tizen 2.3.1 release
[kernel/linux-3.0.git] / fs / ext3 / inode.c
1 /*
2  *  linux/fs/ext3/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/ext3_jbd.h>
29 #include <linux/jbd.h>
30 #include <linux/highuid.h>
31 #include <linux/pagemap.h>
32 #include <linux/quotaops.h>
33 #include <linux/string.h>
34 #include <linux/buffer_head.h>
35 #include <linux/writeback.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include <linux/fiemap.h>
40 #include <linux/namei.h>
41 #include "xattr.h"
42 #include "acl.h"
43
44 static int ext3_writepage_trans_blocks(struct inode *inode);
45
46 /*
47  * Test whether an inode is a fast symlink.
48  */
49 static int ext3_inode_is_fast_symlink(struct inode *inode)
50 {
51         int ea_blocks = EXT3_I(inode)->i_file_acl ?
52                 (inode->i_sb->s_blocksize >> 9) : 0;
53
54         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
55 }
56
57 /*
58  * The ext3 forget function must perform a revoke if we are freeing data
59  * which has been journaled.  Metadata (eg. indirect blocks) must be
60  * revoked in all cases.
61  *
62  * "bh" may be NULL: a metadata block may have been freed from memory
63  * but there may still be a record of it in the journal, and that record
64  * still needs to be revoked.
65  */
66 int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
67                         struct buffer_head *bh, ext3_fsblk_t blocknr)
68 {
69         int err;
70
71         might_sleep();
72
73         BUFFER_TRACE(bh, "enter");
74
75         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
76                   "data mode %lx\n",
77                   bh, is_metadata, inode->i_mode,
78                   test_opt(inode->i_sb, DATA_FLAGS));
79
80         /* Never use the revoke function if we are doing full data
81          * journaling: there is no need to, and a V1 superblock won't
82          * support it.  Otherwise, only skip the revoke on un-journaled
83          * data blocks. */
84
85         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
86             (!is_metadata && !ext3_should_journal_data(inode))) {
87                 if (bh) {
88                         BUFFER_TRACE(bh, "call journal_forget");
89                         return ext3_journal_forget(handle, bh);
90                 }
91                 return 0;
92         }
93
94         /*
95          * data!=journal && (is_metadata || should_journal_data(inode))
96          */
97         BUFFER_TRACE(bh, "call ext3_journal_revoke");
98         err = ext3_journal_revoke(handle, blocknr, bh);
99         if (err)
100                 ext3_abort(inode->i_sb, __func__,
101                            "error %d when attempting revoke", err);
102         BUFFER_TRACE(bh, "exit");
103         return err;
104 }
105
106 /*
107  * Work out how many blocks we need to proceed with the next chunk of a
108  * truncate transaction.
109  */
110 static unsigned long blocks_for_truncate(struct inode *inode)
111 {
112         unsigned long needed;
113
114         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
115
116         /* Give ourselves just enough room to cope with inodes in which
117          * i_blocks is corrupt: we've seen disk corruptions in the past
118          * which resulted in random data in an inode which looked enough
119          * like a regular file for ext3 to try to delete it.  Things
120          * will go a bit crazy if that happens, but at least we should
121          * try not to panic the whole kernel. */
122         if (needed < 2)
123                 needed = 2;
124
125         /* But we need to bound the transaction so we don't overflow the
126          * journal. */
127         if (needed > EXT3_MAX_TRANS_DATA)
128                 needed = EXT3_MAX_TRANS_DATA;
129
130         return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
131 }
132
133 /*
134  * Truncate transactions can be complex and absolutely huge.  So we need to
135  * be able to restart the transaction at a conventient checkpoint to make
136  * sure we don't overflow the journal.
137  *
138  * start_transaction gets us a new handle for a truncate transaction,
139  * and extend_transaction tries to extend the existing one a bit.  If
140  * extend fails, we need to propagate the failure up and restart the
141  * transaction in the top-level truncate loop. --sct
142  */
143 static handle_t *start_transaction(struct inode *inode)
144 {
145         handle_t *result;
146
147         result = ext3_journal_start(inode, blocks_for_truncate(inode));
148         if (!IS_ERR(result))
149                 return result;
150
151         ext3_std_error(inode->i_sb, PTR_ERR(result));
152         return result;
153 }
154
155 /*
156  * Try to extend this transaction for the purposes of truncation.
157  *
158  * Returns 0 if we managed to create more room.  If we can't create more
159  * room, and the transaction must be restarted we return 1.
160  */
161 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
162 {
163         if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
164                 return 0;
165         if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
166                 return 0;
167         return 1;
168 }
169
170 /*
171  * Restart the transaction associated with *handle.  This does a commit,
172  * so before we call here everything must be consistently dirtied against
173  * this transaction.
174  */
175 static int truncate_restart_transaction(handle_t *handle, struct inode *inode)
176 {
177         int ret;
178
179         jbd_debug(2, "restarting handle %p\n", handle);
180         /*
181          * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
182          * At this moment, get_block can be called only for blocks inside
183          * i_size since page cache has been already dropped and writes are
184          * blocked by i_mutex. So we can safely drop the truncate_mutex.
185          */
186         mutex_unlock(&EXT3_I(inode)->truncate_mutex);
187         ret = ext3_journal_restart(handle, blocks_for_truncate(inode));
188         mutex_lock(&EXT3_I(inode)->truncate_mutex);
189         return ret;
190 }
191
192 /*
193  * Called at inode eviction from icache
194  */
195 void ext3_evict_inode (struct inode *inode)
196 {
197         struct ext3_block_alloc_info *rsv;
198         handle_t *handle;
199         int want_delete = 0;
200
201         if (!inode->i_nlink && !is_bad_inode(inode)) {
202                 dquot_initialize(inode);
203                 want_delete = 1;
204         }
205
206         truncate_inode_pages(&inode->i_data, 0);
207
208         ext3_discard_reservation(inode);
209         rsv = EXT3_I(inode)->i_block_alloc_info;
210         EXT3_I(inode)->i_block_alloc_info = NULL;
211         if (unlikely(rsv))
212                 kfree(rsv);
213
214         if (!want_delete)
215                 goto no_delete;
216
217         handle = start_transaction(inode);
218         if (IS_ERR(handle)) {
219                 /*
220                  * If we're going to skip the normal cleanup, we still need to
221                  * make sure that the in-core orphan linked list is properly
222                  * cleaned up.
223                  */
224                 ext3_orphan_del(NULL, inode);
225                 goto no_delete;
226         }
227
228         if (IS_SYNC(inode))
229                 handle->h_sync = 1;
230         inode->i_size = 0;
231         if (inode->i_blocks)
232                 ext3_truncate(inode);
233         /*
234          * Kill off the orphan record which ext3_truncate created.
235          * AKPM: I think this can be inside the above `if'.
236          * Note that ext3_orphan_del() has to be able to cope with the
237          * deletion of a non-existent orphan - this is because we don't
238          * know if ext3_truncate() actually created an orphan record.
239          * (Well, we could do this if we need to, but heck - it works)
240          */
241         ext3_orphan_del(handle, inode);
242         EXT3_I(inode)->i_dtime  = get_seconds();
243
244         /*
245          * One subtle ordering requirement: if anything has gone wrong
246          * (transaction abort, IO errors, whatever), then we can still
247          * do these next steps (the fs will already have been marked as
248          * having errors), but we can't free the inode if the mark_dirty
249          * fails.
250          */
251         if (ext3_mark_inode_dirty(handle, inode)) {
252                 /* If that failed, just dquot_drop() and be done with that */
253                 dquot_drop(inode);
254                 end_writeback(inode);
255         } else {
256                 ext3_xattr_delete_inode(handle, inode);
257                 dquot_free_inode(inode);
258                 dquot_drop(inode);
259                 end_writeback(inode);
260                 ext3_free_inode(handle, inode);
261         }
262         ext3_journal_stop(handle);
263         return;
264 no_delete:
265         end_writeback(inode);
266         dquot_drop(inode);
267 }
268
269 typedef struct {
270         __le32  *p;
271         __le32  key;
272         struct buffer_head *bh;
273 } Indirect;
274
275 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
276 {
277         p->key = *(p->p = v);
278         p->bh = bh;
279 }
280
281 static int verify_chain(Indirect *from, Indirect *to)
282 {
283         while (from <= to && from->key == *from->p)
284                 from++;
285         return (from > to);
286 }
287
288 /**
289  *      ext3_block_to_path - parse the block number into array of offsets
290  *      @inode: inode in question (we are only interested in its superblock)
291  *      @i_block: block number to be parsed
292  *      @offsets: array to store the offsets in
293  *      @boundary: set this non-zero if the referred-to block is likely to be
294  *             followed (on disk) by an indirect block.
295  *
296  *      To store the locations of file's data ext3 uses a data structure common
297  *      for UNIX filesystems - tree of pointers anchored in the inode, with
298  *      data blocks at leaves and indirect blocks in intermediate nodes.
299  *      This function translates the block number into path in that tree -
300  *      return value is the path length and @offsets[n] is the offset of
301  *      pointer to (n+1)th node in the nth one. If @block is out of range
302  *      (negative or too large) warning is printed and zero returned.
303  *
304  *      Note: function doesn't find node addresses, so no IO is needed. All
305  *      we need to know is the capacity of indirect blocks (taken from the
306  *      inode->i_sb).
307  */
308
309 /*
310  * Portability note: the last comparison (check that we fit into triple
311  * indirect block) is spelled differently, because otherwise on an
312  * architecture with 32-bit longs and 8Kb pages we might get into trouble
313  * if our filesystem had 8Kb blocks. We might use long long, but that would
314  * kill us on x86. Oh, well, at least the sign propagation does not matter -
315  * i_block would have to be negative in the very beginning, so we would not
316  * get there at all.
317  */
318
319 static int ext3_block_to_path(struct inode *inode,
320                         long i_block, int offsets[4], int *boundary)
321 {
322         int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
323         int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
324         const long direct_blocks = EXT3_NDIR_BLOCKS,
325                 indirect_blocks = ptrs,
326                 double_blocks = (1 << (ptrs_bits * 2));
327         int n = 0;
328         int final = 0;
329
330         if (i_block < 0) {
331                 ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
332         } else if (i_block < direct_blocks) {
333                 offsets[n++] = i_block;
334                 final = direct_blocks;
335         } else if ( (i_block -= direct_blocks) < indirect_blocks) {
336                 offsets[n++] = EXT3_IND_BLOCK;
337                 offsets[n++] = i_block;
338                 final = ptrs;
339         } else if ((i_block -= indirect_blocks) < double_blocks) {
340                 offsets[n++] = EXT3_DIND_BLOCK;
341                 offsets[n++] = i_block >> ptrs_bits;
342                 offsets[n++] = i_block & (ptrs - 1);
343                 final = ptrs;
344         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
345                 offsets[n++] = EXT3_TIND_BLOCK;
346                 offsets[n++] = i_block >> (ptrs_bits * 2);
347                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
348                 offsets[n++] = i_block & (ptrs - 1);
349                 final = ptrs;
350         } else {
351                 ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
352         }
353         if (boundary)
354                 *boundary = final - 1 - (i_block & (ptrs - 1));
355         return n;
356 }
357
358 /**
359  *      ext3_get_branch - read the chain of indirect blocks leading to data
360  *      @inode: inode in question
361  *      @depth: depth of the chain (1 - direct pointer, etc.)
362  *      @offsets: offsets of pointers in inode/indirect blocks
363  *      @chain: place to store the result
364  *      @err: here we store the error value
365  *
366  *      Function fills the array of triples <key, p, bh> and returns %NULL
367  *      if everything went OK or the pointer to the last filled triple
368  *      (incomplete one) otherwise. Upon the return chain[i].key contains
369  *      the number of (i+1)-th block in the chain (as it is stored in memory,
370  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
371  *      number (it points into struct inode for i==0 and into the bh->b_data
372  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
373  *      block for i>0 and NULL for i==0. In other words, it holds the block
374  *      numbers of the chain, addresses they were taken from (and where we can
375  *      verify that chain did not change) and buffer_heads hosting these
376  *      numbers.
377  *
378  *      Function stops when it stumbles upon zero pointer (absent block)
379  *              (pointer to last triple returned, *@err == 0)
380  *      or when it gets an IO error reading an indirect block
381  *              (ditto, *@err == -EIO)
382  *      or when it notices that chain had been changed while it was reading
383  *              (ditto, *@err == -EAGAIN)
384  *      or when it reads all @depth-1 indirect blocks successfully and finds
385  *      the whole chain, all way to the data (returns %NULL, *err == 0).
386  */
387 static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
388                                  Indirect chain[4], int *err)
389 {
390         struct super_block *sb = inode->i_sb;
391         Indirect *p = chain;
392         struct buffer_head *bh;
393
394         *err = 0;
395         /* i_data is not going away, no lock needed */
396         add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
397         if (!p->key)
398                 goto no_block;
399         while (--depth) {
400                 bh = sb_bread(sb, le32_to_cpu(p->key));
401                 if (!bh)
402                         goto failure;
403                 /* Reader: pointers */
404                 if (!verify_chain(chain, p))
405                         goto changed;
406                 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
407                 /* Reader: end */
408                 if (!p->key)
409                         goto no_block;
410         }
411         return NULL;
412
413 changed:
414         brelse(bh);
415         *err = -EAGAIN;
416         goto no_block;
417 failure:
418         *err = -EIO;
419 no_block:
420         return p;
421 }
422
423 /**
424  *      ext3_find_near - find a place for allocation with sufficient locality
425  *      @inode: owner
426  *      @ind: descriptor of indirect block.
427  *
428  *      This function returns the preferred place for block allocation.
429  *      It is used when heuristic for sequential allocation fails.
430  *      Rules are:
431  *        + if there is a block to the left of our position - allocate near it.
432  *        + if pointer will live in indirect block - allocate near that block.
433  *        + if pointer will live in inode - allocate in the same
434  *          cylinder group.
435  *
436  * In the latter case we colour the starting block by the callers PID to
437  * prevent it from clashing with concurrent allocations for a different inode
438  * in the same block group.   The PID is used here so that functionally related
439  * files will be close-by on-disk.
440  *
441  *      Caller must make sure that @ind is valid and will stay that way.
442  */
443 static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
444 {
445         struct ext3_inode_info *ei = EXT3_I(inode);
446         __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
447         __le32 *p;
448         ext3_fsblk_t bg_start;
449         ext3_grpblk_t colour;
450
451         /* Try to find previous block */
452         for (p = ind->p - 1; p >= start; p--) {
453                 if (*p)
454                         return le32_to_cpu(*p);
455         }
456
457         /* No such thing, so let's try location of indirect block */
458         if (ind->bh)
459                 return ind->bh->b_blocknr;
460
461         /*
462          * It is going to be referred to from the inode itself? OK, just put it
463          * into the same cylinder group then.
464          */
465         bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
466         colour = (current->pid % 16) *
467                         (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
468         return bg_start + colour;
469 }
470
471 /**
472  *      ext3_find_goal - find a preferred place for allocation.
473  *      @inode: owner
474  *      @block:  block we want
475  *      @partial: pointer to the last triple within a chain
476  *
477  *      Normally this function find the preferred place for block allocation,
478  *      returns it.
479  */
480
481 static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
482                                    Indirect *partial)
483 {
484         struct ext3_block_alloc_info *block_i;
485
486         block_i =  EXT3_I(inode)->i_block_alloc_info;
487
488         /*
489          * try the heuristic for sequential allocation,
490          * failing that at least try to get decent locality.
491          */
492         if (block_i && (block == block_i->last_alloc_logical_block + 1)
493                 && (block_i->last_alloc_physical_block != 0)) {
494                 return block_i->last_alloc_physical_block + 1;
495         }
496
497         return ext3_find_near(inode, partial);
498 }
499
500 /**
501  *      ext3_blks_to_allocate - Look up the block map and count the number
502  *      of direct blocks need to be allocated for the given branch.
503  *
504  *      @branch: chain of indirect blocks
505  *      @k: number of blocks need for indirect blocks
506  *      @blks: number of data blocks to be mapped.
507  *      @blocks_to_boundary:  the offset in the indirect block
508  *
509  *      return the total number of blocks to be allocate, including the
510  *      direct and indirect blocks.
511  */
512 static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
513                 int blocks_to_boundary)
514 {
515         unsigned long count = 0;
516
517         /*
518          * Simple case, [t,d]Indirect block(s) has not allocated yet
519          * then it's clear blocks on that path have not allocated
520          */
521         if (k > 0) {
522                 /* right now we don't handle cross boundary allocation */
523                 if (blks < blocks_to_boundary + 1)
524                         count += blks;
525                 else
526                         count += blocks_to_boundary + 1;
527                 return count;
528         }
529
530         count++;
531         while (count < blks && count <= blocks_to_boundary &&
532                 le32_to_cpu(*(branch[0].p + count)) == 0) {
533                 count++;
534         }
535         return count;
536 }
537
538 /**
539  *      ext3_alloc_blocks - multiple allocate blocks needed for a branch
540  *      @handle: handle for this transaction
541  *      @inode: owner
542  *      @goal: preferred place for allocation
543  *      @indirect_blks: the number of blocks need to allocate for indirect
544  *                      blocks
545  *      @blks:  number of blocks need to allocated for direct blocks
546  *      @new_blocks: on return it will store the new block numbers for
547  *      the indirect blocks(if needed) and the first direct block,
548  *      @err: here we store the error value
549  *
550  *      return the number of direct blocks allocated
551  */
552 static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
553                         ext3_fsblk_t goal, int indirect_blks, int blks,
554                         ext3_fsblk_t new_blocks[4], int *err)
555 {
556         int target, i;
557         unsigned long count = 0;
558         int index = 0;
559         ext3_fsblk_t current_block = 0;
560         int ret = 0;
561
562         /*
563          * Here we try to allocate the requested multiple blocks at once,
564          * on a best-effort basis.
565          * To build a branch, we should allocate blocks for
566          * the indirect blocks(if not allocated yet), and at least
567          * the first direct block of this branch.  That's the
568          * minimum number of blocks need to allocate(required)
569          */
570         target = blks + indirect_blks;
571
572         while (1) {
573                 count = target;
574                 /* allocating blocks for indirect blocks and direct blocks */
575                 current_block = ext3_new_blocks(handle,inode,goal,&count,err);
576                 if (*err)
577                         goto failed_out;
578
579                 target -= count;
580                 /* allocate blocks for indirect blocks */
581                 while (index < indirect_blks && count) {
582                         new_blocks[index++] = current_block++;
583                         count--;
584                 }
585
586                 if (count > 0)
587                         break;
588         }
589
590         /* save the new block number for the first direct block */
591         new_blocks[index] = current_block;
592
593         /* total number of blocks allocated for direct blocks */
594         ret = count;
595         *err = 0;
596         return ret;
597 failed_out:
598         for (i = 0; i <index; i++)
599                 ext3_free_blocks(handle, inode, new_blocks[i], 1);
600         return ret;
601 }
602
603 /**
604  *      ext3_alloc_branch - allocate and set up a chain of blocks.
605  *      @handle: handle for this transaction
606  *      @inode: owner
607  *      @indirect_blks: number of allocated indirect blocks
608  *      @blks: number of allocated direct blocks
609  *      @goal: preferred place for allocation
610  *      @offsets: offsets (in the blocks) to store the pointers to next.
611  *      @branch: place to store the chain in.
612  *
613  *      This function allocates blocks, zeroes out all but the last one,
614  *      links them into chain and (if we are synchronous) writes them to disk.
615  *      In other words, it prepares a branch that can be spliced onto the
616  *      inode. It stores the information about that chain in the branch[], in
617  *      the same format as ext3_get_branch() would do. We are calling it after
618  *      we had read the existing part of chain and partial points to the last
619  *      triple of that (one with zero ->key). Upon the exit we have the same
620  *      picture as after the successful ext3_get_block(), except that in one
621  *      place chain is disconnected - *branch->p is still zero (we did not
622  *      set the last link), but branch->key contains the number that should
623  *      be placed into *branch->p to fill that gap.
624  *
625  *      If allocation fails we free all blocks we've allocated (and forget
626  *      their buffer_heads) and return the error value the from failed
627  *      ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
628  *      as described above and return 0.
629  */
630 static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
631                         int indirect_blks, int *blks, ext3_fsblk_t goal,
632                         int *offsets, Indirect *branch)
633 {
634         int blocksize = inode->i_sb->s_blocksize;
635         int i, n = 0;
636         int err = 0;
637         struct buffer_head *bh;
638         int num;
639         ext3_fsblk_t new_blocks[4];
640         ext3_fsblk_t current_block;
641
642         num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
643                                 *blks, new_blocks, &err);
644         if (err)
645                 return err;
646
647         branch[0].key = cpu_to_le32(new_blocks[0]);
648         /*
649          * metadata blocks and data blocks are allocated.
650          */
651         for (n = 1; n <= indirect_blks;  n++) {
652                 /*
653                  * Get buffer_head for parent block, zero it out
654                  * and set the pointer to new one, then send
655                  * parent to disk.
656                  */
657                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
658                 branch[n].bh = bh;
659                 lock_buffer(bh);
660                 BUFFER_TRACE(bh, "call get_create_access");
661                 err = ext3_journal_get_create_access(handle, bh);
662                 if (err) {
663                         unlock_buffer(bh);
664                         brelse(bh);
665                         goto failed;
666                 }
667
668                 memset(bh->b_data, 0, blocksize);
669                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
670                 branch[n].key = cpu_to_le32(new_blocks[n]);
671                 *branch[n].p = branch[n].key;
672                 if ( n == indirect_blks) {
673                         current_block = new_blocks[n];
674                         /*
675                          * End of chain, update the last new metablock of
676                          * the chain to point to the new allocated
677                          * data blocks numbers
678                          */
679                         for (i=1; i < num; i++)
680                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
681                 }
682                 BUFFER_TRACE(bh, "marking uptodate");
683                 set_buffer_uptodate(bh);
684                 unlock_buffer(bh);
685
686                 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
687                 err = ext3_journal_dirty_metadata(handle, bh);
688                 if (err)
689                         goto failed;
690         }
691         *blks = num;
692         return err;
693 failed:
694         /* Allocation failed, free what we already allocated */
695         for (i = 1; i <= n ; i++) {
696                 BUFFER_TRACE(branch[i].bh, "call journal_forget");
697                 ext3_journal_forget(handle, branch[i].bh);
698         }
699         for (i = 0; i <indirect_blks; i++)
700                 ext3_free_blocks(handle, inode, new_blocks[i], 1);
701
702         ext3_free_blocks(handle, inode, new_blocks[i], num);
703
704         return err;
705 }
706
707 /**
708  * ext3_splice_branch - splice the allocated branch onto inode.
709  * @handle: handle for this transaction
710  * @inode: owner
711  * @block: (logical) number of block we are adding
712  * @where: location of missing link
713  * @num:   number of indirect blocks we are adding
714  * @blks:  number of direct blocks we are adding
715  *
716  * This function fills the missing link and does all housekeeping needed in
717  * inode (->i_blocks, etc.). In case of success we end up with the full
718  * chain to new block and return 0.
719  */
720 static int ext3_splice_branch(handle_t *handle, struct inode *inode,
721                         long block, Indirect *where, int num, int blks)
722 {
723         int i;
724         int err = 0;
725         struct ext3_block_alloc_info *block_i;
726         ext3_fsblk_t current_block;
727         struct ext3_inode_info *ei = EXT3_I(inode);
728
729         block_i = ei->i_block_alloc_info;
730         /*
731          * If we're splicing into a [td]indirect block (as opposed to the
732          * inode) then we need to get write access to the [td]indirect block
733          * before the splice.
734          */
735         if (where->bh) {
736                 BUFFER_TRACE(where->bh, "get_write_access");
737                 err = ext3_journal_get_write_access(handle, where->bh);
738                 if (err)
739                         goto err_out;
740         }
741         /* That's it */
742
743         *where->p = where->key;
744
745         /*
746          * Update the host buffer_head or inode to point to more just allocated
747          * direct blocks blocks
748          */
749         if (num == 0 && blks > 1) {
750                 current_block = le32_to_cpu(where->key) + 1;
751                 for (i = 1; i < blks; i++)
752                         *(where->p + i ) = cpu_to_le32(current_block++);
753         }
754
755         /*
756          * update the most recently allocated logical & physical block
757          * in i_block_alloc_info, to assist find the proper goal block for next
758          * allocation
759          */
760         if (block_i) {
761                 block_i->last_alloc_logical_block = block + blks - 1;
762                 block_i->last_alloc_physical_block =
763                                 le32_to_cpu(where[num].key) + blks - 1;
764         }
765
766         /* We are done with atomic stuff, now do the rest of housekeeping */
767
768         inode->i_ctime = CURRENT_TIME_SEC;
769         ext3_mark_inode_dirty(handle, inode);
770         /* ext3_mark_inode_dirty already updated i_sync_tid */
771         atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
772
773         /* had we spliced it onto indirect block? */
774         if (where->bh) {
775                 /*
776                  * If we spliced it onto an indirect block, we haven't
777                  * altered the inode.  Note however that if it is being spliced
778                  * onto an indirect block at the very end of the file (the
779                  * file is growing) then we *will* alter the inode to reflect
780                  * the new i_size.  But that is not done here - it is done in
781                  * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
782                  */
783                 jbd_debug(5, "splicing indirect only\n");
784                 BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
785                 err = ext3_journal_dirty_metadata(handle, where->bh);
786                 if (err)
787                         goto err_out;
788         } else {
789                 /*
790                  * OK, we spliced it into the inode itself on a direct block.
791                  * Inode was dirtied above.
792                  */
793                 jbd_debug(5, "splicing direct\n");
794         }
795         return err;
796
797 err_out:
798         for (i = 1; i <= num; i++) {
799                 BUFFER_TRACE(where[i].bh, "call journal_forget");
800                 ext3_journal_forget(handle, where[i].bh);
801                 ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
802         }
803         ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
804
805         return err;
806 }
807
808 /*
809  * Allocation strategy is simple: if we have to allocate something, we will
810  * have to go the whole way to leaf. So let's do it before attaching anything
811  * to tree, set linkage between the newborn blocks, write them if sync is
812  * required, recheck the path, free and repeat if check fails, otherwise
813  * set the last missing link (that will protect us from any truncate-generated
814  * removals - all blocks on the path are immune now) and possibly force the
815  * write on the parent block.
816  * That has a nice additional property: no special recovery from the failed
817  * allocations is needed - we simply release blocks and do not touch anything
818  * reachable from inode.
819  *
820  * `handle' can be NULL if create == 0.
821  *
822  * The BKL may not be held on entry here.  Be sure to take it early.
823  * return > 0, # of blocks mapped or allocated.
824  * return = 0, if plain lookup failed.
825  * return < 0, error case.
826  */
827 int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
828                 sector_t iblock, unsigned long maxblocks,
829                 struct buffer_head *bh_result,
830                 int create)
831 {
832         int err = -EIO;
833         int offsets[4];
834         Indirect chain[4];
835         Indirect *partial;
836         ext3_fsblk_t goal;
837         int indirect_blks;
838         int blocks_to_boundary = 0;
839         int depth;
840         struct ext3_inode_info *ei = EXT3_I(inode);
841         int count = 0;
842         ext3_fsblk_t first_block = 0;
843
844
845         J_ASSERT(handle != NULL || create == 0);
846         depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
847
848         if (depth == 0)
849                 goto out;
850
851         partial = ext3_get_branch(inode, depth, offsets, chain, &err);
852
853         /* Simplest case - block found, no allocation needed */
854         if (!partial) {
855                 first_block = le32_to_cpu(chain[depth - 1].key);
856                 clear_buffer_new(bh_result);
857                 count++;
858                 /*map more blocks*/
859                 while (count < maxblocks && count <= blocks_to_boundary) {
860                         ext3_fsblk_t blk;
861
862                         if (!verify_chain(chain, chain + depth - 1)) {
863                                 /*
864                                  * Indirect block might be removed by
865                                  * truncate while we were reading it.
866                                  * Handling of that case: forget what we've
867                                  * got now. Flag the err as EAGAIN, so it
868                                  * will reread.
869                                  */
870                                 err = -EAGAIN;
871                                 count = 0;
872                                 break;
873                         }
874                         blk = le32_to_cpu(*(chain[depth-1].p + count));
875
876                         if (blk == first_block + count)
877                                 count++;
878                         else
879                                 break;
880                 }
881                 if (err != -EAGAIN)
882                         goto got_it;
883         }
884
885         /* Next simple case - plain lookup or failed read of indirect block */
886         if (!create || err == -EIO)
887                 goto cleanup;
888
889         mutex_lock(&ei->truncate_mutex);
890
891         /*
892          * If the indirect block is missing while we are reading
893          * the chain(ext3_get_branch() returns -EAGAIN err), or
894          * if the chain has been changed after we grab the semaphore,
895          * (either because another process truncated this branch, or
896          * another get_block allocated this branch) re-grab the chain to see if
897          * the request block has been allocated or not.
898          *
899          * Since we already block the truncate/other get_block
900          * at this point, we will have the current copy of the chain when we
901          * splice the branch into the tree.
902          */
903         if (err == -EAGAIN || !verify_chain(chain, partial)) {
904                 while (partial > chain) {
905                         brelse(partial->bh);
906                         partial--;
907                 }
908                 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
909                 if (!partial) {
910                         count++;
911                         mutex_unlock(&ei->truncate_mutex);
912                         if (err)
913                                 goto cleanup;
914                         clear_buffer_new(bh_result);
915                         goto got_it;
916                 }
917         }
918
919         /*
920          * Okay, we need to do block allocation.  Lazily initialize the block
921          * allocation info here if necessary
922         */
923         if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
924                 ext3_init_block_alloc_info(inode);
925
926         goal = ext3_find_goal(inode, iblock, partial);
927
928         /* the number of blocks need to allocate for [d,t]indirect blocks */
929         indirect_blks = (chain + depth) - partial - 1;
930
931         /*
932          * Next look up the indirect map to count the totoal number of
933          * direct blocks to allocate for this branch.
934          */
935         count = ext3_blks_to_allocate(partial, indirect_blks,
936                                         maxblocks, blocks_to_boundary);
937         /*
938          * Block out ext3_truncate while we alter the tree
939          */
940         err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
941                                 offsets + (partial - chain), partial);
942
943         /*
944          * The ext3_splice_branch call will free and forget any buffers
945          * on the new chain if there is a failure, but that risks using
946          * up transaction credits, especially for bitmaps where the
947          * credits cannot be returned.  Can we handle this somehow?  We
948          * may need to return -EAGAIN upwards in the worst case.  --sct
949          */
950         if (!err)
951                 err = ext3_splice_branch(handle, inode, iblock,
952                                         partial, indirect_blks, count);
953         mutex_unlock(&ei->truncate_mutex);
954         if (err)
955                 goto cleanup;
956
957         set_buffer_new(bh_result);
958 got_it:
959         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
960         if (count > blocks_to_boundary)
961                 set_buffer_boundary(bh_result);
962         err = count;
963         /* Clean up and exit */
964         partial = chain + depth - 1;    /* the whole chain */
965 cleanup:
966         while (partial > chain) {
967                 BUFFER_TRACE(partial->bh, "call brelse");
968                 brelse(partial->bh);
969                 partial--;
970         }
971         BUFFER_TRACE(bh_result, "returned");
972 out:
973         return err;
974 }
975
976 /* Maximum number of blocks we map for direct IO at once. */
977 #define DIO_MAX_BLOCKS 4096
978 /*
979  * Number of credits we need for writing DIO_MAX_BLOCKS:
980  * We need sb + group descriptor + bitmap + inode -> 4
981  * For B blocks with A block pointers per block we need:
982  * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
983  * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
984  */
985 #define DIO_CREDITS 25
986
987 static int ext3_get_block(struct inode *inode, sector_t iblock,
988                         struct buffer_head *bh_result, int create)
989 {
990         handle_t *handle = ext3_journal_current_handle();
991         int ret = 0, started = 0;
992         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
993
994         if (create && !handle) {        /* Direct IO write... */
995                 if (max_blocks > DIO_MAX_BLOCKS)
996                         max_blocks = DIO_MAX_BLOCKS;
997                 handle = ext3_journal_start(inode, DIO_CREDITS +
998                                 EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb));
999                 if (IS_ERR(handle)) {
1000                         ret = PTR_ERR(handle);
1001                         goto out;
1002                 }
1003                 started = 1;
1004         }
1005
1006         ret = ext3_get_blocks_handle(handle, inode, iblock,
1007                                         max_blocks, bh_result, create);
1008         if (ret > 0) {
1009                 bh_result->b_size = (ret << inode->i_blkbits);
1010                 ret = 0;
1011         }
1012         if (started)
1013                 ext3_journal_stop(handle);
1014 out:
1015         return ret;
1016 }
1017
1018 int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1019                 u64 start, u64 len)
1020 {
1021         return generic_block_fiemap(inode, fieinfo, start, len,
1022                                     ext3_get_block);
1023 }
1024
1025 /*
1026  * `handle' can be NULL if create is zero
1027  */
1028 struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
1029                                 long block, int create, int *errp)
1030 {
1031         struct buffer_head dummy;
1032         int fatal = 0, err;
1033
1034         J_ASSERT(handle != NULL || create == 0);
1035
1036         dummy.b_state = 0;
1037         dummy.b_blocknr = -1000;
1038         buffer_trace_init(&dummy.b_history);
1039         err = ext3_get_blocks_handle(handle, inode, block, 1,
1040                                         &dummy, create);
1041         /*
1042          * ext3_get_blocks_handle() returns number of blocks
1043          * mapped. 0 in case of a HOLE.
1044          */
1045         if (err > 0) {
1046                 if (err > 1)
1047                         WARN_ON(1);
1048                 err = 0;
1049         }
1050         *errp = err;
1051         if (!err && buffer_mapped(&dummy)) {
1052                 struct buffer_head *bh;
1053                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1054                 if (!bh) {
1055                         *errp = -EIO;
1056                         goto err;
1057                 }
1058                 if (buffer_new(&dummy)) {
1059                         J_ASSERT(create != 0);
1060                         J_ASSERT(handle != NULL);
1061
1062                         /*
1063                          * Now that we do not always journal data, we should
1064                          * keep in mind whether this should always journal the
1065                          * new buffer as metadata.  For now, regular file
1066                          * writes use ext3_get_block instead, so it's not a
1067                          * problem.
1068                          */
1069                         lock_buffer(bh);
1070                         BUFFER_TRACE(bh, "call get_create_access");
1071                         fatal = ext3_journal_get_create_access(handle, bh);
1072                         if (!fatal && !buffer_uptodate(bh)) {
1073                                 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1074                                 set_buffer_uptodate(bh);
1075                         }
1076                         unlock_buffer(bh);
1077                         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1078                         err = ext3_journal_dirty_metadata(handle, bh);
1079                         if (!fatal)
1080                                 fatal = err;
1081                 } else {
1082                         BUFFER_TRACE(bh, "not a new buffer");
1083                 }
1084                 if (fatal) {
1085                         *errp = fatal;
1086                         brelse(bh);
1087                         bh = NULL;
1088                 }
1089                 return bh;
1090         }
1091 err:
1092         return NULL;
1093 }
1094
1095 struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
1096                                int block, int create, int *err)
1097 {
1098         struct buffer_head * bh;
1099
1100         bh = ext3_getblk(handle, inode, block, create, err);
1101         if (!bh)
1102                 return bh;
1103         if (buffer_uptodate(bh))
1104                 return bh;
1105         ll_rw_block(READ_META, 1, &bh);
1106         wait_on_buffer(bh);
1107         if (buffer_uptodate(bh))
1108                 return bh;
1109         put_bh(bh);
1110         *err = -EIO;
1111         return NULL;
1112 }
1113
1114 static int walk_page_buffers(   handle_t *handle,
1115                                 struct buffer_head *head,
1116                                 unsigned from,
1117                                 unsigned to,
1118                                 int *partial,
1119                                 int (*fn)(      handle_t *handle,
1120                                                 struct buffer_head *bh))
1121 {
1122         struct buffer_head *bh;
1123         unsigned block_start, block_end;
1124         unsigned blocksize = head->b_size;
1125         int err, ret = 0;
1126         struct buffer_head *next;
1127
1128         for (   bh = head, block_start = 0;
1129                 ret == 0 && (bh != head || !block_start);
1130                 block_start = block_end, bh = next)
1131         {
1132                 next = bh->b_this_page;
1133                 block_end = block_start + blocksize;
1134                 if (block_end <= from || block_start >= to) {
1135                         if (partial && !buffer_uptodate(bh))
1136                                 *partial = 1;
1137                         continue;
1138                 }
1139                 err = (*fn)(handle, bh);
1140                 if (!ret)
1141                         ret = err;
1142         }
1143         return ret;
1144 }
1145
1146 /*
1147  * To preserve ordering, it is essential that the hole instantiation and
1148  * the data write be encapsulated in a single transaction.  We cannot
1149  * close off a transaction and start a new one between the ext3_get_block()
1150  * and the commit_write().  So doing the journal_start at the start of
1151  * prepare_write() is the right place.
1152  *
1153  * Also, this function can nest inside ext3_writepage() ->
1154  * block_write_full_page(). In that case, we *know* that ext3_writepage()
1155  * has generated enough buffer credits to do the whole page.  So we won't
1156  * block on the journal in that case, which is good, because the caller may
1157  * be PF_MEMALLOC.
1158  *
1159  * By accident, ext3 can be reentered when a transaction is open via
1160  * quota file writes.  If we were to commit the transaction while thus
1161  * reentered, there can be a deadlock - we would be holding a quota
1162  * lock, and the commit would never complete if another thread had a
1163  * transaction open and was blocking on the quota lock - a ranking
1164  * violation.
1165  *
1166  * So what we do is to rely on the fact that journal_stop/journal_start
1167  * will _not_ run commit under these circumstances because handle->h_ref
1168  * is elevated.  We'll still have enough credits for the tiny quotafile
1169  * write.
1170  */
1171 static int do_journal_get_write_access(handle_t *handle,
1172                                         struct buffer_head *bh)
1173 {
1174         int dirty = buffer_dirty(bh);
1175         int ret;
1176
1177         if (!buffer_mapped(bh) || buffer_freed(bh))
1178                 return 0;
1179         /*
1180          * __block_prepare_write() could have dirtied some buffers. Clean
1181          * the dirty bit as jbd2_journal_get_write_access() could complain
1182          * otherwise about fs integrity issues. Setting of the dirty bit
1183          * by __block_prepare_write() isn't a real problem here as we clear
1184          * the bit before releasing a page lock and thus writeback cannot
1185          * ever write the buffer.
1186          */
1187         if (dirty)
1188                 clear_buffer_dirty(bh);
1189         ret = ext3_journal_get_write_access(handle, bh);
1190         if (!ret && dirty)
1191                 ret = ext3_journal_dirty_metadata(handle, bh);
1192         return ret;
1193 }
1194
1195 /*
1196  * Truncate blocks that were not used by write. We have to truncate the
1197  * pagecache as well so that corresponding buffers get properly unmapped.
1198  */
1199 static void ext3_truncate_failed_write(struct inode *inode)
1200 {
1201         truncate_inode_pages(inode->i_mapping, inode->i_size);
1202         ext3_truncate(inode);
1203 }
1204
1205 static int ext3_write_begin(struct file *file, struct address_space *mapping,
1206                                 loff_t pos, unsigned len, unsigned flags,
1207                                 struct page **pagep, void **fsdata)
1208 {
1209         struct inode *inode = mapping->host;
1210         int ret;
1211         handle_t *handle;
1212         int retries = 0;
1213         struct page *page;
1214         pgoff_t index;
1215         unsigned from, to;
1216         /* Reserve one block more for addition to orphan list in case
1217          * we allocate blocks but write fails for some reason */
1218         int needed_blocks = ext3_writepage_trans_blocks(inode) + 1;
1219
1220         index = pos >> PAGE_CACHE_SHIFT;
1221         from = pos & (PAGE_CACHE_SIZE - 1);
1222         to = from + len;
1223
1224 retry:
1225         page = grab_cache_page_write_begin(mapping, index, flags);
1226         if (!page)
1227                 return -ENOMEM;
1228         *pagep = page;
1229
1230         handle = ext3_journal_start(inode, needed_blocks);
1231         if (IS_ERR(handle)) {
1232                 unlock_page(page);
1233                 page_cache_release(page);
1234                 ret = PTR_ERR(handle);
1235                 goto out;
1236         }
1237         ret = __block_write_begin(page, pos, len, ext3_get_block);
1238         if (ret)
1239                 goto write_begin_failed;
1240
1241         if (ext3_should_journal_data(inode)) {
1242                 ret = walk_page_buffers(handle, page_buffers(page),
1243                                 from, to, NULL, do_journal_get_write_access);
1244         }
1245 write_begin_failed:
1246         if (ret) {
1247                 /*
1248                  * block_write_begin may have instantiated a few blocks
1249                  * outside i_size.  Trim these off again. Don't need
1250                  * i_size_read because we hold i_mutex.
1251                  *
1252                  * Add inode to orphan list in case we crash before truncate
1253                  * finishes. Do this only if ext3_can_truncate() agrees so
1254                  * that orphan processing code is happy.
1255                  */
1256                 if (pos + len > inode->i_size && ext3_can_truncate(inode))
1257                         ext3_orphan_add(handle, inode);
1258                 ext3_journal_stop(handle);
1259                 unlock_page(page);
1260                 page_cache_release(page);
1261                 if (pos + len > inode->i_size)
1262                         ext3_truncate_failed_write(inode);
1263         }
1264         if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1265                 goto retry;
1266 out:
1267         return ret;
1268 }
1269
1270
1271 int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1272 {
1273         int err = journal_dirty_data(handle, bh);
1274         if (err)
1275                 ext3_journal_abort_handle(__func__, __func__,
1276                                                 bh, handle, err);
1277         return err;
1278 }
1279
1280 /* For ordered writepage and write_end functions */
1281 static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1282 {
1283         /*
1284          * Write could have mapped the buffer but it didn't copy the data in
1285          * yet. So avoid filing such buffer into a transaction.
1286          */
1287         if (buffer_mapped(bh) && buffer_uptodate(bh))
1288                 return ext3_journal_dirty_data(handle, bh);
1289         return 0;
1290 }
1291
1292 /* For write_end() in data=journal mode */
1293 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1294 {
1295         if (!buffer_mapped(bh) || buffer_freed(bh))
1296                 return 0;
1297         set_buffer_uptodate(bh);
1298         return ext3_journal_dirty_metadata(handle, bh);
1299 }
1300
1301 /*
1302  * This is nasty and subtle: ext3_write_begin() could have allocated blocks
1303  * for the whole page but later we failed to copy the data in. Update inode
1304  * size according to what we managed to copy. The rest is going to be
1305  * truncated in write_end function.
1306  */
1307 static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied)
1308 {
1309         /* What matters to us is i_disksize. We don't write i_size anywhere */
1310         if (pos + copied > inode->i_size)
1311                 i_size_write(inode, pos + copied);
1312         if (pos + copied > EXT3_I(inode)->i_disksize) {
1313                 EXT3_I(inode)->i_disksize = pos + copied;
1314                 mark_inode_dirty(inode);
1315         }
1316 }
1317
1318 /*
1319  * We need to pick up the new inode size which generic_commit_write gave us
1320  * `file' can be NULL - eg, when called from page_symlink().
1321  *
1322  * ext3 never places buffers on inode->i_mapping->private_list.  metadata
1323  * buffers are managed internally.
1324  */
1325 static int ext3_ordered_write_end(struct file *file,
1326                                 struct address_space *mapping,
1327                                 loff_t pos, unsigned len, unsigned copied,
1328                                 struct page *page, void *fsdata)
1329 {
1330         handle_t *handle = ext3_journal_current_handle();
1331         struct inode *inode = file->f_mapping->host;
1332         unsigned from, to;
1333         int ret = 0, ret2;
1334
1335         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1336
1337         from = pos & (PAGE_CACHE_SIZE - 1);
1338         to = from + copied;
1339         ret = walk_page_buffers(handle, page_buffers(page),
1340                 from, to, NULL, journal_dirty_data_fn);
1341
1342         if (ret == 0)
1343                 update_file_sizes(inode, pos, copied);
1344         /*
1345          * There may be allocated blocks outside of i_size because
1346          * we failed to copy some data. Prepare for truncate.
1347          */
1348         if (pos + len > inode->i_size && ext3_can_truncate(inode))
1349                 ext3_orphan_add(handle, inode);
1350         ret2 = ext3_journal_stop(handle);
1351         if (!ret)
1352                 ret = ret2;
1353         unlock_page(page);
1354         page_cache_release(page);
1355
1356         if (pos + len > inode->i_size)
1357                 ext3_truncate_failed_write(inode);
1358         return ret ? ret : copied;
1359 }
1360
1361 static int ext3_writeback_write_end(struct file *file,
1362                                 struct address_space *mapping,
1363                                 loff_t pos, unsigned len, unsigned copied,
1364                                 struct page *page, void *fsdata)
1365 {
1366         handle_t *handle = ext3_journal_current_handle();
1367         struct inode *inode = file->f_mapping->host;
1368         int ret;
1369
1370         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1371         update_file_sizes(inode, pos, copied);
1372         /*
1373          * There may be allocated blocks outside of i_size because
1374          * we failed to copy some data. Prepare for truncate.
1375          */
1376         if (pos + len > inode->i_size && ext3_can_truncate(inode))
1377                 ext3_orphan_add(handle, inode);
1378         ret = ext3_journal_stop(handle);
1379         unlock_page(page);
1380         page_cache_release(page);
1381
1382         if (pos + len > inode->i_size)
1383                 ext3_truncate_failed_write(inode);
1384         return ret ? ret : copied;
1385 }
1386
1387 static int ext3_journalled_write_end(struct file *file,
1388                                 struct address_space *mapping,
1389                                 loff_t pos, unsigned len, unsigned copied,
1390                                 struct page *page, void *fsdata)
1391 {
1392         handle_t *handle = ext3_journal_current_handle();
1393         struct inode *inode = mapping->host;
1394         int ret = 0, ret2;
1395         int partial = 0;
1396         unsigned from, to;
1397
1398         from = pos & (PAGE_CACHE_SIZE - 1);
1399         to = from + len;
1400
1401         if (copied < len) {
1402                 if (!PageUptodate(page))
1403                         copied = 0;
1404                 page_zero_new_buffers(page, from + copied, to);
1405                 to = from + copied;
1406         }
1407
1408         ret = walk_page_buffers(handle, page_buffers(page), from,
1409                                 to, &partial, write_end_fn);
1410         if (!partial)
1411                 SetPageUptodate(page);
1412
1413         if (pos + copied > inode->i_size)
1414                 i_size_write(inode, pos + copied);
1415         /*
1416          * There may be allocated blocks outside of i_size because
1417          * we failed to copy some data. Prepare for truncate.
1418          */
1419         if (pos + len > inode->i_size && ext3_can_truncate(inode))
1420                 ext3_orphan_add(handle, inode);
1421         ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1422         if (inode->i_size > EXT3_I(inode)->i_disksize) {
1423                 EXT3_I(inode)->i_disksize = inode->i_size;
1424                 ret2 = ext3_mark_inode_dirty(handle, inode);
1425                 if (!ret)
1426                         ret = ret2;
1427         }
1428
1429         ret2 = ext3_journal_stop(handle);
1430         if (!ret)
1431                 ret = ret2;
1432         unlock_page(page);
1433         page_cache_release(page);
1434
1435         if (pos + len > inode->i_size)
1436                 ext3_truncate_failed_write(inode);
1437         return ret ? ret : copied;
1438 }
1439
1440 /*
1441  * bmap() is special.  It gets used by applications such as lilo and by
1442  * the swapper to find the on-disk block of a specific piece of data.
1443  *
1444  * Naturally, this is dangerous if the block concerned is still in the
1445  * journal.  If somebody makes a swapfile on an ext3 data-journaling
1446  * filesystem and enables swap, then they may get a nasty shock when the
1447  * data getting swapped to that swapfile suddenly gets overwritten by
1448  * the original zero's written out previously to the journal and
1449  * awaiting writeback in the kernel's buffer cache.
1450  *
1451  * So, if we see any bmap calls here on a modified, data-journaled file,
1452  * take extra steps to flush any blocks which might be in the cache.
1453  */
1454 static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
1455 {
1456         struct inode *inode = mapping->host;
1457         journal_t *journal;
1458         int err;
1459
1460         if (ext3_test_inode_state(inode, EXT3_STATE_JDATA)) {
1461                 /*
1462                  * This is a REALLY heavyweight approach, but the use of
1463                  * bmap on dirty files is expected to be extremely rare:
1464                  * only if we run lilo or swapon on a freshly made file
1465                  * do we expect this to happen.
1466                  *
1467                  * (bmap requires CAP_SYS_RAWIO so this does not
1468                  * represent an unprivileged user DOS attack --- we'd be
1469                  * in trouble if mortal users could trigger this path at
1470                  * will.)
1471                  *
1472                  * NB. EXT3_STATE_JDATA is not set on files other than
1473                  * regular files.  If somebody wants to bmap a directory
1474                  * or symlink and gets confused because the buffer
1475                  * hasn't yet been flushed to disk, they deserve
1476                  * everything they get.
1477                  */
1478
1479                 ext3_clear_inode_state(inode, EXT3_STATE_JDATA);
1480                 journal = EXT3_JOURNAL(inode);
1481                 journal_lock_updates(journal);
1482                 err = journal_flush(journal);
1483                 journal_unlock_updates(journal);
1484
1485                 if (err)
1486                         return 0;
1487         }
1488
1489         return generic_block_bmap(mapping,block,ext3_get_block);
1490 }
1491
1492 static int bget_one(handle_t *handle, struct buffer_head *bh)
1493 {
1494         get_bh(bh);
1495         return 0;
1496 }
1497
1498 static int bput_one(handle_t *handle, struct buffer_head *bh)
1499 {
1500         put_bh(bh);
1501         return 0;
1502 }
1503
1504 static int buffer_unmapped(handle_t *handle, struct buffer_head *bh)
1505 {
1506         return !buffer_mapped(bh);
1507 }
1508
1509 /*
1510  * Note that we always start a transaction even if we're not journalling
1511  * data.  This is to preserve ordering: any hole instantiation within
1512  * __block_write_full_page -> ext3_get_block() should be journalled
1513  * along with the data so we don't crash and then get metadata which
1514  * refers to old data.
1515  *
1516  * In all journalling modes block_write_full_page() will start the I/O.
1517  *
1518  * Problem:
1519  *
1520  *      ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1521  *              ext3_writepage()
1522  *
1523  * Similar for:
1524  *
1525  *      ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1526  *
1527  * Same applies to ext3_get_block().  We will deadlock on various things like
1528  * lock_journal and i_truncate_mutex.
1529  *
1530  * Setting PF_MEMALLOC here doesn't work - too many internal memory
1531  * allocations fail.
1532  *
1533  * 16May01: If we're reentered then journal_current_handle() will be
1534  *          non-zero. We simply *return*.
1535  *
1536  * 1 July 2001: @@@ FIXME:
1537  *   In journalled data mode, a data buffer may be metadata against the
1538  *   current transaction.  But the same file is part of a shared mapping
1539  *   and someone does a writepage() on it.
1540  *
1541  *   We will move the buffer onto the async_data list, but *after* it has
1542  *   been dirtied. So there's a small window where we have dirty data on
1543  *   BJ_Metadata.
1544  *
1545  *   Note that this only applies to the last partial page in the file.  The
1546  *   bit which block_write_full_page() uses prepare/commit for.  (That's
1547  *   broken code anyway: it's wrong for msync()).
1548  *
1549  *   It's a rare case: affects the final partial page, for journalled data
1550  *   where the file is subject to bith write() and writepage() in the same
1551  *   transction.  To fix it we'll need a custom block_write_full_page().
1552  *   We'll probably need that anyway for journalling writepage() output.
1553  *
1554  * We don't honour synchronous mounts for writepage().  That would be
1555  * disastrous.  Any write() or metadata operation will sync the fs for
1556  * us.
1557  *
1558  * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1559  * we don't need to open a transaction here.
1560  */
1561 static int ext3_ordered_writepage(struct page *page,
1562                                 struct writeback_control *wbc)
1563 {
1564         struct inode *inode = page->mapping->host;
1565         struct buffer_head *page_bufs;
1566         handle_t *handle = NULL;
1567         int ret = 0;
1568         int err;
1569
1570         J_ASSERT(PageLocked(page));
1571         /*
1572          * We don't want to warn for emergency remount. The condition is
1573          * ordered to avoid dereferencing inode->i_sb in non-error case to
1574          * avoid slow-downs.
1575          */
1576         WARN_ON_ONCE(IS_RDONLY(inode) &&
1577                      !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
1578
1579         /*
1580          * We give up here if we're reentered, because it might be for a
1581          * different filesystem.
1582          */
1583         if (ext3_journal_current_handle())
1584                 goto out_fail;
1585
1586         if (!page_has_buffers(page)) {
1587                 create_empty_buffers(page, inode->i_sb->s_blocksize,
1588                                 (1 << BH_Dirty)|(1 << BH_Uptodate));
1589                 page_bufs = page_buffers(page);
1590         } else {
1591                 page_bufs = page_buffers(page);
1592                 if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE,
1593                                        NULL, buffer_unmapped)) {
1594                         /* Provide NULL get_block() to catch bugs if buffers
1595                          * weren't really mapped */
1596                         return block_write_full_page(page, NULL, wbc);
1597                 }
1598         }
1599         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1600
1601         if (IS_ERR(handle)) {
1602                 ret = PTR_ERR(handle);
1603                 goto out_fail;
1604         }
1605
1606         walk_page_buffers(handle, page_bufs, 0,
1607                         PAGE_CACHE_SIZE, NULL, bget_one);
1608
1609         ret = block_write_full_page(page, ext3_get_block, wbc);
1610
1611         /*
1612          * The page can become unlocked at any point now, and
1613          * truncate can then come in and change things.  So we
1614          * can't touch *page from now on.  But *page_bufs is
1615          * safe due to elevated refcount.
1616          */
1617
1618         /*
1619          * And attach them to the current transaction.  But only if
1620          * block_write_full_page() succeeded.  Otherwise they are unmapped,
1621          * and generally junk.
1622          */
1623         if (ret == 0) {
1624                 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1625                                         NULL, journal_dirty_data_fn);
1626                 if (!ret)
1627                         ret = err;
1628         }
1629         walk_page_buffers(handle, page_bufs, 0,
1630                         PAGE_CACHE_SIZE, NULL, bput_one);
1631         err = ext3_journal_stop(handle);
1632         if (!ret)
1633                 ret = err;
1634         return ret;
1635
1636 out_fail:
1637         redirty_page_for_writepage(wbc, page);
1638         unlock_page(page);
1639         return ret;
1640 }
1641
1642 static int ext3_writeback_writepage(struct page *page,
1643                                 struct writeback_control *wbc)
1644 {
1645         struct inode *inode = page->mapping->host;
1646         handle_t *handle = NULL;
1647         int ret = 0;
1648         int err;
1649
1650         J_ASSERT(PageLocked(page));
1651         /*
1652          * We don't want to warn for emergency remount. The condition is
1653          * ordered to avoid dereferencing inode->i_sb in non-error case to
1654          * avoid slow-downs.
1655          */
1656         WARN_ON_ONCE(IS_RDONLY(inode) &&
1657                      !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
1658
1659         if (ext3_journal_current_handle())
1660                 goto out_fail;
1661
1662         if (page_has_buffers(page)) {
1663                 if (!walk_page_buffers(NULL, page_buffers(page), 0,
1664                                       PAGE_CACHE_SIZE, NULL, buffer_unmapped)) {
1665                         /* Provide NULL get_block() to catch bugs if buffers
1666                          * weren't really mapped */
1667                         return block_write_full_page(page, NULL, wbc);
1668                 }
1669         }
1670
1671         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1672         if (IS_ERR(handle)) {
1673                 ret = PTR_ERR(handle);
1674                 goto out_fail;
1675         }
1676
1677         ret = block_write_full_page(page, ext3_get_block, wbc);
1678
1679         err = ext3_journal_stop(handle);
1680         if (!ret)
1681                 ret = err;
1682         return ret;
1683
1684 out_fail:
1685         redirty_page_for_writepage(wbc, page);
1686         unlock_page(page);
1687         return ret;
1688 }
1689
1690 static int ext3_journalled_writepage(struct page *page,
1691                                 struct writeback_control *wbc)
1692 {
1693         struct inode *inode = page->mapping->host;
1694         handle_t *handle = NULL;
1695         int ret = 0;
1696         int err;
1697
1698         J_ASSERT(PageLocked(page));
1699         /*
1700          * We don't want to warn for emergency remount. The condition is
1701          * ordered to avoid dereferencing inode->i_sb in non-error case to
1702          * avoid slow-downs.
1703          */
1704         WARN_ON_ONCE(IS_RDONLY(inode) &&
1705                      !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
1706
1707         if (ext3_journal_current_handle())
1708                 goto no_write;
1709
1710         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1711         if (IS_ERR(handle)) {
1712                 ret = PTR_ERR(handle);
1713                 goto no_write;
1714         }
1715
1716         if (!page_has_buffers(page) || PageChecked(page)) {
1717                 /*
1718                  * It's mmapped pagecache.  Add buffers and journal it.  There
1719                  * doesn't seem much point in redirtying the page here.
1720                  */
1721                 ClearPageChecked(page);
1722                 ret = __block_write_begin(page, 0, PAGE_CACHE_SIZE,
1723                                           ext3_get_block);
1724                 if (ret != 0) {
1725                         ext3_journal_stop(handle);
1726                         goto out_unlock;
1727                 }
1728                 ret = walk_page_buffers(handle, page_buffers(page), 0,
1729                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1730
1731                 err = walk_page_buffers(handle, page_buffers(page), 0,
1732                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
1733                 if (ret == 0)
1734                         ret = err;
1735                 ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1736                 unlock_page(page);
1737         } else {
1738                 /*
1739                  * It may be a page full of checkpoint-mode buffers.  We don't
1740                  * really know unless we go poke around in the buffer_heads.
1741                  * But block_write_full_page will do the right thing.
1742                  */
1743                 ret = block_write_full_page(page, ext3_get_block, wbc);
1744         }
1745         err = ext3_journal_stop(handle);
1746         if (!ret)
1747                 ret = err;
1748 out:
1749         return ret;
1750
1751 no_write:
1752         redirty_page_for_writepage(wbc, page);
1753 out_unlock:
1754         unlock_page(page);
1755         goto out;
1756 }
1757
1758 static int ext3_readpage(struct file *file, struct page *page)
1759 {
1760         return mpage_readpage(page, ext3_get_block);
1761 }
1762
1763 static int
1764 ext3_readpages(struct file *file, struct address_space *mapping,
1765                 struct list_head *pages, unsigned nr_pages)
1766 {
1767         return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
1768 }
1769
1770 static void ext3_invalidatepage(struct page *page, unsigned long offset)
1771 {
1772         journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1773
1774         /*
1775          * If it's a full truncate we just forget about the pending dirtying
1776          */
1777         if (offset == 0)
1778                 ClearPageChecked(page);
1779
1780         journal_invalidatepage(journal, page, offset);
1781 }
1782
1783 static int ext3_releasepage(struct page *page, gfp_t wait)
1784 {
1785         journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1786
1787         WARN_ON(PageChecked(page));
1788         if (!page_has_buffers(page))
1789                 return 0;
1790         return journal_try_to_free_buffers(journal, page, wait);
1791 }
1792
1793 /*
1794  * If the O_DIRECT write will extend the file then add this inode to the
1795  * orphan list.  So recovery will truncate it back to the original size
1796  * if the machine crashes during the write.
1797  *
1798  * If the O_DIRECT write is intantiating holes inside i_size and the machine
1799  * crashes then stale disk data _may_ be exposed inside the file. But current
1800  * VFS code falls back into buffered path in that case so we are safe.
1801  */
1802 static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
1803                         const struct iovec *iov, loff_t offset,
1804                         unsigned long nr_segs)
1805 {
1806         struct file *file = iocb->ki_filp;
1807         struct inode *inode = file->f_mapping->host;
1808         struct ext3_inode_info *ei = EXT3_I(inode);
1809         handle_t *handle;
1810         ssize_t ret;
1811         int orphan = 0;
1812         size_t count = iov_length(iov, nr_segs);
1813         int retries = 0;
1814
1815         if (rw == WRITE) {
1816                 loff_t final_size = offset + count;
1817
1818                 if (final_size > inode->i_size) {
1819                         /* Credits for sb + inode write */
1820                         handle = ext3_journal_start(inode, 2);
1821                         if (IS_ERR(handle)) {
1822                                 ret = PTR_ERR(handle);
1823                                 goto out;
1824                         }
1825                         ret = ext3_orphan_add(handle, inode);
1826                         if (ret) {
1827                                 ext3_journal_stop(handle);
1828                                 goto out;
1829                         }
1830                         orphan = 1;
1831                         ei->i_disksize = inode->i_size;
1832                         ext3_journal_stop(handle);
1833                 }
1834         }
1835
1836 retry:
1837         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1838                                  offset, nr_segs,
1839                                  ext3_get_block, NULL);
1840         /*
1841          * In case of error extending write may have instantiated a few
1842          * blocks outside i_size. Trim these off again.
1843          */
1844         if (unlikely((rw & WRITE) && ret < 0)) {
1845                 loff_t isize = i_size_read(inode);
1846                 loff_t end = offset + iov_length(iov, nr_segs);
1847
1848                 if (end > isize)
1849                         vmtruncate(inode, isize);
1850         }
1851         if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1852                 goto retry;
1853
1854         if (orphan) {
1855                 int err;
1856
1857                 /* Credits for sb + inode write */
1858                 handle = ext3_journal_start(inode, 2);
1859                 if (IS_ERR(handle)) {
1860                         /* This is really bad luck. We've written the data
1861                          * but cannot extend i_size. Truncate allocated blocks
1862                          * and pretend the write failed... */
1863                         ext3_truncate(inode);
1864                         ret = PTR_ERR(handle);
1865                         goto out;
1866                 }
1867                 if (inode->i_nlink)
1868                         ext3_orphan_del(handle, inode);
1869                 if (ret > 0) {
1870                         loff_t end = offset + ret;
1871                         if (end > inode->i_size) {
1872                                 ei->i_disksize = end;
1873                                 i_size_write(inode, end);
1874                                 /*
1875                                  * We're going to return a positive `ret'
1876                                  * here due to non-zero-length I/O, so there's
1877                                  * no way of reporting error returns from
1878                                  * ext3_mark_inode_dirty() to userspace.  So
1879                                  * ignore it.
1880                                  */
1881                                 ext3_mark_inode_dirty(handle, inode);
1882                         }
1883                 }
1884                 err = ext3_journal_stop(handle);
1885                 if (ret == 0)
1886                         ret = err;
1887         }
1888 out:
1889         return ret;
1890 }
1891
1892 /*
1893  * Pages can be marked dirty completely asynchronously from ext3's journalling
1894  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
1895  * much here because ->set_page_dirty is called under VFS locks.  The page is
1896  * not necessarily locked.
1897  *
1898  * We cannot just dirty the page and leave attached buffers clean, because the
1899  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
1900  * or jbddirty because all the journalling code will explode.
1901  *
1902  * So what we do is to mark the page "pending dirty" and next time writepage
1903  * is called, propagate that into the buffers appropriately.
1904  */
1905 static int ext3_journalled_set_page_dirty(struct page *page)
1906 {
1907         SetPageChecked(page);
1908         return __set_page_dirty_nobuffers(page);
1909 }
1910
1911 static const struct address_space_operations ext3_ordered_aops = {
1912         .readpage               = ext3_readpage,
1913         .readpages              = ext3_readpages,
1914         .writepage              = ext3_ordered_writepage,
1915         .write_begin            = ext3_write_begin,
1916         .write_end              = ext3_ordered_write_end,
1917         .bmap                   = ext3_bmap,
1918         .invalidatepage         = ext3_invalidatepage,
1919         .releasepage            = ext3_releasepage,
1920         .direct_IO              = ext3_direct_IO,
1921         .migratepage            = buffer_migrate_page,
1922         .is_partially_uptodate  = block_is_partially_uptodate,
1923         .error_remove_page      = generic_error_remove_page,
1924 };
1925
1926 static const struct address_space_operations ext3_writeback_aops = {
1927         .readpage               = ext3_readpage,
1928         .readpages              = ext3_readpages,
1929         .writepage              = ext3_writeback_writepage,
1930         .write_begin            = ext3_write_begin,
1931         .write_end              = ext3_writeback_write_end,
1932         .bmap                   = ext3_bmap,
1933         .invalidatepage         = ext3_invalidatepage,
1934         .releasepage            = ext3_releasepage,
1935         .direct_IO              = ext3_direct_IO,
1936         .migratepage            = buffer_migrate_page,
1937         .is_partially_uptodate  = block_is_partially_uptodate,
1938         .error_remove_page      = generic_error_remove_page,
1939 };
1940
1941 static const struct address_space_operations ext3_journalled_aops = {
1942         .readpage               = ext3_readpage,
1943         .readpages              = ext3_readpages,
1944         .writepage              = ext3_journalled_writepage,
1945         .write_begin            = ext3_write_begin,
1946         .write_end              = ext3_journalled_write_end,
1947         .set_page_dirty         = ext3_journalled_set_page_dirty,
1948         .bmap                   = ext3_bmap,
1949         .invalidatepage         = ext3_invalidatepage,
1950         .releasepage            = ext3_releasepage,
1951         .is_partially_uptodate  = block_is_partially_uptodate,
1952         .error_remove_page      = generic_error_remove_page,
1953 };
1954
1955 void ext3_set_aops(struct inode *inode)
1956 {
1957         if (ext3_should_order_data(inode))
1958                 inode->i_mapping->a_ops = &ext3_ordered_aops;
1959         else if (ext3_should_writeback_data(inode))
1960                 inode->i_mapping->a_ops = &ext3_writeback_aops;
1961         else
1962                 inode->i_mapping->a_ops = &ext3_journalled_aops;
1963 }
1964
1965 /*
1966  * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
1967  * up to the end of the block which corresponds to `from'.
1968  * This required during truncate. We need to physically zero the tail end
1969  * of that block so it doesn't yield old data if the file is later grown.
1970  */
1971 static int ext3_block_truncate_page(handle_t *handle, struct page *page,
1972                 struct address_space *mapping, loff_t from)
1973 {
1974         ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1975         unsigned offset = from & (PAGE_CACHE_SIZE-1);
1976         unsigned blocksize, iblock, length, pos;
1977         struct inode *inode = mapping->host;
1978         struct buffer_head *bh;
1979         int err = 0;
1980
1981         blocksize = inode->i_sb->s_blocksize;
1982         length = blocksize - (offset & (blocksize - 1));
1983         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1984
1985         if (!page_has_buffers(page))
1986                 create_empty_buffers(page, blocksize, 0);
1987
1988         /* Find the buffer that contains "offset" */
1989         bh = page_buffers(page);
1990         pos = blocksize;
1991         while (offset >= pos) {
1992                 bh = bh->b_this_page;
1993                 iblock++;
1994                 pos += blocksize;
1995         }
1996
1997         err = 0;
1998         if (buffer_freed(bh)) {
1999                 BUFFER_TRACE(bh, "freed: skip");
2000                 goto unlock;
2001         }
2002
2003         if (!buffer_mapped(bh)) {
2004                 BUFFER_TRACE(bh, "unmapped");
2005                 ext3_get_block(inode, iblock, bh, 0);
2006                 /* unmapped? It's a hole - nothing to do */
2007                 if (!buffer_mapped(bh)) {
2008                         BUFFER_TRACE(bh, "still unmapped");
2009                         goto unlock;
2010                 }
2011         }
2012
2013         /* Ok, it's mapped. Make sure it's up-to-date */
2014         if (PageUptodate(page))
2015                 set_buffer_uptodate(bh);
2016
2017         if (!buffer_uptodate(bh)) {
2018                 err = -EIO;
2019                 ll_rw_block(READ, 1, &bh);
2020                 wait_on_buffer(bh);
2021                 /* Uhhuh. Read error. Complain and punt. */
2022                 if (!buffer_uptodate(bh))
2023                         goto unlock;
2024         }
2025
2026         if (ext3_should_journal_data(inode)) {
2027                 BUFFER_TRACE(bh, "get write access");
2028                 err = ext3_journal_get_write_access(handle, bh);
2029                 if (err)
2030                         goto unlock;
2031         }
2032
2033         zero_user(page, offset, length);
2034         BUFFER_TRACE(bh, "zeroed end of block");
2035
2036         err = 0;
2037         if (ext3_should_journal_data(inode)) {
2038                 err = ext3_journal_dirty_metadata(handle, bh);
2039         } else {
2040                 if (ext3_should_order_data(inode))
2041                         err = ext3_journal_dirty_data(handle, bh);
2042                 mark_buffer_dirty(bh);
2043         }
2044
2045 unlock:
2046         unlock_page(page);
2047         page_cache_release(page);
2048         return err;
2049 }
2050
2051 /*
2052  * Probably it should be a library function... search for first non-zero word
2053  * or memcmp with zero_page, whatever is better for particular architecture.
2054  * Linus?
2055  */
2056 static inline int all_zeroes(__le32 *p, __le32 *q)
2057 {
2058         while (p < q)
2059                 if (*p++)
2060                         return 0;
2061         return 1;
2062 }
2063
2064 /**
2065  *      ext3_find_shared - find the indirect blocks for partial truncation.
2066  *      @inode:   inode in question
2067  *      @depth:   depth of the affected branch
2068  *      @offsets: offsets of pointers in that branch (see ext3_block_to_path)
2069  *      @chain:   place to store the pointers to partial indirect blocks
2070  *      @top:     place to the (detached) top of branch
2071  *
2072  *      This is a helper function used by ext3_truncate().
2073  *
2074  *      When we do truncate() we may have to clean the ends of several
2075  *      indirect blocks but leave the blocks themselves alive. Block is
2076  *      partially truncated if some data below the new i_size is referred
2077  *      from it (and it is on the path to the first completely truncated
2078  *      data block, indeed).  We have to free the top of that path along
2079  *      with everything to the right of the path. Since no allocation
2080  *      past the truncation point is possible until ext3_truncate()
2081  *      finishes, we may safely do the latter, but top of branch may
2082  *      require special attention - pageout below the truncation point
2083  *      might try to populate it.
2084  *
2085  *      We atomically detach the top of branch from the tree, store the
2086  *      block number of its root in *@top, pointers to buffer_heads of
2087  *      partially truncated blocks - in @chain[].bh and pointers to
2088  *      their last elements that should not be removed - in
2089  *      @chain[].p. Return value is the pointer to last filled element
2090  *      of @chain.
2091  *
2092  *      The work left to caller to do the actual freeing of subtrees:
2093  *              a) free the subtree starting from *@top
2094  *              b) free the subtrees whose roots are stored in
2095  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
2096  *              c) free the subtrees growing from the inode past the @chain[0].
2097  *                      (no partially truncated stuff there).  */
2098
2099 static Indirect *ext3_find_shared(struct inode *inode, int depth,
2100                         int offsets[4], Indirect chain[4], __le32 *top)
2101 {
2102         Indirect *partial, *p;
2103         int k, err;
2104
2105         *top = 0;
2106         /* Make k index the deepest non-null offset + 1 */
2107         for (k = depth; k > 1 && !offsets[k-1]; k--)
2108                 ;
2109         partial = ext3_get_branch(inode, k, offsets, chain, &err);
2110         /* Writer: pointers */
2111         if (!partial)
2112                 partial = chain + k-1;
2113         /*
2114          * If the branch acquired continuation since we've looked at it -
2115          * fine, it should all survive and (new) top doesn't belong to us.
2116          */
2117         if (!partial->key && *partial->p)
2118                 /* Writer: end */
2119                 goto no_top;
2120         for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
2121                 ;
2122         /*
2123          * OK, we've found the last block that must survive. The rest of our
2124          * branch should be detached before unlocking. However, if that rest
2125          * of branch is all ours and does not grow immediately from the inode
2126          * it's easier to cheat and just decrement partial->p.
2127          */
2128         if (p == chain + k - 1 && p > chain) {
2129                 p->p--;
2130         } else {
2131                 *top = *p->p;
2132                 /* Nope, don't do this in ext3.  Must leave the tree intact */
2133 #if 0
2134                 *p->p = 0;
2135 #endif
2136         }
2137         /* Writer: end */
2138
2139         while(partial > p) {
2140                 brelse(partial->bh);
2141                 partial--;
2142         }
2143 no_top:
2144         return partial;
2145 }
2146
2147 /*
2148  * Zero a number of block pointers in either an inode or an indirect block.
2149  * If we restart the transaction we must again get write access to the
2150  * indirect block for further modification.
2151  *
2152  * We release `count' blocks on disk, but (last - first) may be greater
2153  * than `count' because there can be holes in there.
2154  */
2155 static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
2156                 struct buffer_head *bh, ext3_fsblk_t block_to_free,
2157                 unsigned long count, __le32 *first, __le32 *last)
2158 {
2159         __le32 *p;
2160         if (try_to_extend_transaction(handle, inode)) {
2161                 if (bh) {
2162                         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2163                         if (ext3_journal_dirty_metadata(handle, bh))
2164                                 return;
2165                 }
2166                 ext3_mark_inode_dirty(handle, inode);
2167                 truncate_restart_transaction(handle, inode);
2168                 if (bh) {
2169                         BUFFER_TRACE(bh, "retaking write access");
2170                         if (ext3_journal_get_write_access(handle, bh))
2171                                 return;
2172                 }
2173         }
2174
2175         /*
2176          * Any buffers which are on the journal will be in memory. We find
2177          * them on the hash table so journal_revoke() will run journal_forget()
2178          * on them.  We've already detached each block from the file, so
2179          * bforget() in journal_forget() should be safe.
2180          *
2181          * AKPM: turn on bforget in journal_forget()!!!
2182          */
2183         for (p = first; p < last; p++) {
2184                 u32 nr = le32_to_cpu(*p);
2185                 if (nr) {
2186                         struct buffer_head *bh;
2187
2188                         *p = 0;
2189                         bh = sb_find_get_block(inode->i_sb, nr);
2190                         ext3_forget(handle, 0, inode, bh, nr);
2191                 }
2192         }
2193
2194         ext3_free_blocks(handle, inode, block_to_free, count);
2195 }
2196
2197 /**
2198  * ext3_free_data - free a list of data blocks
2199  * @handle:     handle for this transaction
2200  * @inode:      inode we are dealing with
2201  * @this_bh:    indirect buffer_head which contains *@first and *@last
2202  * @first:      array of block numbers
2203  * @last:       points immediately past the end of array
2204  *
2205  * We are freeing all blocks referred from that array (numbers are stored as
2206  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2207  *
2208  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
2209  * blocks are contiguous then releasing them at one time will only affect one
2210  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2211  * actually use a lot of journal space.
2212  *
2213  * @this_bh will be %NULL if @first and @last point into the inode's direct
2214  * block pointers.
2215  */
2216 static void ext3_free_data(handle_t *handle, struct inode *inode,
2217                            struct buffer_head *this_bh,
2218                            __le32 *first, __le32 *last)
2219 {
2220         ext3_fsblk_t block_to_free = 0;    /* Starting block # of a run */
2221         unsigned long count = 0;            /* Number of blocks in the run */
2222         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
2223                                                corresponding to
2224                                                block_to_free */
2225         ext3_fsblk_t nr;                    /* Current block # */
2226         __le32 *p;                          /* Pointer into inode/ind
2227                                                for current block */
2228         int err;
2229
2230         if (this_bh) {                          /* For indirect block */
2231                 BUFFER_TRACE(this_bh, "get_write_access");
2232                 err = ext3_journal_get_write_access(handle, this_bh);
2233                 /* Important: if we can't update the indirect pointers
2234                  * to the blocks, we can't free them. */
2235                 if (err)
2236                         return;
2237         }
2238
2239         for (p = first; p < last; p++) {
2240                 nr = le32_to_cpu(*p);
2241                 if (nr) {
2242                         /* accumulate blocks to free if they're contiguous */
2243                         if (count == 0) {
2244                                 block_to_free = nr;
2245                                 block_to_free_p = p;
2246                                 count = 1;
2247                         } else if (nr == block_to_free + count) {
2248                                 count++;
2249                         } else {
2250                                 ext3_clear_blocks(handle, inode, this_bh,
2251                                                   block_to_free,
2252                                                   count, block_to_free_p, p);
2253                                 block_to_free = nr;
2254                                 block_to_free_p = p;
2255                                 count = 1;
2256                         }
2257                 }
2258         }
2259
2260         if (count > 0)
2261                 ext3_clear_blocks(handle, inode, this_bh, block_to_free,
2262                                   count, block_to_free_p, p);
2263
2264         if (this_bh) {
2265                 BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
2266
2267                 /*
2268                  * The buffer head should have an attached journal head at this
2269                  * point. However, if the data is corrupted and an indirect
2270                  * block pointed to itself, it would have been detached when
2271                  * the block was cleared. Check for this instead of OOPSing.
2272                  */
2273                 if (bh2jh(this_bh))
2274                         ext3_journal_dirty_metadata(handle, this_bh);
2275                 else
2276                         ext3_error(inode->i_sb, "ext3_free_data",
2277                                    "circular indirect block detected, "
2278                                    "inode=%lu, block=%llu",
2279                                    inode->i_ino,
2280                                    (unsigned long long)this_bh->b_blocknr);
2281         }
2282 }
2283
2284 /**
2285  *      ext3_free_branches - free an array of branches
2286  *      @handle: JBD handle for this transaction
2287  *      @inode: inode we are dealing with
2288  *      @parent_bh: the buffer_head which contains *@first and *@last
2289  *      @first: array of block numbers
2290  *      @last:  pointer immediately past the end of array
2291  *      @depth: depth of the branches to free
2292  *
2293  *      We are freeing all blocks referred from these branches (numbers are
2294  *      stored as little-endian 32-bit) and updating @inode->i_blocks
2295  *      appropriately.
2296  */
2297 static void ext3_free_branches(handle_t *handle, struct inode *inode,
2298                                struct buffer_head *parent_bh,
2299                                __le32 *first, __le32 *last, int depth)
2300 {
2301         ext3_fsblk_t nr;
2302         __le32 *p;
2303
2304         if (is_handle_aborted(handle))
2305                 return;
2306
2307         if (depth--) {
2308                 struct buffer_head *bh;
2309                 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2310                 p = last;
2311                 while (--p >= first) {
2312                         nr = le32_to_cpu(*p);
2313                         if (!nr)
2314                                 continue;               /* A hole */
2315
2316                         /* Go read the buffer for the next level down */
2317                         bh = sb_bread(inode->i_sb, nr);
2318
2319                         /*
2320                          * A read failure? Report error and clear slot
2321                          * (should be rare).
2322                          */
2323                         if (!bh) {
2324                                 ext3_error(inode->i_sb, "ext3_free_branches",
2325                                            "Read failure, inode=%lu, block="E3FSBLK,
2326                                            inode->i_ino, nr);
2327                                 continue;
2328                         }
2329
2330                         /* This zaps the entire block.  Bottom up. */
2331                         BUFFER_TRACE(bh, "free child branches");
2332                         ext3_free_branches(handle, inode, bh,
2333                                            (__le32*)bh->b_data,
2334                                            (__le32*)bh->b_data + addr_per_block,
2335                                            depth);
2336
2337                         /*
2338                          * Everything below this this pointer has been
2339                          * released.  Now let this top-of-subtree go.
2340                          *
2341                          * We want the freeing of this indirect block to be
2342                          * atomic in the journal with the updating of the
2343                          * bitmap block which owns it.  So make some room in
2344                          * the journal.
2345                          *
2346                          * We zero the parent pointer *after* freeing its
2347                          * pointee in the bitmaps, so if extend_transaction()
2348                          * for some reason fails to put the bitmap changes and
2349                          * the release into the same transaction, recovery
2350                          * will merely complain about releasing a free block,
2351                          * rather than leaking blocks.
2352                          */
2353                         if (is_handle_aborted(handle))
2354                                 return;
2355                         if (try_to_extend_transaction(handle, inode)) {
2356                                 ext3_mark_inode_dirty(handle, inode);
2357                                 truncate_restart_transaction(handle, inode);
2358                         }
2359
2360                         /*
2361                          * We've probably journalled the indirect block several
2362                          * times during the truncate.  But it's no longer
2363                          * needed and we now drop it from the transaction via
2364                          * journal_revoke().
2365                          *
2366                          * That's easy if it's exclusively part of this
2367                          * transaction.  But if it's part of the committing
2368                          * transaction then journal_forget() will simply
2369                          * brelse() it.  That means that if the underlying
2370                          * block is reallocated in ext3_get_block(),
2371                          * unmap_underlying_metadata() will find this block
2372                          * and will try to get rid of it.  damn, damn. Thus
2373                          * we don't allow a block to be reallocated until
2374                          * a transaction freeing it has fully committed.
2375                          *
2376                          * We also have to make sure journal replay after a
2377                          * crash does not overwrite non-journaled data blocks
2378                          * with old metadata when the block got reallocated for
2379                          * data.  Thus we have to store a revoke record for a
2380                          * block in the same transaction in which we free the
2381                          * block.
2382                          */
2383                         ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
2384
2385                         ext3_free_blocks(handle, inode, nr, 1);
2386
2387                         if (parent_bh) {
2388                                 /*
2389                                  * The block which we have just freed is
2390                                  * pointed to by an indirect block: journal it
2391                                  */
2392                                 BUFFER_TRACE(parent_bh, "get_write_access");
2393                                 if (!ext3_journal_get_write_access(handle,
2394                                                                    parent_bh)){
2395                                         *p = 0;
2396                                         BUFFER_TRACE(parent_bh,
2397                                         "call ext3_journal_dirty_metadata");
2398                                         ext3_journal_dirty_metadata(handle,
2399                                                                     parent_bh);
2400                                 }
2401                         }
2402                 }
2403         } else {
2404                 /* We have reached the bottom of the tree. */
2405                 BUFFER_TRACE(parent_bh, "free data blocks");
2406                 ext3_free_data(handle, inode, parent_bh, first, last);
2407         }
2408 }
2409
2410 int ext3_can_truncate(struct inode *inode)
2411 {
2412         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2413                 return 0;
2414         if (S_ISREG(inode->i_mode))
2415                 return 1;
2416         if (S_ISDIR(inode->i_mode))
2417                 return 1;
2418         if (S_ISLNK(inode->i_mode))
2419                 return !ext3_inode_is_fast_symlink(inode);
2420         return 0;
2421 }
2422
2423 /*
2424  * ext3_truncate()
2425  *
2426  * We block out ext3_get_block() block instantiations across the entire
2427  * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2428  * simultaneously on behalf of the same inode.
2429  *
2430  * As we work through the truncate and commmit bits of it to the journal there
2431  * is one core, guiding principle: the file's tree must always be consistent on
2432  * disk.  We must be able to restart the truncate after a crash.
2433  *
2434  * The file's tree may be transiently inconsistent in memory (although it
2435  * probably isn't), but whenever we close off and commit a journal transaction,
2436  * the contents of (the filesystem + the journal) must be consistent and
2437  * restartable.  It's pretty simple, really: bottom up, right to left (although
2438  * left-to-right works OK too).
2439  *
2440  * Note that at recovery time, journal replay occurs *before* the restart of
2441  * truncate against the orphan inode list.
2442  *
2443  * The committed inode has the new, desired i_size (which is the same as
2444  * i_disksize in this case).  After a crash, ext3_orphan_cleanup() will see
2445  * that this inode's truncate did not complete and it will again call
2446  * ext3_truncate() to have another go.  So there will be instantiated blocks
2447  * to the right of the truncation point in a crashed ext3 filesystem.  But
2448  * that's fine - as long as they are linked from the inode, the post-crash
2449  * ext3_truncate() run will find them and release them.
2450  */
2451 void ext3_truncate(struct inode *inode)
2452 {
2453         handle_t *handle;
2454         struct ext3_inode_info *ei = EXT3_I(inode);
2455         __le32 *i_data = ei->i_data;
2456         int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2457         struct address_space *mapping = inode->i_mapping;
2458         int offsets[4];
2459         Indirect chain[4];
2460         Indirect *partial;
2461         __le32 nr = 0;
2462         int n;
2463         long last_block;
2464         unsigned blocksize = inode->i_sb->s_blocksize;
2465         struct page *page;
2466
2467         if (!ext3_can_truncate(inode))
2468                 goto out_notrans;
2469
2470         if (inode->i_size == 0 && ext3_should_writeback_data(inode))
2471                 ext3_set_inode_state(inode, EXT3_STATE_FLUSH_ON_CLOSE);
2472
2473         /*
2474          * We have to lock the EOF page here, because lock_page() nests
2475          * outside journal_start().
2476          */
2477         if ((inode->i_size & (blocksize - 1)) == 0) {
2478                 /* Block boundary? Nothing to do */
2479                 page = NULL;
2480         } else {
2481                 page = grab_cache_page(mapping,
2482                                 inode->i_size >> PAGE_CACHE_SHIFT);
2483                 if (!page)
2484                         goto out_notrans;
2485         }
2486
2487         handle = start_transaction(inode);
2488         if (IS_ERR(handle)) {
2489                 if (page) {
2490                         clear_highpage(page);
2491                         flush_dcache_page(page);
2492                         unlock_page(page);
2493                         page_cache_release(page);
2494                 }
2495                 goto out_notrans;
2496         }
2497
2498         last_block = (inode->i_size + blocksize-1)
2499                                         >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
2500
2501         if (page)
2502                 ext3_block_truncate_page(handle, page, mapping, inode->i_size);
2503
2504         n = ext3_block_to_path(inode, last_block, offsets, NULL);
2505         if (n == 0)
2506                 goto out_stop;  /* error */
2507
2508         /*
2509          * OK.  This truncate is going to happen.  We add the inode to the
2510          * orphan list, so that if this truncate spans multiple transactions,
2511          * and we crash, we will resume the truncate when the filesystem
2512          * recovers.  It also marks the inode dirty, to catch the new size.
2513          *
2514          * Implication: the file must always be in a sane, consistent
2515          * truncatable state while each transaction commits.
2516          */
2517         if (ext3_orphan_add(handle, inode))
2518                 goto out_stop;
2519
2520         /*
2521          * The orphan list entry will now protect us from any crash which
2522          * occurs before the truncate completes, so it is now safe to propagate
2523          * the new, shorter inode size (held for now in i_size) into the
2524          * on-disk inode. We do this via i_disksize, which is the value which
2525          * ext3 *really* writes onto the disk inode.
2526          */
2527         ei->i_disksize = inode->i_size;
2528
2529         /*
2530          * From here we block out all ext3_get_block() callers who want to
2531          * modify the block allocation tree.
2532          */
2533         mutex_lock(&ei->truncate_mutex);
2534
2535         if (n == 1) {           /* direct blocks */
2536                 ext3_free_data(handle, inode, NULL, i_data+offsets[0],
2537                                i_data + EXT3_NDIR_BLOCKS);
2538                 goto do_indirects;
2539         }
2540
2541         partial = ext3_find_shared(inode, n, offsets, chain, &nr);
2542         /* Kill the top of shared branch (not detached) */
2543         if (nr) {
2544                 if (partial == chain) {
2545                         /* Shared branch grows from the inode */
2546                         ext3_free_branches(handle, inode, NULL,
2547                                            &nr, &nr+1, (chain+n-1) - partial);
2548                         *partial->p = 0;
2549                         /*
2550                          * We mark the inode dirty prior to restart,
2551                          * and prior to stop.  No need for it here.
2552                          */
2553                 } else {
2554                         /* Shared branch grows from an indirect block */
2555                         ext3_free_branches(handle, inode, partial->bh,
2556                                         partial->p,
2557                                         partial->p+1, (chain+n-1) - partial);
2558                 }
2559         }
2560         /* Clear the ends of indirect blocks on the shared branch */
2561         while (partial > chain) {
2562                 ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
2563                                    (__le32*)partial->bh->b_data+addr_per_block,
2564                                    (chain+n-1) - partial);
2565                 BUFFER_TRACE(partial->bh, "call brelse");
2566                 brelse (partial->bh);
2567                 partial--;
2568         }
2569 do_indirects:
2570         /* Kill the remaining (whole) subtrees */
2571         switch (offsets[0]) {
2572         default:
2573                 nr = i_data[EXT3_IND_BLOCK];
2574                 if (nr) {
2575                         ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2576                         i_data[EXT3_IND_BLOCK] = 0;
2577                 }
2578         case EXT3_IND_BLOCK:
2579                 nr = i_data[EXT3_DIND_BLOCK];
2580                 if (nr) {
2581                         ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2582                         i_data[EXT3_DIND_BLOCK] = 0;
2583                 }
2584         case EXT3_DIND_BLOCK:
2585                 nr = i_data[EXT3_TIND_BLOCK];
2586                 if (nr) {
2587                         ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2588                         i_data[EXT3_TIND_BLOCK] = 0;
2589                 }
2590         case EXT3_TIND_BLOCK:
2591                 ;
2592         }
2593
2594         ext3_discard_reservation(inode);
2595
2596         mutex_unlock(&ei->truncate_mutex);
2597         inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
2598         ext3_mark_inode_dirty(handle, inode);
2599
2600         /*
2601          * In a multi-transaction truncate, we only make the final transaction
2602          * synchronous
2603          */
2604         if (IS_SYNC(inode))
2605                 handle->h_sync = 1;
2606 out_stop:
2607         /*
2608          * If this was a simple ftruncate(), and the file will remain alive
2609          * then we need to clear up the orphan record which we created above.
2610          * However, if this was a real unlink then we were called by
2611          * ext3_evict_inode(), and we allow that function to clean up the
2612          * orphan info for us.
2613          */
2614         if (inode->i_nlink)
2615                 ext3_orphan_del(handle, inode);
2616
2617         ext3_journal_stop(handle);
2618         return;
2619 out_notrans:
2620         /*
2621          * Delete the inode from orphan list so that it doesn't stay there
2622          * forever and trigger assertion on umount.
2623          */
2624         if (inode->i_nlink)
2625                 ext3_orphan_del(NULL, inode);
2626 }
2627
2628 static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
2629                 unsigned long ino, struct ext3_iloc *iloc)
2630 {
2631         unsigned long block_group;
2632         unsigned long offset;
2633         ext3_fsblk_t block;
2634         struct ext3_group_desc *gdp;
2635
2636         if (!ext3_valid_inum(sb, ino)) {
2637                 /*
2638                  * This error is already checked for in namei.c unless we are
2639                  * looking at an NFS filehandle, in which case no error
2640                  * report is needed
2641                  */
2642                 return 0;
2643         }
2644
2645         block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
2646         gdp = ext3_get_group_desc(sb, block_group, NULL);
2647         if (!gdp)
2648                 return 0;
2649         /*
2650          * Figure out the offset within the block group inode table
2651          */
2652         offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
2653                 EXT3_INODE_SIZE(sb);
2654         block = le32_to_cpu(gdp->bg_inode_table) +
2655                 (offset >> EXT3_BLOCK_SIZE_BITS(sb));
2656
2657         iloc->block_group = block_group;
2658         iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
2659         return block;
2660 }
2661
2662 /*
2663  * ext3_get_inode_loc returns with an extra refcount against the inode's
2664  * underlying buffer_head on success. If 'in_mem' is true, we have all
2665  * data in memory that is needed to recreate the on-disk version of this
2666  * inode.
2667  */
2668 static int __ext3_get_inode_loc(struct inode *inode,
2669                                 struct ext3_iloc *iloc, int in_mem)
2670 {
2671         ext3_fsblk_t block;
2672         struct buffer_head *bh;
2673
2674         block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2675         if (!block)
2676                 return -EIO;
2677
2678         bh = sb_getblk(inode->i_sb, block);
2679         if (!bh) {
2680                 ext3_error (inode->i_sb, "ext3_get_inode_loc",
2681                                 "unable to read inode block - "
2682                                 "inode=%lu, block="E3FSBLK,
2683                                  inode->i_ino, block);
2684                 return -EIO;
2685         }
2686         if (!buffer_uptodate(bh)) {
2687                 lock_buffer(bh);
2688
2689                 /*
2690                  * If the buffer has the write error flag, we have failed
2691                  * to write out another inode in the same block.  In this
2692                  * case, we don't have to read the block because we may
2693                  * read the old inode data successfully.
2694                  */
2695                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
2696                         set_buffer_uptodate(bh);
2697
2698                 if (buffer_uptodate(bh)) {
2699                         /* someone brought it uptodate while we waited */
2700                         unlock_buffer(bh);
2701                         goto has_buffer;
2702                 }
2703
2704                 /*
2705                  * If we have all information of the inode in memory and this
2706                  * is the only valid inode in the block, we need not read the
2707                  * block.
2708                  */
2709                 if (in_mem) {
2710                         struct buffer_head *bitmap_bh;
2711                         struct ext3_group_desc *desc;
2712                         int inodes_per_buffer;
2713                         int inode_offset, i;
2714                         int block_group;
2715                         int start;
2716
2717                         block_group = (inode->i_ino - 1) /
2718                                         EXT3_INODES_PER_GROUP(inode->i_sb);
2719                         inodes_per_buffer = bh->b_size /
2720                                 EXT3_INODE_SIZE(inode->i_sb);
2721                         inode_offset = ((inode->i_ino - 1) %
2722                                         EXT3_INODES_PER_GROUP(inode->i_sb));
2723                         start = inode_offset & ~(inodes_per_buffer - 1);
2724
2725                         /* Is the inode bitmap in cache? */
2726                         desc = ext3_get_group_desc(inode->i_sb,
2727                                                 block_group, NULL);
2728                         if (!desc)
2729                                 goto make_io;
2730
2731                         bitmap_bh = sb_getblk(inode->i_sb,
2732                                         le32_to_cpu(desc->bg_inode_bitmap));
2733                         if (!bitmap_bh)
2734                                 goto make_io;
2735
2736                         /*
2737                          * If the inode bitmap isn't in cache then the
2738                          * optimisation may end up performing two reads instead
2739                          * of one, so skip it.
2740                          */
2741                         if (!buffer_uptodate(bitmap_bh)) {
2742                                 brelse(bitmap_bh);
2743                                 goto make_io;
2744                         }
2745                         for (i = start; i < start + inodes_per_buffer; i++) {
2746                                 if (i == inode_offset)
2747                                         continue;
2748                                 if (ext3_test_bit(i, bitmap_bh->b_data))
2749                                         break;
2750                         }
2751                         brelse(bitmap_bh);
2752                         if (i == start + inodes_per_buffer) {
2753                                 /* all other inodes are free, so skip I/O */
2754                                 memset(bh->b_data, 0, bh->b_size);
2755                                 set_buffer_uptodate(bh);
2756                                 unlock_buffer(bh);
2757                                 goto has_buffer;
2758                         }
2759                 }
2760
2761 make_io:
2762                 /*
2763                  * There are other valid inodes in the buffer, this inode
2764                  * has in-inode xattrs, or we don't have this inode in memory.
2765                  * Read the block from disk.
2766                  */
2767                 get_bh(bh);
2768                 bh->b_end_io = end_buffer_read_sync;
2769                 submit_bh(READ_META, bh);
2770                 wait_on_buffer(bh);
2771                 if (!buffer_uptodate(bh)) {
2772                         ext3_error(inode->i_sb, "ext3_get_inode_loc",
2773                                         "unable to read inode block - "
2774                                         "inode=%lu, block="E3FSBLK,
2775                                         inode->i_ino, block);
2776                         brelse(bh);
2777                         return -EIO;
2778                 }
2779         }
2780 has_buffer:
2781         iloc->bh = bh;
2782         return 0;
2783 }
2784
2785 int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
2786 {
2787         /* We have all inode data except xattrs in memory here. */
2788         return __ext3_get_inode_loc(inode, iloc,
2789                 !ext3_test_inode_state(inode, EXT3_STATE_XATTR));
2790 }
2791
2792 void ext3_set_inode_flags(struct inode *inode)
2793 {
2794         unsigned int flags = EXT3_I(inode)->i_flags;
2795
2796         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2797         if (flags & EXT3_SYNC_FL)
2798                 inode->i_flags |= S_SYNC;
2799         if (flags & EXT3_APPEND_FL)
2800                 inode->i_flags |= S_APPEND;
2801         if (flags & EXT3_IMMUTABLE_FL)
2802                 inode->i_flags |= S_IMMUTABLE;
2803         if (flags & EXT3_NOATIME_FL)
2804                 inode->i_flags |= S_NOATIME;
2805         if (flags & EXT3_DIRSYNC_FL)
2806                 inode->i_flags |= S_DIRSYNC;
2807 }
2808
2809 /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
2810 void ext3_get_inode_flags(struct ext3_inode_info *ei)
2811 {
2812         unsigned int flags = ei->vfs_inode.i_flags;
2813
2814         ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
2815                         EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
2816         if (flags & S_SYNC)
2817                 ei->i_flags |= EXT3_SYNC_FL;
2818         if (flags & S_APPEND)
2819                 ei->i_flags |= EXT3_APPEND_FL;
2820         if (flags & S_IMMUTABLE)
2821                 ei->i_flags |= EXT3_IMMUTABLE_FL;
2822         if (flags & S_NOATIME)
2823                 ei->i_flags |= EXT3_NOATIME_FL;
2824         if (flags & S_DIRSYNC)
2825                 ei->i_flags |= EXT3_DIRSYNC_FL;
2826 }
2827
2828 struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
2829 {
2830         struct ext3_iloc iloc;
2831         struct ext3_inode *raw_inode;
2832         struct ext3_inode_info *ei;
2833         struct buffer_head *bh;
2834         struct inode *inode;
2835         journal_t *journal = EXT3_SB(sb)->s_journal;
2836         transaction_t *transaction;
2837         long ret;
2838         int block;
2839
2840         inode = iget_locked(sb, ino);
2841         if (!inode)
2842                 return ERR_PTR(-ENOMEM);
2843         if (!(inode->i_state & I_NEW))
2844                 return inode;
2845
2846         ei = EXT3_I(inode);
2847         ei->i_block_alloc_info = NULL;
2848
2849         ret = __ext3_get_inode_loc(inode, &iloc, 0);
2850         if (ret < 0)
2851                 goto bad_inode;
2852         bh = iloc.bh;
2853         raw_inode = ext3_raw_inode(&iloc);
2854         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2855         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2856         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2857         if(!(test_opt (inode->i_sb, NO_UID32))) {
2858                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2859                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2860         }
2861         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2862         inode->i_size = le32_to_cpu(raw_inode->i_size);
2863         inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
2864         inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
2865         inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
2866         inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
2867
2868         ei->i_state_flags = 0;
2869         ei->i_dir_start_lookup = 0;
2870         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2871         /* We now have enough fields to check if the inode was active or not.
2872          * This is needed because nfsd might try to access dead inodes
2873          * the test is that same one that e2fsck uses
2874          * NeilBrown 1999oct15
2875          */
2876         if (inode->i_nlink == 0) {
2877                 if (inode->i_mode == 0 ||
2878                     !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
2879                         /* this inode is deleted */
2880                         brelse (bh);
2881                         ret = -ESTALE;
2882                         goto bad_inode;
2883                 }
2884                 /* The only unlinked inodes we let through here have
2885                  * valid i_mode and are being read by the orphan
2886                  * recovery code: that's fine, we're about to complete
2887                  * the process of deleting those. */
2888         }
2889         inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2890         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2891 #ifdef EXT3_FRAGMENTS
2892         ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2893         ei->i_frag_no = raw_inode->i_frag;
2894         ei->i_frag_size = raw_inode->i_fsize;
2895 #endif
2896         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2897         if (!S_ISREG(inode->i_mode)) {
2898                 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2899         } else {
2900                 inode->i_size |=
2901                         ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2902         }
2903         ei->i_disksize = inode->i_size;
2904         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2905         ei->i_block_group = iloc.block_group;
2906         /*
2907          * NOTE! The in-memory inode i_data array is in little-endian order
2908          * even on big-endian machines: we do NOT byteswap the block numbers!
2909          */
2910         for (block = 0; block < EXT3_N_BLOCKS; block++)
2911                 ei->i_data[block] = raw_inode->i_block[block];
2912         INIT_LIST_HEAD(&ei->i_orphan);
2913
2914         /*
2915          * Set transaction id's of transactions that have to be committed
2916          * to finish f[data]sync. We set them to currently running transaction
2917          * as we cannot be sure that the inode or some of its metadata isn't
2918          * part of the transaction - the inode could have been reclaimed and
2919          * now it is reread from disk.
2920          */
2921         if (journal) {
2922                 tid_t tid;
2923
2924                 spin_lock(&journal->j_state_lock);
2925                 if (journal->j_running_transaction)
2926                         transaction = journal->j_running_transaction;
2927                 else
2928                         transaction = journal->j_committing_transaction;
2929                 if (transaction)
2930                         tid = transaction->t_tid;
2931                 else
2932                         tid = journal->j_commit_sequence;
2933                 spin_unlock(&journal->j_state_lock);
2934                 atomic_set(&ei->i_sync_tid, tid);
2935                 atomic_set(&ei->i_datasync_tid, tid);
2936         }
2937
2938         if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
2939             EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
2940                 /*
2941                  * When mke2fs creates big inodes it does not zero out
2942                  * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
2943                  * so ignore those first few inodes.
2944                  */
2945                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2946                 if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2947                     EXT3_INODE_SIZE(inode->i_sb)) {
2948                         brelse (bh);
2949                         ret = -EIO;
2950                         goto bad_inode;
2951                 }
2952                 if (ei->i_extra_isize == 0) {
2953                         /* The extra space is currently unused. Use it. */
2954                         ei->i_extra_isize = sizeof(struct ext3_inode) -
2955                                             EXT3_GOOD_OLD_INODE_SIZE;
2956                 } else {
2957                         __le32 *magic = (void *)raw_inode +
2958                                         EXT3_GOOD_OLD_INODE_SIZE +
2959                                         ei->i_extra_isize;
2960                         if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
2961                                  ext3_set_inode_state(inode, EXT3_STATE_XATTR);
2962                 }
2963         } else
2964                 ei->i_extra_isize = 0;
2965
2966         if (S_ISREG(inode->i_mode)) {
2967                 inode->i_op = &ext3_file_inode_operations;
2968                 inode->i_fop = &ext3_file_operations;
2969                 ext3_set_aops(inode);
2970         } else if (S_ISDIR(inode->i_mode)) {
2971                 inode->i_op = &ext3_dir_inode_operations;
2972                 inode->i_fop = &ext3_dir_operations;
2973         } else if (S_ISLNK(inode->i_mode)) {
2974                 if (ext3_inode_is_fast_symlink(inode)) {
2975                         inode->i_op = &ext3_fast_symlink_inode_operations;
2976                         nd_terminate_link(ei->i_data, inode->i_size,
2977                                 sizeof(ei->i_data) - 1);
2978                 } else {
2979                         inode->i_op = &ext3_symlink_inode_operations;
2980                         ext3_set_aops(inode);
2981                 }
2982         } else {
2983                 inode->i_op = &ext3_special_inode_operations;
2984                 if (raw_inode->i_block[0])
2985                         init_special_inode(inode, inode->i_mode,
2986                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2987                 else
2988                         init_special_inode(inode, inode->i_mode,
2989                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2990         }
2991         brelse (iloc.bh);
2992         ext3_set_inode_flags(inode);
2993         unlock_new_inode(inode);
2994         return inode;
2995
2996 bad_inode:
2997         iget_failed(inode);
2998         return ERR_PTR(ret);
2999 }
3000
3001 /*
3002  * Post the struct inode info into an on-disk inode location in the
3003  * buffer-cache.  This gobbles the caller's reference to the
3004  * buffer_head in the inode location struct.
3005  *
3006  * The caller must have write access to iloc->bh.
3007  */
3008 static int ext3_do_update_inode(handle_t *handle,
3009                                 struct inode *inode,
3010                                 struct ext3_iloc *iloc)
3011 {
3012         struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
3013         struct ext3_inode_info *ei = EXT3_I(inode);
3014         struct buffer_head *bh = iloc->bh;
3015         int err = 0, rc, block;
3016         int need_datasync = 0;
3017         __le32 disksize;
3018
3019 again:
3020         /* we can't allow multiple procs in here at once, its a bit racey */
3021         lock_buffer(bh);
3022
3023         /* For fields not not tracking in the in-memory inode,
3024          * initialise them to zero for new inodes. */
3025         if (ext3_test_inode_state(inode, EXT3_STATE_NEW))
3026                 memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
3027
3028         ext3_get_inode_flags(ei);
3029         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3030         if(!(test_opt(inode->i_sb, NO_UID32))) {
3031                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3032                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3033 /*
3034  * Fix up interoperability with old kernels. Otherwise, old inodes get
3035  * re-used with the upper 16 bits of the uid/gid intact
3036  */
3037                 if(!ei->i_dtime) {
3038                         raw_inode->i_uid_high =
3039                                 cpu_to_le16(high_16_bits(inode->i_uid));
3040                         raw_inode->i_gid_high =
3041                                 cpu_to_le16(high_16_bits(inode->i_gid));
3042                 } else {
3043                         raw_inode->i_uid_high = 0;
3044                         raw_inode->i_gid_high = 0;
3045                 }
3046         } else {
3047                 raw_inode->i_uid_low =
3048                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
3049                 raw_inode->i_gid_low =
3050                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
3051                 raw_inode->i_uid_high = 0;
3052                 raw_inode->i_gid_high = 0;
3053         }
3054         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3055         disksize = cpu_to_le32(ei->i_disksize);
3056         if (disksize != raw_inode->i_size) {
3057                 need_datasync = 1;
3058                 raw_inode->i_size = disksize;
3059         }
3060         raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
3061         raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
3062         raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
3063         raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
3064         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3065         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
3066 #ifdef EXT3_FRAGMENTS
3067         raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
3068         raw_inode->i_frag = ei->i_frag_no;
3069         raw_inode->i_fsize = ei->i_frag_size;
3070 #endif
3071         raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
3072         if (!S_ISREG(inode->i_mode)) {
3073                 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
3074         } else {
3075                 disksize = cpu_to_le32(ei->i_disksize >> 32);
3076                 if (disksize != raw_inode->i_size_high) {
3077                         raw_inode->i_size_high = disksize;
3078                         need_datasync = 1;
3079                 }
3080                 if (ei->i_disksize > 0x7fffffffULL) {
3081                         struct super_block *sb = inode->i_sb;
3082                         if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
3083                                         EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
3084                             EXT3_SB(sb)->s_es->s_rev_level ==
3085                                         cpu_to_le32(EXT3_GOOD_OLD_REV)) {
3086                                /* If this is the first large file
3087                                 * created, add a flag to the superblock.
3088                                 */
3089                                 unlock_buffer(bh);
3090                                 err = ext3_journal_get_write_access(handle,
3091                                                 EXT3_SB(sb)->s_sbh);
3092                                 if (err)
3093                                         goto out_brelse;
3094
3095                                 ext3_update_dynamic_rev(sb);
3096                                 EXT3_SET_RO_COMPAT_FEATURE(sb,
3097                                         EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
3098                                 handle->h_sync = 1;
3099                                 err = ext3_journal_dirty_metadata(handle,
3100                                                 EXT3_SB(sb)->s_sbh);
3101                                 /* get our lock and start over */
3102                                 goto again;
3103                         }
3104                 }
3105         }
3106         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3107         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3108                 if (old_valid_dev(inode->i_rdev)) {
3109                         raw_inode->i_block[0] =
3110                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
3111                         raw_inode->i_block[1] = 0;
3112                 } else {
3113                         raw_inode->i_block[0] = 0;
3114                         raw_inode->i_block[1] =
3115                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
3116                         raw_inode->i_block[2] = 0;
3117                 }
3118         } else for (block = 0; block < EXT3_N_BLOCKS; block++)
3119                 raw_inode->i_block[block] = ei->i_data[block];
3120
3121         if (ei->i_extra_isize)
3122                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3123
3124         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
3125         unlock_buffer(bh);
3126         rc = ext3_journal_dirty_metadata(handle, bh);
3127         if (!err)
3128                 err = rc;
3129         ext3_clear_inode_state(inode, EXT3_STATE_NEW);
3130
3131         atomic_set(&ei->i_sync_tid, handle->h_transaction->t_tid);
3132         if (need_datasync)
3133                 atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
3134 out_brelse:
3135         brelse (bh);
3136         ext3_std_error(inode->i_sb, err);
3137         return err;
3138 }
3139
3140 /*
3141  * ext3_write_inode()
3142  *
3143  * We are called from a few places:
3144  *
3145  * - Within generic_file_write() for O_SYNC files.
3146  *   Here, there will be no transaction running. We wait for any running
3147  *   trasnaction to commit.
3148  *
3149  * - Within sys_sync(), kupdate and such.
3150  *   We wait on commit, if tol to.
3151  *
3152  * - Within prune_icache() (PF_MEMALLOC == true)
3153  *   Here we simply return.  We can't afford to block kswapd on the
3154  *   journal commit.
3155  *
3156  * In all cases it is actually safe for us to return without doing anything,
3157  * because the inode has been copied into a raw inode buffer in
3158  * ext3_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3159  * knfsd.
3160  *
3161  * Note that we are absolutely dependent upon all inode dirtiers doing the
3162  * right thing: they *must* call mark_inode_dirty() after dirtying info in
3163  * which we are interested.
3164  *
3165  * It would be a bug for them to not do this.  The code:
3166  *
3167  *      mark_inode_dirty(inode)
3168  *      stuff();
3169  *      inode->i_size = expr;
3170  *
3171  * is in error because a kswapd-driven write_inode() could occur while
3172  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
3173  * will no longer be on the superblock's dirty inode list.
3174  */
3175 int ext3_write_inode(struct inode *inode, struct writeback_control *wbc)
3176 {
3177         if (current->flags & PF_MEMALLOC)
3178                 return 0;
3179
3180         if (ext3_journal_current_handle()) {
3181                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3182                 dump_stack();
3183                 return -EIO;
3184         }
3185
3186         if (wbc->sync_mode != WB_SYNC_ALL)
3187                 return 0;
3188
3189         return ext3_force_commit(inode->i_sb);
3190 }
3191
3192 /*
3193  * ext3_setattr()
3194  *
3195  * Called from notify_change.
3196  *
3197  * We want to trap VFS attempts to truncate the file as soon as
3198  * possible.  In particular, we want to make sure that when the VFS
3199  * shrinks i_size, we put the inode on the orphan list and modify
3200  * i_disksize immediately, so that during the subsequent flushing of
3201  * dirty pages and freeing of disk blocks, we can guarantee that any
3202  * commit will leave the blocks being flushed in an unused state on
3203  * disk.  (On recovery, the inode will get truncated and the blocks will
3204  * be freed, so we have a strong guarantee that no future commit will
3205  * leave these blocks visible to the user.)
3206  *
3207  * Called with inode->sem down.
3208  */
3209 int ext3_setattr(struct dentry *dentry, struct iattr *attr)
3210 {
3211         struct inode *inode = dentry->d_inode;
3212         int error, rc = 0;
3213         const unsigned int ia_valid = attr->ia_valid;
3214
3215         error = inode_change_ok(inode, attr);
3216         if (error)
3217                 return error;
3218
3219         if (is_quota_modification(inode, attr))
3220                 dquot_initialize(inode);
3221         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3222                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3223                 handle_t *handle;
3224
3225                 /* (user+group)*(old+new) structure, inode write (sb,
3226                  * inode block, ? - but truncate inode update has it) */
3227                 handle = ext3_journal_start(inode, EXT3_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
3228                                         EXT3_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)+3);
3229                 if (IS_ERR(handle)) {
3230                         error = PTR_ERR(handle);
3231                         goto err_out;
3232                 }
3233                 error = dquot_transfer(inode, attr);
3234                 if (error) {
3235                         ext3_journal_stop(handle);
3236                         return error;
3237                 }
3238                 /* Update corresponding info in inode so that everything is in
3239                  * one transaction */
3240                 if (attr->ia_valid & ATTR_UID)
3241                         inode->i_uid = attr->ia_uid;
3242                 if (attr->ia_valid & ATTR_GID)
3243                         inode->i_gid = attr->ia_gid;
3244                 error = ext3_mark_inode_dirty(handle, inode);
3245                 ext3_journal_stop(handle);
3246         }
3247
3248         if (S_ISREG(inode->i_mode) &&
3249             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3250                 handle_t *handle;
3251
3252                 handle = ext3_journal_start(inode, 3);
3253                 if (IS_ERR(handle)) {
3254                         error = PTR_ERR(handle);
3255                         goto err_out;
3256                 }
3257
3258                 error = ext3_orphan_add(handle, inode);
3259                 EXT3_I(inode)->i_disksize = attr->ia_size;
3260                 rc = ext3_mark_inode_dirty(handle, inode);
3261                 if (!error)
3262                         error = rc;
3263                 ext3_journal_stop(handle);
3264         }
3265
3266         if ((attr->ia_valid & ATTR_SIZE) &&
3267             attr->ia_size != i_size_read(inode)) {
3268                 rc = vmtruncate(inode, attr->ia_size);
3269                 if (rc)
3270                         goto err_out;
3271         }
3272
3273         setattr_copy(inode, attr);
3274         mark_inode_dirty(inode);
3275
3276         if (ia_valid & ATTR_MODE)
3277                 rc = ext3_acl_chmod(inode);
3278
3279 err_out:
3280         ext3_std_error(inode->i_sb, error);
3281         if (!error)
3282                 error = rc;
3283         return error;
3284 }
3285
3286
3287 /*
3288  * How many blocks doth make a writepage()?
3289  *
3290  * With N blocks per page, it may be:
3291  * N data blocks
3292  * 2 indirect block
3293  * 2 dindirect
3294  * 1 tindirect
3295  * N+5 bitmap blocks (from the above)
3296  * N+5 group descriptor summary blocks
3297  * 1 inode block
3298  * 1 superblock.
3299  * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
3300  *
3301  * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
3302  *
3303  * With ordered or writeback data it's the same, less the N data blocks.
3304  *
3305  * If the inode's direct blocks can hold an integral number of pages then a
3306  * page cannot straddle two indirect blocks, and we can only touch one indirect
3307  * and dindirect block, and the "5" above becomes "3".
3308  *
3309  * This still overestimates under most circumstances.  If we were to pass the
3310  * start and end offsets in here as well we could do block_to_path() on each
3311  * block and work out the exact number of indirects which are touched.  Pah.
3312  */
3313
3314 static int ext3_writepage_trans_blocks(struct inode *inode)
3315 {
3316         int bpp = ext3_journal_blocks_per_page(inode);
3317         int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
3318         int ret;
3319
3320         if (ext3_should_journal_data(inode))
3321                 ret = 3 * (bpp + indirects) + 2;
3322         else
3323                 ret = 2 * (bpp + indirects) + indirects + 2;
3324
3325 #ifdef CONFIG_QUOTA
3326         /* We know that structure was already allocated during dquot_initialize so
3327          * we will be updating only the data blocks + inodes */
3328         ret += EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
3329 #endif
3330
3331         return ret;
3332 }
3333
3334 /*
3335  * The caller must have previously called ext3_reserve_inode_write().
3336  * Give this, we know that the caller already has write access to iloc->bh.
3337  */
3338 int ext3_mark_iloc_dirty(handle_t *handle,
3339                 struct inode *inode, struct ext3_iloc *iloc)
3340 {
3341         int err = 0;
3342
3343         /* the do_update_inode consumes one bh->b_count */
3344         get_bh(iloc->bh);
3345
3346         /* ext3_do_update_inode() does journal_dirty_metadata */
3347         err = ext3_do_update_inode(handle, inode, iloc);
3348         put_bh(iloc->bh);
3349         return err;
3350 }
3351
3352 /*
3353  * On success, We end up with an outstanding reference count against
3354  * iloc->bh.  This _must_ be cleaned up later.
3355  */
3356
3357 int
3358 ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
3359                          struct ext3_iloc *iloc)
3360 {
3361         int err = 0;
3362         if (handle) {
3363                 err = ext3_get_inode_loc(inode, iloc);
3364                 if (!err) {
3365                         BUFFER_TRACE(iloc->bh, "get_write_access");
3366                         err = ext3_journal_get_write_access(handle, iloc->bh);
3367                         if (err) {
3368                                 brelse(iloc->bh);
3369                                 iloc->bh = NULL;
3370                         }
3371                 }
3372         }
3373         ext3_std_error(inode->i_sb, err);
3374         return err;
3375 }
3376
3377 /*
3378  * What we do here is to mark the in-core inode as clean with respect to inode
3379  * dirtiness (it may still be data-dirty).
3380  * This means that the in-core inode may be reaped by prune_icache
3381  * without having to perform any I/O.  This is a very good thing,
3382  * because *any* task may call prune_icache - even ones which
3383  * have a transaction open against a different journal.
3384  *
3385  * Is this cheating?  Not really.  Sure, we haven't written the
3386  * inode out, but prune_icache isn't a user-visible syncing function.
3387  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3388  * we start and wait on commits.
3389  *
3390  * Is this efficient/effective?  Well, we're being nice to the system
3391  * by cleaning up our inodes proactively so they can be reaped
3392  * without I/O.  But we are potentially leaving up to five seconds'
3393  * worth of inodes floating about which prune_icache wants us to
3394  * write out.  One way to fix that would be to get prune_icache()
3395  * to do a write_super() to free up some memory.  It has the desired
3396  * effect.
3397  */
3398 int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
3399 {
3400         struct ext3_iloc iloc;
3401         int err;
3402
3403         might_sleep();
3404         err = ext3_reserve_inode_write(handle, inode, &iloc);
3405         if (!err)
3406                 err = ext3_mark_iloc_dirty(handle, inode, &iloc);
3407         return err;
3408 }
3409
3410 /*
3411  * ext3_dirty_inode() is called from __mark_inode_dirty()
3412  *
3413  * We're really interested in the case where a file is being extended.
3414  * i_size has been changed by generic_commit_write() and we thus need
3415  * to include the updated inode in the current transaction.
3416  *
3417  * Also, dquot_alloc_space() will always dirty the inode when blocks
3418  * are allocated to the file.
3419  *
3420  * If the inode is marked synchronous, we don't honour that here - doing
3421  * so would cause a commit on atime updates, which we don't bother doing.
3422  * We handle synchronous inodes at the highest possible level.
3423  */
3424 void ext3_dirty_inode(struct inode *inode, int flags)
3425 {
3426         handle_t *current_handle = ext3_journal_current_handle();
3427         handle_t *handle;
3428
3429         handle = ext3_journal_start(inode, 2);
3430         if (IS_ERR(handle))
3431                 goto out;
3432         if (current_handle &&
3433                 current_handle->h_transaction != handle->h_transaction) {
3434                 /* This task has a transaction open against a different fs */
3435                 printk(KERN_EMERG "%s: transactions do not match!\n",
3436                        __func__);
3437         } else {
3438                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
3439                                 current_handle);
3440                 ext3_mark_inode_dirty(handle, inode);
3441         }
3442         ext3_journal_stop(handle);
3443 out:
3444         return;
3445 }
3446
3447 #if 0
3448 /*
3449  * Bind an inode's backing buffer_head into this transaction, to prevent
3450  * it from being flushed to disk early.  Unlike
3451  * ext3_reserve_inode_write, this leaves behind no bh reference and
3452  * returns no iloc structure, so the caller needs to repeat the iloc
3453  * lookup to mark the inode dirty later.
3454  */
3455 static int ext3_pin_inode(handle_t *handle, struct inode *inode)
3456 {
3457         struct ext3_iloc iloc;
3458
3459         int err = 0;
3460         if (handle) {
3461                 err = ext3_get_inode_loc(inode, &iloc);
3462                 if (!err) {
3463                         BUFFER_TRACE(iloc.bh, "get_write_access");
3464                         err = journal_get_write_access(handle, iloc.bh);
3465                         if (!err)
3466                                 err = ext3_journal_dirty_metadata(handle,
3467                                                                   iloc.bh);
3468                         brelse(iloc.bh);
3469                 }
3470         }
3471         ext3_std_error(inode->i_sb, err);
3472         return err;
3473 }
3474 #endif
3475
3476 int ext3_change_inode_journal_flag(struct inode *inode, int val)
3477 {
3478         journal_t *journal;
3479         handle_t *handle;
3480         int err;
3481
3482         /*
3483          * We have to be very careful here: changing a data block's
3484          * journaling status dynamically is dangerous.  If we write a
3485          * data block to the journal, change the status and then delete
3486          * that block, we risk forgetting to revoke the old log record
3487          * from the journal and so a subsequent replay can corrupt data.
3488          * So, first we make sure that the journal is empty and that
3489          * nobody is changing anything.
3490          */
3491
3492         journal = EXT3_JOURNAL(inode);
3493         if (is_journal_aborted(journal))
3494                 return -EROFS;
3495
3496         journal_lock_updates(journal);
3497         journal_flush(journal);
3498
3499         /*
3500          * OK, there are no updates running now, and all cached data is
3501          * synced to disk.  We are now in a completely consistent state
3502          * which doesn't have anything in the journal, and we know that
3503          * no filesystem updates are running, so it is safe to modify
3504          * the inode's in-core data-journaling state flag now.
3505          */
3506
3507         if (val)
3508                 EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
3509         else
3510                 EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
3511         ext3_set_aops(inode);
3512
3513         journal_unlock_updates(journal);
3514
3515         /* Finally we can mark the inode as dirty. */
3516
3517         handle = ext3_journal_start(inode, 1);
3518         if (IS_ERR(handle))
3519                 return PTR_ERR(handle);
3520
3521         err = ext3_mark_inode_dirty(handle, inode);
3522         handle->h_sync = 1;
3523         ext3_journal_stop(handle);
3524         ext3_std_error(inode->i_sb, err);
3525
3526         return err;
3527 }