2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
24 * Extents support for EXT4
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/falloc.h>
41 #include <asm/uaccess.h>
42 #include <linux/fiemap.h>
43 #include "ext4_jbd2.h"
44 #include "ext4_extents.h"
47 #include <trace/events/ext4.h>
50 * used by extent splitting.
52 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \
54 #define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */
55 #define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */
57 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */
58 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */
60 static __le32 ext4_extent_block_csum(struct inode *inode,
61 struct ext4_extent_header *eh)
63 struct ext4_inode_info *ei = EXT4_I(inode);
64 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
68 EXT4_EXTENT_TAIL_OFFSET(eh));
69 return cpu_to_le32(csum);
72 static int ext4_extent_block_csum_verify(struct inode *inode,
73 struct ext4_extent_header *eh)
75 struct ext4_extent_tail *et;
77 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
78 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
81 et = find_ext4_extent_tail(eh);
82 if (et->et_checksum != ext4_extent_block_csum(inode, eh))
87 static void ext4_extent_block_csum_set(struct inode *inode,
88 struct ext4_extent_header *eh)
90 struct ext4_extent_tail *et;
92 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
93 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
96 et = find_ext4_extent_tail(eh);
97 et->et_checksum = ext4_extent_block_csum(inode, eh);
100 static int ext4_split_extent(handle_t *handle,
102 struct ext4_ext_path *path,
103 struct ext4_map_blocks *map,
107 static int ext4_split_extent_at(handle_t *handle,
109 struct ext4_ext_path *path,
114 static int ext4_find_delayed_extent(struct inode *inode,
115 struct ext4_ext_cache *newex);
117 static int ext4_ext_truncate_extend_restart(handle_t *handle,
123 if (!ext4_handle_valid(handle))
125 if (handle->h_buffer_credits > needed)
127 err = ext4_journal_extend(handle, needed);
130 err = ext4_truncate_restart_trans(handle, inode, needed);
142 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
143 struct ext4_ext_path *path)
146 /* path points to block */
147 return ext4_journal_get_write_access(handle, path->p_bh);
149 /* path points to leaf/index in inode body */
150 /* we use in-core data, no need to protect them */
160 #define ext4_ext_dirty(handle, inode, path) \
161 __ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path))
162 static int __ext4_ext_dirty(const char *where, unsigned int line,
163 handle_t *handle, struct inode *inode,
164 struct ext4_ext_path *path)
168 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
169 /* path points to block */
170 err = __ext4_handle_dirty_metadata(where, line, handle,
173 /* path points to leaf/index in inode body */
174 err = ext4_mark_inode_dirty(handle, inode);
179 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
180 struct ext4_ext_path *path,
184 int depth = path->p_depth;
185 struct ext4_extent *ex;
188 * Try to predict block placement assuming that we are
189 * filling in a file which will eventually be
190 * non-sparse --- i.e., in the case of libbfd writing
191 * an ELF object sections out-of-order but in a way
192 * the eventually results in a contiguous object or
193 * executable file, or some database extending a table
194 * space file. However, this is actually somewhat
195 * non-ideal if we are writing a sparse file such as
196 * qemu or KVM writing a raw image file that is going
197 * to stay fairly sparse, since it will end up
198 * fragmenting the file system's free space. Maybe we
199 * should have some hueristics or some way to allow
200 * userspace to pass a hint to file system,
201 * especially if the latter case turns out to be
204 ex = path[depth].p_ext;
206 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
207 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
209 if (block > ext_block)
210 return ext_pblk + (block - ext_block);
212 return ext_pblk - (ext_block - block);
215 /* it looks like index is empty;
216 * try to find starting block from index itself */
217 if (path[depth].p_bh)
218 return path[depth].p_bh->b_blocknr;
221 /* OK. use inode's group */
222 return ext4_inode_to_goal_block(inode);
226 * Allocation for a meta data block
229 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
230 struct ext4_ext_path *path,
231 struct ext4_extent *ex, int *err, unsigned int flags)
233 ext4_fsblk_t goal, newblock;
235 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
236 newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
241 static inline int ext4_ext_space_block(struct inode *inode, int check)
245 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
246 / sizeof(struct ext4_extent);
247 #ifdef AGGRESSIVE_TEST
248 if (!check && size > 6)
254 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
258 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
259 / sizeof(struct ext4_extent_idx);
260 #ifdef AGGRESSIVE_TEST
261 if (!check && size > 5)
267 static inline int ext4_ext_space_root(struct inode *inode, int check)
271 size = sizeof(EXT4_I(inode)->i_data);
272 size -= sizeof(struct ext4_extent_header);
273 size /= sizeof(struct ext4_extent);
274 #ifdef AGGRESSIVE_TEST
275 if (!check && size > 3)
281 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
285 size = sizeof(EXT4_I(inode)->i_data);
286 size -= sizeof(struct ext4_extent_header);
287 size /= sizeof(struct ext4_extent_idx);
288 #ifdef AGGRESSIVE_TEST
289 if (!check && size > 4)
296 * Calculate the number of metadata blocks needed
297 * to allocate @blocks
298 * Worse case is one block per extent
300 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
302 struct ext4_inode_info *ei = EXT4_I(inode);
305 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
306 / sizeof(struct ext4_extent_idx));
309 * If the new delayed allocation block is contiguous with the
310 * previous da block, it can share index blocks with the
311 * previous block, so we only need to allocate a new index
312 * block every idxs leaf blocks. At ldxs**2 blocks, we need
313 * an additional index block, and at ldxs**3 blocks, yet
314 * another index blocks.
316 if (ei->i_da_metadata_calc_len &&
317 ei->i_da_metadata_calc_last_lblock+1 == lblock) {
320 if ((ei->i_da_metadata_calc_len % idxs) == 0)
322 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
324 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
326 ei->i_da_metadata_calc_len = 0;
328 ei->i_da_metadata_calc_len++;
329 ei->i_da_metadata_calc_last_lblock++;
334 * In the worst case we need a new set of index blocks at
335 * every level of the inode's extent tree.
337 ei->i_da_metadata_calc_len = 1;
338 ei->i_da_metadata_calc_last_lblock = lblock;
339 return ext_depth(inode) + 1;
343 ext4_ext_max_entries(struct inode *inode, int depth)
347 if (depth == ext_depth(inode)) {
349 max = ext4_ext_space_root(inode, 1);
351 max = ext4_ext_space_root_idx(inode, 1);
354 max = ext4_ext_space_block(inode, 1);
356 max = ext4_ext_space_block_idx(inode, 1);
362 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
364 ext4_fsblk_t block = ext4_ext_pblock(ext);
365 int len = ext4_ext_get_actual_len(ext);
369 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
372 static int ext4_valid_extent_idx(struct inode *inode,
373 struct ext4_extent_idx *ext_idx)
375 ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
377 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
380 static int ext4_valid_extent_entries(struct inode *inode,
381 struct ext4_extent_header *eh,
384 unsigned short entries;
385 if (eh->eh_entries == 0)
388 entries = le16_to_cpu(eh->eh_entries);
392 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
394 if (!ext4_valid_extent(inode, ext))
400 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
402 if (!ext4_valid_extent_idx(inode, ext_idx))
411 static int __ext4_ext_check(const char *function, unsigned int line,
412 struct inode *inode, struct ext4_extent_header *eh,
415 const char *error_msg;
418 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
419 error_msg = "invalid magic";
422 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
423 error_msg = "unexpected eh_depth";
426 if (unlikely(eh->eh_max == 0)) {
427 error_msg = "invalid eh_max";
430 max = ext4_ext_max_entries(inode, depth);
431 if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
432 error_msg = "too large eh_max";
435 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
436 error_msg = "invalid eh_entries";
439 if (!ext4_valid_extent_entries(inode, eh, depth)) {
440 error_msg = "invalid extent entries";
443 /* Verify checksum on non-root extent tree nodes */
444 if (ext_depth(inode) != depth &&
445 !ext4_extent_block_csum_verify(inode, eh)) {
446 error_msg = "extent tree corrupted";
452 ext4_error_inode(inode, function, line, 0,
453 "bad header/extent: %s - magic %x, "
454 "entries %u, max %u(%u), depth %u(%u)",
455 error_msg, le16_to_cpu(eh->eh_magic),
456 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
457 max, le16_to_cpu(eh->eh_depth), depth);
462 #define ext4_ext_check(inode, eh, depth) \
463 __ext4_ext_check(__func__, __LINE__, inode, eh, depth)
465 int ext4_ext_check_inode(struct inode *inode)
467 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
470 static int __ext4_ext_check_block(const char *function, unsigned int line,
472 struct ext4_extent_header *eh,
474 struct buffer_head *bh)
478 if (buffer_verified(bh))
480 ret = ext4_ext_check(inode, eh, depth);
483 set_buffer_verified(bh);
487 #define ext4_ext_check_block(inode, eh, depth, bh) \
488 __ext4_ext_check_block(__func__, __LINE__, inode, eh, depth, bh)
491 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
493 int k, l = path->p_depth;
496 for (k = 0; k <= l; k++, path++) {
498 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
499 ext4_idx_pblock(path->p_idx));
500 } else if (path->p_ext) {
501 ext_debug(" %d:[%d]%d:%llu ",
502 le32_to_cpu(path->p_ext->ee_block),
503 ext4_ext_is_uninitialized(path->p_ext),
504 ext4_ext_get_actual_len(path->p_ext),
505 ext4_ext_pblock(path->p_ext));
512 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
514 int depth = ext_depth(inode);
515 struct ext4_extent_header *eh;
516 struct ext4_extent *ex;
522 eh = path[depth].p_hdr;
523 ex = EXT_FIRST_EXTENT(eh);
525 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
527 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
528 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
529 ext4_ext_is_uninitialized(ex),
530 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
535 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
536 ext4_fsblk_t newblock, int level)
538 int depth = ext_depth(inode);
539 struct ext4_extent *ex;
541 if (depth != level) {
542 struct ext4_extent_idx *idx;
543 idx = path[level].p_idx;
544 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
545 ext_debug("%d: move %d:%llu in new index %llu\n", level,
546 le32_to_cpu(idx->ei_block),
547 ext4_idx_pblock(idx),
555 ex = path[depth].p_ext;
556 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
557 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
558 le32_to_cpu(ex->ee_block),
560 ext4_ext_is_uninitialized(ex),
561 ext4_ext_get_actual_len(ex),
568 #define ext4_ext_show_path(inode, path)
569 #define ext4_ext_show_leaf(inode, path)
570 #define ext4_ext_show_move(inode, path, newblock, level)
573 void ext4_ext_drop_refs(struct ext4_ext_path *path)
575 int depth = path->p_depth;
578 for (i = 0; i <= depth; i++, path++)
586 * ext4_ext_binsearch_idx:
587 * binary search for the closest index of the given block
588 * the header must be checked before calling this
591 ext4_ext_binsearch_idx(struct inode *inode,
592 struct ext4_ext_path *path, ext4_lblk_t block)
594 struct ext4_extent_header *eh = path->p_hdr;
595 struct ext4_extent_idx *r, *l, *m;
598 ext_debug("binsearch for %u(idx): ", block);
600 l = EXT_FIRST_INDEX(eh) + 1;
601 r = EXT_LAST_INDEX(eh);
604 if (block < le32_to_cpu(m->ei_block))
608 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
609 m, le32_to_cpu(m->ei_block),
610 r, le32_to_cpu(r->ei_block));
614 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
615 ext4_idx_pblock(path->p_idx));
617 #ifdef CHECK_BINSEARCH
619 struct ext4_extent_idx *chix, *ix;
622 chix = ix = EXT_FIRST_INDEX(eh);
623 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
625 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
626 printk(KERN_DEBUG "k=%d, ix=0x%p, "
628 ix, EXT_FIRST_INDEX(eh));
629 printk(KERN_DEBUG "%u <= %u\n",
630 le32_to_cpu(ix->ei_block),
631 le32_to_cpu(ix[-1].ei_block));
633 BUG_ON(k && le32_to_cpu(ix->ei_block)
634 <= le32_to_cpu(ix[-1].ei_block));
635 if (block < le32_to_cpu(ix->ei_block))
639 BUG_ON(chix != path->p_idx);
646 * ext4_ext_binsearch:
647 * binary search for closest extent of the given block
648 * the header must be checked before calling this
651 ext4_ext_binsearch(struct inode *inode,
652 struct ext4_ext_path *path, ext4_lblk_t block)
654 struct ext4_extent_header *eh = path->p_hdr;
655 struct ext4_extent *r, *l, *m;
657 if (eh->eh_entries == 0) {
659 * this leaf is empty:
660 * we get such a leaf in split/add case
665 ext_debug("binsearch for %u: ", block);
667 l = EXT_FIRST_EXTENT(eh) + 1;
668 r = EXT_LAST_EXTENT(eh);
672 if (block < le32_to_cpu(m->ee_block))
676 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
677 m, le32_to_cpu(m->ee_block),
678 r, le32_to_cpu(r->ee_block));
682 ext_debug(" -> %d:%llu:[%d]%d ",
683 le32_to_cpu(path->p_ext->ee_block),
684 ext4_ext_pblock(path->p_ext),
685 ext4_ext_is_uninitialized(path->p_ext),
686 ext4_ext_get_actual_len(path->p_ext));
688 #ifdef CHECK_BINSEARCH
690 struct ext4_extent *chex, *ex;
693 chex = ex = EXT_FIRST_EXTENT(eh);
694 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
695 BUG_ON(k && le32_to_cpu(ex->ee_block)
696 <= le32_to_cpu(ex[-1].ee_block));
697 if (block < le32_to_cpu(ex->ee_block))
701 BUG_ON(chex != path->p_ext);
707 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
709 struct ext4_extent_header *eh;
711 eh = ext_inode_hdr(inode);
714 eh->eh_magic = EXT4_EXT_MAGIC;
715 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
716 ext4_mark_inode_dirty(handle, inode);
717 ext4_ext_invalidate_cache(inode);
721 struct ext4_ext_path *
722 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
723 struct ext4_ext_path *path)
725 struct ext4_extent_header *eh;
726 struct buffer_head *bh;
727 short int depth, i, ppos = 0, alloc = 0;
729 eh = ext_inode_hdr(inode);
730 depth = ext_depth(inode);
732 /* account possible depth increase */
734 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
737 return ERR_PTR(-ENOMEM);
744 /* walk through the tree */
746 ext_debug("depth %d: num %d, max %d\n",
747 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
749 ext4_ext_binsearch_idx(inode, path + ppos, block);
750 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
751 path[ppos].p_depth = i;
752 path[ppos].p_ext = NULL;
754 bh = sb_getblk(inode->i_sb, path[ppos].p_block);
757 if (!bh_uptodate_or_lock(bh)) {
758 trace_ext4_ext_load_extent(inode, block,
760 if (bh_submit_read(bh) < 0) {
765 eh = ext_block_hdr(bh);
767 if (unlikely(ppos > depth)) {
769 EXT4_ERROR_INODE(inode,
770 "ppos %d > depth %d", ppos, depth);
773 path[ppos].p_bh = bh;
774 path[ppos].p_hdr = eh;
777 if (ext4_ext_check_block(inode, eh, i, bh))
781 path[ppos].p_depth = i;
782 path[ppos].p_ext = NULL;
783 path[ppos].p_idx = NULL;
786 ext4_ext_binsearch(inode, path + ppos, block);
787 /* if not an empty leaf */
788 if (path[ppos].p_ext)
789 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
791 ext4_ext_show_path(inode, path);
796 ext4_ext_drop_refs(path);
799 return ERR_PTR(-EIO);
803 * ext4_ext_insert_index:
804 * insert new index [@logical;@ptr] into the block at @curp;
805 * check where to insert: before @curp or after @curp
807 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
808 struct ext4_ext_path *curp,
809 int logical, ext4_fsblk_t ptr)
811 struct ext4_extent_idx *ix;
814 err = ext4_ext_get_access(handle, inode, curp);
818 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
819 EXT4_ERROR_INODE(inode,
820 "logical %d == ei_block %d!",
821 logical, le32_to_cpu(curp->p_idx->ei_block));
825 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
826 >= le16_to_cpu(curp->p_hdr->eh_max))) {
827 EXT4_ERROR_INODE(inode,
828 "eh_entries %d >= eh_max %d!",
829 le16_to_cpu(curp->p_hdr->eh_entries),
830 le16_to_cpu(curp->p_hdr->eh_max));
834 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
836 ext_debug("insert new index %d after: %llu\n", logical, ptr);
837 ix = curp->p_idx + 1;
840 ext_debug("insert new index %d before: %llu\n", logical, ptr);
844 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
847 ext_debug("insert new index %d: "
848 "move %d indices from 0x%p to 0x%p\n",
849 logical, len, ix, ix + 1);
850 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
853 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
854 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
858 ix->ei_block = cpu_to_le32(logical);
859 ext4_idx_store_pblock(ix, ptr);
860 le16_add_cpu(&curp->p_hdr->eh_entries, 1);
862 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
863 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
867 err = ext4_ext_dirty(handle, inode, curp);
868 ext4_std_error(inode->i_sb, err);
875 * inserts new subtree into the path, using free index entry
877 * - allocates all needed blocks (new leaf and all intermediate index blocks)
878 * - makes decision where to split
879 * - moves remaining extents and index entries (right to the split point)
880 * into the newly allocated blocks
881 * - initializes subtree
883 static int ext4_ext_split(handle_t *handle, struct inode *inode,
885 struct ext4_ext_path *path,
886 struct ext4_extent *newext, int at)
888 struct buffer_head *bh = NULL;
889 int depth = ext_depth(inode);
890 struct ext4_extent_header *neh;
891 struct ext4_extent_idx *fidx;
893 ext4_fsblk_t newblock, oldblock;
895 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
898 /* make decision: where to split? */
899 /* FIXME: now decision is simplest: at current extent */
901 /* if current leaf will be split, then we should use
902 * border from split point */
903 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
904 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
907 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
908 border = path[depth].p_ext[1].ee_block;
909 ext_debug("leaf will be split."
910 " next leaf starts at %d\n",
911 le32_to_cpu(border));
913 border = newext->ee_block;
914 ext_debug("leaf will be added."
915 " next leaf starts at %d\n",
916 le32_to_cpu(border));
920 * If error occurs, then we break processing
921 * and mark filesystem read-only. index won't
922 * be inserted and tree will be in consistent
923 * state. Next mount will repair buffers too.
927 * Get array to track all allocated blocks.
928 * We need this to handle errors and free blocks
931 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
935 /* allocate all needed blocks */
936 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
937 for (a = 0; a < depth - at; a++) {
938 newblock = ext4_ext_new_meta_block(handle, inode, path,
939 newext, &err, flags);
942 ablocks[a] = newblock;
945 /* initialize new leaf */
946 newblock = ablocks[--a];
947 if (unlikely(newblock == 0)) {
948 EXT4_ERROR_INODE(inode, "newblock == 0!");
952 bh = sb_getblk(inode->i_sb, newblock);
959 err = ext4_journal_get_create_access(handle, bh);
963 neh = ext_block_hdr(bh);
965 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
966 neh->eh_magic = EXT4_EXT_MAGIC;
969 /* move remainder of path[depth] to the new leaf */
970 if (unlikely(path[depth].p_hdr->eh_entries !=
971 path[depth].p_hdr->eh_max)) {
972 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
973 path[depth].p_hdr->eh_entries,
974 path[depth].p_hdr->eh_max);
978 /* start copy from next extent */
979 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
980 ext4_ext_show_move(inode, path, newblock, depth);
982 struct ext4_extent *ex;
983 ex = EXT_FIRST_EXTENT(neh);
984 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
985 le16_add_cpu(&neh->eh_entries, m);
988 ext4_extent_block_csum_set(inode, neh);
989 set_buffer_uptodate(bh);
992 err = ext4_handle_dirty_metadata(handle, inode, bh);
998 /* correct old leaf */
1000 err = ext4_ext_get_access(handle, inode, path + depth);
1003 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1004 err = ext4_ext_dirty(handle, inode, path + depth);
1010 /* create intermediate indexes */
1012 if (unlikely(k < 0)) {
1013 EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1018 ext_debug("create %d intermediate indices\n", k);
1019 /* insert new index into current index block */
1020 /* current depth stored in i var */
1023 oldblock = newblock;
1024 newblock = ablocks[--a];
1025 bh = sb_getblk(inode->i_sb, newblock);
1032 err = ext4_journal_get_create_access(handle, bh);
1036 neh = ext_block_hdr(bh);
1037 neh->eh_entries = cpu_to_le16(1);
1038 neh->eh_magic = EXT4_EXT_MAGIC;
1039 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1040 neh->eh_depth = cpu_to_le16(depth - i);
1041 fidx = EXT_FIRST_INDEX(neh);
1042 fidx->ei_block = border;
1043 ext4_idx_store_pblock(fidx, oldblock);
1045 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1046 i, newblock, le32_to_cpu(border), oldblock);
1048 /* move remainder of path[i] to the new index block */
1049 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1050 EXT_LAST_INDEX(path[i].p_hdr))) {
1051 EXT4_ERROR_INODE(inode,
1052 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1053 le32_to_cpu(path[i].p_ext->ee_block));
1057 /* start copy indexes */
1058 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1059 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1060 EXT_MAX_INDEX(path[i].p_hdr));
1061 ext4_ext_show_move(inode, path, newblock, i);
1063 memmove(++fidx, path[i].p_idx,
1064 sizeof(struct ext4_extent_idx) * m);
1065 le16_add_cpu(&neh->eh_entries, m);
1067 ext4_extent_block_csum_set(inode, neh);
1068 set_buffer_uptodate(bh);
1071 err = ext4_handle_dirty_metadata(handle, inode, bh);
1077 /* correct old index */
1079 err = ext4_ext_get_access(handle, inode, path + i);
1082 le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1083 err = ext4_ext_dirty(handle, inode, path + i);
1091 /* insert new index */
1092 err = ext4_ext_insert_index(handle, inode, path + at,
1093 le32_to_cpu(border), newblock);
1097 if (buffer_locked(bh))
1103 /* free all allocated blocks in error case */
1104 for (i = 0; i < depth; i++) {
1107 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1108 EXT4_FREE_BLOCKS_METADATA);
1117 * ext4_ext_grow_indepth:
1118 * implements tree growing procedure:
1119 * - allocates new block
1120 * - moves top-level data (index block or leaf) into the new block
1121 * - initializes new top-level, creating index that points to the
1122 * just created block
1124 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1126 struct ext4_extent *newext)
1128 struct ext4_extent_header *neh;
1129 struct buffer_head *bh;
1130 ext4_fsblk_t newblock;
1133 newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1134 newext, &err, flags);
1138 bh = sb_getblk(inode->i_sb, newblock);
1141 ext4_std_error(inode->i_sb, err);
1146 err = ext4_journal_get_create_access(handle, bh);
1152 /* move top-level index/leaf into new block */
1153 memmove(bh->b_data, EXT4_I(inode)->i_data,
1154 sizeof(EXT4_I(inode)->i_data));
1156 /* set size of new block */
1157 neh = ext_block_hdr(bh);
1158 /* old root could have indexes or leaves
1159 * so calculate e_max right way */
1160 if (ext_depth(inode))
1161 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1163 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1164 neh->eh_magic = EXT4_EXT_MAGIC;
1165 ext4_extent_block_csum_set(inode, neh);
1166 set_buffer_uptodate(bh);
1169 err = ext4_handle_dirty_metadata(handle, inode, bh);
1173 /* Update top-level index: num,max,pointer */
1174 neh = ext_inode_hdr(inode);
1175 neh->eh_entries = cpu_to_le16(1);
1176 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1177 if (neh->eh_depth == 0) {
1178 /* Root extent block becomes index block */
1179 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1180 EXT_FIRST_INDEX(neh)->ei_block =
1181 EXT_FIRST_EXTENT(neh)->ee_block;
1183 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1184 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1185 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1186 ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1188 le16_add_cpu(&neh->eh_depth, 1);
1189 ext4_mark_inode_dirty(handle, inode);
1197 * ext4_ext_create_new_leaf:
1198 * finds empty index and adds new leaf.
1199 * if no free index is found, then it requests in-depth growing.
1201 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1203 struct ext4_ext_path *path,
1204 struct ext4_extent *newext)
1206 struct ext4_ext_path *curp;
1207 int depth, i, err = 0;
1210 i = depth = ext_depth(inode);
1212 /* walk up to the tree and look for free index entry */
1213 curp = path + depth;
1214 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1219 /* we use already allocated block for index block,
1220 * so subsequent data blocks should be contiguous */
1221 if (EXT_HAS_FREE_INDEX(curp)) {
1222 /* if we found index with free entry, then use that
1223 * entry: create all needed subtree and add new leaf */
1224 err = ext4_ext_split(handle, inode, flags, path, newext, i);
1229 ext4_ext_drop_refs(path);
1230 path = ext4_ext_find_extent(inode,
1231 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1234 err = PTR_ERR(path);
1236 /* tree is full, time to grow in depth */
1237 err = ext4_ext_grow_indepth(handle, inode, flags, newext);
1242 ext4_ext_drop_refs(path);
1243 path = ext4_ext_find_extent(inode,
1244 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1247 err = PTR_ERR(path);
1252 * only first (depth 0 -> 1) produces free space;
1253 * in all other cases we have to split the grown tree
1255 depth = ext_depth(inode);
1256 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1257 /* now we need to split */
1267 * search the closest allocated block to the left for *logical
1268 * and returns it at @logical + it's physical address at @phys
1269 * if *logical is the smallest allocated block, the function
1270 * returns 0 at @phys
1271 * return value contains 0 (success) or error code
1273 static int ext4_ext_search_left(struct inode *inode,
1274 struct ext4_ext_path *path,
1275 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1277 struct ext4_extent_idx *ix;
1278 struct ext4_extent *ex;
1281 if (unlikely(path == NULL)) {
1282 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1285 depth = path->p_depth;
1288 if (depth == 0 && path->p_ext == NULL)
1291 /* usually extent in the path covers blocks smaller
1292 * then *logical, but it can be that extent is the
1293 * first one in the file */
1295 ex = path[depth].p_ext;
1296 ee_len = ext4_ext_get_actual_len(ex);
1297 if (*logical < le32_to_cpu(ex->ee_block)) {
1298 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1299 EXT4_ERROR_INODE(inode,
1300 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1301 *logical, le32_to_cpu(ex->ee_block));
1304 while (--depth >= 0) {
1305 ix = path[depth].p_idx;
1306 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1307 EXT4_ERROR_INODE(inode,
1308 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1309 ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1310 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1311 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1319 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1320 EXT4_ERROR_INODE(inode,
1321 "logical %d < ee_block %d + ee_len %d!",
1322 *logical, le32_to_cpu(ex->ee_block), ee_len);
1326 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1327 *phys = ext4_ext_pblock(ex) + ee_len - 1;
1332 * search the closest allocated block to the right for *logical
1333 * and returns it at @logical + it's physical address at @phys
1334 * if *logical is the largest allocated block, the function
1335 * returns 0 at @phys
1336 * return value contains 0 (success) or error code
1338 static int ext4_ext_search_right(struct inode *inode,
1339 struct ext4_ext_path *path,
1340 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1341 struct ext4_extent **ret_ex)
1343 struct buffer_head *bh = NULL;
1344 struct ext4_extent_header *eh;
1345 struct ext4_extent_idx *ix;
1346 struct ext4_extent *ex;
1348 int depth; /* Note, NOT eh_depth; depth from top of tree */
1351 if (unlikely(path == NULL)) {
1352 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1355 depth = path->p_depth;
1358 if (depth == 0 && path->p_ext == NULL)
1361 /* usually extent in the path covers blocks smaller
1362 * then *logical, but it can be that extent is the
1363 * first one in the file */
1365 ex = path[depth].p_ext;
1366 ee_len = ext4_ext_get_actual_len(ex);
1367 if (*logical < le32_to_cpu(ex->ee_block)) {
1368 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1369 EXT4_ERROR_INODE(inode,
1370 "first_extent(path[%d].p_hdr) != ex",
1374 while (--depth >= 0) {
1375 ix = path[depth].p_idx;
1376 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1377 EXT4_ERROR_INODE(inode,
1378 "ix != EXT_FIRST_INDEX *logical %d!",
1386 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1387 EXT4_ERROR_INODE(inode,
1388 "logical %d < ee_block %d + ee_len %d!",
1389 *logical, le32_to_cpu(ex->ee_block), ee_len);
1393 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1394 /* next allocated block in this leaf */
1399 /* go up and search for index to the right */
1400 while (--depth >= 0) {
1401 ix = path[depth].p_idx;
1402 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1406 /* we've gone up to the root and found no index to the right */
1410 /* we've found index to the right, let's
1411 * follow it and find the closest allocated
1412 * block to the right */
1414 block = ext4_idx_pblock(ix);
1415 while (++depth < path->p_depth) {
1416 bh = sb_bread(inode->i_sb, block);
1419 eh = ext_block_hdr(bh);
1420 /* subtract from p_depth to get proper eh_depth */
1421 if (ext4_ext_check_block(inode, eh,
1422 path->p_depth - depth, bh)) {
1426 ix = EXT_FIRST_INDEX(eh);
1427 block = ext4_idx_pblock(ix);
1431 bh = sb_bread(inode->i_sb, block);
1434 eh = ext_block_hdr(bh);
1435 if (ext4_ext_check_block(inode, eh, path->p_depth - depth, bh)) {
1439 ex = EXT_FIRST_EXTENT(eh);
1441 *logical = le32_to_cpu(ex->ee_block);
1442 *phys = ext4_ext_pblock(ex);
1450 * ext4_ext_next_allocated_block:
1451 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1452 * NOTE: it considers block number from index entry as
1453 * allocated block. Thus, index entries have to be consistent
1457 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1461 BUG_ON(path == NULL);
1462 depth = path->p_depth;
1464 if (depth == 0 && path->p_ext == NULL)
1465 return EXT_MAX_BLOCKS;
1467 while (depth >= 0) {
1468 if (depth == path->p_depth) {
1470 if (path[depth].p_ext &&
1471 path[depth].p_ext !=
1472 EXT_LAST_EXTENT(path[depth].p_hdr))
1473 return le32_to_cpu(path[depth].p_ext[1].ee_block);
1476 if (path[depth].p_idx !=
1477 EXT_LAST_INDEX(path[depth].p_hdr))
1478 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1483 return EXT_MAX_BLOCKS;
1487 * ext4_ext_next_leaf_block:
1488 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1490 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1494 BUG_ON(path == NULL);
1495 depth = path->p_depth;
1497 /* zero-tree has no leaf blocks at all */
1499 return EXT_MAX_BLOCKS;
1501 /* go to index block */
1504 while (depth >= 0) {
1505 if (path[depth].p_idx !=
1506 EXT_LAST_INDEX(path[depth].p_hdr))
1507 return (ext4_lblk_t)
1508 le32_to_cpu(path[depth].p_idx[1].ei_block);
1512 return EXT_MAX_BLOCKS;
1516 * ext4_ext_correct_indexes:
1517 * if leaf gets modified and modified extent is first in the leaf,
1518 * then we have to correct all indexes above.
1519 * TODO: do we need to correct tree in all cases?
1521 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1522 struct ext4_ext_path *path)
1524 struct ext4_extent_header *eh;
1525 int depth = ext_depth(inode);
1526 struct ext4_extent *ex;
1530 eh = path[depth].p_hdr;
1531 ex = path[depth].p_ext;
1533 if (unlikely(ex == NULL || eh == NULL)) {
1534 EXT4_ERROR_INODE(inode,
1535 "ex %p == NULL or eh %p == NULL", ex, eh);
1540 /* there is no tree at all */
1544 if (ex != EXT_FIRST_EXTENT(eh)) {
1545 /* we correct tree if first leaf got modified only */
1550 * TODO: we need correction if border is smaller than current one
1553 border = path[depth].p_ext->ee_block;
1554 err = ext4_ext_get_access(handle, inode, path + k);
1557 path[k].p_idx->ei_block = border;
1558 err = ext4_ext_dirty(handle, inode, path + k);
1563 /* change all left-side indexes */
1564 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1566 err = ext4_ext_get_access(handle, inode, path + k);
1569 path[k].p_idx->ei_block = border;
1570 err = ext4_ext_dirty(handle, inode, path + k);
1579 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1580 struct ext4_extent *ex2)
1582 unsigned short ext1_ee_len, ext2_ee_len, max_len;
1585 * Make sure that either both extents are uninitialized, or
1588 if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1591 if (ext4_ext_is_uninitialized(ex1))
1592 max_len = EXT_UNINIT_MAX_LEN;
1594 max_len = EXT_INIT_MAX_LEN;
1596 ext1_ee_len = ext4_ext_get_actual_len(ex1);
1597 ext2_ee_len = ext4_ext_get_actual_len(ex2);
1599 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1600 le32_to_cpu(ex2->ee_block))
1604 * To allow future support for preallocated extents to be added
1605 * as an RO_COMPAT feature, refuse to merge to extents if
1606 * this can result in the top bit of ee_len being set.
1608 if (ext1_ee_len + ext2_ee_len > max_len)
1610 #ifdef AGGRESSIVE_TEST
1611 if (ext1_ee_len >= 4)
1615 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1621 * This function tries to merge the "ex" extent to the next extent in the tree.
1622 * It always tries to merge towards right. If you want to merge towards
1623 * left, pass "ex - 1" as argument instead of "ex".
1624 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1625 * 1 if they got merged.
1627 static int ext4_ext_try_to_merge_right(struct inode *inode,
1628 struct ext4_ext_path *path,
1629 struct ext4_extent *ex)
1631 struct ext4_extent_header *eh;
1632 unsigned int depth, len;
1634 int uninitialized = 0;
1636 depth = ext_depth(inode);
1637 BUG_ON(path[depth].p_hdr == NULL);
1638 eh = path[depth].p_hdr;
1640 while (ex < EXT_LAST_EXTENT(eh)) {
1641 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1643 /* merge with next extent! */
1644 if (ext4_ext_is_uninitialized(ex))
1646 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1647 + ext4_ext_get_actual_len(ex + 1));
1649 ext4_ext_mark_uninitialized(ex);
1651 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1652 len = (EXT_LAST_EXTENT(eh) - ex - 1)
1653 * sizeof(struct ext4_extent);
1654 memmove(ex + 1, ex + 2, len);
1656 le16_add_cpu(&eh->eh_entries, -1);
1658 WARN_ON(eh->eh_entries == 0);
1659 if (!eh->eh_entries)
1660 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1667 * This function does a very simple check to see if we can collapse
1668 * an extent tree with a single extent tree leaf block into the inode.
1670 static void ext4_ext_try_to_merge_up(handle_t *handle,
1671 struct inode *inode,
1672 struct ext4_ext_path *path)
1675 unsigned max_root = ext4_ext_space_root(inode, 0);
1678 if ((path[0].p_depth != 1) ||
1679 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1680 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1684 * We need to modify the block allocation bitmap and the block
1685 * group descriptor to release the extent tree block. If we
1686 * can't get the journal credits, give up.
1688 if (ext4_journal_extend(handle, 2))
1692 * Copy the extent data up to the inode
1694 blk = ext4_idx_pblock(path[0].p_idx);
1695 s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1696 sizeof(struct ext4_extent_idx);
1697 s += sizeof(struct ext4_extent_header);
1699 memcpy(path[0].p_hdr, path[1].p_hdr, s);
1700 path[0].p_depth = 0;
1701 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1702 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1703 path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1705 brelse(path[1].p_bh);
1706 ext4_free_blocks(handle, inode, NULL, blk, 1,
1707 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
1711 * This function tries to merge the @ex extent to neighbours in the tree.
1712 * return 1 if merge left else 0.
1714 static void ext4_ext_try_to_merge(handle_t *handle,
1715 struct inode *inode,
1716 struct ext4_ext_path *path,
1717 struct ext4_extent *ex) {
1718 struct ext4_extent_header *eh;
1722 depth = ext_depth(inode);
1723 BUG_ON(path[depth].p_hdr == NULL);
1724 eh = path[depth].p_hdr;
1726 if (ex > EXT_FIRST_EXTENT(eh))
1727 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1730 (void) ext4_ext_try_to_merge_right(inode, path, ex);
1732 ext4_ext_try_to_merge_up(handle, inode, path);
1736 * check if a portion of the "newext" extent overlaps with an
1739 * If there is an overlap discovered, it updates the length of the newext
1740 * such that there will be no overlap, and then returns 1.
1741 * If there is no overlap found, it returns 0.
1743 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1744 struct inode *inode,
1745 struct ext4_extent *newext,
1746 struct ext4_ext_path *path)
1749 unsigned int depth, len1;
1750 unsigned int ret = 0;
1752 b1 = le32_to_cpu(newext->ee_block);
1753 len1 = ext4_ext_get_actual_len(newext);
1754 depth = ext_depth(inode);
1755 if (!path[depth].p_ext)
1757 b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1758 b2 &= ~(sbi->s_cluster_ratio - 1);
1761 * get the next allocated block if the extent in the path
1762 * is before the requested block(s)
1765 b2 = ext4_ext_next_allocated_block(path);
1766 if (b2 == EXT_MAX_BLOCKS)
1768 b2 &= ~(sbi->s_cluster_ratio - 1);
1771 /* check for wrap through zero on extent logical start block*/
1772 if (b1 + len1 < b1) {
1773 len1 = EXT_MAX_BLOCKS - b1;
1774 newext->ee_len = cpu_to_le16(len1);
1778 /* check for overlap */
1779 if (b1 + len1 > b2) {
1780 newext->ee_len = cpu_to_le16(b2 - b1);
1788 * ext4_ext_insert_extent:
1789 * tries to merge requsted extent into the existing extent or
1790 * inserts requested extent as new one into the tree,
1791 * creating new leaf in the no-space case.
1793 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1794 struct ext4_ext_path *path,
1795 struct ext4_extent *newext, int flag)
1797 struct ext4_extent_header *eh;
1798 struct ext4_extent *ex, *fex;
1799 struct ext4_extent *nearex; /* nearest extent */
1800 struct ext4_ext_path *npath = NULL;
1801 int depth, len, err;
1803 unsigned uninitialized = 0;
1806 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1807 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1810 depth = ext_depth(inode);
1811 ex = path[depth].p_ext;
1812 if (unlikely(path[depth].p_hdr == NULL)) {
1813 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1817 /* try to insert block into found extent and return */
1818 if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1819 && ext4_can_extents_be_merged(inode, ex, newext)) {
1820 ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n",
1821 ext4_ext_is_uninitialized(newext),
1822 ext4_ext_get_actual_len(newext),
1823 le32_to_cpu(ex->ee_block),
1824 ext4_ext_is_uninitialized(ex),
1825 ext4_ext_get_actual_len(ex),
1826 ext4_ext_pblock(ex));
1827 err = ext4_ext_get_access(handle, inode, path + depth);
1832 * ext4_can_extents_be_merged should have checked that either
1833 * both extents are uninitialized, or both aren't. Thus we
1834 * need to check only one of them here.
1836 if (ext4_ext_is_uninitialized(ex))
1838 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1839 + ext4_ext_get_actual_len(newext));
1841 ext4_ext_mark_uninitialized(ex);
1842 eh = path[depth].p_hdr;
1847 depth = ext_depth(inode);
1848 eh = path[depth].p_hdr;
1849 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1852 /* probably next leaf has space for us? */
1853 fex = EXT_LAST_EXTENT(eh);
1854 next = EXT_MAX_BLOCKS;
1855 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1856 next = ext4_ext_next_leaf_block(path);
1857 if (next != EXT_MAX_BLOCKS) {
1858 ext_debug("next leaf block - %u\n", next);
1859 BUG_ON(npath != NULL);
1860 npath = ext4_ext_find_extent(inode, next, NULL);
1862 return PTR_ERR(npath);
1863 BUG_ON(npath->p_depth != path->p_depth);
1864 eh = npath[depth].p_hdr;
1865 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1866 ext_debug("next leaf isn't full(%d)\n",
1867 le16_to_cpu(eh->eh_entries));
1871 ext_debug("next leaf has no free space(%d,%d)\n",
1872 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1876 * There is no free space in the found leaf.
1877 * We're gonna add a new leaf in the tree.
1879 if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
1880 flags = EXT4_MB_USE_ROOT_BLOCKS;
1881 err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1884 depth = ext_depth(inode);
1885 eh = path[depth].p_hdr;
1888 nearex = path[depth].p_ext;
1890 err = ext4_ext_get_access(handle, inode, path + depth);
1895 /* there is no extent in this leaf, create first one */
1896 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
1897 le32_to_cpu(newext->ee_block),
1898 ext4_ext_pblock(newext),
1899 ext4_ext_is_uninitialized(newext),
1900 ext4_ext_get_actual_len(newext));
1901 nearex = EXT_FIRST_EXTENT(eh);
1903 if (le32_to_cpu(newext->ee_block)
1904 > le32_to_cpu(nearex->ee_block)) {
1906 ext_debug("insert %u:%llu:[%d]%d before: "
1908 le32_to_cpu(newext->ee_block),
1909 ext4_ext_pblock(newext),
1910 ext4_ext_is_uninitialized(newext),
1911 ext4_ext_get_actual_len(newext),
1916 BUG_ON(newext->ee_block == nearex->ee_block);
1917 ext_debug("insert %u:%llu:[%d]%d after: "
1919 le32_to_cpu(newext->ee_block),
1920 ext4_ext_pblock(newext),
1921 ext4_ext_is_uninitialized(newext),
1922 ext4_ext_get_actual_len(newext),
1925 len = EXT_LAST_EXTENT(eh) - nearex + 1;
1927 ext_debug("insert %u:%llu:[%d]%d: "
1928 "move %d extents from 0x%p to 0x%p\n",
1929 le32_to_cpu(newext->ee_block),
1930 ext4_ext_pblock(newext),
1931 ext4_ext_is_uninitialized(newext),
1932 ext4_ext_get_actual_len(newext),
1933 len, nearex, nearex + 1);
1934 memmove(nearex + 1, nearex,
1935 len * sizeof(struct ext4_extent));
1939 le16_add_cpu(&eh->eh_entries, 1);
1940 path[depth].p_ext = nearex;
1941 nearex->ee_block = newext->ee_block;
1942 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1943 nearex->ee_len = newext->ee_len;
1946 /* try to merge extents */
1947 if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1948 ext4_ext_try_to_merge(handle, inode, path, nearex);
1951 /* time to correct all indexes above */
1952 err = ext4_ext_correct_indexes(handle, inode, path);
1956 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
1960 ext4_ext_drop_refs(npath);
1963 ext4_ext_invalidate_cache(inode);
1967 static int ext4_fill_fiemap_extents(struct inode *inode,
1968 ext4_lblk_t block, ext4_lblk_t num,
1969 struct fiemap_extent_info *fieinfo)
1971 struct ext4_ext_path *path = NULL;
1972 struct ext4_ext_cache newex;
1973 struct ext4_extent *ex;
1974 ext4_lblk_t next, next_del, start = 0, end = 0;
1975 ext4_lblk_t last = block + num;
1976 int exists, depth = 0, err = 0;
1977 unsigned int flags = 0;
1978 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
1980 while (block < last && block != EXT_MAX_BLOCKS) {
1982 /* find extent for this block */
1983 down_read(&EXT4_I(inode)->i_data_sem);
1985 if (path && ext_depth(inode) != depth) {
1986 /* depth was changed. we have to realloc path */
1991 path = ext4_ext_find_extent(inode, block, path);
1993 up_read(&EXT4_I(inode)->i_data_sem);
1994 err = PTR_ERR(path);
1999 depth = ext_depth(inode);
2000 if (unlikely(path[depth].p_hdr == NULL)) {
2001 up_read(&EXT4_I(inode)->i_data_sem);
2002 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2006 ex = path[depth].p_ext;
2007 next = ext4_ext_next_allocated_block(path);
2008 ext4_ext_drop_refs(path);
2013 /* there is no extent yet, so try to allocate
2014 * all requested space */
2017 } else if (le32_to_cpu(ex->ee_block) > block) {
2018 /* need to allocate space before found extent */
2020 end = le32_to_cpu(ex->ee_block);
2021 if (block + num < end)
2023 } else if (block >= le32_to_cpu(ex->ee_block)
2024 + ext4_ext_get_actual_len(ex)) {
2025 /* need to allocate space after found extent */
2030 } else if (block >= le32_to_cpu(ex->ee_block)) {
2032 * some part of requested space is covered
2036 end = le32_to_cpu(ex->ee_block)
2037 + ext4_ext_get_actual_len(ex);
2038 if (block + num < end)
2044 BUG_ON(end <= start);
2047 newex.ec_block = start;
2048 newex.ec_len = end - start;
2051 newex.ec_block = le32_to_cpu(ex->ee_block);
2052 newex.ec_len = ext4_ext_get_actual_len(ex);
2053 newex.ec_start = ext4_ext_pblock(ex);
2054 if (ext4_ext_is_uninitialized(ex))
2055 flags |= FIEMAP_EXTENT_UNWRITTEN;
2059 * Find delayed extent and update newex accordingly. We call
2060 * it even in !exists case to find out whether newex is the
2061 * last existing extent or not.
2063 next_del = ext4_find_delayed_extent(inode, &newex);
2064 if (!exists && next_del) {
2066 flags |= FIEMAP_EXTENT_DELALLOC;
2068 up_read(&EXT4_I(inode)->i_data_sem);
2070 if (unlikely(newex.ec_len == 0)) {
2071 EXT4_ERROR_INODE(inode, "newex.ec_len == 0");
2076 /* This is possible iff next == next_del == EXT_MAX_BLOCKS */
2077 if (next == next_del) {
2078 flags |= FIEMAP_EXTENT_LAST;
2079 if (unlikely(next_del != EXT_MAX_BLOCKS ||
2080 next != EXT_MAX_BLOCKS)) {
2081 EXT4_ERROR_INODE(inode,
2082 "next extent == %u, next "
2083 "delalloc extent = %u",
2091 err = fiemap_fill_next_extent(fieinfo,
2092 (__u64)newex.ec_block << blksize_bits,
2093 (__u64)newex.ec_start << blksize_bits,
2094 (__u64)newex.ec_len << blksize_bits,
2104 block = newex.ec_block + newex.ec_len;
2108 ext4_ext_drop_refs(path);
2116 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
2117 __u32 len, ext4_fsblk_t start)
2119 struct ext4_ext_cache *cex;
2121 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2122 trace_ext4_ext_put_in_cache(inode, block, len, start);
2123 cex = &EXT4_I(inode)->i_cached_extent;
2124 cex->ec_block = block;
2126 cex->ec_start = start;
2127 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2131 * ext4_ext_put_gap_in_cache:
2132 * calculate boundaries of the gap that the requested block fits into
2133 * and cache this gap
2136 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2139 int depth = ext_depth(inode);
2142 struct ext4_extent *ex;
2144 ex = path[depth].p_ext;
2146 /* there is no extent yet, so gap is [0;-] */
2148 len = EXT_MAX_BLOCKS;
2149 ext_debug("cache gap(whole file):");
2150 } else if (block < le32_to_cpu(ex->ee_block)) {
2152 len = le32_to_cpu(ex->ee_block) - block;
2153 ext_debug("cache gap(before): %u [%u:%u]",
2155 le32_to_cpu(ex->ee_block),
2156 ext4_ext_get_actual_len(ex));
2157 } else if (block >= le32_to_cpu(ex->ee_block)
2158 + ext4_ext_get_actual_len(ex)) {
2160 lblock = le32_to_cpu(ex->ee_block)
2161 + ext4_ext_get_actual_len(ex);
2163 next = ext4_ext_next_allocated_block(path);
2164 ext_debug("cache gap(after): [%u:%u] %u",
2165 le32_to_cpu(ex->ee_block),
2166 ext4_ext_get_actual_len(ex),
2168 BUG_ON(next == lblock);
2169 len = next - lblock;
2175 ext_debug(" -> %u:%lu\n", lblock, len);
2176 ext4_ext_put_in_cache(inode, lblock, len, 0);
2180 * ext4_ext_in_cache()
2181 * Checks to see if the given block is in the cache.
2182 * If it is, the cached extent is stored in the given
2183 * cache extent pointer.
2185 * @inode: The files inode
2186 * @block: The block to look for in the cache
2187 * @ex: Pointer where the cached extent will be stored
2188 * if it contains block
2190 * Return 0 if cache is invalid; 1 if the cache is valid
2193 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2194 struct ext4_extent *ex)
2196 struct ext4_ext_cache *cex;
2200 * We borrow i_block_reservation_lock to protect i_cached_extent
2202 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2203 cex = &EXT4_I(inode)->i_cached_extent;
2205 /* has cache valid data? */
2206 if (cex->ec_len == 0)
2209 if (in_range(block, cex->ec_block, cex->ec_len)) {
2210 ex->ee_block = cpu_to_le32(cex->ec_block);
2211 ext4_ext_store_pblock(ex, cex->ec_start);
2212 ex->ee_len = cpu_to_le16(cex->ec_len);
2213 ext_debug("%u cached by %u:%u:%llu\n",
2215 cex->ec_block, cex->ec_len, cex->ec_start);
2219 trace_ext4_ext_in_cache(inode, block, ret);
2220 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2226 * removes index from the index block.
2228 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2229 struct ext4_ext_path *path)
2234 /* free index block */
2236 leaf = ext4_idx_pblock(path->p_idx);
2237 if (unlikely(path->p_hdr->eh_entries == 0)) {
2238 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2241 err = ext4_ext_get_access(handle, inode, path);
2245 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2246 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2247 len *= sizeof(struct ext4_extent_idx);
2248 memmove(path->p_idx, path->p_idx + 1, len);
2251 le16_add_cpu(&path->p_hdr->eh_entries, -1);
2252 err = ext4_ext_dirty(handle, inode, path);
2255 ext_debug("index is empty, remove it, free block %llu\n", leaf);
2256 trace_ext4_ext_rm_idx(inode, leaf);
2258 ext4_free_blocks(handle, inode, NULL, leaf, 1,
2259 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2264 * ext4_ext_calc_credits_for_single_extent:
2265 * This routine returns max. credits that needed to insert an extent
2266 * to the extent tree.
2267 * When pass the actual path, the caller should calculate credits
2270 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2271 struct ext4_ext_path *path)
2274 int depth = ext_depth(inode);
2277 /* probably there is space in leaf? */
2278 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2279 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2282 * There are some space in the leaf tree, no
2283 * need to account for leaf block credit
2285 * bitmaps and block group descriptor blocks
2286 * and other metadata blocks still need to be
2289 /* 1 bitmap, 1 block group descriptor */
2290 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2295 return ext4_chunk_trans_blocks(inode, nrblocks);
2299 * How many index/leaf blocks need to change/allocate to modify nrblocks?
2301 * if nrblocks are fit in a single extent (chunk flag is 1), then
2302 * in the worse case, each tree level index/leaf need to be changed
2303 * if the tree split due to insert a new extent, then the old tree
2304 * index/leaf need to be updated too
2306 * If the nrblocks are discontiguous, they could cause
2307 * the whole tree split more than once, but this is really rare.
2309 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2314 /* If we are converting the inline data, only one is needed here. */
2315 if (ext4_has_inline_data(inode))
2318 depth = ext_depth(inode);
2328 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2329 struct ext4_extent *ex,
2330 ext4_fsblk_t *partial_cluster,
2331 ext4_lblk_t from, ext4_lblk_t to)
2333 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2334 unsigned short ee_len = ext4_ext_get_actual_len(ex);
2338 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2339 flags |= EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2340 else if (ext4_should_journal_data(inode))
2341 flags |= EXT4_FREE_BLOCKS_FORGET;
2344 * For bigalloc file systems, we never free a partial cluster
2345 * at the beginning of the extent. Instead, we make a note
2346 * that we tried freeing the cluster, and check to see if we
2347 * need to free it on a subsequent call to ext4_remove_blocks,
2348 * or at the end of the ext4_truncate() operation.
2350 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2352 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2354 * If we have a partial cluster, and it's different from the
2355 * cluster of the last block, we need to explicitly free the
2356 * partial cluster here.
2358 pblk = ext4_ext_pblock(ex) + ee_len - 1;
2359 if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2360 ext4_free_blocks(handle, inode, NULL,
2361 EXT4_C2B(sbi, *partial_cluster),
2362 sbi->s_cluster_ratio, flags);
2363 *partial_cluster = 0;
2366 #ifdef EXTENTS_STATS
2368 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2369 spin_lock(&sbi->s_ext_stats_lock);
2370 sbi->s_ext_blocks += ee_len;
2371 sbi->s_ext_extents++;
2372 if (ee_len < sbi->s_ext_min)
2373 sbi->s_ext_min = ee_len;
2374 if (ee_len > sbi->s_ext_max)
2375 sbi->s_ext_max = ee_len;
2376 if (ext_depth(inode) > sbi->s_depth_max)
2377 sbi->s_depth_max = ext_depth(inode);
2378 spin_unlock(&sbi->s_ext_stats_lock);
2381 if (from >= le32_to_cpu(ex->ee_block)
2382 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2386 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2387 pblk = ext4_ext_pblock(ex) + ee_len - num;
2388 ext_debug("free last %u blocks starting %llu\n", num, pblk);
2389 ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2391 * If the block range to be freed didn't start at the
2392 * beginning of a cluster, and we removed the entire
2393 * extent, save the partial cluster here, since we
2394 * might need to delete if we determine that the
2395 * truncate operation has removed all of the blocks in
2398 if (pblk & (sbi->s_cluster_ratio - 1) &&
2400 *partial_cluster = EXT4_B2C(sbi, pblk);
2402 *partial_cluster = 0;
2403 } else if (from == le32_to_cpu(ex->ee_block)
2404 && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2410 start = ext4_ext_pblock(ex);
2412 ext_debug("free first %u blocks starting %llu\n", num, start);
2413 ext4_free_blocks(handle, inode, NULL, start, num, flags);
2416 printk(KERN_INFO "strange request: removal(2) "
2417 "%u-%u from %u:%u\n",
2418 from, to, le32_to_cpu(ex->ee_block), ee_len);
2425 * ext4_ext_rm_leaf() Removes the extents associated with the
2426 * blocks appearing between "start" and "end", and splits the extents
2427 * if "start" and "end" appear in the same extent
2429 * @handle: The journal handle
2430 * @inode: The files inode
2431 * @path: The path to the leaf
2432 * @start: The first block to remove
2433 * @end: The last block to remove
2436 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2437 struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster,
2438 ext4_lblk_t start, ext4_lblk_t end)
2440 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2441 int err = 0, correct_index = 0;
2442 int depth = ext_depth(inode), credits;
2443 struct ext4_extent_header *eh;
2446 ext4_lblk_t ex_ee_block;
2447 unsigned short ex_ee_len;
2448 unsigned uninitialized = 0;
2449 struct ext4_extent *ex;
2451 /* the header must be checked already in ext4_ext_remove_space() */
2452 ext_debug("truncate since %u in leaf to %u\n", start, end);
2453 if (!path[depth].p_hdr)
2454 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2455 eh = path[depth].p_hdr;
2456 if (unlikely(path[depth].p_hdr == NULL)) {
2457 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2460 /* find where to start removing */
2461 ex = EXT_LAST_EXTENT(eh);
2463 ex_ee_block = le32_to_cpu(ex->ee_block);
2464 ex_ee_len = ext4_ext_get_actual_len(ex);
2466 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2468 while (ex >= EXT_FIRST_EXTENT(eh) &&
2469 ex_ee_block + ex_ee_len > start) {
2471 if (ext4_ext_is_uninitialized(ex))
2476 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2477 uninitialized, ex_ee_len);
2478 path[depth].p_ext = ex;
2480 a = ex_ee_block > start ? ex_ee_block : start;
2481 b = ex_ee_block+ex_ee_len - 1 < end ?
2482 ex_ee_block+ex_ee_len - 1 : end;
2484 ext_debug(" border %u:%u\n", a, b);
2486 /* If this extent is beyond the end of the hole, skip it */
2487 if (end < ex_ee_block) {
2489 ex_ee_block = le32_to_cpu(ex->ee_block);
2490 ex_ee_len = ext4_ext_get_actual_len(ex);
2492 } else if (b != ex_ee_block + ex_ee_len - 1) {
2493 EXT4_ERROR_INODE(inode,
2494 "can not handle truncate %u:%u "
2496 start, end, ex_ee_block,
2497 ex_ee_block + ex_ee_len - 1);
2500 } else if (a != ex_ee_block) {
2501 /* remove tail of the extent */
2502 num = a - ex_ee_block;
2504 /* remove whole extent: excellent! */
2508 * 3 for leaf, sb, and inode plus 2 (bmap and group
2509 * descriptor) for each block group; assume two block
2510 * groups plus ex_ee_len/blocks_per_block_group for
2513 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2514 if (ex == EXT_FIRST_EXTENT(eh)) {
2516 credits += (ext_depth(inode)) + 1;
2518 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2520 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2524 err = ext4_ext_get_access(handle, inode, path + depth);
2528 err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2534 /* this extent is removed; mark slot entirely unused */
2535 ext4_ext_store_pblock(ex, 0);
2537 ex->ee_len = cpu_to_le16(num);
2539 * Do not mark uninitialized if all the blocks in the
2540 * extent have been removed.
2542 if (uninitialized && num)
2543 ext4_ext_mark_uninitialized(ex);
2545 * If the extent was completely released,
2546 * we need to remove it from the leaf
2549 if (end != EXT_MAX_BLOCKS - 1) {
2551 * For hole punching, we need to scoot all the
2552 * extents up when an extent is removed so that
2553 * we dont have blank extents in the middle
2555 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2556 sizeof(struct ext4_extent));
2558 /* Now get rid of the one at the end */
2559 memset(EXT_LAST_EXTENT(eh), 0,
2560 sizeof(struct ext4_extent));
2562 le16_add_cpu(&eh->eh_entries, -1);
2564 *partial_cluster = 0;
2566 err = ext4_ext_dirty(handle, inode, path + depth);
2570 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2571 ext4_ext_pblock(ex));
2573 ex_ee_block = le32_to_cpu(ex->ee_block);
2574 ex_ee_len = ext4_ext_get_actual_len(ex);
2577 if (correct_index && eh->eh_entries)
2578 err = ext4_ext_correct_indexes(handle, inode, path);
2581 * If there is still a entry in the leaf node, check to see if
2582 * it references the partial cluster. This is the only place
2583 * where it could; if it doesn't, we can free the cluster.
2585 if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) &&
2586 (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2587 *partial_cluster)) {
2588 int flags = EXT4_FREE_BLOCKS_FORGET;
2590 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2591 flags |= EXT4_FREE_BLOCKS_METADATA;
2593 ext4_free_blocks(handle, inode, NULL,
2594 EXT4_C2B(sbi, *partial_cluster),
2595 sbi->s_cluster_ratio, flags);
2596 *partial_cluster = 0;
2599 /* if this leaf is free, then we should
2600 * remove it from index block above */
2601 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2602 err = ext4_ext_rm_idx(handle, inode, path + depth);
2609 * ext4_ext_more_to_rm:
2610 * returns 1 if current index has to be freed (even partial)
2613 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2615 BUG_ON(path->p_idx == NULL);
2617 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2621 * if truncate on deeper level happened, it wasn't partial,
2622 * so we have to consider current index for truncation
2624 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2629 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2632 struct super_block *sb = inode->i_sb;
2633 int depth = ext_depth(inode);
2634 struct ext4_ext_path *path = NULL;
2635 ext4_fsblk_t partial_cluster = 0;
2639 ext_debug("truncate since %u to %u\n", start, end);
2641 /* probably first extent we're gonna free will be last in block */
2642 handle = ext4_journal_start(inode, depth + 1);
2644 return PTR_ERR(handle);
2647 ext4_ext_invalidate_cache(inode);
2649 trace_ext4_ext_remove_space(inode, start, depth);
2652 * Check if we are removing extents inside the extent tree. If that
2653 * is the case, we are going to punch a hole inside the extent tree
2654 * so we have to check whether we need to split the extent covering
2655 * the last block to remove so we can easily remove the part of it
2656 * in ext4_ext_rm_leaf().
2658 if (end < EXT_MAX_BLOCKS - 1) {
2659 struct ext4_extent *ex;
2660 ext4_lblk_t ee_block;
2662 /* find extent for this block */
2663 path = ext4_ext_find_extent(inode, end, NULL);
2665 ext4_journal_stop(handle);
2666 return PTR_ERR(path);
2668 depth = ext_depth(inode);
2669 /* Leaf not may not exist only if inode has no blocks at all */
2670 ex = path[depth].p_ext;
2673 EXT4_ERROR_INODE(inode,
2674 "path[%d].p_hdr == NULL",
2681 ee_block = le32_to_cpu(ex->ee_block);
2684 * See if the last block is inside the extent, if so split
2685 * the extent at 'end' block so we can easily remove the
2686 * tail of the first part of the split extent in
2687 * ext4_ext_rm_leaf().
2689 if (end >= ee_block &&
2690 end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2693 if (ext4_ext_is_uninitialized(ex))
2694 split_flag = EXT4_EXT_MARK_UNINIT1 |
2695 EXT4_EXT_MARK_UNINIT2;
2698 * Split the extent in two so that 'end' is the last
2699 * block in the first new extent
2701 err = ext4_split_extent_at(handle, inode, path,
2702 end + 1, split_flag,
2703 EXT4_GET_BLOCKS_PRE_IO |
2704 EXT4_GET_BLOCKS_PUNCH_OUT_EXT);
2711 * We start scanning from right side, freeing all the blocks
2712 * after i_size and walking into the tree depth-wise.
2714 depth = ext_depth(inode);
2719 le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2721 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2724 ext4_journal_stop(handle);
2727 path[0].p_depth = depth;
2728 path[0].p_hdr = ext_inode_hdr(inode);
2731 if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2738 while (i >= 0 && err == 0) {
2740 /* this is leaf block */
2741 err = ext4_ext_rm_leaf(handle, inode, path,
2742 &partial_cluster, start,
2744 /* root level has p_bh == NULL, brelse() eats this */
2745 brelse(path[i].p_bh);
2746 path[i].p_bh = NULL;
2751 /* this is index block */
2752 if (!path[i].p_hdr) {
2753 ext_debug("initialize header\n");
2754 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2757 if (!path[i].p_idx) {
2758 /* this level hasn't been touched yet */
2759 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2760 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2761 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2763 le16_to_cpu(path[i].p_hdr->eh_entries));
2765 /* we were already here, see at next index */
2769 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2770 i, EXT_FIRST_INDEX(path[i].p_hdr),
2772 if (ext4_ext_more_to_rm(path + i)) {
2773 struct buffer_head *bh;
2774 /* go to the next level */
2775 ext_debug("move to level %d (block %llu)\n",
2776 i + 1, ext4_idx_pblock(path[i].p_idx));
2777 memset(path + i + 1, 0, sizeof(*path));
2778 bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2780 /* should we reset i_size? */
2784 if (WARN_ON(i + 1 > depth)) {
2788 if (ext4_ext_check_block(inode, ext_block_hdr(bh),
2789 depth - i - 1, bh)) {
2793 path[i + 1].p_bh = bh;
2795 /* save actual number of indexes since this
2796 * number is changed at the next iteration */
2797 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2800 /* we finished processing this index, go up */
2801 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2802 /* index is empty, remove it;
2803 * handle must be already prepared by the
2804 * truncatei_leaf() */
2805 err = ext4_ext_rm_idx(handle, inode, path + i);
2807 /* root level has p_bh == NULL, brelse() eats this */
2808 brelse(path[i].p_bh);
2809 path[i].p_bh = NULL;
2811 ext_debug("return to level %d\n", i);
2815 trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster,
2816 path->p_hdr->eh_entries);
2818 /* If we still have something in the partial cluster and we have removed
2819 * even the first extent, then we should free the blocks in the partial
2820 * cluster as well. */
2821 if (partial_cluster && path->p_hdr->eh_entries == 0) {
2822 int flags = EXT4_FREE_BLOCKS_FORGET;
2824 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2825 flags |= EXT4_FREE_BLOCKS_METADATA;
2827 ext4_free_blocks(handle, inode, NULL,
2828 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2829 EXT4_SB(sb)->s_cluster_ratio, flags);
2830 partial_cluster = 0;
2833 /* TODO: flexible tree reduction should be here */
2834 if (path->p_hdr->eh_entries == 0) {
2836 * truncate to zero freed all the tree,
2837 * so we need to correct eh_depth
2839 err = ext4_ext_get_access(handle, inode, path);
2841 ext_inode_hdr(inode)->eh_depth = 0;
2842 ext_inode_hdr(inode)->eh_max =
2843 cpu_to_le16(ext4_ext_space_root(inode, 0));
2844 err = ext4_ext_dirty(handle, inode, path);
2848 ext4_ext_drop_refs(path);
2850 if (err == -EAGAIN) {
2854 ext4_journal_stop(handle);
2860 * called at mount time
2862 void ext4_ext_init(struct super_block *sb)
2865 * possible initialization would be here
2868 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2869 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2870 printk(KERN_INFO "EXT4-fs: file extents enabled"
2871 #ifdef AGGRESSIVE_TEST
2872 ", aggressive tests"
2874 #ifdef CHECK_BINSEARCH
2877 #ifdef EXTENTS_STATS
2882 #ifdef EXTENTS_STATS
2883 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2884 EXT4_SB(sb)->s_ext_min = 1 << 30;
2885 EXT4_SB(sb)->s_ext_max = 0;
2891 * called at umount time
2893 void ext4_ext_release(struct super_block *sb)
2895 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2898 #ifdef EXTENTS_STATS
2899 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2900 struct ext4_sb_info *sbi = EXT4_SB(sb);
2901 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2902 sbi->s_ext_blocks, sbi->s_ext_extents,
2903 sbi->s_ext_blocks / sbi->s_ext_extents);
2904 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2905 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2910 /* FIXME!! we need to try to merge to left or right after zero-out */
2911 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2913 ext4_fsblk_t ee_pblock;
2914 unsigned int ee_len;
2917 ee_len = ext4_ext_get_actual_len(ex);
2918 ee_pblock = ext4_ext_pblock(ex);
2920 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2928 * ext4_split_extent_at() splits an extent at given block.
2930 * @handle: the journal handle
2931 * @inode: the file inode
2932 * @path: the path to the extent
2933 * @split: the logical block where the extent is splitted.
2934 * @split_flags: indicates if the extent could be zeroout if split fails, and
2935 * the states(init or uninit) of new extents.
2936 * @flags: flags used to insert new extent to extent tree.
2939 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2940 * of which are deterimined by split_flag.
2942 * There are two cases:
2943 * a> the extent are splitted into two extent.
2944 * b> split is not needed, and just mark the extent.
2946 * return 0 on success.
2948 static int ext4_split_extent_at(handle_t *handle,
2949 struct inode *inode,
2950 struct ext4_ext_path *path,
2955 ext4_fsblk_t newblock;
2956 ext4_lblk_t ee_block;
2957 struct ext4_extent *ex, newex, orig_ex;
2958 struct ext4_extent *ex2 = NULL;
2959 unsigned int ee_len, depth;
2962 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
2963 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
2965 ext_debug("ext4_split_extents_at: inode %lu, logical"
2966 "block %llu\n", inode->i_ino, (unsigned long long)split);
2968 ext4_ext_show_leaf(inode, path);
2970 depth = ext_depth(inode);
2971 ex = path[depth].p_ext;
2972 ee_block = le32_to_cpu(ex->ee_block);
2973 ee_len = ext4_ext_get_actual_len(ex);
2974 newblock = split - ee_block + ext4_ext_pblock(ex);
2976 BUG_ON(split < ee_block || split >= (ee_block + ee_len));
2978 err = ext4_ext_get_access(handle, inode, path + depth);
2982 if (split == ee_block) {
2984 * case b: block @split is the block that the extent begins with
2985 * then we just change the state of the extent, and splitting
2988 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2989 ext4_ext_mark_uninitialized(ex);
2991 ext4_ext_mark_initialized(ex);
2993 if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
2994 ext4_ext_try_to_merge(handle, inode, path, ex);
2996 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3001 memcpy(&orig_ex, ex, sizeof(orig_ex));
3002 ex->ee_len = cpu_to_le16(split - ee_block);
3003 if (split_flag & EXT4_EXT_MARK_UNINIT1)
3004 ext4_ext_mark_uninitialized(ex);
3007 * path may lead to new leaf, not to original leaf any more
3008 * after ext4_ext_insert_extent() returns,
3010 err = ext4_ext_dirty(handle, inode, path + depth);
3012 goto fix_extent_len;
3015 ex2->ee_block = cpu_to_le32(split);
3016 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block));
3017 ext4_ext_store_pblock(ex2, newblock);
3018 if (split_flag & EXT4_EXT_MARK_UNINIT2)
3019 ext4_ext_mark_uninitialized(ex2);
3021 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3022 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3023 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
3024 if (split_flag & EXT4_EXT_DATA_VALID1)
3025 err = ext4_ext_zeroout(inode, ex2);
3027 err = ext4_ext_zeroout(inode, ex);
3029 err = ext4_ext_zeroout(inode, &orig_ex);
3032 goto fix_extent_len;
3033 /* update the extent length and mark as initialized */
3034 ex->ee_len = cpu_to_le16(ee_len);
3035 ext4_ext_try_to_merge(handle, inode, path, ex);
3036 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3039 goto fix_extent_len;
3042 ext4_ext_show_leaf(inode, path);
3046 ex->ee_len = orig_ex.ee_len;
3047 ext4_ext_dirty(handle, inode, path + depth);
3052 * ext4_split_extents() splits an extent and mark extent which is covered
3053 * by @map as split_flags indicates
3055 * It may result in splitting the extent into multiple extents (upto three)
3056 * There are three possibilities:
3057 * a> There is no split required
3058 * b> Splits in two extents: Split is happening at either end of the extent
3059 * c> Splits in three extents: Somone is splitting in middle of the extent
3062 static int ext4_split_extent(handle_t *handle,
3063 struct inode *inode,
3064 struct ext4_ext_path *path,
3065 struct ext4_map_blocks *map,
3069 ext4_lblk_t ee_block;
3070 struct ext4_extent *ex;
3071 unsigned int ee_len, depth;
3074 int split_flag1, flags1;
3076 depth = ext_depth(inode);
3077 ex = path[depth].p_ext;
3078 ee_block = le32_to_cpu(ex->ee_block);
3079 ee_len = ext4_ext_get_actual_len(ex);
3080 uninitialized = ext4_ext_is_uninitialized(ex);
3082 if (map->m_lblk + map->m_len < ee_block + ee_len) {
3083 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3084 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3086 split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
3087 EXT4_EXT_MARK_UNINIT2;
3088 if (split_flag & EXT4_EXT_DATA_VALID2)
3089 split_flag1 |= EXT4_EXT_DATA_VALID1;
3090 err = ext4_split_extent_at(handle, inode, path,
3091 map->m_lblk + map->m_len, split_flag1, flags1);
3096 ext4_ext_drop_refs(path);
3097 path = ext4_ext_find_extent(inode, map->m_lblk, path);
3099 return PTR_ERR(path);
3101 if (map->m_lblk >= ee_block) {
3102 split_flag1 = split_flag & (EXT4_EXT_MAY_ZEROOUT |
3103 EXT4_EXT_DATA_VALID2);
3105 split_flag1 |= EXT4_EXT_MARK_UNINIT1;
3106 if (split_flag & EXT4_EXT_MARK_UNINIT2)
3107 split_flag1 |= EXT4_EXT_MARK_UNINIT2;
3108 err = ext4_split_extent_at(handle, inode, path,
3109 map->m_lblk, split_flag1, flags);
3114 ext4_ext_show_leaf(inode, path);
3116 return err ? err : map->m_len;
3120 * This function is called by ext4_ext_map_blocks() if someone tries to write
3121 * to an uninitialized extent. It may result in splitting the uninitialized
3122 * extent into multiple extents (up to three - one initialized and two
3124 * There are three possibilities:
3125 * a> There is no split required: Entire extent should be initialized
3126 * b> Splits in two extents: Write is happening at either end of the extent
3127 * c> Splits in three extents: Somone is writing in middle of the extent
3130 * - The extent pointed to by 'path' is uninitialized.
3131 * - The extent pointed to by 'path' contains a superset
3132 * of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3134 * Post-conditions on success:
3135 * - the returned value is the number of blocks beyond map->l_lblk
3136 * that are allocated and initialized.
3137 * It is guaranteed to be >= map->m_len.
3139 static int ext4_ext_convert_to_initialized(handle_t *handle,
3140 struct inode *inode,
3141 struct ext4_map_blocks *map,
3142 struct ext4_ext_path *path)
3144 struct ext4_sb_info *sbi;
3145 struct ext4_extent_header *eh;
3146 struct ext4_map_blocks split_map;
3147 struct ext4_extent zero_ex;
3148 struct ext4_extent *ex;
3149 ext4_lblk_t ee_block, eof_block;
3150 unsigned int ee_len, depth;
3151 int allocated, max_zeroout = 0;
3155 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3156 "block %llu, max_blocks %u\n", inode->i_ino,
3157 (unsigned long long)map->m_lblk, map->m_len);
3159 sbi = EXT4_SB(inode->i_sb);
3160 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3161 inode->i_sb->s_blocksize_bits;
3162 if (eof_block < map->m_lblk + map->m_len)
3163 eof_block = map->m_lblk + map->m_len;
3165 depth = ext_depth(inode);
3166 eh = path[depth].p_hdr;
3167 ex = path[depth].p_ext;
3168 ee_block = le32_to_cpu(ex->ee_block);
3169 ee_len = ext4_ext_get_actual_len(ex);
3170 allocated = ee_len - (map->m_lblk - ee_block);
3172 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3174 /* Pre-conditions */
3175 BUG_ON(!ext4_ext_is_uninitialized(ex));
3176 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3179 * Attempt to transfer newly initialized blocks from the currently
3180 * uninitialized extent to its left neighbor. This is much cheaper
3181 * than an insertion followed by a merge as those involve costly
3182 * memmove() calls. This is the common case in steady state for
3183 * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append
3186 * Limitations of the current logic:
3187 * - L1: we only deal with writes at the start of the extent.
3188 * The approach could be extended to writes at the end
3189 * of the extent but this scenario was deemed less common.
3190 * - L2: we do not deal with writes covering the whole extent.
3191 * This would require removing the extent if the transfer
3193 * - L3: we only attempt to merge with an extent stored in the
3194 * same extent tree node.
3196 if ((map->m_lblk == ee_block) && /*L1*/
3197 (map->m_len < ee_len) && /*L2*/
3198 (ex > EXT_FIRST_EXTENT(eh))) { /*L3*/
3199 struct ext4_extent *prev_ex;
3200 ext4_lblk_t prev_lblk;
3201 ext4_fsblk_t prev_pblk, ee_pblk;
3202 unsigned int prev_len, write_len;
3205 prev_lblk = le32_to_cpu(prev_ex->ee_block);
3206 prev_len = ext4_ext_get_actual_len(prev_ex);
3207 prev_pblk = ext4_ext_pblock(prev_ex);
3208 ee_pblk = ext4_ext_pblock(ex);
3209 write_len = map->m_len;
3212 * A transfer of blocks from 'ex' to 'prev_ex' is allowed
3213 * upon those conditions:
3214 * - C1: prev_ex is initialized,
3215 * - C2: prev_ex is logically abutting ex,
3216 * - C3: prev_ex is physically abutting ex,
3217 * - C4: prev_ex can receive the additional blocks without
3218 * overflowing the (initialized) length limit.
3220 if ((!ext4_ext_is_uninitialized(prev_ex)) && /*C1*/
3221 ((prev_lblk + prev_len) == ee_block) && /*C2*/
3222 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/
3223 (prev_len < (EXT_INIT_MAX_LEN - write_len))) { /*C4*/
3224 err = ext4_ext_get_access(handle, inode, path + depth);
3228 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3231 /* Shift the start of ex by 'write_len' blocks */
3232 ex->ee_block = cpu_to_le32(ee_block + write_len);
3233 ext4_ext_store_pblock(ex, ee_pblk + write_len);
3234 ex->ee_len = cpu_to_le16(ee_len - write_len);
3235 ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3237 /* Extend prev_ex by 'write_len' blocks */
3238 prev_ex->ee_len = cpu_to_le16(prev_len + write_len);
3240 /* Mark the block containing both extents as dirty */
3241 ext4_ext_dirty(handle, inode, path + depth);
3243 /* Update path to point to the right extent */
3244 path[depth].p_ext = prev_ex;
3246 /* Result: number of initialized blocks past m_lblk */
3247 allocated = write_len;
3252 WARN_ON(map->m_lblk < ee_block);
3254 * It is safe to convert extent to initialized via explicit
3255 * zeroout only if extent is fully insde i_size or new_size.
3257 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3259 if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3260 max_zeroout = sbi->s_extent_max_zeroout_kb >>
3261 inode->i_sb->s_blocksize_bits;
3263 /* If extent is less than s_max_zeroout_kb, zeroout directly */
3264 if (max_zeroout && (ee_len <= max_zeroout)) {
3265 err = ext4_ext_zeroout(inode, ex);
3269 err = ext4_ext_get_access(handle, inode, path + depth);
3272 ext4_ext_mark_initialized(ex);
3273 ext4_ext_try_to_merge(handle, inode, path, ex);
3274 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3280 * 1. split the extent into three extents.
3281 * 2. split the extent into two extents, zeroout the first half.
3282 * 3. split the extent into two extents, zeroout the second half.
3283 * 4. split the extent into two extents with out zeroout.
3285 split_map.m_lblk = map->m_lblk;
3286 split_map.m_len = map->m_len;
3288 if (max_zeroout && (allocated > map->m_len)) {
3289 if (allocated <= max_zeroout) {
3292 cpu_to_le32(map->m_lblk);
3293 zero_ex.ee_len = cpu_to_le16(allocated);
3294 ext4_ext_store_pblock(&zero_ex,
3295 ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3296 err = ext4_ext_zeroout(inode, &zero_ex);
3299 split_map.m_lblk = map->m_lblk;
3300 split_map.m_len = allocated;
3301 } else if (map->m_lblk - ee_block + map->m_len < max_zeroout) {
3303 if (map->m_lblk != ee_block) {
3304 zero_ex.ee_block = ex->ee_block;
3305 zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3307 ext4_ext_store_pblock(&zero_ex,
3308 ext4_ext_pblock(ex));
3309 err = ext4_ext_zeroout(inode, &zero_ex);
3314 split_map.m_lblk = ee_block;
3315 split_map.m_len = map->m_lblk - ee_block + map->m_len;
3316 allocated = map->m_len;
3320 allocated = ext4_split_extent(handle, inode, path,
3321 &split_map, split_flag, 0);
3326 return err ? err : allocated;
3330 * This function is called by ext4_ext_map_blocks() from
3331 * ext4_get_blocks_dio_write() when DIO to write
3332 * to an uninitialized extent.
3334 * Writing to an uninitialized extent may result in splitting the uninitialized
3335 * extent into multiple initialized/uninitialized extents (up to three)
3336 * There are three possibilities:
3337 * a> There is no split required: Entire extent should be uninitialized
3338 * b> Splits in two extents: Write is happening at either end of the extent
3339 * c> Splits in three extents: Somone is writing in middle of the extent
3341 * One of more index blocks maybe needed if the extent tree grow after
3342 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3343 * complete, we need to split the uninitialized extent before DIO submit
3344 * the IO. The uninitialized extent called at this time will be split
3345 * into three uninitialized extent(at most). After IO complete, the part
3346 * being filled will be convert to initialized by the end_io callback function
3347 * via ext4_convert_unwritten_extents().
3349 * Returns the size of uninitialized extent to be written on success.
3351 static int ext4_split_unwritten_extents(handle_t *handle,
3352 struct inode *inode,
3353 struct ext4_map_blocks *map,
3354 struct ext4_ext_path *path,
3357 ext4_lblk_t eof_block;
3358 ext4_lblk_t ee_block;
3359 struct ext4_extent *ex;
3360 unsigned int ee_len;
3361 int split_flag = 0, depth;
3363 ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3364 "block %llu, max_blocks %u\n", inode->i_ino,
3365 (unsigned long long)map->m_lblk, map->m_len);
3367 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3368 inode->i_sb->s_blocksize_bits;
3369 if (eof_block < map->m_lblk + map->m_len)
3370 eof_block = map->m_lblk + map->m_len;
3372 * It is safe to convert extent to initialized via explicit
3373 * zeroout only if extent is fully insde i_size or new_size.
3375 depth = ext_depth(inode);
3376 ex = path[depth].p_ext;
3377 ee_block = le32_to_cpu(ex->ee_block);
3378 ee_len = ext4_ext_get_actual_len(ex);
3380 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3381 split_flag |= EXT4_EXT_MARK_UNINIT2;
3382 if (flags & EXT4_GET_BLOCKS_CONVERT)
3383 split_flag |= EXT4_EXT_DATA_VALID2;
3384 flags |= EXT4_GET_BLOCKS_PRE_IO;
3385 return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3388 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3389 struct inode *inode,
3390 struct ext4_map_blocks *map,
3391 struct ext4_ext_path *path)
3393 struct ext4_extent *ex;
3394 ext4_lblk_t ee_block;
3395 unsigned int ee_len;
3399 depth = ext_depth(inode);
3400 ex = path[depth].p_ext;
3401 ee_block = le32_to_cpu(ex->ee_block);
3402 ee_len = ext4_ext_get_actual_len(ex);
3404 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3405 "block %llu, max_blocks %u\n", inode->i_ino,
3406 (unsigned long long)ee_block, ee_len);
3408 /* If extent is larger than requested then split is required */
3409 if (ee_block != map->m_lblk || ee_len > map->m_len) {
3410 err = ext4_split_unwritten_extents(handle, inode, map, path,
3411 EXT4_GET_BLOCKS_CONVERT);
3414 ext4_ext_drop_refs(path);
3415 path = ext4_ext_find_extent(inode, map->m_lblk, path);
3417 err = PTR_ERR(path);
3420 depth = ext_depth(inode);
3421 ex = path[depth].p_ext;
3424 err = ext4_ext_get_access(handle, inode, path + depth);
3427 /* first mark the extent as initialized */
3428 ext4_ext_mark_initialized(ex);
3430 /* note: ext4_ext_correct_indexes() isn't needed here because
3431 * borders are not changed
3433 ext4_ext_try_to_merge(handle, inode, path, ex);
3435 /* Mark modified extent as dirty */
3436 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3438 ext4_ext_show_leaf(inode, path);
3442 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3443 sector_t block, int count)
3446 for (i = 0; i < count; i++)
3447 unmap_underlying_metadata(bdev, block + i);
3451 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3453 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3455 struct ext4_ext_path *path,
3459 struct ext4_extent_header *eh;
3460 struct ext4_extent *last_ex;
3462 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3465 depth = ext_depth(inode);
3466 eh = path[depth].p_hdr;
3469 * We're going to remove EOFBLOCKS_FL entirely in future so we
3470 * do not care for this case anymore. Simply remove the flag
3471 * if there are no extents.
3473 if (unlikely(!eh->eh_entries))
3475 last_ex = EXT_LAST_EXTENT(eh);
3477 * We should clear the EOFBLOCKS_FL flag if we are writing the
3478 * last block in the last extent in the file. We test this by
3479 * first checking to see if the caller to
3480 * ext4_ext_get_blocks() was interested in the last block (or
3481 * a block beyond the last block) in the current extent. If
3482 * this turns out to be false, we can bail out from this
3483 * function immediately.
3485 if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3486 ext4_ext_get_actual_len(last_ex))
3489 * If the caller does appear to be planning to write at or
3490 * beyond the end of the current extent, we then test to see
3491 * if the current extent is the last extent in the file, by
3492 * checking to make sure it was reached via the rightmost node
3493 * at each level of the tree.
3495 for (i = depth-1; i >= 0; i--)
3496 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3499 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3500 return ext4_mark_inode_dirty(handle, inode);
3504 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3506 * Return 1 if there is a delalloc block in the range, otherwise 0.
3508 static int ext4_find_delalloc_range(struct inode *inode,
3509 ext4_lblk_t lblk_start,
3510 ext4_lblk_t lblk_end)
3512 struct extent_status es;
3514 es.start = lblk_start;
3515 ext4_es_find_extent(inode, &es);
3517 return 0; /* there is no delay extent in this tree */
3518 else if (es.start <= lblk_start && lblk_start < es.start + es.len)
3520 else if (lblk_start <= es.start && es.start <= lblk_end)
3526 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
3528 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3529 ext4_lblk_t lblk_start, lblk_end;
3530 lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
3531 lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3533 return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
3537 * Determines how many complete clusters (out of those specified by the 'map')
3538 * are under delalloc and were reserved quota for.
3539 * This function is called when we are writing out the blocks that were
3540 * originally written with their allocation delayed, but then the space was
3541 * allocated using fallocate() before the delayed allocation could be resolved.
3542 * The cases to look for are:
3543 * ('=' indicated delayed allocated blocks
3544 * '-' indicates non-delayed allocated blocks)
3545 * (a) partial clusters towards beginning and/or end outside of allocated range
3546 * are not delalloc'ed.
3548 * |----c---=|====c====|====c====|===-c----|
3549 * |++++++ allocated ++++++|
3550 * ==> 4 complete clusters in above example
3552 * (b) partial cluster (outside of allocated range) towards either end is
3553 * marked for delayed allocation. In this case, we will exclude that
3556 * |----====c========|========c========|
3557 * |++++++ allocated ++++++|
3558 * ==> 1 complete clusters in above example
3561 * |================c================|
3562 * |++++++ allocated ++++++|
3563 * ==> 0 complete clusters in above example
3565 * The ext4_da_update_reserve_space will be called only if we
3566 * determine here that there were some "entire" clusters that span
3567 * this 'allocated' range.
3568 * In the non-bigalloc case, this function will just end up returning num_blks
3569 * without ever calling ext4_find_delalloc_range.
3572 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3573 unsigned int num_blks)
3575 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3576 ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3577 ext4_lblk_t lblk_from, lblk_to, c_offset;
3578 unsigned int allocated_clusters = 0;
3580 alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3581 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3583 /* max possible clusters for this allocation */
3584 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3586 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3588 /* Check towards left side */
3589 c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
3591 lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
3592 lblk_to = lblk_from + c_offset - 1;
3594 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3595 allocated_clusters--;
3598 /* Now check towards right. */
3599 c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
3600 if (allocated_clusters && c_offset) {
3601 lblk_from = lblk_start + num_blks;
3602 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3604 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3605 allocated_clusters--;
3608 return allocated_clusters;
3612 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3613 struct ext4_map_blocks *map,
3614 struct ext4_ext_path *path, int flags,
3615 unsigned int allocated, ext4_fsblk_t newblock)
3619 ext4_io_end_t *io = ext4_inode_aio(inode);
3621 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3622 "block %llu, max_blocks %u, flags %x, allocated %u\n",
3623 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3625 ext4_ext_show_leaf(inode, path);
3627 trace_ext4_ext_handle_uninitialized_extents(inode, map, flags,
3628 allocated, newblock);
3630 /* get_block() before submit the IO, split the extent */
3631 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3632 ret = ext4_split_unwritten_extents(handle, inode, map,
3637 * Flag the inode(non aio case) or end_io struct (aio case)
3638 * that this IO needs to conversion to written when IO is
3642 ext4_set_io_unwritten_flag(inode, io);
3644 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3645 if (ext4_should_dioread_nolock(inode))
3646 map->m_flags |= EXT4_MAP_UNINIT;
3649 /* IO end_io complete, convert the filled extent to written */
3650 if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3651 ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
3654 ext4_update_inode_fsync_trans(handle, inode, 1);
3655 err = check_eofblocks_fl(handle, inode, map->m_lblk,
3661 /* buffered IO case */
3663 * repeat fallocate creation request
3664 * we already have an unwritten extent
3666 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
3669 /* buffered READ or buffered write_begin() lookup */
3670 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3672 * We have blocks reserved already. We
3673 * return allocated blocks so that delalloc
3674 * won't do block reservation for us. But
3675 * the buffer head will be unmapped so that
3676 * a read from the block returns 0s.
3678 map->m_flags |= EXT4_MAP_UNWRITTEN;
3682 /* buffered write, writepage time, convert*/
3683 ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3685 ext4_update_inode_fsync_trans(handle, inode, 1);
3692 map->m_flags |= EXT4_MAP_NEW;
3694 * if we allocated more blocks than requested
3695 * we need to make sure we unmap the extra block
3696 * allocated. The actual needed block will get
3697 * unmapped later when we find the buffer_head marked
3700 if (allocated > map->m_len) {
3701 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3702 newblock + map->m_len,
3703 allocated - map->m_len);
3704 allocated = map->m_len;
3708 * If we have done fallocate with the offset that is already
3709 * delayed allocated, we would have block reservation
3710 * and quota reservation done in the delayed write path.
3711 * But fallocate would have already updated quota and block
3712 * count for this offset. So cancel these reservation
3714 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3715 unsigned int reserved_clusters;
3716 reserved_clusters = get_reserved_cluster_alloc(inode,
3717 map->m_lblk, map->m_len);
3718 if (reserved_clusters)
3719 ext4_da_update_reserve_space(inode,
3725 map->m_flags |= EXT4_MAP_MAPPED;
3726 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3727 err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3733 if (allocated > map->m_len)
3734 allocated = map->m_len;
3735 ext4_ext_show_leaf(inode, path);
3736 map->m_pblk = newblock;
3737 map->m_len = allocated;
3740 ext4_ext_drop_refs(path);
3743 return err ? err : allocated;
3747 * get_implied_cluster_alloc - check to see if the requested
3748 * allocation (in the map structure) overlaps with a cluster already
3749 * allocated in an extent.
3750 * @sb The filesystem superblock structure
3751 * @map The requested lblk->pblk mapping
3752 * @ex The extent structure which might contain an implied
3753 * cluster allocation
3755 * This function is called by ext4_ext_map_blocks() after we failed to
3756 * find blocks that were already in the inode's extent tree. Hence,
3757 * we know that the beginning of the requested region cannot overlap
3758 * the extent from the inode's extent tree. There are three cases we
3759 * want to catch. The first is this case:
3761 * |--- cluster # N--|
3762 * |--- extent ---| |---- requested region ---|
3765 * The second case that we need to test for is this one:
3767 * |--------- cluster # N ----------------|
3768 * |--- requested region --| |------- extent ----|
3769 * |=======================|
3771 * The third case is when the requested region lies between two extents
3772 * within the same cluster:
3773 * |------------- cluster # N-------------|
3774 * |----- ex -----| |---- ex_right ----|
3775 * |------ requested region ------|
3776 * |================|
3778 * In each of the above cases, we need to set the map->m_pblk and
3779 * map->m_len so it corresponds to the return the extent labelled as
3780 * "|====|" from cluster #N, since it is already in use for data in
3781 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to
3782 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3783 * as a new "allocated" block region. Otherwise, we will return 0 and
3784 * ext4_ext_map_blocks() will then allocate one or more new clusters
3785 * by calling ext4_mb_new_blocks().
3787 static int get_implied_cluster_alloc(struct super_block *sb,
3788 struct ext4_map_blocks *map,
3789 struct ext4_extent *ex,
3790 struct ext4_ext_path *path)
3792 struct ext4_sb_info *sbi = EXT4_SB(sb);
3793 ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3794 ext4_lblk_t ex_cluster_start, ex_cluster_end;
3795 ext4_lblk_t rr_cluster_start;
3796 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3797 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3798 unsigned short ee_len = ext4_ext_get_actual_len(ex);
3800 /* The extent passed in that we are trying to match */
3801 ex_cluster_start = EXT4_B2C(sbi, ee_block);
3802 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
3804 /* The requested region passed into ext4_map_blocks() */
3805 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
3807 if ((rr_cluster_start == ex_cluster_end) ||
3808 (rr_cluster_start == ex_cluster_start)) {
3809 if (rr_cluster_start == ex_cluster_end)
3810 ee_start += ee_len - 1;
3811 map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
3813 map->m_len = min(map->m_len,
3814 (unsigned) sbi->s_cluster_ratio - c_offset);
3816 * Check for and handle this case:
3818 * |--------- cluster # N-------------|
3819 * |------- extent ----|
3820 * |--- requested region ---|
3824 if (map->m_lblk < ee_block)
3825 map->m_len = min(map->m_len, ee_block - map->m_lblk);
3828 * Check for the case where there is already another allocated
3829 * block to the right of 'ex' but before the end of the cluster.
3831 * |------------- cluster # N-------------|
3832 * |----- ex -----| |---- ex_right ----|
3833 * |------ requested region ------|
3834 * |================|
3836 if (map->m_lblk > ee_block) {
3837 ext4_lblk_t next = ext4_ext_next_allocated_block(path);
3838 map->m_len = min(map->m_len, next - map->m_lblk);
3841 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
3845 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
3851 * Block allocation/map/preallocation routine for extents based files
3854 * Need to be called with
3855 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3856 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3858 * return > 0, number of of blocks already mapped/allocated
3859 * if create == 0 and these are pre-allocated blocks
3860 * buffer head is unmapped
3861 * otherwise blocks are mapped
3863 * return = 0, if plain look up failed (blocks have not been allocated)
3864 * buffer head is unmapped
3866 * return < 0, error case.
3868 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3869 struct ext4_map_blocks *map, int flags)
3871 struct ext4_ext_path *path = NULL;
3872 struct ext4_extent newex, *ex, *ex2;
3873 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3874 ext4_fsblk_t newblock = 0;
3875 int free_on_err = 0, err = 0, depth;
3876 unsigned int allocated = 0, offset = 0;
3877 unsigned int allocated_clusters = 0;
3878 struct ext4_allocation_request ar;
3879 ext4_io_end_t *io = ext4_inode_aio(inode);
3880 ext4_lblk_t cluster_offset;
3881 int set_unwritten = 0;
3883 ext_debug("blocks %u/%u requested for inode %lu\n",
3884 map->m_lblk, map->m_len, inode->i_ino);
3885 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3887 /* check in cache */
3888 if (ext4_ext_in_cache(inode, map->m_lblk, &newex)) {
3889 if (!newex.ee_start_lo && !newex.ee_start_hi) {
3890 if ((sbi->s_cluster_ratio > 1) &&
3891 ext4_find_delalloc_cluster(inode, map->m_lblk))
3892 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3894 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3896 * block isn't allocated yet and
3897 * user doesn't want to allocate it
3901 /* we should allocate requested block */
3903 /* block is already allocated */
3904 if (sbi->s_cluster_ratio > 1)
3905 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3906 newblock = map->m_lblk
3907 - le32_to_cpu(newex.ee_block)
3908 + ext4_ext_pblock(&newex);
3909 /* number of remaining blocks in the extent */
3910 allocated = ext4_ext_get_actual_len(&newex) -
3911 (map->m_lblk - le32_to_cpu(newex.ee_block));
3916 /* find extent for this block */
3917 path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3919 err = PTR_ERR(path);
3924 depth = ext_depth(inode);
3927 * consistent leaf must not be empty;
3928 * this situation is possible, though, _during_ tree modification;
3929 * this is why assert can't be put in ext4_ext_find_extent()
3931 if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3932 EXT4_ERROR_INODE(inode, "bad extent address "
3933 "lblock: %lu, depth: %d pblock %lld",
3934 (unsigned long) map->m_lblk, depth,
3935 path[depth].p_block);
3940 ex = path[depth].p_ext;
3942 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3943 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3944 unsigned short ee_len;
3947 * Uninitialized extents are treated as holes, except that
3948 * we split out initialized portions during a write.
3950 ee_len = ext4_ext_get_actual_len(ex);
3952 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
3954 /* if found extent covers block, simply return it */
3955 if (in_range(map->m_lblk, ee_block, ee_len)) {
3956 newblock = map->m_lblk - ee_block + ee_start;
3957 /* number of remaining blocks in the extent */
3958 allocated = ee_len - (map->m_lblk - ee_block);
3959 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3960 ee_block, ee_len, newblock);
3963 * Do not put uninitialized extent
3966 if (!ext4_ext_is_uninitialized(ex)) {
3967 ext4_ext_put_in_cache(inode, ee_block,
3971 allocated = ext4_ext_handle_uninitialized_extents(
3972 handle, inode, map, path, flags,
3973 allocated, newblock);
3978 if ((sbi->s_cluster_ratio > 1) &&
3979 ext4_find_delalloc_cluster(inode, map->m_lblk))
3980 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3983 * requested block isn't allocated yet;
3984 * we couldn't try to create block if create flag is zero
3986 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3988 * put just found gap into cache to speed up
3989 * subsequent requests
3991 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
3996 * Okay, we need to do block allocation.
3998 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
3999 newex.ee_block = cpu_to_le32(map->m_lblk);
4000 cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
4003 * If we are doing bigalloc, check to see if the extent returned
4004 * by ext4_ext_find_extent() implies a cluster we can use.
4006 if (cluster_offset && ex &&
4007 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4008 ar.len = allocated = map->m_len;
4009 newblock = map->m_pblk;
4010 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4011 goto got_allocated_blocks;
4014 /* find neighbour allocated blocks */
4015 ar.lleft = map->m_lblk;
4016 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4019 ar.lright = map->m_lblk;
4021 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4025 /* Check if the extent after searching to the right implies a
4026 * cluster we can use. */
4027 if ((sbi->s_cluster_ratio > 1) && ex2 &&
4028 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4029 ar.len = allocated = map->m_len;
4030 newblock = map->m_pblk;
4031 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4032 goto got_allocated_blocks;
4036 * See if request is beyond maximum number of blocks we can have in
4037 * a single extent. For an initialized extent this limit is
4038 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
4039 * EXT_UNINIT_MAX_LEN.
4041 if (map->m_len > EXT_INIT_MAX_LEN &&
4042 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4043 map->m_len = EXT_INIT_MAX_LEN;
4044 else if (map->m_len > EXT_UNINIT_MAX_LEN &&
4045 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4046 map->m_len = EXT_UNINIT_MAX_LEN;
4048 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4049 newex.ee_len = cpu_to_le16(map->m_len);
4050 err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4052 allocated = ext4_ext_get_actual_len(&newex);
4054 allocated = map->m_len;
4056 /* allocate new block */
4058 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4059 ar.logical = map->m_lblk;
4061 * We calculate the offset from the beginning of the cluster
4062 * for the logical block number, since when we allocate a
4063 * physical cluster, the physical block should start at the
4064 * same offset from the beginning of the cluster. This is
4065 * needed so that future calls to get_implied_cluster_alloc()
4068 offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
4069 ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4071 ar.logical -= offset;
4072 if (S_ISREG(inode->i_mode))
4073 ar.flags = EXT4_MB_HINT_DATA;
4075 /* disable in-core preallocation for non-regular files */
4077 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4078 ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4079 newblock = ext4_mb_new_blocks(handle, &ar, &err);
4082 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4083 ar.goal, newblock, allocated);
4085 allocated_clusters = ar.len;
4086 ar.len = EXT4_C2B(sbi, ar.len) - offset;
4087 if (ar.len > allocated)
4090 got_allocated_blocks:
4091 /* try to insert new extent into found leaf and return */
4092 ext4_ext_store_pblock(&newex, newblock + offset);
4093 newex.ee_len = cpu_to_le16(ar.len);
4094 /* Mark uninitialized */
4095 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4096 ext4_ext_mark_uninitialized(&newex);
4098 * io_end structure was created for every IO write to an
4099 * uninitialized extent. To avoid unnecessary conversion,
4100 * here we flag the IO that really needs the conversion.
4101 * For non asycn direct IO case, flag the inode state
4102 * that we need to perform conversion when IO is done.
4104 if ((flags & EXT4_GET_BLOCKS_PRE_IO))
4106 if (ext4_should_dioread_nolock(inode))
4107 map->m_flags |= EXT4_MAP_UNINIT;
4111 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4112 err = check_eofblocks_fl(handle, inode, map->m_lblk,
4115 err = ext4_ext_insert_extent(handle, inode, path,
4118 if (!err && set_unwritten) {
4120 ext4_set_io_unwritten_flag(inode, io);
4122 ext4_set_inode_state(inode,
4123 EXT4_STATE_DIO_UNWRITTEN);
4126 if (err && free_on_err) {
4127 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4128 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4129 /* free data blocks we just allocated */
4130 /* not a good idea to call discard here directly,
4131 * but otherwise we'd need to call it every free() */
4132 ext4_discard_preallocations(inode);
4133 ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
4134 ext4_ext_get_actual_len(&newex), fb_flags);
4138 /* previous routine could use block we allocated */
4139 newblock = ext4_ext_pblock(&newex);
4140 allocated = ext4_ext_get_actual_len(&newex);
4141 if (allocated > map->m_len)
4142 allocated = map->m_len;
4143 map->m_flags |= EXT4_MAP_NEW;
4146 * Update reserved blocks/metadata blocks after successful
4147 * block allocation which had been deferred till now.
4149 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4150 unsigned int reserved_clusters;
4152 * Check how many clusters we had reserved this allocated range
4154 reserved_clusters = get_reserved_cluster_alloc(inode,
4155 map->m_lblk, allocated);
4156 if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4157 if (reserved_clusters) {
4159 * We have clusters reserved for this range.
4160 * But since we are not doing actual allocation
4161 * and are simply using blocks from previously
4162 * allocated cluster, we should release the
4163 * reservation and not claim quota.
4165 ext4_da_update_reserve_space(inode,
4166 reserved_clusters, 0);
4169 BUG_ON(allocated_clusters < reserved_clusters);
4170 /* We will claim quota for all newly allocated blocks.*/
4171 ext4_da_update_reserve_space(inode, allocated_clusters,
4173 if (reserved_clusters < allocated_clusters) {
4174 struct ext4_inode_info *ei = EXT4_I(inode);
4175 int reservation = allocated_clusters -
4178 * It seems we claimed few clusters outside of
4179 * the range of this allocation. We should give
4180 * it back to the reservation pool. This can
4181 * happen in the following case:
4183 * * Suppose s_cluster_ratio is 4 (i.e., each
4184 * cluster has 4 blocks. Thus, the clusters
4185 * are [0-3],[4-7],[8-11]...
4186 * * First comes delayed allocation write for
4187 * logical blocks 10 & 11. Since there were no
4188 * previous delayed allocated blocks in the
4189 * range [8-11], we would reserve 1 cluster
4191 * * Next comes write for logical blocks 3 to 8.
4192 * In this case, we will reserve 2 clusters
4193 * (for [0-3] and [4-7]; and not for [8-11] as
4194 * that range has a delayed allocated blocks.
4195 * Thus total reserved clusters now becomes 3.
4196 * * Now, during the delayed allocation writeout
4197 * time, we will first write blocks [3-8] and
4198 * allocate 3 clusters for writing these
4199 * blocks. Also, we would claim all these
4200 * three clusters above.
4201 * * Now when we come here to writeout the
4202 * blocks [10-11], we would expect to claim
4203 * the reservation of 1 cluster we had made
4204 * (and we would claim it since there are no
4205 * more delayed allocated blocks in the range
4206 * [8-11]. But our reserved cluster count had
4207 * already gone to 0.
4209 * Thus, at the step 4 above when we determine
4210 * that there are still some unwritten delayed
4211 * allocated blocks outside of our current
4212 * block range, we should increment the
4213 * reserved clusters count so that when the
4214 * remaining blocks finally gets written, we
4217 dquot_reserve_block(inode,
4218 EXT4_C2B(sbi, reservation));
4219 spin_lock(&ei->i_block_reservation_lock);
4220 ei->i_reserved_data_blocks += reservation;
4221 spin_unlock(&ei->i_block_reservation_lock);
4227 * Cache the extent and update transaction to commit on fdatasync only
4228 * when it is _not_ an uninitialized extent.
4230 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
4231 ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
4232 ext4_update_inode_fsync_trans(handle, inode, 1);
4234 ext4_update_inode_fsync_trans(handle, inode, 0);
4236 if (allocated > map->m_len)
4237 allocated = map->m_len;
4238 ext4_ext_show_leaf(inode, path);
4239 map->m_flags |= EXT4_MAP_MAPPED;
4240 map->m_pblk = newblock;
4241 map->m_len = allocated;
4244 ext4_ext_drop_refs(path);
4249 trace_ext4_ext_map_blocks_exit(inode, map, err ? err : allocated);
4251 return err ? err : allocated;
4254 void ext4_ext_truncate(struct inode *inode)
4256 struct address_space *mapping = inode->i_mapping;
4257 struct super_block *sb = inode->i_sb;
4258 ext4_lblk_t last_block;
4264 * finish any pending end_io work so we won't run the risk of
4265 * converting any truncated blocks to initialized later
4267 ext4_flush_unwritten_io(inode);
4270 * probably first extent we're gonna free will be last in block
4272 err = ext4_writepage_trans_blocks(inode);
4273 handle = ext4_journal_start(inode, err);
4277 if (inode->i_size % PAGE_CACHE_SIZE != 0) {
4278 page_len = PAGE_CACHE_SIZE -
4279 (inode->i_size & (PAGE_CACHE_SIZE - 1));
4281 err = ext4_discard_partial_page_buffers(handle,
4282 mapping, inode->i_size, page_len, 0);
4288 if (ext4_orphan_add(handle, inode))
4291 down_write(&EXT4_I(inode)->i_data_sem);
4292 ext4_ext_invalidate_cache(inode);
4294 ext4_discard_preallocations(inode);
4297 * TODO: optimization is possible here.
4298 * Probably we need not scan at all,
4299 * because page truncation is enough.
4302 /* we have to know where to truncate from in crash case */
4303 EXT4_I(inode)->i_disksize = inode->i_size;
4304 ext4_mark_inode_dirty(handle, inode);
4306 last_block = (inode->i_size + sb->s_blocksize - 1)
4307 >> EXT4_BLOCK_SIZE_BITS(sb);
4308 err = ext4_es_remove_extent(inode, last_block,
4309 EXT_MAX_BLOCKS - last_block);
4310 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4312 /* In a multi-transaction truncate, we only make the final
4313 * transaction synchronous.
4316 ext4_handle_sync(handle);
4318 up_write(&EXT4_I(inode)->i_data_sem);
4322 * If this was a simple ftruncate() and the file will remain alive,
4323 * then we need to clear up the orphan record which we created above.
4324 * However, if this was a real unlink then we were called by
4325 * ext4_delete_inode(), and we allow that function to clean up the
4326 * orphan info for us.
4329 ext4_orphan_del(handle, inode);
4331 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4332 ext4_mark_inode_dirty(handle, inode);
4333 ext4_journal_stop(handle);
4336 static void ext4_falloc_update_inode(struct inode *inode,
4337 int mode, loff_t new_size, int update_ctime)
4339 struct timespec now;
4342 now = current_fs_time(inode->i_sb);
4343 if (!timespec_equal(&inode->i_ctime, &now))
4344 inode->i_ctime = now;
4347 * Update only when preallocation was requested beyond
4350 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4351 if (new_size > i_size_read(inode))
4352 i_size_write(inode, new_size);
4353 if (new_size > EXT4_I(inode)->i_disksize)
4354 ext4_update_i_disksize(inode, new_size);
4357 * Mark that we allocate beyond EOF so the subsequent truncate
4358 * can proceed even if the new size is the same as i_size.
4360 if (new_size > i_size_read(inode))
4361 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4367 * preallocate space for a file. This implements ext4's fallocate file
4368 * operation, which gets called from sys_fallocate system call.
4369 * For block-mapped files, posix_fallocate should fall back to the method
4370 * of writing zeroes to the required new blocks (the same behavior which is
4371 * expected for file systems which do not support fallocate() system call).
4373 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4375 struct inode *inode = file->f_path.dentry->d_inode;
4378 unsigned int max_blocks;
4383 struct ext4_map_blocks map;
4384 unsigned int credits, blkbits = inode->i_blkbits;
4387 * currently supporting (pre)allocate mode for extent-based
4390 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4393 /* Return error if mode is not supported */
4394 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
4397 if (mode & FALLOC_FL_PUNCH_HOLE)
4398 return ext4_punch_hole(file, offset, len);
4400 ret = ext4_convert_inline_data(inode);
4404 trace_ext4_fallocate_enter(inode, offset, len, mode);
4405 map.m_lblk = offset >> blkbits;
4407 * We can't just convert len to max_blocks because
4408 * If blocksize = 4096 offset = 3072 and len = 2048
4410 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4413 * credits to insert 1 extent into extent tree
4415 credits = ext4_chunk_trans_blocks(inode, max_blocks);
4416 mutex_lock(&inode->i_mutex);
4417 ret = inode_newsize_ok(inode, (len + offset));
4419 mutex_unlock(&inode->i_mutex);
4420 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4423 flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4424 if (mode & FALLOC_FL_KEEP_SIZE)
4425 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4427 * Don't normalize the request if it can fit in one extent so
4428 * that it doesn't get unnecessarily split into multiple
4431 if (len <= EXT_UNINIT_MAX_LEN << blkbits)
4432 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4434 /* Prevent race condition between unwritten */
4435 ext4_flush_unwritten_io(inode);
4437 while (ret >= 0 && ret < max_blocks) {
4438 map.m_lblk = map.m_lblk + ret;
4439 map.m_len = max_blocks = max_blocks - ret;
4440 handle = ext4_journal_start(inode, credits);
4441 if (IS_ERR(handle)) {
4442 ret = PTR_ERR(handle);
4445 ret = ext4_map_blocks(handle, inode, &map, flags);
4449 printk(KERN_ERR "%s: ext4_ext_map_blocks "
4450 "returned error inode#%lu, block=%u, "
4451 "max_blocks=%u", __func__,
4452 inode->i_ino, map.m_lblk, max_blocks);
4454 ext4_mark_inode_dirty(handle, inode);
4455 ret2 = ext4_journal_stop(handle);
4458 if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4459 blkbits) >> blkbits))
4460 new_size = offset + len;
4462 new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4464 ext4_falloc_update_inode(inode, mode, new_size,
4465 (map.m_flags & EXT4_MAP_NEW));
4466 ext4_mark_inode_dirty(handle, inode);
4467 if ((file->f_flags & O_SYNC) && ret >= max_blocks)
4468 ext4_handle_sync(handle);
4469 ret2 = ext4_journal_stop(handle);
4473 if (ret == -ENOSPC &&
4474 ext4_should_retry_alloc(inode->i_sb, &retries)) {
4478 mutex_unlock(&inode->i_mutex);
4479 trace_ext4_fallocate_exit(inode, offset, max_blocks,
4480 ret > 0 ? ret2 : ret);
4481 return ret > 0 ? ret2 : ret;
4485 * This function convert a range of blocks to written extents
4486 * The caller of this function will pass the start offset and the size.
4487 * all unwritten extents within this range will be converted to
4490 * This function is called from the direct IO end io call back
4491 * function, to convert the fallocated extents after IO is completed.
4492 * Returns 0 on success.
4494 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
4498 unsigned int max_blocks;
4501 struct ext4_map_blocks map;
4502 unsigned int credits, blkbits = inode->i_blkbits;
4504 map.m_lblk = offset >> blkbits;
4506 * We can't just convert len to max_blocks because
4507 * If blocksize = 4096 offset = 3072 and len = 2048
4509 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4512 * credits to insert 1 extent into extent tree
4514 credits = ext4_chunk_trans_blocks(inode, max_blocks);
4515 while (ret >= 0 && ret < max_blocks) {
4517 map.m_len = (max_blocks -= ret);
4518 handle = ext4_journal_start(inode, credits);
4519 if (IS_ERR(handle)) {
4520 ret = PTR_ERR(handle);
4523 ret = ext4_map_blocks(handle, inode, &map,
4524 EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4527 ext4_msg(inode->i_sb, KERN_ERR,
4528 "%s:%d: inode #%lu: block %u: len %u: "
4529 "ext4_ext_map_blocks returned %d",
4530 __func__, __LINE__, inode->i_ino, map.m_lblk,
4533 ext4_mark_inode_dirty(handle, inode);
4534 ret2 = ext4_journal_stop(handle);
4535 if (ret <= 0 || ret2 )
4538 return ret > 0 ? ret2 : ret;
4542 * If newex is not existing extent (newex->ec_start equals zero) find
4543 * delayed extent at start of newex and update newex accordingly and
4544 * return start of the next delayed extent.
4546 * If newex is existing extent (newex->ec_start is not equal zero)
4547 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
4548 * extent found. Leave newex unmodified.
4550 static int ext4_find_delayed_extent(struct inode *inode,
4551 struct ext4_ext_cache *newex)
4553 struct extent_status es;
4554 ext4_lblk_t next_del;
4556 es.start = newex->ec_block;
4557 next_del = ext4_es_find_extent(inode, &es);
4559 if (newex->ec_start == 0) {
4561 * No extent in extent-tree contains block @newex->ec_start,
4562 * then the block may stay in 1)a hole or 2)delayed-extent.
4568 if (es.start > newex->ec_block) {
4570 newex->ec_len = min(es.start - newex->ec_block,
4575 newex->ec_len = es.start + es.len - newex->ec_block;
4580 /* fiemap flags we can handle specified here */
4581 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4583 static int ext4_xattr_fiemap(struct inode *inode,
4584 struct fiemap_extent_info *fieinfo)
4588 __u32 flags = FIEMAP_EXTENT_LAST;
4589 int blockbits = inode->i_sb->s_blocksize_bits;
4593 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4594 struct ext4_iloc iloc;
4595 int offset; /* offset of xattr in inode */
4597 error = ext4_get_inode_loc(inode, &iloc);
4600 physical = iloc.bh->b_blocknr << blockbits;
4601 offset = EXT4_GOOD_OLD_INODE_SIZE +
4602 EXT4_I(inode)->i_extra_isize;
4604 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4605 flags |= FIEMAP_EXTENT_DATA_INLINE;
4607 } else { /* external block */
4608 physical = EXT4_I(inode)->i_file_acl << blockbits;
4609 length = inode->i_sb->s_blocksize;
4613 error = fiemap_fill_next_extent(fieinfo, 0, physical,
4615 return (error < 0 ? error : 0);
4619 * ext4_ext_punch_hole
4621 * Punches a hole of "length" bytes in a file starting
4624 * @inode: The inode of the file to punch a hole in
4625 * @offset: The starting byte offset of the hole
4626 * @length: The length of the hole
4628 * Returns the number of blocks removed or negative on err
4630 int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length)
4632 struct inode *inode = file->f_path.dentry->d_inode;
4633 struct super_block *sb = inode->i_sb;
4634 ext4_lblk_t first_block, stop_block;
4635 struct address_space *mapping = inode->i_mapping;
4637 loff_t first_page, last_page, page_len;
4638 loff_t first_page_offset, last_page_offset;
4639 int credits, err = 0;
4642 * Write out all dirty pages to avoid race conditions
4643 * Then release them.
4645 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4646 err = filemap_write_and_wait_range(mapping,
4647 offset, offset + length - 1);
4653 mutex_lock(&inode->i_mutex);
4654 /* It's not possible punch hole on append only file */
4655 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4659 if (IS_SWAPFILE(inode)) {
4664 /* No need to punch hole beyond i_size */
4665 if (offset >= inode->i_size)
4669 * If the hole extends beyond i_size, set the hole
4670 * to end after the page that contains i_size
4672 if (offset + length > inode->i_size) {
4673 length = inode->i_size +
4674 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
4678 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
4679 last_page = (offset + length) >> PAGE_CACHE_SHIFT;
4681 first_page_offset = first_page << PAGE_CACHE_SHIFT;
4682 last_page_offset = last_page << PAGE_CACHE_SHIFT;
4684 /* Now release the pages */
4685 if (last_page_offset > first_page_offset) {
4686 truncate_pagecache_range(inode, first_page_offset,
4687 last_page_offset - 1);
4690 /* Wait all existing dio workers, newcomers will block on i_mutex */
4691 ext4_inode_block_unlocked_dio(inode);
4692 err = ext4_flush_unwritten_io(inode);
4695 inode_dio_wait(inode);
4697 credits = ext4_writepage_trans_blocks(inode);
4698 handle = ext4_journal_start(inode, credits);
4699 if (IS_ERR(handle)) {
4700 err = PTR_ERR(handle);
4706 * Now we need to zero out the non-page-aligned data in the
4707 * pages at the start and tail of the hole, and unmap the buffer
4708 * heads for the block aligned regions of the page that were
4709 * completely zeroed.
4711 if (first_page > last_page) {
4713 * If the file space being truncated is contained within a page
4714 * just zero out and unmap the middle of that page
4716 err = ext4_discard_partial_page_buffers(handle,
4717 mapping, offset, length, 0);
4723 * zero out and unmap the partial page that contains
4724 * the start of the hole
4726 page_len = first_page_offset - offset;
4728 err = ext4_discard_partial_page_buffers(handle, mapping,
4729 offset, page_len, 0);
4735 * zero out and unmap the partial page that contains
4736 * the end of the hole
4738 page_len = offset + length - last_page_offset;
4740 err = ext4_discard_partial_page_buffers(handle, mapping,
4741 last_page_offset, page_len, 0);
4748 * If i_size is contained in the last page, we need to
4749 * unmap and zero the partial page after i_size
4751 if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
4752 inode->i_size % PAGE_CACHE_SIZE != 0) {
4754 page_len = PAGE_CACHE_SIZE -
4755 (inode->i_size & (PAGE_CACHE_SIZE - 1));
4758 err = ext4_discard_partial_page_buffers(handle,
4759 mapping, inode->i_size, page_len, 0);
4766 first_block = (offset + sb->s_blocksize - 1) >>
4767 EXT4_BLOCK_SIZE_BITS(sb);
4768 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4770 /* If there are no blocks to remove, return now */
4771 if (first_block >= stop_block)
4774 down_write(&EXT4_I(inode)->i_data_sem);
4775 ext4_ext_invalidate_cache(inode);
4776 ext4_discard_preallocations(inode);
4778 err = ext4_es_remove_extent(inode, first_block,
4779 stop_block - first_block);
4780 err = ext4_ext_remove_space(inode, first_block, stop_block - 1);
4782 ext4_ext_invalidate_cache(inode);
4783 ext4_discard_preallocations(inode);
4786 ext4_handle_sync(handle);
4788 up_write(&EXT4_I(inode)->i_data_sem);
4791 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4792 ext4_mark_inode_dirty(handle, inode);
4793 ext4_journal_stop(handle);
4795 ext4_inode_resume_unlocked_dio(inode);
4797 mutex_unlock(&inode->i_mutex);
4801 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4802 __u64 start, __u64 len)
4804 ext4_lblk_t start_blk;
4807 if (ext4_has_inline_data(inode)) {
4810 error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline);
4816 /* fallback to generic here if not in extents fmt */
4817 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4818 return generic_block_fiemap(inode, fieinfo, start, len,
4821 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4824 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4825 error = ext4_xattr_fiemap(inode, fieinfo);
4827 ext4_lblk_t len_blks;
4830 start_blk = start >> inode->i_sb->s_blocksize_bits;
4831 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4832 if (last_blk >= EXT_MAX_BLOCKS)
4833 last_blk = EXT_MAX_BLOCKS-1;
4834 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4837 * Walk the extent tree gathering extent information
4838 * and pushing extents back to the user.
4840 error = ext4_fill_fiemap_extents(inode, start_blk,