext4_ext_next_allocated_block(path);
1631 if (b2 == EXT_MAX_BLOCKS)
1633 b2 &= ~(sbi->s_cluster_ratio - 1);
1636 /* check for wrap through zero on extent logical start block*/
1637 if (b1 + len1 < b1) {
1638 len1 = EXT_MAX_BLOCKS - b1;
1639 newext->ee_len = cpu_to_le16(len1);
1643 /* check for overlap */
1644 if (b1 + len1 > b2) {
1645 newext->ee_len = cpu_to_le16(b2 - b1);
1653 * ext4_ext_insert_extent:
1654 * tries to merge requsted extent into the existing extent or
1655 * inserts requested extent as new one into the tree,
1656 * creating new leaf in the no-space case.
1658 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1659 struct ext4_ext_path *path,
1660 struct ext4_extent *newext, int flag)
1662 struct ext4_extent_header *eh;
1663 struct ext4_extent *ex, *fex;
1664 struct ext4_extent *nearex; /* nearest extent */
1665 struct ext4_ext_path *npath = NULL;
1666 int depth, len, err;
1668 unsigned uninitialized = 0;
1671 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1672 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1675 depth = ext_depth(inode);
1676 ex = path[depth].p_ext;
1677 if (unlikely(path[depth].p_hdr == NULL)) {
1678 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1682 /* try to insert block into found extent and return */
1683 if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1684 && ext4_can_extents_be_merged(inode, ex, newext)) {
1685 ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n",
1686 ext4_ext_is_uninitialized(newext),
1687 ext4_ext_get_actual_len(newext),
1688 le32_to_cpu(ex->ee_block),
1689 ext4_ext_is_uninitialized(ex),
1690 ext4_ext_get_actual_len(ex),
1691 ext4_ext_pblock(ex));
1692 err = ext4_ext_get_access(handle, inode, path + depth);
1697 * ext4_can_extents_be_merged should have checked that either
1698 * both extents are uninitialized, or both aren't. Thus we
1699 * need to check only one of them here.
1701 if (ext4_ext_is_uninitialized(ex))
1703 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1704 + ext4_ext_get_actual_len(newext));
1706 ext4_ext_mark_uninitialized(ex);
1707 eh = path[depth].p_hdr;
1712 depth = ext_depth(inode);
1713 eh = path[depth].p_hdr;
1714 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1717 /* probably next leaf has space for us? */
1718 fex = EXT_LAST_EXTENT(eh);
1719 next = EXT_MAX_BLOCKS;
1720 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1721 next = ext4_ext_next_leaf_block(path);
1722 if (next != EXT_MAX_BLOCKS) {
1723 ext_debug("next leaf block - %u\n", next);
1724 BUG_ON(npath != NULL);
1725 npath = ext4_ext_find_extent(inode, next, NULL);
1727 return PTR_ERR(npath);
1728 BUG_ON(npath->p_depth != path->p_depth);
1729 eh = npath[depth].p_hdr;
1730 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1731 ext_debug("next leaf isn't full(%d)\n",
1732 le16_to_cpu(eh->eh_entries));
1736 ext_debug("next leaf has no free space(%d,%d)\n",
1737 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1741 * There is no free space in the found leaf.
1742 * We're gonna add a new leaf in the tree.
1744 if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
1745 flags = EXT4_MB_USE_ROOT_BLOCKS;
1746 err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1749 depth = ext_depth(inode);
1750 eh = path[depth].p_hdr;
1753 nearex = path[depth].p_ext;
1755 err = ext4_ext_get_access(handle, inode, path + depth);
1760 /* there is no extent in this leaf, create first one */
1761 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
1762 le32_to_cpu(newext->ee_block),
1763 ext4_ext_pblock(newext),
1764 ext4_ext_is_uninitialized(newext),
1765 ext4_ext_get_actual_len(newext));
1766 nearex = EXT_FIRST_EXTENT(eh);
1768 if (le32_to_cpu(newext->ee_block)
1769 > le32_to_cpu(nearex->ee_block)) {
1771 ext_debug("insert %u:%llu:[%d]%d before: "
1773 le32_to_cpu(newext->ee_block),
1774 ext4_ext_pblock(newext),
1775 ext4_ext_is_uninitialized(newext),
1776 ext4_ext_get_actual_len(newext),
1781 BUG_ON(newext->ee_block == nearex->ee_block);
1782 ext_debug("insert %u:%llu:[%d]%d after: "
1784 le32_to_cpu(newext->ee_block),
1785 ext4_ext_pblock(newext),
1786 ext4_ext_is_uninitialized(newext),
1787 ext4_ext_get_actual_len(newext),
1790 len = EXT_LAST_EXTENT(eh) - nearex + 1;
1792 ext_debug("insert %u:%llu:[%d]%d: "
1793 "move %d extents from 0x%p to 0x%p\n",
1794 le32_to_cpu(newext->ee_block),
1795 ext4_ext_pblock(newext),
1796 ext4_ext_is_uninitialized(newext),
1797 ext4_ext_get_actual_len(newext),
1798 len, nearex, nearex + 1);
1799 memmove(nearex + 1, nearex,
1800 len * sizeof(struct ext4_extent));
1804 le16_add_cpu(&eh->eh_entries, 1);
1805 path[depth].p_ext = nearex;
1806 nearex->ee_block = newext->ee_block;
1807 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1808 nearex->ee_len = newext->ee_len;
1811 /* try to merge extents to the right */
1812 if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1813 ext4_ext_try_to_merge(inode, path, nearex);
1815 /* try to merge extents to the left */
1817 /* time to correct all indexes above */
1818 err = ext4_ext_correct_indexes(handle, inode, path);
1822 err = ext4_ext_dirty(handle, inode, path + depth);
1826 ext4_ext_drop_refs(npath);
1829 ext4_ext_invalidate_cache(inode);
1833 static int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1834 ext4_lblk_t num, ext_prepare_callback func,
1837 struct ext4_ext_path *path = NULL;
1838 struct ext4_ext_cache cbex;
1839 struct ext4_extent *ex;
1840 ext4_lblk_t next, start = 0, end = 0;
1841 ext4_lblk_t last = block + num;
1842 int depth, exists, err = 0;
1844 BUG_ON(func == NULL);
1845 BUG_ON(inode == NULL);
1847 while (block < last && block != EXT_MAX_BLOCKS) {
1849 /* find extent for this block */
1850 down_read(&EXT4_I(inode)->i_data_sem);
1851 path = ext4_ext_find_extent(inode, block, path);
1852 up_read(&EXT4_I(inode)->i_data_sem);
1854 err = PTR_ERR(path);
1859 depth = ext_depth(inode);
1860 if (unlikely(path[depth].p_hdr == NULL)) {
1861 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1865 ex = path[depth].p_ext;
1866 next = ext4_ext_next_allocated_block(path);
1870 /* there is no extent yet, so try to allocate
1871 * all requested space */
1874 } else if (le32_to_cpu(ex->ee_block) > block) {
1875 /* need to allocate space before found extent */
1877 end = le32_to_cpu(ex->ee_block);
1878 if (block + num < end)
1880 } else if (block >= le32_to_cpu(ex->ee_block)
1881 + ext4_ext_get_actual_len(ex)) {
1882 /* need to allocate space after found extent */
1887 } else if (block >= le32_to_cpu(ex->ee_block)) {
1889 * some part of requested space is covered
1893 end = le32_to_cpu(ex->ee_block)
1894 + ext4_ext_get_actual_len(ex);
1895 if (block + num < end)
1901 BUG_ON(end <= start);
1904 cbex.ec_block = start;
1905 cbex.ec_len = end - start;
1908 cbex.ec_block = le32_to_cpu(ex->ee_block);
1909 cbex.ec_len = ext4_ext_get_actual_len(ex);
1910 cbex.ec_start = ext4_ext_pblock(ex);
1913 if (unlikely(cbex.ec_len == 0)) {
1914 EXT4_ERROR_INODE(inode, "cbex.ec_len == 0");
1918 err = func(inode, next, &cbex, ex, cbdata);
1919 ext4_ext_drop_refs(path);
1924 if (err == EXT_REPEAT)
1926 else if (err == EXT_BREAK) {
1931 if (ext_depth(inode) != depth) {
1932 /* depth was changed. we have to realloc path */
1937 block = cbex.ec_block + cbex.ec_len;
1941 ext4_ext_drop_refs(path);
1949 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
1950 __u32 len, ext4_fsblk_t start)
1952 struct ext4_ext_cache *cex;
1954 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1955 trace_ext4_ext_put_in_cache(inode, block, len, start);
1956 cex = &EXT4_I(inode)->i_cached_extent;
1957 cex->ec_block = block;
1959 cex->ec_start = start;
1960 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1964 * ext4_ext_put_gap_in_cache:
1965 * calculate boundaries of the gap that the requested block fits into
1966 * and cache this gap
1969 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
1972 int depth = ext_depth(inode);
1975 struct ext4_extent *ex;
1977 ex = path[depth].p_ext;
1979 /* there is no extent yet, so gap is [0;-] */
1981 len = EXT_MAX_BLOCKS;
1982 ext_debug("cache gap(whole file):");
1983 } else if (block < le32_to_cpu(ex->ee_block)) {
1985 len = le32_to_cpu(ex->ee_block) - block;
1986 ext_debug("cache gap(before): %u [%u:%u]",
1988 le32_to_cpu(ex->ee_block),
1989 ext4_ext_get_actual_len(ex));
1990 } else if (block >= le32_to_cpu(ex->ee_block)
1991 + ext4_ext_get_actual_len(ex)) {
1993 lblock = le32_to_cpu(ex->ee_block)
1994 + ext4_ext_get_actual_len(ex);
1996 next = ext4_ext_next_allocated_block(path);
1997 ext_debug("cache gap(after): [%u:%u] %u",
1998 le32_to_cpu(ex->ee_block),
1999 ext4_ext_get_actual_len(ex),
2001 BUG_ON(next == lblock);
2002 len = next - lblock;
2008 ext_debug(" -> %u:%lu\n", lblock, len);
2009 ext4_ext_put_in_cache(inode, lblock, len, 0);
2013 * ext4_ext_check_cache()
2014 * Checks to see if the given block is in the cache.
2015 * If it is, the cached extent is stored in the given
2016 * cache extent pointer. If the cached extent is a hole,
2017 * this routine should be used instead of
2018 * ext4_ext_in_cache if the calling function needs to
2019 * know the size of the hole.
2021 * @inode: The files inode
2022 * @block: The block to look for in the cache
2023 * @ex: Pointer where the cached extent will be stored
2024 * if it contains block
2026 * Return 0 if cache is invalid; 1 if the cache is valid
2028 static int ext4_ext_check_cache(struct inode *inode, ext4_lblk_t block,
2029 struct ext4_ext_cache *ex){
2030 struct ext4_ext_cache *cex;
2031 struct ext4_sb_info *sbi;
2035 * We borrow i_block_reservation_lock to protect i_cached_extent
2037 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2038 cex = &EXT4_I(inode)->i_cached_extent;
2039 sbi = EXT4_SB(inode->i_sb);
2041 /* has cache valid data? */
2042 if (cex->ec_len == 0)
2045 if (in_range(block, cex->ec_block, cex->ec_len)) {
2046 memcpy(ex, cex, sizeof(struct ext4_ext_cache));
2047 ext_debug("%u cached by %u:%u:%llu\n",
2049 cex->ec_block, cex->ec_len, cex->ec_start);
2054 sbi->extent_cache_misses++;
2056 sbi->extent_cache_hits++;
2057 trace_ext4_ext_in_cache(inode, block, ret);
2058 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2063 * ext4_ext_in_cache()
2064 * Checks to see if the given block is in the cache.
2065 * If it is, the cached extent is stored in the given
2068 * @inode: The files inode
2069 * @block: The block to look for in the cache
2070 * @ex: Pointer where the cached extent will be stored
2071 * if it contains block
2073 * Return 0 if cache is invalid; 1 if the cache is valid
2076 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2077 struct ext4_extent *ex)
2079 struct ext4_ext_cache cex;
2082 if (ext4_ext_check_cache(inode, block, &cex)) {
2083 ex->ee_block = cpu_to_le32(cex.ec_block);
2084 ext4_ext_store_pblock(ex, cex.ec_start);
2085 ex->ee_len = cpu_to_le16(cex.ec_len);
2095 * removes index from the index block.
2097 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2098 struct ext4_ext_path *path)
2103 /* free index block */
2105 leaf = ext4_idx_pblock(path->p_idx);
2106 if (unlikely(path->p_hdr->eh_entries == 0)) {
2107 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2110 err = ext4_ext_get_access(handle, inode, path);
2114 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2115 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2116 len *= sizeof(struct ext4_extent_idx);
2117 memmove(path->p_idx, path->p_idx + 1, len);
2120 le16_add_cpu(&path->p_hdr->eh_entries, -1);
2121 err = ext4_ext_dirty(handle, inode, path);
2124 ext_debug("index is empty, remove it, free block %llu\n", leaf);
2125 trace_ext4_ext_rm_idx(inode, leaf);
2127 ext4_free_blocks(handle, inode, NULL, leaf, 1,
2128 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2133 * ext4_ext_calc_credits_for_single_extent:
2134 * This routine returns max. credits that needed to insert an extent
2135 * to the extent tree.
2136 * When pass the actual path, the caller should calculate credits
2139 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2140 struct ext4_ext_path *path)
2143 int depth = ext_depth(inode);
2146 /* probably there is space in leaf? */
2147 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2148 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2151 * There are some space in the leaf tree, no
2152 * need to account for leaf block credit
2154 * bitmaps and block group descriptor blocks
2155 * and other metadata blocks still need to be
2158 /* 1 bitmap, 1 block group descriptor */
2159 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2164 return ext4_chunk_trans_blocks(inode, nrblocks);
2168 * How many index/leaf blocks need to change/allocate to modify nrblocks?
2170 * if nrblocks are fit in a single extent (chunk flag is 1), then
2171 * in the worse case, each tree level index/leaf need to be changed
2172 * if the tree split due to insert a new extent, then the old tree
2173 * index/leaf need to be updated too
2175 * If the nrblocks are discontiguous, they could cause
2176 * the whole tree split more than once, but this is really rare.
2178 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2181 int depth = ext_depth(inode);
2191 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2192 struct ext4_extent *ex,
2193 ext4_fsblk_t *partial_cluster,
2194 ext4_lblk_t from, ext4_lblk_t to)
2196 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2197 unsigned short ee_len = ext4_ext_get_actual_len(ex);
2199 int flags = EXT4_FREE_BLOCKS_FORGET;
2201 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2202 flags |= EXT4_FREE_BLOCKS_METADATA;
2204 * For bigalloc file systems, we never free a partial cluster
2205 * at the beginning of the extent. Instead, we make a note
2206 * that we tried freeing the cluster, and check to see if we
2207 * need to free it on a subsequent call to ext4_remove_blocks,
2208 * or at the end of the ext4_truncate() operation.
2210 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2212 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2214 * If we have a partial cluster, and it's different from the
2215 * cluster of the last block, we need to explicitly free the
2216 * partial cluster here.
2218 pblk = ext4_ext_pblock(ex) + ee_len - 1;
2219 if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2220 ext4_free_blocks(handle, inode, NULL,
2221 EXT4_C2B(sbi, *partial_cluster),
2222 sbi->s_cluster_ratio, flags);
2223 *partial_cluster = 0;
2226 #ifdef EXTENTS_STATS
2228 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2229 spin_lock(&sbi->s_ext_stats_lock);
2230 sbi->s_ext_blocks += ee_len;
2231 sbi->s_ext_extents++;
2232 if (ee_len < sbi->s_ext_min)
2233 sbi->s_ext_min = ee_len;
2234 if (ee_len > sbi->s_ext_max)
2235 sbi->s_ext_max = ee_len;
2236 if (ext_depth(inode) > sbi->s_depth_max)
2237 sbi->s_depth_max = ext_depth(inode);
2238 spin_unlock(&sbi->s_ext_stats_lock);
2241 if (from >= le32_to_cpu(ex->ee_block)
2242 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2246 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2247 pblk = ext4_ext_pblock(ex) + ee_len - num;
2248 ext_debug("free last %u blocks starting %llu\n", num, pblk);
2249 ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2251 * If the block range to be freed didn't start at the
2252 * beginning of a cluster, and we removed the entire
2253 * extent, save the partial cluster here, since we
2254 * might need to delete if we determine that the
2255 * truncate operation has removed all of the blocks in
2258 if (pblk & (sbi->s_cluster_ratio - 1) &&
2260 *partial_cluster = EXT4_B2C(sbi, pblk);
2262 *partial_cluster = 0;
2263 } else if (from == le32_to_cpu(ex->ee_block)
2264 && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2270 start = ext4_ext_pblock(ex);
2272 ext_debug("free first %u blocks starting %llu\n", num, start);
2273 ext4_free_blocks(handle, inode, NULL, start, num, flags);
2276 printk(KERN_INFO "strange request: removal(2) "
2277 "%u-%u from %u:%u\n",
2278 from, to, le32_to_cpu(ex->ee_block), ee_len);
2285 * ext4_ext_rm_leaf() Removes the extents associated with the
2286 * blocks appearing between "start" and "end", and splits the extents
2287 * if "start" and "end" appear in the same extent
2289 * @handle: The journal handle
2290 * @inode: The files inode
2291 * @path: The path to the leaf
2292 * @start: The first block to remove
2293 * @end: The last block to remove
2296 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2297 struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster,
2298 ext4_lblk_t start, ext4_lblk_t end)
2300 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2301 int err = 0, correct_index = 0;
2302 int depth = ext_depth(inode), credits;
2303 struct ext4_extent_header *eh;
2306 ext4_lblk_t ex_ee_block;
2307 unsigned short ex_ee_len;
2308 unsigned uninitialized = 0;
2309 struct ext4_extent *ex;
2311 /* the header must be checked already in ext4_ext_remove_space() */
2312 ext_debug("truncate since %u in leaf\n", start);
2313 if (!path[depth].p_hdr)
2314 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2315 eh = path[depth].p_hdr;
2316 if (unlikely(path[depth].p_hdr == NULL)) {
2317 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2320 /* find where to start removing */
2321 ex = EXT_LAST_EXTENT(eh);
2323 ex_ee_block = le32_to_cpu(ex->ee_block);
2324 ex_ee_len = ext4_ext_get_actual_len(ex);
2326 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2328 while (ex >= EXT_FIRST_EXTENT(eh) &&
2329 ex_ee_block + ex_ee_len > start) {
2331 if (ext4_ext_is_uninitialized(ex))
2336 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2337 uninitialized, ex_ee_len);
2338 path[depth].p_ext = ex;
2340 a = ex_ee_block > start ? ex_ee_block : start;
2341 b = ex_ee_block+ex_ee_len - 1 < end ?
2342 ex_ee_block+ex_ee_len - 1 : end;
2344 ext_debug(" border %u:%u\n", a, b);
2346 /* If this extent is beyond the end of the hole, skip it */
2347 if (end <= ex_ee_block) {
2349 ex_ee_block = le32_to_cpu(ex->ee_block);
2350 ex_ee_len = ext4_ext_get_actual_len(ex);
2352 } else if (b != ex_ee_block + ex_ee_len - 1) {
2353 EXT4_ERROR_INODE(inode," bad truncate %u:%u\n",
2357 } else if (a != ex_ee_block) {
2358 /* remove tail of the extent */
2359 num = a - ex_ee_block;
2361 /* remove whole extent: excellent! */
2365 * 3 for leaf, sb, and inode plus 2 (bmap and group
2366 * descriptor) for each block group; assume two block
2367 * groups plus ex_ee_len/blocks_per_block_group for
2370 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2371 if (ex == EXT_FIRST_EXTENT(eh)) {
2373 credits += (ext_depth(inode)) + 1;
2375 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2377 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2381 err = ext4_ext_get_access(handle, inode, path + depth);
2385 err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2391 /* this extent is removed; mark slot entirely unused */
2392 ext4_ext_store_pblock(ex, 0);
2394 ex->ee_len = cpu_to_le16(num);
2396 * Do not mark uninitialized if all the blocks in the
2397 * extent have been removed.
2399 if (uninitialized && num)
2400 ext4_ext_mark_uninitialized(ex);
2402 * If the extent was completely released,
2403 * we need to remove it from the leaf
2406 if (end != EXT_MAX_BLOCKS - 1) {
2408 * For hole punching, we need to scoot all the
2409 * extents up when an extent is removed so that
2410 * we dont have blank extents in the middle
2412 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2413 sizeof(struct ext4_extent));
2415 /* Now get rid of the one at the end */
2416 memset(EXT_LAST_EXTENT(eh), 0,
2417 sizeof(struct ext4_extent));
2419 le16_add_cpu(&eh->eh_entries, -1);
2421 *partial_cluster = 0;
2423 err = ext4_ext_dirty(handle, inode, path + depth);
2427 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2428 ext4_ext_pblock(ex));
2430 ex_ee_block = le32_to_cpu(ex->ee_block);
2431 ex_ee_len = ext4_ext_get_actual_len(ex);
2434 if (correct_index && eh->eh_entries)
2435 err = ext4_ext_correct_indexes(handle, inode, path);
2438 * If there is still a entry in the leaf node, check to see if
2439 * it references the partial cluster. This is the only place
2440 * where it could; if it doesn't, we can free the cluster.
2442 if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) &&
2443 (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2444 *partial_cluster)) {
2445 int flags = EXT4_FREE_BLOCKS_FORGET;
2447 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2448 flags |= EXT4_FREE_BLOCKS_METADATA;
2450 ext4_free_blocks(handle, inode, NULL,
2451 EXT4_C2B(sbi, *partial_cluster),
2452 sbi->s_cluster_ratio, flags);
2453 *partial_cluster = 0;
2456 /* if this leaf is free, then we should
2457 * remove it from index block above */
2458 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2459 err = ext4_ext_rm_idx(handle, inode, path + depth);
2466 * ext4_ext_more_to_rm:
2467 * returns 1 if current index has to be freed (even partial)
2470 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2472 BUG_ON(path->p_idx == NULL);
2474 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2478 * if truncate on deeper level happened, it wasn't partial,
2479 * so we have to consider current index for truncation
2481 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2486 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start)
2488 struct super_block *sb = inode->i_sb;
2489 int depth = ext_depth(inode);
2490 struct ext4_ext_path *path;
2491 ext4_fsblk_t partial_cluster = 0;
2495 ext_debug("truncate since %u\n", start);
2497 /* probably first extent we're gonna free will be last in block */
2498 handle = ext4_journal_start(inode, depth + 1);
2500 return PTR_ERR(handle);
2503 ext4_ext_invalidate_cache(inode);
2505 trace_ext4_ext_remove_space(inode, start, depth);
2508 * We start scanning from right side, freeing all the blocks
2509 * after i_size and walking into the tree depth-wise.
2511 depth = ext_depth(inode);
2512 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS);
2514 ext4_journal_stop(handle);
2517 path[0].p_depth = depth;
2518 path[0].p_hdr = ext_inode_hdr(inode);
2519 if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2525 while (i >= 0 && err == 0) {
2527 /* this is leaf block */
2528 err = ext4_ext_rm_leaf(handle, inode, path,
2529 &partial_cluster, start,
2530 EXT_MAX_BLOCKS - 1);
2531 /* root level has p_bh == NULL, brelse() eats this */
2532 brelse(path[i].p_bh);
2533 path[i].p_bh = NULL;
2538 /* this is index block */
2539 if (!path[i].p_hdr) {
2540 ext_debug("initialize header\n");
2541 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2544 if (!path[i].p_idx) {
2545 /* this level hasn't been touched yet */
2546 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2547 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2548 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2550 le16_to_cpu(path[i].p_hdr->eh_entries));
2552 /* we were already here, see at next index */
2556 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2557 i, EXT_FIRST_INDEX(path[i].p_hdr),
2559 if (ext4_ext_more_to_rm(path + i)) {
2560 struct buffer_head *bh;
2561 /* go to the next level */
2562 ext_debug("move to level %d (block %llu)\n",
2563 i + 1, ext4_idx_pblock(path[i].p_idx));
2564 memset(path + i + 1, 0, sizeof(*path));
2565 bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2567 /* should we reset i_size? */
2571 if (WARN_ON(i + 1 > depth)) {
2575 if (ext4_ext_check(inode, ext_block_hdr(bh),
2580 path[i + 1].p_bh = bh;
2582 /* save actual number of indexes since this
2583 * number is changed at the next iteration */
2584 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2587 /* we finished processing this index, go up */
2588 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2589 /* index is empty, remove it;
2590 * handle must be already prepared by the
2591 * truncatei_leaf() */
2592 err = ext4_ext_rm_idx(handle, inode, path + i);
2594 /* root level has p_bh == NULL, brelse() eats this */
2595 brelse(path[i].p_bh);
2596 path[i].p_bh = NULL;
2598 ext_debug("return to level %d\n", i);
2602 trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster,
2603 path->p_hdr->eh_entries);
2605 /* If we still have something in the partial cluster and we have removed
2606 * even the first extent, then we should free the blocks in the partial
2607 * cluster as well. */
2608 if (partial_cluster && path->p_hdr->eh_entries == 0) {
2609 int flags = EXT4_FREE_BLOCKS_FORGET;
2611 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2612 flags |= EXT4_FREE_BLOCKS_METADATA;
2614 ext4_free_blocks(handle, inode, NULL,
2615 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2616 EXT4_SB(sb)->s_cluster_ratio, flags);
2617 partial_cluster = 0;
2620 /* TODO: flexible tree reduction should be here */
2621 if (path->p_hdr->eh_entries == 0) {
2623 * truncate to zero freed all the tree,
2624 * so we need to correct eh_depth
2626 err = ext4_ext_get_access(handle, inode, path);
2628 ext_inode_hdr(inode)->eh_depth = 0;
2629 ext_inode_hdr(inode)->eh_max =
2630 cpu_to_le16(ext4_ext_space_root(inode, 0));
2631 err = ext4_ext_dirty(handle, inode, path);
2635 ext4_ext_drop_refs(path);
2639 ext4_journal_stop(handle);
2645 * called at mount time
2647 void ext4_ext_init(struct super_block *sb)
2650 * possible initialization would be here
2653 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2654 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2655 printk(KERN_INFO "EXT4-fs: file extents enabled");
2656 #ifdef AGGRESSIVE_TEST
2657 printk(", aggressive tests");
2659 #ifdef CHECK_BINSEARCH
2660 printk(", check binsearch");
2662 #ifdef EXTENTS_STATS
2667 #ifdef EXTENTS_STATS
2668 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2669 EXT4_SB(sb)->s_ext_min = 1 << 30;
2670 EXT4_SB(sb)->s_ext_max = 0;
2676 * called at umount time
2678 void ext4_ext_release(struct super_block *sb)
2680 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2683 #ifdef EXTENTS_STATS
2684 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2685 struct ext4_sb_info *sbi = EXT4_SB(sb);
2686 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2687 sbi->s_ext_blocks, sbi->s_ext_extents,
2688 sbi->s_ext_blocks / sbi->s_ext_extents);
2689 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2690 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2695 /* FIXME!! we need to try to merge to left or right after zero-out */
2696 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2698 ext4_fsblk_t ee_pblock;
2699 unsigned int ee_len;
2702 ee_len = ext4_ext_get_actual_len(ex);
2703 ee_pblock = ext4_ext_pblock(ex);
2705 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2713 * used by extent splitting.
2715 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \
2717 #define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */
2718 #define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */
2721 * ext4_split_extent_at() splits an extent at given block.
2723 * @handle: the journal handle
2724 * @inode: the file inode
2725 * @path: the path to the extent
2726 * @split: the logical block where the extent is splitted.
2727 * @split_flags: indicates if the extent could be zeroout if split fails, and
2728 * the states(init or uninit) of new extents.
2729 * @flags: flags used to insert new extent to extent tree.
2732 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2733 * of which are deterimined by split_flag.
2735 * There are two cases:
2736 * a> the extent are splitted into two extent.
2737 * b> split is not needed, and just mark the extent.
2739 * return 0 on success.
2741 static int ext4_split_extent_at(handle_t *handle,
2742 struct inode *inode,
2743 struct ext4_ext_path *path,
2748 ext4_fsblk_t newblock;
2749 ext4_lblk_t ee_block;
2750 struct ext4_extent *ex, newex, orig_ex;
2751 struct ext4_extent *ex2 = NULL;
2752 unsigned int ee_len, depth;
2755 ext_debug("ext4_split_extents_at: inode %lu, logical"
2756 "block %llu\n", inode->i_ino, (unsigned long long)split);
2758 ext4_ext_show_leaf(inode, path);
2760 depth = ext_depth(inode);
2761 ex = path[depth].p_ext;
2762 ee_block = le32_to_cpu(ex->ee_block);
2763 ee_len = ext4_ext_get_actual_len(ex);
2764 newblock = split - ee_block + ext4_ext_pblock(ex);
2766 BUG_ON(split < ee_block || split >= (ee_block + ee_len));
2768 err = ext4_ext_get_access(handle, inode, path + depth);
2772 if (split == ee_block) {
2774 * case b: block @split is the block that the extent begins with
2775 * then we just change the state of the extent, and splitting
2778 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2779 ext4_ext_mark_uninitialized(ex);
2781 ext4_ext_mark_initialized(ex);
2783 if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
2784 ext4_ext_try_to_merge(inode, path, ex);
2786 err = ext4_ext_dirty(handle, inode, path + depth);
2791 memcpy(&orig_ex, ex, sizeof(orig_ex));
2792 ex->ee_len = cpu_to_le16(split - ee_block);
2793 if (split_flag & EXT4_EXT_MARK_UNINIT1)
2794 ext4_ext_mark_uninitialized(ex);
2797 * path may lead to new leaf, not to original leaf any more
2798 * after ext4_ext_insert_extent() returns,
2800 err = ext4_ext_dirty(handle, inode, path + depth);
2802 goto fix_extent_len;
2805 ex2->ee_block = cpu_to_le32(split);
2806 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block));
2807 ext4_ext_store_pblock(ex2, newblock);
2808 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2809 ext4_ext_mark_uninitialized(ex2);
2811 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
2812 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2813 err = ext4_ext_zeroout(inode, &orig_ex);
2815 goto fix_extent_len;
2816 /* update the extent length and mark as initialized */
2817 ex->ee_len = cpu_to_le32(ee_len);
2818 ext4_ext_try_to_merge(inode, path, ex);
2819 err = ext4_ext_dirty(handle, inode, path + depth);
2822 goto fix_extent_len;
2825 ext4_ext_show_leaf(inode, path);
2829 ex->ee_len = orig_ex.ee_len;
2830 ext4_ext_dirty(handle, inode, path + depth);
2835 * ext4_split_extents() splits an extent and mark extent which is covered
2836 * by @map as split_flags indicates
2838 * It may result in splitting the extent into multiple extents (upto three)
2839 * There are three possibilities:
2840 * a> There is no split required
2841 * b> Splits in two extents: Split is happening at either end of the extent
2842 * c> Splits in three extents: Somone is splitting in middle of the extent
2845 static int ext4_split_extent(handle_t *handle,
2846 struct inode *inode,
2847 struct ext4_ext_path *path,
2848 struct ext4_map_blocks *map,
2852 ext4_lblk_t ee_block;
2853 struct ext4_extent *ex;
2854 unsigned int ee_len, depth;
2857 int split_flag1, flags1;
2859 depth = ext_depth(inode);
2860 ex = path[depth].p_ext;
2861 ee_block = le32_to_cpu(ex->ee_block);
2862 ee_len = ext4_ext_get_actual_len(ex);
2863 uninitialized = ext4_ext_is_uninitialized(ex);
2865 if (map->m_lblk + map->m_len < ee_block + ee_len) {
2866 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
2867 EXT4_EXT_MAY_ZEROOUT : 0;
2868 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
2870 split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
2871 EXT4_EXT_MARK_UNINIT2;
2872 err = ext4_split_extent_at(handle, inode, path,
2873 map->m_lblk + map->m_len, split_flag1, flags1);
2878 ext4_ext_drop_refs(path);
2879 path = ext4_ext_find_extent(inode, map->m_lblk, path);
2881 return PTR_ERR(path);
2883 if (map->m_lblk >= ee_block) {
2884 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
2885 EXT4_EXT_MAY_ZEROOUT : 0;
2887 split_flag1 |= EXT4_EXT_MARK_UNINIT1;
2888 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2889 split_flag1 |= EXT4_EXT_MARK_UNINIT2;
2890 err = ext4_split_extent_at(handle, inode, path,
2891 map->m_lblk, split_flag1, flags);
2896 ext4_ext_show_leaf(inode, path);
2898 return err ? err : map->m_len;
2901 #define EXT4_EXT_ZERO_LEN 7
2903 * This function is called by ext4_ext_map_blocks() if someone tries to write
2904 * to an uninitialized extent. It may result in splitting the uninitialized
2905 * extent into multiple extents (up to three - one initialized and two
2907 * There are three possibilities:
2908 * a> There is no split required: Entire extent should be initialized
2909 * b> Splits in two extents: Write is happening at either end of the extent
2910 * c> Splits in three extents: Somone is writing in middle of the extent
2913 * - The extent pointed to by 'path' is uninitialized.
2914 * - The extent pointed to by 'path' contains a superset
2915 * of the logical span [map->m_lblk, map->m_lblk + map->m_len).
2917 * Post-conditions on success:
2918 * - the returned value is the number of blocks beyond map->l_lblk
2919 * that are allocated and initialized.
2920 * It is guaranteed to be >= map->m_len.
2922 static int ext4_ext_convert_to_initialized(handle_t *handle,
2923 struct inode *inode,
2924 struct ext4_map_blocks *map,
2925 struct ext4_ext_path *path)
2927 struct ext4_extent_header *eh;
2928 struct ext4_map_blocks split_map;
2929 struct ext4_extent zero_ex;
2930 struct ext4_extent *ex;
2931 ext4_lblk_t ee_block, eof_block;
2932 unsigned int ee_len, depth;
2937 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
2938 "block %llu, max_blocks %u\n", inode->i_ino,
2939 (unsigned long long)map->m_lblk, map->m_len);
2941 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
2942 inode->i_sb->s_blocksize_bits;
2943 if (eof_block < map->m_lblk + map->m_len)
2944 eof_block = map->m_lblk + map->m_len;
2946 depth = ext_depth(inode);
2947 eh = path[depth].p_hdr;
2948 ex = path[depth].p_ext;
2949 ee_block = le32_to_cpu(ex->ee_block);
2950 ee_len = ext4_ext_get_actual_len(ex);
2951 allocated = ee_len - (map->m_lblk - ee_block);
2953 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
2955 /* Pre-conditions */
2956 BUG_ON(!ext4_ext_is_uninitialized(ex));
2957 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
2960 * Attempt to transfer newly initialized blocks from the currently
2961 * uninitialized extent to its left neighbor. This is much cheaper
2962 * than an insertion followed by a merge as those involve costly
2963 * memmove() calls. This is the common case in steady state for
2964 * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append
2967 * Limitations of the current logic:
2968 * - L1: we only deal with writes at the start of the extent.
2969 * The approach could be extended to writes at the end
2970 * of the extent but this scenario was deemed less common.
2971 * - L2: we do not deal with writes covering the whole extent.
2972 * This would require removing the extent if the transfer
2974 * - L3: we only attempt to merge with an extent stored in the
2975 * same extent tree node.
2977 if ((map->m_lblk == ee_block) && /*L1*/
2978 (map->m_len < ee_len) && /*L2*/
2979 (ex > EXT_FIRST_EXTENT(eh))) { /*L3*/
2980 struct ext4_extent *prev_ex;
2981 ext4_lblk_t prev_lblk;
2982 ext4_fsblk_t prev_pblk, ee_pblk;
2983 unsigned int prev_len, write_len;
2986 prev_lblk = le32_to_cpu(prev_ex->ee_block);
2987 prev_len = ext4_ext_get_actual_len(prev_ex);
2988 prev_pblk = ext4_ext_pblock(prev_ex);
2989 ee_pblk = ext4_ext_pblock(ex);
2990 write_len = map->m_len;
2993 * A transfer of blocks from 'ex' to 'prev_ex' is allowed
2994 * upon those conditions:
2995 * - C1: prev_ex is initialized,
2996 * - C2: prev_ex is logically abutting ex,
2997 * - C3: prev_ex is physically abutting ex,
2998 * - C4: prev_ex can receive the additional blocks without
2999 * overflowing the (initialized) length limit.
3001 if ((!ext4_ext_is_uninitialized(prev_ex)) && /*C1*/
3002 ((prev_lblk + prev_len) == ee_block) && /*C2*/
3003 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/
3004 (prev_len < (EXT_INIT_MAX_LEN - write_len))) { /*C4*/
3005 err = ext4_ext_get_access(handle, inode, path + depth);
3009 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3012 /* Shift the start of ex by 'write_len' blocks */
3013 ex->ee_block = cpu_to_le32(ee_block + write_len);
3014 ext4_ext_store_pblock(ex, ee_pblk + write_len);
3015 ex->ee_len = cpu_to_le16(ee_len - write_len);
3016 ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3018 /* Extend prev_ex by 'write_len' blocks */
3019 prev_ex->ee_len = cpu_to_le16(prev_len + write_len);
3021 /* Mark the block containing both extents as dirty */
3022 ext4_ext_dirty(handle, inode, path + depth);
3024 /* Update path to point to the right extent */
3025 path[depth].p_ext = prev_ex;
3027 /* Result: number of initialized blocks past m_lblk */
3028 allocated = write_len;
3033 WARN_ON(map->m_lblk < ee_block);
3035 * It is safe to convert extent to initialized via explicit
3036 * zeroout only if extent is fully insde i_size or new_size.
3038 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3040 /* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
3041 if (ee_len <= 2*EXT4_EXT_ZERO_LEN &&
3042 (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3043 err = ext4_ext_zeroout(inode, ex);
3047 err = ext4_ext_get_access(handle, inode, path + depth);
3050 ext4_ext_mark_initialized(ex);
3051 ext4_ext_try_to_merge(inode, path, ex);
3052 err = ext4_ext_dirty(handle, inode, path + depth);
3058 * 1. split the extent into three extents.
3059 * 2. split the extent into two extents, zeroout the first half.
3060 * 3. split the extent into two extents, zeroout the second half.
3061 * 4. split the extent into two extents with out zeroout.
3063 split_map.m_lblk = map->m_lblk;
3064 split_map.m_len = map->m_len;
3066 if (allocated > map->m_len) {
3067 if (allocated <= EXT4_EXT_ZERO_LEN &&
3068 (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3071 cpu_to_le32(map->m_lblk);
3072 zero_ex.ee_len = cpu_to_le16(allocated);
3073 ext4_ext_store_pblock(&zero_ex,
3074 ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3075 err = ext4_ext_zeroout(inode, &zero_ex);
3078 split_map.m_lblk = map->m_lblk;
3079 split_map.m_len = allocated;
3080 } else if ((map->m_lblk - ee_block + map->m_len <
3081 EXT4_EXT_ZERO_LEN) &&
3082 (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3084 if (map->m_lblk != ee_block) {
3085 zero_ex.ee_block = ex->ee_block;
3086 zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3088 ext4_ext_store_pblock(&zero_ex,
3089 ext4_ext_pblock(ex));
3090 err = ext4_ext_zeroout(inode, &zero_ex);
3095 split_map.m_lblk = ee_block;
3096 split_map.m_len = map->m_lblk - ee_block + map->m_len;
3097 allocated = map->m_len;
3101 allocated = ext4_split_extent(handle, inode, path,
3102 &split_map, split_flag, 0);
3107 return err ? err : allocated;
3111 * This function is called by ext4_ext_map_blocks() from
3112 * ext4_get_blocks_dio_write() when DIO to write
3113 * to an uninitialized extent.
3115 * Writing to an uninitialized extent may result in splitting the uninitialized
3116 * extent into multiple /initialized uninitialized extents (up to three)
3117 * There are three possibilities:
3118 * a> There is no split required: Entire extent should be uninitialized
3119 * b> Splits in two extents: Write is happening at either end of the extent
3120 * c> Splits in three extents: Somone is writing in middle of the extent
3122 * One of more index blocks maybe needed if the extent tree grow after
3123 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3124 * complete, we need to split the uninitialized extent before DIO submit
3125 * the IO. The uninitialized extent called at this time will be split
3126 * into three uninitialized extent(at most). After IO complete, the part
3127 * being filled will be convert to initialized by the end_io callback function
3128 * via ext4_convert_unwritten_extents().
3130 * Returns the size of uninitialized extent to be written on success.
3132 static int ext4_split_unwritten_extents(handle_t *handle,
3133 struct inode *inode,
3134 struct ext4_map_blocks *map,
3135 struct ext4_ext_path *path,
3138 ext4_lblk_t eof_block;
3139 ext4_lblk_t ee_block;
3140 struct ext4_extent *ex;
3141 unsigned int ee_len;
3142 int split_flag = 0, depth;
3144 ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3145 "block %llu, max_blocks %u\n", inode->i_ino,
3146 (unsigned long long)map->m_lblk, map->m_len);
3148 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3149 inode->i_sb->s_blocksize_bits;
3150 if (eof_block < map->m_lblk + map->m_len)
3151 eof_block = map->m_lblk + map->m_len;
3153 * It is safe to convert extent to initialized via explicit
3154 * zeroout only if extent is fully insde i_size or new_size.
3156 depth = ext_depth(inode);
3157 ex = path[depth].p_ext;
3158 ee_block = le32_to_cpu(ex->ee_block);
3159 ee_len = ext4_ext_get_actual_len(ex);
3161 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3162 split_flag |= EXT4_EXT_MARK_UNINIT2;
3164 flags |= EXT4_GET_BLOCKS_PRE_IO;
3165 return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3168 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3169 struct inode *inode,
3170 struct ext4_ext_path *path)
3172 struct ext4_extent *ex;
3176 depth = ext_depth(inode);
3177 ex = path[depth].p_ext;
3179 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3180 "block %llu, max_blocks %u\n", inode->i_ino,
3181 (unsigned long long)le32_to_cpu(ex->ee_block),
3182 ext4_ext_get_actual_len(ex));
3184 err = ext4_ext_get_access(handle, inode, path + depth);
3187 /* first mark the extent as initialized */
3188 ext4_ext_mark_initialized(ex);
3190 /* note: ext4_ext_correct_indexes() isn't needed here because
3191 * borders are not changed
3193 ext4_ext_try_to_merge(inode, path, ex);
3195 /* Mark modified extent as dirty */
3196 err = ext4_ext_dirty(handle, inode, path + depth);
3198 ext4_ext_show_leaf(inode, path);
3202 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3203 sector_t block, int count)
3206 for (i = 0; i < count; i++)
3207 unmap_underlying_metadata(bdev, block + i);
3211 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3213 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3215 struct ext4_ext_path *path,
3219 struct ext4_extent_header *eh;
3220 struct ext4_extent *last_ex;
3222 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3225 depth = ext_depth(inode);
3226 eh = path[depth].p_hdr;
3228 if (unlikely(!eh->eh_entries)) {
3229 EXT4_ERROR_INODE(inode, "eh->eh_entries == 0 and "
3230 "EOFBLOCKS_FL set");
3233 last_ex = EXT_LAST_EXTENT(eh);
3235 * We should clear the EOFBLOCKS_FL flag if we are writing the
3236 * last block in the last extent in the file. We test this by
3237 * first checking to see if the caller to
3238 * ext4_ext_get_blocks() was interested in the last block (or
3239 * a block beyond the last block) in the current extent. If
3240 * this turns out to be false, we can bail out from this
3241 * function immediately.
3243 if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3244 ext4_ext_get_actual_len(last_ex))
3247 * If the caller does appear to be planning to write at or
3248 * beyond the end of the current extent, we then test to see
3249 * if the current extent is the last extent in the file, by
3250 * checking to make sure it was reached via the rightmost node
3251 * at each level of the tree.
3253 for (i = depth-1; i >= 0; i--)
3254 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3256 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3257 return ext4_mark_inode_dirty(handle, inode);
3261 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3263 * Goes through the buffer heads in the range [lblk_start, lblk_end] and returns
3264 * whether there are any buffers marked for delayed allocation. It returns '1'
3265 * on the first delalloc'ed buffer head found. If no buffer head in the given
3266 * range is marked for delalloc, it returns 0.
3267 * lblk_start should always be <= lblk_end.
3268 * search_hint_reverse is to indicate that searching in reverse from lblk_end to
3269 * lblk_start might be more efficient (i.e., we will likely hit the delalloc'ed
3270 * block sooner). This is useful when blocks are truncated sequentially from
3271 * lblk_start towards lblk_end.
3273 static int ext4_find_delalloc_range(struct inode *inode,
3274 ext4_lblk_t lblk_start,
3275 ext4_lblk_t lblk_end,
3276 int search_hint_reverse)
3278 struct address_space *mapping = inode->i_mapping;
3279 struct buffer_head *head, *bh = NULL;
3281 ext4_lblk_t i, pg_lblk;
3284 /* reverse search wont work if fs block size is less than page size */
3285 if (inode->i_blkbits < PAGE_CACHE_SHIFT)
3286 search_hint_reverse = 0;
3288 if (search_hint_reverse)
3293 index = i >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
3295 while ((i >= lblk_start) && (i <= lblk_end)) {
3296 page = find_get_page(mapping, index);
3300 if (!page_has_buffers(page))
3303 head = page_buffers(page);
3308 pg_lblk = index << (PAGE_CACHE_SHIFT -
3311 if (unlikely(pg_lblk < lblk_start)) {
3313 * This is possible when fs block size is less
3314 * than page size and our cluster starts/ends in
3315 * middle of the page. So we need to skip the
3316 * initial few blocks till we reach the 'lblk'
3322 /* Check if the buffer is delayed allocated and that it
3323 * is not yet mapped. (when da-buffers are mapped during
3324 * their writeout, their da_mapped bit is set.)
3326 if (buffer_delay(bh) && !buffer_da_mapped(bh)) {
3327 page_cache_release(page);
3328 trace_ext4_find_delalloc_range(inode,
3329 lblk_start, lblk_end,
3330 search_hint_reverse,
3334 if (search_hint_reverse)
3338 } while ((i >= lblk_start) && (i <= lblk_end) &&
3339 ((bh = bh->b_this_page) != head));
3342 page_cache_release(page);
3344 * Move to next page. 'i' will be the first lblk in the next
3347 if (search_hint_reverse)
3351 i = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
3354 trace_ext4_find_delalloc_range(inode, lblk_start, lblk_end,
3355 search_hint_reverse, 0, 0);
3359 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk,
3360 int search_hint_reverse)
3362 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3363 ext4_lblk_t lblk_start, lblk_end;
3364 lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
3365 lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3367 return ext4_find_delalloc_range(inode, lblk_start, lblk_end,
3368 search_hint_reverse);
3372 * Determines how many complete clusters (out of those specified by the 'map')
3373 * are under delalloc and were reserved quota for.
3374 * This function is called when we are writing out the blocks that were
3375 * originally written with their allocation delayed, but then the space was
3376 * allocated using fallocate() before the delayed allocation could be resolved.
3377 * The cases to look for are:
3378 * ('=' indicated delayed allocated blocks
3379 * '-' indicates non-delayed allocated blocks)
3380 * (a) partial clusters towards beginning and/or end outside of allocated range
3381 * are not delalloc'ed.
3383 * |----c---=|====c====|====c====|===-c----|
3384 * |++++++ allocated ++++++|
3385 * ==> 4 complete clusters in above example
3387 * (b) partial cluster (outside of allocated range) towards either end is
3388 * marked for delayed allocation. In this case, we will exclude that
3391 * |----====c========|========c========|
3392 * |++++++ allocated ++++++|
3393 * ==> 1 complete clusters in above example
3396 * |================c================|
3397 * |++++++ allocated ++++++|
3398 * ==> 0 complete clusters in above example
3400 * The ext4_da_update_reserve_space will be called only if we
3401 * determine here that there were some "entire" clusters that span
3402 * this 'allocated' range.
3403 * In the non-bigalloc case, this function will just end up returning num_blks
3404 * without ever calling ext4_find_delalloc_range.
3407 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3408 unsigned int num_blks)
3410 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3411 ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3412 ext4_lblk_t lblk_from, lblk_to, c_offset;
3413 unsigned int allocated_clusters = 0;
3415 alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3416 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3418 /* max possible clusters for this allocation */
3419 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3421 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3423 /* Check towards left side */
3424 c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
3426 lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
3427 lblk_to = lblk_from + c_offset - 1;
3429 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
3430 allocated_clusters--;
3433 /* Now check towards right. */
3434 c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
3435 if (allocated_clusters && c_offset) {
3436 lblk_from = lblk_start + num_blks;
3437 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3439 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
3440 allocated_clusters--;
3443 return allocated_clusters;
3447 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3448 struct ext4_map_blocks *map,
3449 struct ext4_ext_path *path, int flags,
3450 unsigned int allocated, ext4_fsblk_t newblock)
3454 ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3456 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical"
3457 "block %llu, max_blocks %u, flags %d, allocated %u",
3458 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3460 ext4_ext_show_leaf(inode, path);
3462 trace_ext4_ext_handle_uninitialized_extents(inode, map, allocated,
3465 /* get_block() before submit the IO, split the extent */
3466 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3467 ret = ext4_split_unwritten_extents(handle, inode, map,
3470 * Flag the inode(non aio case) or end_io struct (aio case)
3471 * that this IO needs to conversion to written when IO is
3475 ext4_set_io_unwritten_flag(inode, io);
3477 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3478 if (ext4_should_dioread_nolock(inode))
3479 map->m_flags |= EXT4_MAP_UNINIT;
3482 /* IO end_io complete, convert the filled extent to written */
3483 if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3484 ret = ext4_convert_unwritten_extents_endio(handle, inode,
3487 ext4_update_inode_fsync_trans(handle, inode, 1);
3488 err = check_eofblocks_fl(handle, inode, map->m_lblk,
3494 /* buffered IO case */
3496 * repeat fallocate creation request
3497 * we already have an unwritten extent
3499 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
3502 /* buffered READ or buffered write_begin() lookup */
3503 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3505 * We have blocks reserved already. We
3506 * return allocated blocks so that delalloc
3507 * won't do block reservation for us. But
3508 * the buffer head will be unmapped so that
3509 * a read from the block returns 0s.
3511 map->m_flags |= EXT4_MAP_UNWRITTEN;
3515 /* buffered write, writepage time, convert*/
3516 ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3518 ext4_update_inode_fsync_trans(handle, inode, 1);
3525 map->m_flags |= EXT4_MAP_NEW;
3527 * if we allocated more blocks than requested
3528 * we need to make sure we unmap the extra block
3529 * allocated. The actual needed block will get
3530 * unmapped later when we find the buffer_head marked
3533 if (allocated > map->m_len) {
3534 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3535 newblock + map->m_len,
3536 allocated - map->m_len);
3537 allocated = map->m_len;
3541 * If we have done fallocate with the offset that is already
3542 * delayed allocated, we would have block reservation
3543 * and quota reservation done in the delayed write path.
3544 * But fallocate would have already updated quota and block
3545 * count for this offset. So cancel these reservation
3547 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3548 unsigned int reserved_clusters;
3549 reserved_clusters = get_reserved_cluster_alloc(inode,
3550 map->m_lblk, map->m_len);
3551 if (reserved_clusters)
3552 ext4_da_update_reserve_space(inode,
3558 map->m_flags |= EXT4_MAP_MAPPED;
3559 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3560 err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3566 if (allocated > map->m_len)
3567 allocated = map->m_len;
3568 ext4_ext_show_leaf(inode, path);
3569 map->m_pblk = newblock;
3570 map->m_len = allocated;
3573 ext4_ext_drop_refs(path);
3576 return err ? err : allocated;
3580 * get_implied_cluster_alloc - check to see if the requested
3581 * allocation (in the map structure) overlaps with a cluster already
3582 * allocated in an extent.
3583 * @sb The filesystem superblock structure
3584 * @map The requested lblk->pblk mapping
3585 * @ex The extent structure which might contain an implied
3586 * cluster allocation
3588 * This function is called by ext4_ext_map_blocks() after we failed to
3589 * find blocks that were already in the inode's extent tree. Hence,
3590 * we know that the beginning of the requested region cannot overlap
3591 * the extent from the inode's extent tree. There are three cases we
3592 * want to catch. The first is this case:
3594 * |--- cluster # N--|
3595 * |--- extent ---| |---- requested region ---|
3598 * The second case that we need to test for is this one:
3600 * |--------- cluster # N ----------------|
3601 * |--- requested region --| |------- extent ----|
3602 * |=======================|
3604 * The third case is when the requested region lies between two extents
3605 * within the same cluster:
3606 * |------------- cluster # N-------------|
3607 * |----- ex -----| |---- ex_right ----|
3608 * |------ requested region ------|
3609 * |================|
3611 * In each of the above cases, we need to set the map->m_pblk and
3612 * map->m_len so it corresponds to the return the extent labelled as
3613 * "|====|" from cluster #N, since it is already in use for data in
3614 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to
3615 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3616 * as a new "allocated" block region. Otherwise, we will return 0 and
3617 * ext4_ext_map_blocks() will then allocate one or more new clusters
3618 * by calling ext4_mb_new_blocks().
3620 static int get_implied_cluster_alloc(struct super_block *sb,
3621 struct ext4_map_blocks *map,
3622 struct ext4_extent *ex,
3623 struct ext4_ext_path *path)
3625 struct ext4_sb_info *sbi = EXT4_SB(sb);
3626 ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3627 ext4_lblk_t ex_cluster_start, ex_cluster_end;
3628 ext4_lblk_t rr_cluster_start, rr_cluster_end;
3629 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3630 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3631 unsigned short ee_len = ext4_ext_get_actual_len(ex);
3633 /* The extent passed in that we are trying to match */
3634 ex_cluster_start = EXT4_B2C(sbi, ee_block);
3635 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
3637 /* The requested region passed into ext4_map_blocks() */
3638 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
3639 rr_cluster_end = EXT4_B2C(sbi, map->m_lblk + map->m_len - 1);
3641 if ((rr_cluster_start == ex_cluster_end) ||
3642 (rr_cluster_start == ex_cluster_start)) {
3643 if (rr_cluster_start == ex_cluster_end)
3644 ee_start += ee_len - 1;
3645 map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
3647 map->m_len = min(map->m_len,
3648 (unsigned) sbi->s_cluster_ratio - c_offset);
3650 * Check for and handle this case:
3652 * |--------- cluster # N-------------|
3653 * |------- extent ----|
3654 * |--- requested region ---|
3658 if (map->m_lblk < ee_block)
3659 map->m_len = min(map->m_len, ee_block - map->m_lblk);
3662 * Check for the case where there is already another allocated
3663 * block to the right of 'ex' but before the end of the cluster.
3665 * |------------- cluster # N-------------|
3666 * |----- ex -----| |---- ex_right ----|
3667 * |------ requested region ------|
3668 * |================|
3670 if (map->m_lblk > ee_block) {
3671 ext4_lblk_t next = ext4_ext_next_allocated_block(path);
3672 map->m_len = min(map->m_len, next - map->m_lblk);
3675 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
3679 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
3685 * Block allocation/map/preallocation routine for extents based files
3688 * Need to be called with
3689 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3690 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3692 * return > 0, number of of blocks already mapped/allocated
3693 * if create == 0 and these are pre-allocated blocks
3694 * buffer head is unmapped
3695 * otherwise blocks are mapped
3697 * return = 0, if plain look up failed (blocks have not been allocated)
3698 * buffer head is unmapped
3700 * return < 0, error case.
3702 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3703 struct ext4_map_blocks *map, int flags)
3705 struct ext4_ext_path *path = NULL;
3706 struct ext4_extent newex, *ex, *ex2;
3707 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3708 ext4_fsblk_t newblock = 0;
3709 int free_on_err = 0, err = 0, depth, ret;
3710 unsigned int allocated = 0, offset = 0;
3711 unsigned int allocated_clusters = 0;
3712 unsigned int punched_out = 0;
3713 unsigned int result = 0;
3714 struct ext4_allocation_request ar;
3715 ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3716 ext4_lblk_t cluster_offset;
3718 ext_debug("blocks %u/%u requested for inode %lu\n",
3719 map->m_lblk, map->m_len, inode->i_ino);
3720 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3722 /* check in cache */
3723 if (!(flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) &&
3724 ext4_ext_in_cache(inode, map->m_lblk, &newex)) {
3725 if (!newex.ee_start_lo && !newex.ee_start_hi) {
3726 if ((sbi->s_cluster_ratio > 1) &&
3727 ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
3728 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3730 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3732 * block isn't allocated yet and
3733 * user doesn't want to allocate it
3737 /* we should allocate requested block */
3739 /* block is already allocated */
3740 if (sbi->s_cluster_ratio > 1)
3741 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3742 newblock = map->m_lblk
3743 - le32_to_cpu(newex.ee_block)
3744 + ext4_ext_pblock(&newex);
3745 /* number of remaining blocks in the extent */
3746 allocated = ext4_ext_get_actual_len(&newex) -
3747 (map->m_lblk - le32_to_cpu(newex.ee_block));
3752 /* find extent for this block */
3753 path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3755 err = PTR_ERR(path);
3760 depth = ext_depth(inode);
3763 * consistent leaf must not be empty;
3764 * this situation is possible, though, _during_ tree modification;
3765 * this is why assert can't be put in ext4_ext_find_extent()
3767 if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3768 EXT4_ERROR_INODE(inode, "bad extent address "
3769 "lblock: %lu, depth: %d pblock %lld",
3770 (unsigned long) map->m_lblk, depth,
3771 path[depth].p_block);
3776 ex = path[depth].p_ext;
3778 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3779 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3780 unsigned short ee_len;
3783 * Uninitialized extents are treated as holes, except that
3784 * we split out initialized portions during a write.
3786 ee_len = ext4_ext_get_actual_len(ex);
3788 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
3790 /* if found extent covers block, simply return it */
3791 if (in_range(map->m_lblk, ee_block, ee_len)) {
3792 struct ext4_map_blocks punch_map;
3793 ext4_fsblk_t partial_cluster = 0;
3795 newblock = map->m_lblk - ee_block + ee_start;
3796 /* number of remaining blocks in the extent */
3797 allocated = ee_len - (map->m_lblk - ee_block);
3798 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3799 ee_block, ee_len, newblock);
3801 if ((flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) == 0) {
3803 * Do not put uninitialized extent
3806 if (!ext4_ext_is_uninitialized(ex)) {
3807 ext4_ext_put_in_cache(inode, ee_block,
3811 ret = ext4_ext_handle_uninitialized_extents(
3812 handle, inode, map, path, flags,
3813 allocated, newblock);
3818 * Punch out the map length, but only to the
3821 punched_out = allocated < map->m_len ?
3822 allocated : map->m_len;
3825 * Sense extents need to be converted to
3826 * uninitialized, they must fit in an
3827 * uninitialized extent
3829 if (punched_out > EXT_UNINIT_MAX_LEN)
3830 punched_out = EXT_UNINIT_MAX_LEN;
3832 punch_map.m_lblk = map->m_lblk;
3833 punch_map.m_pblk = newblock;
3834 punch_map.m_len = punched_out;
3835 punch_map.m_flags = 0;
3837 /* Check to see if the extent needs to be split */
3838 if (punch_map.m_len != ee_len ||
3839 punch_map.m_lblk != ee_block) {
3841 ret = ext4_split_extent(handle, inode,
3842 path, &punch_map, 0,
3843 EXT4_GET_BLOCKS_PUNCH_OUT_EXT |
3844 EXT4_GET_BLOCKS_PRE_IO);
3851 * find extent for the block at
3852 * the start of the hole
3854 ext4_ext_drop_refs(path);
3857 path = ext4_ext_find_extent(inode,
3860 err = PTR_ERR(path);
3865 depth = ext_depth(inode);
3866 ex = path[depth].p_ext;
3867 ee_len = ext4_ext_get_actual_len(ex);
3868 ee_block = le32_to_cpu(ex->ee_block);
3869 ee_start = ext4_ext_pblock(ex);
3873 ext4_ext_mark_uninitialized(ex);
3875 ext4_ext_invalidate_cache(inode);
3877 err = ext4_ext_rm_leaf(handle, inode, path,
3878 &partial_cluster, map->m_lblk,
3879 map->m_lblk + punched_out);
3881 if (!err && path->p_hdr->eh_entries == 0) {
3883 * Punch hole freed all of this sub tree,
3884 * so we need to correct eh_depth
3886 err = ext4_ext_get_access(handle, inode, path);
3888 ext_inode_hdr(inode)->eh_depth = 0;
3889 ext_inode_hdr(inode)->eh_max =
3890 cpu_to_le16(ext4_ext_space_root(
3893 err = ext4_ext_dirty(
3894 handle, inode, path);
3902 if ((sbi->s_cluster_ratio > 1) &&
3903 ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
3904 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3907 * requested block isn't allocated yet;
3908 * we couldn't try to create block if create flag is zero
3910 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3912 * put just found gap into cache to speed up
3913 * subsequent requests
3915 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
3920 * Okay, we need to do block allocation.
3922 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
3923 newex.ee_block = cpu_to_le32(map->m_lblk);
3924 cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3927 * If we are doing bigalloc, check to see if the extent returned
3928 * by ext4_ext_find_extent() implies a cluster we can use.
3930 if (cluster_offset && ex &&
3931 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
3932 ar.len = allocated = map->m_len;
3933 newblock = map->m_pblk;
3934 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3935 goto got_allocated_blocks;
3938 /* find neighbour allocated blocks */
3939 ar.lleft = map->m_lblk;
3940 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
3943 ar.lright = map->m_lblk;
3945 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
3949 /* Check if the extent after searching to the right implies a
3950 * cluster we can use. */
3951 if ((sbi->s_cluster_ratio > 1) && ex2 &&
3952 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
3953 ar.len = allocated = map->m_len;
3954 newblock = map->m_pblk;
3955 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3956 goto got_allocated_blocks;
3960 * See if request is beyond maximum number of blocks we can have in
3961 * a single extent. For an initialized extent this limit is
3962 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
3963 * EXT_UNINIT_MAX_LEN.
3965 if (map->m_len > EXT_INIT_MAX_LEN &&
3966 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3967 map->m_len = EXT_INIT_MAX_LEN;
3968 else if (map->m_len > EXT_UNINIT_MAX_LEN &&
3969 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3970 map->m_len = EXT_UNINIT_MAX_LEN;
3972 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
3973 newex.ee_len = cpu_to_le16(map->m_len);
3974 err = ext4_ext_check_overlap(sbi, inode, &newex, path);
3976 allocated = ext4_ext_get_actual_len(&newex);
3978 allocated = map->m_len;
3980 /* allocate new block */
3982 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
3983 ar.logical = map->m_lblk;
3985 * We calculate the offset from the beginning of the cluster
3986 * for the logical block number, since when we allocate a
3987 * physical cluster, the physical block should start at the
3988 * same offset from the beginning of the cluster. This is
3989 * needed so that future calls to get_implied_cluster_alloc()
3992 offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
3993 ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
3995 ar.logical -= offset;
3996 if (S_ISREG(inode->i_mode))
3997 ar.flags = EXT4_MB_HINT_DATA;
3999 /* disable in-core preallocation for non-regular files */
4001 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4002 ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4003 newblock = ext4_mb_new_blocks(handle, &ar, &err);
4006 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4007 ar.goal, newblock, allocated);
4009 allocated_clusters = ar.len;
4010 ar.len = EXT4_C2B(sbi, ar.len) - offset;
4011 if (ar.len > allocated)
4014 got_allocated_blocks:
4015 /* try to insert new extent into found leaf and return */
4016 ext4_ext_store_pblock(&newex, newblock + offset);
4017 newex.ee_len = cpu_to_le16(ar.len);
4018 /* Mark uninitialized */
4019 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4020 ext4_ext_mark_uninitialized(&newex);
4022 * io_end structure was created for every IO write to an
4023 * uninitialized extent. To avoid unnecessary conversion,
4024 * here we flag the IO that really needs the conversion.
4025 * For non asycn direct IO case, flag the inode state
4026 * that we need to perform conversion when IO is done.
4028 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
4030 ext4_set_io_unwritten_flag(inode, io);
4032 ext4_set_inode_state(inode,
4033 EXT4_STATE_DIO_UNWRITTEN);
4035 if (ext4_should_dioread_nolock(inode))
4036 map->m_flags |= EXT4_MAP_UNINIT;
4040 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4041 err = check_eofblocks_fl(handle, inode, map->m_lblk,
4044 err = ext4_ext_insert_extent(handle, inode, path,
4046 if (err && free_on_err) {
4047 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4048 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4049 /* free data blocks we just allocated */
4050 /* not a good idea to call discard here directly,
4051 * but otherwise we'd need to call it every free() */
4052 ext4_discard_preallocations(inode);
4053 ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
4054 ext4_ext_get_actual_len(&newex), fb_flags);
4058 /* previous routine could use block we allocated */
4059 newblock = ext4_ext_pblock(&newex);
4060 allocated = ext4_ext_get_actual_len(&newex);
4061 if (allocated > map->m_len)
4062 allocated = map->m_len;
4063 map->m_flags |= EXT4_MAP_NEW;
4066 * Update reserved blocks/metadata blocks after successful
4067 * block allocation which had been deferred till now.
4069 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4070 unsigned int reserved_clusters;
4072 * Check how many clusters we had reserved this allocated range
4074 reserved_clusters = get_reserved_cluster_alloc(inode,
4075 map->m_lblk, allocated);
4076 if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4077 if (reserved_clusters) {
4079 * We have clusters reserved for this range.
4080 * But since we are not doing actual allocation
4081 * and are simply using blocks from previously
4082 * allocated cluster, we should release the
4083 * reservation and not claim quota.
4085 ext4_da_update_reserve_space(inode,
4086 reserved_clusters, 0);
4089 BUG_ON(allocated_clusters < reserved_clusters);
4090 /* We will claim quota for all newly allocated blocks.*/
4091 ext4_da_update_reserve_space(inode, allocated_clusters,
4093 if (reserved_clusters < allocated_clusters) {
4094 struct ext4_inode_info *ei = EXT4_I(inode);
4095 int reservation = allocated_clusters -
4098 * It seems we claimed few clusters outside of
4099 * the range of this allocation. We should give
4100 * it back to the reservation pool. This can
4101 * happen in the following case:
4103 * * Suppose s_cluster_ratio is 4 (i.e., each
4104 * cluster has 4 blocks. Thus, the clusters
4105 * are [0-3],[4-7],[8-11]...
4106 * * First comes delayed allocation write for
4107 * logical blocks 10 & 11. Since there were no
4108 * previous delayed allocated blocks in the
4109 * range [8-11], we would reserve 1 cluster
4111 * * Next comes write for logical blocks 3 to 8.
4112 * In this case, we will reserve 2 clusters
4113 * (for [0-3] and [4-7]; and not for [8-11] as
4114 * that range has a delayed allocated blocks.
4115 * Thus total reserved clusters now becomes 3.
4116 * * Now, during the delayed allocation writeout
4117 * time, we will first write blocks [3-8] and
4118 * allocate 3 clusters for writing these
4119 * blocks. Also, we would claim all these
4120 * three clusters above.
4121 * * Now when we come here to writeout the
4122 * blocks [10-11], we would expect to claim
4123 * the reservation of 1 cluster we had made
4124 * (and we would claim it since there are no
4125 * more delayed allocated blocks in the range
4126 * [8-11]. But our reserved cluster count had
4127 * already gone to 0.
4129 * Thus, at the step 4 above when we determine
4130 * that there are still some unwritten delayed
4131 * allocated blocks outside of our current
4132 * block range, we should increment the
4133 * reserved clusters count so that when the
4134 * remaining blocks finally gets written, we
4137 dquot_reserve_block(inode,
4138 EXT4_C2B(sbi, reservation));
4139 spin_lock(&ei->i_block_reservation_lock);
4140 ei->i_reserved_data_blocks += reservation;
4141 spin_unlock(&ei->i_block_reservation_lock);
4147 * Cache the extent and update transaction to commit on fdatasync only
4148 * when it is _not_ an uninitialized extent.
4150 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
4151 ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
4152 ext4_update_inode_fsync_trans(handle, inode, 1);
4154 ext4_update_inode_fsync_trans(handle, inode, 0);
4156 if (allocated > map->m_len)
4157 allocated = map->m_len;
4158 ext4_ext_show_leaf(inode, path);
4159 map->m_flags |= EXT4_MAP_MAPPED;
4160 map->m_pblk = newblock;
4161 map->m_len = allocated;
4164 ext4_ext_drop_refs(path);
4167 result = (flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) ?
4168 punched_out : allocated;
4170 trace_ext4_ext_map_blocks_exit(inode, map->m_lblk,
4171 newblock, map->m_len, err ? err : result);
4173 return err ? err : result;
4176 void ext4_ext_truncate(struct inode *inode)
4178 struct address_space *mapping = inode->i_mapping;
4179 struct super_block *sb = inode->i_sb;
4180 ext4_lblk_t last_block;
4186 * finish any pending end_io work so we won't run the risk of
4187 * converting any truncated blocks to initialized later
4189 ext4_flush_completed_IO(inode);
4192 * probably first extent we're gonna free will be last in block
4194 err = ext4_writepage_trans_blocks(inode);
4195 handle = ext4_journal_start(inode, err);
4199 if (inode->i_size % PAGE_CACHE_SIZE != 0) {
4200 page_len = PAGE_CACHE_SIZE -
4201 (inode->i_size & (PAGE_CACHE_SIZE - 1));
4203 err = ext4_discard_partial_page_buffers(handle,
4204 mapping, inode->i_size, page_len, 0);
4210 if (ext4_orphan_add(handle, inode))
4213 down_write(&EXT4_I(inode)->i_data_sem);
4214 ext4_ext_invalidate_cache(inode);
4216 ext4_discard_preallocations(inode);
4219 * TODO: optimization is possible here.
4220 * Probably we need not scan at all,
4221 * because page truncation is enough.
4224 /* we have to know where to truncate from in crash case */
4225 EXT4_I(inode)->i_disksize = inode->i_size;
4226 ext4_mark_inode_dirty(handle, inode);
4228 last_block = (inode->i_size + sb->s_blocksize - 1)
4229 >> EXT4_BLOCK_SIZE_BITS(sb);
4230 err = ext4_ext_remove_space(inode, last_block);
4232 /* In a multi-transaction truncate, we only make the final
4233 * transaction synchronous.
4236 ext4_handle_sync(handle);
4238 up_write(&EXT4_I(inode)->i_data_sem);
4242 * If this was a simple ftruncate() and the file will remain alive,
4243 * then we need to clear up the orphan record which we created above.
4244 * However, if this was a real unlink then we were called by
4245 * ext4_delete_inode(), and we allow that function to clean up the
4246 * orphan info for us.
4249 ext4_orphan_del(handle, inode);
4251 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4252 ext4_mark_inode_dirty(handle, inode);
4253 ext4_journal_stop(handle);
4256 static void ext4_falloc_update_inode(struct inode *inode,
4257 int mode, loff_t new_size, int update_ctime)
4259 struct timespec now;
4262 now = current_fs_time(inode->i_sb);
4263 if (!timespec_equal(&inode->i_ctime, &now))
4264 inode->i_ctime = now;
4267 * Update only when preallocation was requested beyond
4270 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4271 if (new_size > i_size_read(inode))
4272 i_size_write(inode, new_size);
4273 if (new_size > EXT4_I(inode)->i_disksize)
4274 ext4_update_i_disksize(inode, new_size);
4277 * Mark that we allocate beyond EOF so the subsequent truncate
4278 * can proceed even if the new size is the same as i_size.
4280 if (new_size > i_size_read(inode))
4281 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4287 * preallocate space for a file. This implements ext4's fallocate file
4288 * operation, which gets called from sys_fallocate system call.
4289 * For block-mapped files, posix_fallocate should fall back to the method
4290 * of writing zeroes to the required new blocks (the same behavior which is
4291 * expected for file systems which do not support fallocate() system call).
4293 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4295 struct inode *inode = file->f_path.dentry->d_inode;
4298 unsigned int max_blocks;
4303 struct ext4_map_blocks map;
4304 unsigned int credits, blkbits = inode->i_blkbits;
4307 * currently supporting (pre)allocate mode for extent-based
4310 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4313 /* Return error if mode is not supported */
4314 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
4317 if (mode & FALLOC_FL_PUNCH_HOLE)
4318 return ext4_punch_hole(file, offset, len);
4320 trace_ext4_fallocate_enter(inode, offset, len, mode);
4321 map.m_lblk = offset >> blkbits;
4323 * We can't just convert len to max_blocks because
4324 * If blocksize = 4096 offset = 3072 and len = 2048
4326 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4329 * credits to insert 1 extent into extent tree
4331 credits = ext4_chunk_trans_blocks(inode, max_blocks);
4332 mutex_lock(&inode->i_mutex);
4333 ret = inode_newsize_ok(inode, (len + offset));
4335 mutex_unlock(&inode->i_mutex);
4336 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4339 flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4340 if (mode & FALLOC_FL_KEEP_SIZE)
4341 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4343 * Don't normalize the request if it can fit in one extent so
4344 * that it doesn't get unnecessarily split into multiple
4347 if (len <= EXT_UNINIT_MAX_LEN << blkbits)
4348 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4350 while (ret >= 0 && ret < max_blocks) {
4351 map.m_lblk = map.m_lblk + ret;
4352 map.m_len = max_blocks = max_blocks - ret;
4353 handle = ext4_journal_start(inode, credits);
4354 if (IS_ERR(handle)) {
4355 ret = PTR_ERR(handle);
4358 ret = ext4_map_blocks(handle, inode, &map, flags);
4362 printk(KERN_ERR "%s: ext4_ext_map_blocks "
4363 "returned error inode#%lu, block=%u, "
4364 "max_blocks=%u", __func__,
4365 inode->i_ino, map.m_lblk, max_blocks);
4367 ext4_mark_inode_dirty(handle, inode);
4368 ret2 = ext4_journal_stop(handle);
4371 if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4372 blkbits) >> blkbits))
4373 new_size = offset + len;
4375 new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4377 ext4_falloc_update_inode(inode, mode, new_size,
4378 (map.m_flags & EXT4_MAP_NEW));
4379 ext4_mark_inode_dirty(handle, inode);
4380 ret2 = ext4_journal_stop(handle);
4384 if (ret == -ENOSPC &&
4385 ext4_should_retry_alloc(inode->i_sb, &retries)) {
4389 mutex_unlock(&inode->i_mutex);
4390 trace_ext4_fallocate_exit(inode, offset, max_blocks,
4391 ret > 0 ? ret2 : ret);
4392 return ret > 0 ? ret2 : ret;
4396 * This function convert a range of blocks to written extents
4397 * The caller of this function will pass the start offset and the size.
4398 * all unwritten extents within this range will be converted to
4401 * This function is called from the direct IO end io call back
4402 * function, to convert the fallocated extents after IO is completed.
4403 * Returns 0 on success.
4405 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
4409 unsigned int max_blocks;
4412 struct ext4_map_blocks map;
4413 unsigned int credits, blkbits = inode->i_blkbits;
4415 map.m_lblk = offset >> blkbits;
4417 * We can't just convert len to max_blocks because
4418 * If blocksize = 4096 offset = 3072 and len = 2048
4420 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4423 * credits to insert 1 extent into extent tree
4425 credits = ext4_chunk_trans_blocks(inode, max_blocks);
4426 while (ret >= 0 && ret < max_blocks) {
4428 map.m_len = (max_blocks -= ret);
4429 handle = ext4_journal_start(inode, credits);
4430 if (IS_ERR(handle)) {
4431 ret = PTR_ERR(handle);
4434 ret = ext4_map_blocks(handle, inode, &map,
4435 EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4438 printk(KERN_ERR "%s: ext4_ext_map_blocks "
4439 "returned error inode#%lu, block=%u, "
4440 "max_blocks=%u", __func__,
4441 inode->i_ino, map.m_lblk, map.m_len);
4443 ext4_mark_inode_dirty(handle, inode);
4444 ret2 = ext4_journal_stop(handle);
4445 if (ret <= 0 || ret2 )
4448 return ret > 0 ? ret2 : ret;
4452 * Callback function called for each extent to gather FIEMAP information.
4454 static int ext4_ext_fiemap_cb(struct inode *inode, ext4_lblk_t next,
4455 struct ext4_ext_cache *newex, struct ext4_extent *ex,
4463 struct fiemap_extent_info *fieinfo = data;
4464 unsigned char blksize_bits;
4466 blksize_bits = inode->i_sb->s_blocksize_bits;
4467 logical = (__u64)newex->ec_block << blksize_bits;
4469 if (newex->ec_start == 0) {
4471 * No extent in extent-tree contains block @newex->ec_start,
4472 * then the block may stay in 1)a hole or 2)delayed-extent.
4474 * Holes or delayed-extents are processed as follows.
4475 * 1. lookup dirty pages with specified range in pagecache.
4476 * If no page is got, then there is no delayed-extent and
4477 * return with EXT_CONTINUE.
4478 * 2. find the 1st mapped buffer,
4479 * 3. check if the mapped buffer is both in the request range
4480 * and a delayed buffer. If not, there is no delayed-extent,
4482 * 4. a delayed-extent is found, the extent will be collected.
4484 ext4_lblk_t end = 0;
4485 pgoff_t last_offset;
4488 pgoff_t start_index = 0;
4489 struct page **pages = NULL;
4490 struct buffer_head *bh = NULL;
4491 struct buffer_head *head = NULL;
4492 unsigned int nr_pages = PAGE_SIZE / sizeof(struct page *);
4494 pages = kmalloc(PAGE_SIZE, GFP_KERNEL);
4498 offset = logical >> PAGE_SHIFT;
4500 last_offset = offset;
4502 ret = find_get_pages_tag(inode->i_mapping, &offset,
4503 PAGECACHE_TAG_DIRTY, nr_pages, pages);
4505 if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4506 /* First time, try to find a mapped buffer. */
4509 for (index = 0; index < ret; index++)
4510 page_cache_release(pages[index]);
4513 return EXT_CONTINUE;
4518 /* Try to find the 1st mapped buffer. */
4519 end = ((__u64)pages[index]->index << PAGE_SHIFT) >>
4521 if (!page_has_buffers(pages[index]))
4523 head = page_buffers(pages[index]);
4530 if (end >= newex->ec_block +
4532 /* The buffer is out of
4533 * the request range.
4537 if (buffer_mapped(bh) &&
4538 end >= newex->ec_block) {
4539 start_index = index - 1;
4540 /* get the 1st mapped buffer. */
4541 goto found_mapped_buffer;
4544 bh = bh->b_this_page;
4546 } while (bh != head);
4548 /* No mapped buffer in the range found in this page,
4549 * We need to look up next page.
4552 /* There is no page left, but we need to limit
4555 newex->ec_len = end - newex->ec_block;
4560 /*Find contiguous delayed buffers. */
4561 if (ret > 0 && pages[0]->index == last_offset)
4562 head = page_buffers(pages[0]);
4568 found_mapped_buffer:
4569 if (bh != NULL && buffer_delay(bh)) {
4570 /* 1st or contiguous delayed buffer found. */
4571 if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4573 * 1st delayed buffer found, record
4574 * the start of extent.
4576 flags |= FIEMAP_EXTENT_DELALLOC;
4577 newex->ec_block = end;
4578 logical = (__u64)end << blksize_bits;
4580 /* Find contiguous delayed buffers. */
4582 if (!buffer_delay(bh))
4583 goto found_delayed_extent;
4584 bh = bh->b_this_page;
4586 } while (bh != head);
4588 for (; index < ret; index++) {
4589 if (!page_has_buffers(pages[index])) {
4593 head = page_buffers(pages[index]);
4599 if (pages[index]->index !=
4600 pages[start_index]->index + index
4602 /* Blocks are not contiguous. */
4608 if (!buffer_delay(bh))
4609 /* Delayed-extent ends. */
4610 goto found_delayed_extent;
4611 bh = bh->b_this_page;
4613 } while (bh != head);
4615 } else if (!(flags & FIEMAP_EXTENT_DELALLOC))
4619 found_delayed_extent:
4620 newex->ec_len = min(end - newex->ec_block,
4621 (ext4_lblk_t)EXT_INIT_MAX_LEN);
4622 if (ret == nr_pages && bh != NULL &&
4623 newex->ec_len < EXT_INIT_MAX_LEN &&
4625 /* Have not collected an extent and continue. */
4626 for (index = 0; index < ret; index++)
4627 page_cache_release(pages[index]);
4631 for (index = 0; index < ret; index++)
4632 page_cache_release(pages[index]);
4636 physical = (__u64)newex->ec_start << blksize_bits;
4637 length = (__u64)newex->ec_len << blksize_bits;
4639 if (ex && ext4_ext_is_uninitialized(ex))
4640 flags |= FIEMAP_EXTENT_UNWRITTEN;
4642 if (next == EXT_MAX_BLOCKS)
4643 flags |= FIEMAP_EXTENT_LAST;
4645 ret = fiemap_fill_next_extent(fieinfo, logical, physical,
4651 return EXT_CONTINUE;
4653 /* fiemap flags we can handle specified here */
4654 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4656 static int ext4_xattr_fiemap(struct inode *inode,
4657 struct fiemap_extent_info *fieinfo)
4661 __u32 flags = FIEMAP_EXTENT_LAST;
4662 int blockbits = inode->i_sb->s_blocksize_bits;
4666 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4667 struct ext4_iloc iloc;
4668 int offset; /* offset of xattr in inode */
4670 error = ext4_get_inode_loc(inode, &iloc);
4673 physical = iloc.bh->b_blocknr << blockbits;
4674 offset = EXT4_GOOD_OLD_INODE_SIZE +
4675 EXT4_I(inode)->i_extra_isize;
4677 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4678 flags |= FIEMAP_EXTENT_DATA_INLINE;
4680 } else { /* external block */
4681 physical = EXT4_I(inode)->i_file_acl << blockbits;
4682 length = inode->i_sb->s_blocksize;
4686 error = fiemap_fill_next_extent(fieinfo, 0, physical,
4688 return (error < 0 ? error : 0);
4692 * ext4_ext_punch_hole
4694 * Punches a hole of "length" bytes in a file starting
4697 * @inode: The inode of the file to punch a hole in
4698 * @offset: The starting byte offset of the hole
4699 * @length: The length of the hole
4701 * Returns the number of blocks removed or negative on err
4703 int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length)
4705 struct inode *inode = file->f_path.dentry->d_inode;
4706 struct super_block *sb = inode->i_sb;
4707 struct ext4_ext_cache cache_ex;
4708 ext4_lblk_t first_block, last_block, num_blocks, iblock, max_blocks;
4709 struct address_space *mapping = inode->i_mapping;
4710 struct ext4_map_blocks map;
4712 loff_t first_page, last_page, page_len;
4713 loff_t first_page_offset, last_page_offset;
4714 int ret, credits, blocks_released, err = 0;
4716 /* No need to punch hole beyond i_size */
4717 if (offset >= inode->i_size)
4721 * If the hole extends beyond i_size, set the hole
4722 * to end after the page that contains i_size
4724 if (offset + length > inode->i_size) {
4725 length = inode->i_size +
4726 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
4730 first_block = (offset + sb->s_blocksize - 1) >>
4731 EXT4_BLOCK_SIZE_BITS(sb);
4732 last_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4734 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
4735 last_page = (offset + length) >> PAGE_CACHE_SHIFT;
4737 first_page_offset = first_page << PAGE_CACHE_SHIFT;
4738 last_page_offset = last_page << PAGE_CACHE_SHIFT;
4741 * Write out all dirty pages to avoid race conditions
4742 * Then release them.
4744 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4745 err = filemap_write_and_wait_range(mapping,
4746 offset, offset + length - 1);
4752 /* Now release the pages */
4753 if (last_page_offset > first_page_offset) {
4754 truncate_inode_pages_range(mapping, first_page_offset,
4755 last_page_offset-1);
4758 /* finish any pending end_io work */
4759 ext4_flush_completed_IO(inode);
4761 credits = ext4_writepage_trans_blocks(inode);
4762 handle = ext4_journal_start(inode, credits);
4764 return PTR_ERR(handle);
4766 err = ext4_orphan_add(handle, inode);
4771 * Now we need to zero out the non-page-aligned data in the
4772 * pages at the start and tail of the hole, and unmap the buffer
4773 * heads for the block aligned regions of the page that were
4774 * completely zeroed.
4776 if (first_page > last_page) {
4778 * If the file space being truncated is contained within a page
4779 * just zero out and unmap the middle of that page
4781 err = ext4_discard_partial_page_buffers(handle,
4782 mapping, offset, length, 0);
4788 * zero out and unmap the partial page that contains
4789 * the start of the hole
4791 page_len = first_page_offset - offset;
4793 err = ext4_discard_partial_page_buffers(handle, mapping,
4794 offset, page_len, 0);
4800 * zero out and unmap the partial page that contains
4801 * the end of the hole
4803 page_len = offset + length - last_page_offset;
4805 err = ext4_discard_partial_page_buffers(handle, mapping,
4806 last_page_offset, page_len, 0);
4814 * If i_size is contained in the last page, we need to
4815 * unmap and zero the partial page after i_size
4817 if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
4818 inode->i_size % PAGE_CACHE_SIZE != 0) {
4820 page_len = PAGE_CACHE_SIZE -
4821 (inode->i_size & (PAGE_CACHE_SIZE - 1));
4824 err = ext4_discard_partial_page_buffers(handle,
4825 mapping, inode->i_size, page_len, 0);
4832 /* If there are no blocks to remove, return now */
4833 if (first_block >= last_block)
4836 down_write(&EXT4_I(inode)->i_data_sem);
4837 ext4_ext_invalidate_cache(inode);
4838 ext4_discard_preallocations(inode);
4841 * Loop over all the blocks and identify blocks
4842 * that need to be punched out
4844 iblock = first_block;
4845 blocks_released = 0;
4846 while (iblock < last_block) {
4847 max_blocks = last_block - iblock;
4849 memset(&map, 0, sizeof(map));
4850 map.m_lblk = iblock;
4851 map.m_len = max_blocks;
4852 ret = ext4_ext_map_blocks(handle, inode, &map,
4853 EXT4_GET_BLOCKS_PUNCH_OUT_EXT);
4856 blocks_released += ret;
4858 } else if (ret == 0) {
4860 * If map blocks could not find the block,
4861 * then it is in a hole. If the hole was
4862 * not already cached, then map blocks should
4863 * put it in the cache. So we can get the hole
4866 memset(&cache_ex, 0, sizeof(cache_ex));
4867 if ((ext4_ext_check_cache(inode, iblock, &cache_ex)) &&
4868 !cache_ex.ec_start) {
4870 /* The hole is cached */
4871 num_blocks = cache_ex.ec_block +
4872 cache_ex.ec_len - iblock;
4875 /* The block could not be identified */
4880 /* Map blocks error */
4885 if (num_blocks == 0) {
4886 /* This condition should never happen */
4887 ext_debug("Block lookup failed");
4892 iblock += num_blocks;
4895 if (blocks_released > 0) {
4896 ext4_ext_invalidate_cache(inode);
4897 ext4_discard_preallocations(inode);
4901 ext4_handle_sync(handle);
4903 up_write(&EXT4_I(inode)->i_data_sem);
4906 ext4_orphan_del(handle, inode);
4907 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4908 ext4_mark_inode_dirty(handle, inode);
4909 ext4_journal_stop(handle);
4912 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4913 __u64 start, __u64 len)
4915 ext4_lblk_t start_blk;
4918 /* fallback to generic here if not in extents fmt */
4919 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4920 return generic_block_fiemap(inode, fieinfo, start, len,
4923 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4926 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4927 error = ext4_xattr_fiemap(inode, fieinfo);
4929 ext4_lblk_t len_blks;
4932 start_blk = start >> inode->i_sb->s_blocksize_bits;
4933 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4934 if (last_blk >= EXT_MAX_BLOCKS)
4935 last_blk = EXT_MAX_BLOCKS-1;
4936 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4939 * Walk the extent tree gathering extent information.
4940 * ext4_ext_fiemap_cb will push extents back to user.
4942 error = ext4_ext_walk_space(inode, start_blk, len_blks,
4943 ext4_ext_fiemap_cb, fieinfo);