Merge branch 'lpc32xx/dts' of git://git.antcom.de/linux-2.6 into next/dt
[platform/adaptation/renesas_rcar/renesas_kernel.git] / fs / ext3 / inode.c
1 /*
2  *  linux/fs/ext3/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/highuid.h>
26 #include <linux/quotaops.h>
27 #include <linux/writeback.h>
28 #include <linux/mpage.h>
29 #include <linux/namei.h>
30 #include "ext3.h"
31 #include "xattr.h"
32 #include "acl.h"
33
34 static int ext3_writepage_trans_blocks(struct inode *inode);
35 static int ext3_block_truncate_page(struct inode *inode, loff_t from);
36
37 /*
38  * Test whether an inode is a fast symlink.
39  */
40 static int ext3_inode_is_fast_symlink(struct inode *inode)
41 {
42         int ea_blocks = EXT3_I(inode)->i_file_acl ?
43                 (inode->i_sb->s_blocksize >> 9) : 0;
44
45         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
46 }
47
48 /*
49  * The ext3 forget function must perform a revoke if we are freeing data
50  * which has been journaled.  Metadata (eg. indirect blocks) must be
51  * revoked in all cases.
52  *
53  * "bh" may be NULL: a metadata block may have been freed from memory
54  * but there may still be a record of it in the journal, and that record
55  * still needs to be revoked.
56  */
57 int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
58                         struct buffer_head *bh, ext3_fsblk_t blocknr)
59 {
60         int err;
61
62         might_sleep();
63
64         trace_ext3_forget(inode, is_metadata, blocknr);
65         BUFFER_TRACE(bh, "enter");
66
67         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
68                   "data mode %lx\n",
69                   bh, is_metadata, inode->i_mode,
70                   test_opt(inode->i_sb, DATA_FLAGS));
71
72         /* Never use the revoke function if we are doing full data
73          * journaling: there is no need to, and a V1 superblock won't
74          * support it.  Otherwise, only skip the revoke on un-journaled
75          * data blocks. */
76
77         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
78             (!is_metadata && !ext3_should_journal_data(inode))) {
79                 if (bh) {
80                         BUFFER_TRACE(bh, "call journal_forget");
81                         return ext3_journal_forget(handle, bh);
82                 }
83                 return 0;
84         }
85
86         /*
87          * data!=journal && (is_metadata || should_journal_data(inode))
88          */
89         BUFFER_TRACE(bh, "call ext3_journal_revoke");
90         err = ext3_journal_revoke(handle, blocknr, bh);
91         if (err)
92                 ext3_abort(inode->i_sb, __func__,
93                            "error %d when attempting revoke", err);
94         BUFFER_TRACE(bh, "exit");
95         return err;
96 }
97
98 /*
99  * Work out how many blocks we need to proceed with the next chunk of a
100  * truncate transaction.
101  */
102 static unsigned long blocks_for_truncate(struct inode *inode)
103 {
104         unsigned long needed;
105
106         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
107
108         /* Give ourselves just enough room to cope with inodes in which
109          * i_blocks is corrupt: we've seen disk corruptions in the past
110          * which resulted in random data in an inode which looked enough
111          * like a regular file for ext3 to try to delete it.  Things
112          * will go a bit crazy if that happens, but at least we should
113          * try not to panic the whole kernel. */
114         if (needed < 2)
115                 needed = 2;
116
117         /* But we need to bound the transaction so we don't overflow the
118          * journal. */
119         if (needed > EXT3_MAX_TRANS_DATA)
120                 needed = EXT3_MAX_TRANS_DATA;
121
122         return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
123 }
124
125 /*
126  * Truncate transactions can be complex and absolutely huge.  So we need to
127  * be able to restart the transaction at a conventient checkpoint to make
128  * sure we don't overflow the journal.
129  *
130  * start_transaction gets us a new handle for a truncate transaction,
131  * and extend_transaction tries to extend the existing one a bit.  If
132  * extend fails, we need to propagate the failure up and restart the
133  * transaction in the top-level truncate loop. --sct
134  */
135 static handle_t *start_transaction(struct inode *inode)
136 {
137         handle_t *result;
138
139         result = ext3_journal_start(inode, blocks_for_truncate(inode));
140         if (!IS_ERR(result))
141                 return result;
142
143         ext3_std_error(inode->i_sb, PTR_ERR(result));
144         return result;
145 }
146
147 /*
148  * Try to extend this transaction for the purposes of truncation.
149  *
150  * Returns 0 if we managed to create more room.  If we can't create more
151  * room, and the transaction must be restarted we return 1.
152  */
153 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
154 {
155         if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
156                 return 0;
157         if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
158                 return 0;
159         return 1;
160 }
161
162 /*
163  * Restart the transaction associated with *handle.  This does a commit,
164  * so before we call here everything must be consistently dirtied against
165  * this transaction.
166  */
167 static int truncate_restart_transaction(handle_t *handle, struct inode *inode)
168 {
169         int ret;
170
171         jbd_debug(2, "restarting handle %p\n", handle);
172         /*
173          * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
174          * At this moment, get_block can be called only for blocks inside
175          * i_size since page cache has been already dropped and writes are
176          * blocked by i_mutex. So we can safely drop the truncate_mutex.
177          */
178         mutex_unlock(&EXT3_I(inode)->truncate_mutex);
179         ret = ext3_journal_restart(handle, blocks_for_truncate(inode));
180         mutex_lock(&EXT3_I(inode)->truncate_mutex);
181         return ret;
182 }
183
184 /*
185  * Called at inode eviction from icache
186  */
187 void ext3_evict_inode (struct inode *inode)
188 {
189         struct ext3_inode_info *ei = EXT3_I(inode);
190         struct ext3_block_alloc_info *rsv;
191         handle_t *handle;
192         int want_delete = 0;
193
194         trace_ext3_evict_inode(inode);
195         if (!inode->i_nlink && !is_bad_inode(inode)) {
196                 dquot_initialize(inode);
197                 want_delete = 1;
198         }
199
200         /*
201          * When journalling data dirty buffers are tracked only in the journal.
202          * So although mm thinks everything is clean and ready for reaping the
203          * inode might still have some pages to write in the running
204          * transaction or waiting to be checkpointed. Thus calling
205          * journal_invalidatepage() (via truncate_inode_pages()) to discard
206          * these buffers can cause data loss. Also even if we did not discard
207          * these buffers, we would have no way to find them after the inode
208          * is reaped and thus user could see stale data if he tries to read
209          * them before the transaction is checkpointed. So be careful and
210          * force everything to disk here... We use ei->i_datasync_tid to
211          * store the newest transaction containing inode's data.
212          *
213          * Note that directories do not have this problem because they don't
214          * use page cache.
215          *
216          * The s_journal check handles the case when ext3_get_journal() fails
217          * and puts the journal inode.
218          */
219         if (inode->i_nlink && ext3_should_journal_data(inode) &&
220             EXT3_SB(inode->i_sb)->s_journal &&
221             (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
222                 tid_t commit_tid = atomic_read(&ei->i_datasync_tid);
223                 journal_t *journal = EXT3_SB(inode->i_sb)->s_journal;
224
225                 log_start_commit(journal, commit_tid);
226                 log_wait_commit(journal, commit_tid);
227                 filemap_write_and_wait(&inode->i_data);
228         }
229         truncate_inode_pages(&inode->i_data, 0);
230
231         ext3_discard_reservation(inode);
232         rsv = ei->i_block_alloc_info;
233         ei->i_block_alloc_info = NULL;
234         if (unlikely(rsv))
235                 kfree(rsv);
236
237         if (!want_delete)
238                 goto no_delete;
239
240         handle = start_transaction(inode);
241         if (IS_ERR(handle)) {
242                 /*
243                  * If we're going to skip the normal cleanup, we still need to
244                  * make sure that the in-core orphan linked list is properly
245                  * cleaned up.
246                  */
247                 ext3_orphan_del(NULL, inode);
248                 goto no_delete;
249         }
250
251         if (IS_SYNC(inode))
252                 handle->h_sync = 1;
253         inode->i_size = 0;
254         if (inode->i_blocks)
255                 ext3_truncate(inode);
256         /*
257          * Kill off the orphan record created when the inode lost the last
258          * link.  Note that ext3_orphan_del() has to be able to cope with the
259          * deletion of a non-existent orphan - ext3_truncate() could
260          * have removed the record.
261          */
262         ext3_orphan_del(handle, inode);
263         ei->i_dtime = get_seconds();
264
265         /*
266          * One subtle ordering requirement: if anything has gone wrong
267          * (transaction abort, IO errors, whatever), then we can still
268          * do these next steps (the fs will already have been marked as
269          * having errors), but we can't free the inode if the mark_dirty
270          * fails.
271          */
272         if (ext3_mark_inode_dirty(handle, inode)) {
273                 /* If that failed, just dquot_drop() and be done with that */
274                 dquot_drop(inode);
275                 clear_inode(inode);
276         } else {
277                 ext3_xattr_delete_inode(handle, inode);
278                 dquot_free_inode(inode);
279                 dquot_drop(inode);
280                 clear_inode(inode);
281                 ext3_free_inode(handle, inode);
282         }
283         ext3_journal_stop(handle);
284         return;
285 no_delete:
286         clear_inode(inode);
287         dquot_drop(inode);
288 }
289
290 typedef struct {
291         __le32  *p;
292         __le32  key;
293         struct buffer_head *bh;
294 } Indirect;
295
296 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
297 {
298         p->key = *(p->p = v);
299         p->bh = bh;
300 }
301
302 static int verify_chain(Indirect *from, Indirect *to)
303 {
304         while (from <= to && from->key == *from->p)
305                 from++;
306         return (from > to);
307 }
308
309 /**
310  *      ext3_block_to_path - parse the block number into array of offsets
311  *      @inode: inode in question (we are only interested in its superblock)
312  *      @i_block: block number to be parsed
313  *      @offsets: array to store the offsets in
314  *      @boundary: set this non-zero if the referred-to block is likely to be
315  *             followed (on disk) by an indirect block.
316  *
317  *      To store the locations of file's data ext3 uses a data structure common
318  *      for UNIX filesystems - tree of pointers anchored in the inode, with
319  *      data blocks at leaves and indirect blocks in intermediate nodes.
320  *      This function translates the block number into path in that tree -
321  *      return value is the path length and @offsets[n] is the offset of
322  *      pointer to (n+1)th node in the nth one. If @block is out of range
323  *      (negative or too large) warning is printed and zero returned.
324  *
325  *      Note: function doesn't find node addresses, so no IO is needed. All
326  *      we need to know is the capacity of indirect blocks (taken from the
327  *      inode->i_sb).
328  */
329
330 /*
331  * Portability note: the last comparison (check that we fit into triple
332  * indirect block) is spelled differently, because otherwise on an
333  * architecture with 32-bit longs and 8Kb pages we might get into trouble
334  * if our filesystem had 8Kb blocks. We might use long long, but that would
335  * kill us on x86. Oh, well, at least the sign propagation does not matter -
336  * i_block would have to be negative in the very beginning, so we would not
337  * get there at all.
338  */
339
340 static int ext3_block_to_path(struct inode *inode,
341                         long i_block, int offsets[4], int *boundary)
342 {
343         int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
344         int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
345         const long direct_blocks = EXT3_NDIR_BLOCKS,
346                 indirect_blocks = ptrs,
347                 double_blocks = (1 << (ptrs_bits * 2));
348         int n = 0;
349         int final = 0;
350
351         if (i_block < 0) {
352                 ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
353         } else if (i_block < direct_blocks) {
354                 offsets[n++] = i_block;
355                 final = direct_blocks;
356         } else if ( (i_block -= direct_blocks) < indirect_blocks) {
357                 offsets[n++] = EXT3_IND_BLOCK;
358                 offsets[n++] = i_block;
359                 final = ptrs;
360         } else if ((i_block -= indirect_blocks) < double_blocks) {
361                 offsets[n++] = EXT3_DIND_BLOCK;
362                 offsets[n++] = i_block >> ptrs_bits;
363                 offsets[n++] = i_block & (ptrs - 1);
364                 final = ptrs;
365         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
366                 offsets[n++] = EXT3_TIND_BLOCK;
367                 offsets[n++] = i_block >> (ptrs_bits * 2);
368                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
369                 offsets[n++] = i_block & (ptrs - 1);
370                 final = ptrs;
371         } else {
372                 ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
373         }
374         if (boundary)
375                 *boundary = final - 1 - (i_block & (ptrs - 1));
376         return n;
377 }
378
379 /**
380  *      ext3_get_branch - read the chain of indirect blocks leading to data
381  *      @inode: inode in question
382  *      @depth: depth of the chain (1 - direct pointer, etc.)
383  *      @offsets: offsets of pointers in inode/indirect blocks
384  *      @chain: place to store the result
385  *      @err: here we store the error value
386  *
387  *      Function fills the array of triples <key, p, bh> and returns %NULL
388  *      if everything went OK or the pointer to the last filled triple
389  *      (incomplete one) otherwise. Upon the return chain[i].key contains
390  *      the number of (i+1)-th block in the chain (as it is stored in memory,
391  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
392  *      number (it points into struct inode for i==0 and into the bh->b_data
393  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
394  *      block for i>0 and NULL for i==0. In other words, it holds the block
395  *      numbers of the chain, addresses they were taken from (and where we can
396  *      verify that chain did not change) and buffer_heads hosting these
397  *      numbers.
398  *
399  *      Function stops when it stumbles upon zero pointer (absent block)
400  *              (pointer to last triple returned, *@err == 0)
401  *      or when it gets an IO error reading an indirect block
402  *              (ditto, *@err == -EIO)
403  *      or when it notices that chain had been changed while it was reading
404  *              (ditto, *@err == -EAGAIN)
405  *      or when it reads all @depth-1 indirect blocks successfully and finds
406  *      the whole chain, all way to the data (returns %NULL, *err == 0).
407  */
408 static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
409                                  Indirect chain[4], int *err)
410 {
411         struct super_block *sb = inode->i_sb;
412         Indirect *p = chain;
413         struct buffer_head *bh;
414
415         *err = 0;
416         /* i_data is not going away, no lock needed */
417         add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
418         if (!p->key)
419                 goto no_block;
420         while (--depth) {
421                 bh = sb_bread(sb, le32_to_cpu(p->key));
422                 if (!bh)
423                         goto failure;
424                 /* Reader: pointers */
425                 if (!verify_chain(chain, p))
426                         goto changed;
427                 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
428                 /* Reader: end */
429                 if (!p->key)
430                         goto no_block;
431         }
432         return NULL;
433
434 changed:
435         brelse(bh);
436         *err = -EAGAIN;
437         goto no_block;
438 failure:
439         *err = -EIO;
440 no_block:
441         return p;
442 }
443
444 /**
445  *      ext3_find_near - find a place for allocation with sufficient locality
446  *      @inode: owner
447  *      @ind: descriptor of indirect block.
448  *
449  *      This function returns the preferred place for block allocation.
450  *      It is used when heuristic for sequential allocation fails.
451  *      Rules are:
452  *        + if there is a block to the left of our position - allocate near it.
453  *        + if pointer will live in indirect block - allocate near that block.
454  *        + if pointer will live in inode - allocate in the same
455  *          cylinder group.
456  *
457  * In the latter case we colour the starting block by the callers PID to
458  * prevent it from clashing with concurrent allocations for a different inode
459  * in the same block group.   The PID is used here so that functionally related
460  * files will be close-by on-disk.
461  *
462  *      Caller must make sure that @ind is valid and will stay that way.
463  */
464 static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
465 {
466         struct ext3_inode_info *ei = EXT3_I(inode);
467         __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
468         __le32 *p;
469         ext3_fsblk_t bg_start;
470         ext3_grpblk_t colour;
471
472         /* Try to find previous block */
473         for (p = ind->p - 1; p >= start; p--) {
474                 if (*p)
475                         return le32_to_cpu(*p);
476         }
477
478         /* No such thing, so let's try location of indirect block */
479         if (ind->bh)
480                 return ind->bh->b_blocknr;
481
482         /*
483          * It is going to be referred to from the inode itself? OK, just put it
484          * into the same cylinder group then.
485          */
486         bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
487         colour = (current->pid % 16) *
488                         (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
489         return bg_start + colour;
490 }
491
492 /**
493  *      ext3_find_goal - find a preferred place for allocation.
494  *      @inode: owner
495  *      @block:  block we want
496  *      @partial: pointer to the last triple within a chain
497  *
498  *      Normally this function find the preferred place for block allocation,
499  *      returns it.
500  */
501
502 static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
503                                    Indirect *partial)
504 {
505         struct ext3_block_alloc_info *block_i;
506
507         block_i =  EXT3_I(inode)->i_block_alloc_info;
508
509         /*
510          * try the heuristic for sequential allocation,
511          * failing that at least try to get decent locality.
512          */
513         if (block_i && (block == block_i->last_alloc_logical_block + 1)
514                 && (block_i->last_alloc_physical_block != 0)) {
515                 return block_i->last_alloc_physical_block + 1;
516         }
517
518         return ext3_find_near(inode, partial);
519 }
520
521 /**
522  *      ext3_blks_to_allocate - Look up the block map and count the number
523  *      of direct blocks need to be allocated for the given branch.
524  *
525  *      @branch: chain of indirect blocks
526  *      @k: number of blocks need for indirect blocks
527  *      @blks: number of data blocks to be mapped.
528  *      @blocks_to_boundary:  the offset in the indirect block
529  *
530  *      return the total number of blocks to be allocate, including the
531  *      direct and indirect blocks.
532  */
533 static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
534                 int blocks_to_boundary)
535 {
536         unsigned long count = 0;
537
538         /*
539          * Simple case, [t,d]Indirect block(s) has not allocated yet
540          * then it's clear blocks on that path have not allocated
541          */
542         if (k > 0) {
543                 /* right now we don't handle cross boundary allocation */
544                 if (blks < blocks_to_boundary + 1)
545                         count += blks;
546                 else
547                         count += blocks_to_boundary + 1;
548                 return count;
549         }
550
551         count++;
552         while (count < blks && count <= blocks_to_boundary &&
553                 le32_to_cpu(*(branch[0].p + count)) == 0) {
554                 count++;
555         }
556         return count;
557 }
558
559 /**
560  *      ext3_alloc_blocks - multiple allocate blocks needed for a branch
561  *      @handle: handle for this transaction
562  *      @inode: owner
563  *      @goal: preferred place for allocation
564  *      @indirect_blks: the number of blocks need to allocate for indirect
565  *                      blocks
566  *      @blks:  number of blocks need to allocated for direct blocks
567  *      @new_blocks: on return it will store the new block numbers for
568  *      the indirect blocks(if needed) and the first direct block,
569  *      @err: here we store the error value
570  *
571  *      return the number of direct blocks allocated
572  */
573 static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
574                         ext3_fsblk_t goal, int indirect_blks, int blks,
575                         ext3_fsblk_t new_blocks[4], int *err)
576 {
577         int target, i;
578         unsigned long count = 0;
579         int index = 0;
580         ext3_fsblk_t current_block = 0;
581         int ret = 0;
582
583         /*
584          * Here we try to allocate the requested multiple blocks at once,
585          * on a best-effort basis.
586          * To build a branch, we should allocate blocks for
587          * the indirect blocks(if not allocated yet), and at least
588          * the first direct block of this branch.  That's the
589          * minimum number of blocks need to allocate(required)
590          */
591         target = blks + indirect_blks;
592
593         while (1) {
594                 count = target;
595                 /* allocating blocks for indirect blocks and direct blocks */
596                 current_block = ext3_new_blocks(handle,inode,goal,&count,err);
597                 if (*err)
598                         goto failed_out;
599
600                 target -= count;
601                 /* allocate blocks for indirect blocks */
602                 while (index < indirect_blks && count) {
603                         new_blocks[index++] = current_block++;
604                         count--;
605                 }
606
607                 if (count > 0)
608                         break;
609         }
610
611         /* save the new block number for the first direct block */
612         new_blocks[index] = current_block;
613
614         /* total number of blocks allocated for direct blocks */
615         ret = count;
616         *err = 0;
617         return ret;
618 failed_out:
619         for (i = 0; i <index; i++)
620                 ext3_free_blocks(handle, inode, new_blocks[i], 1);
621         return ret;
622 }
623
624 /**
625  *      ext3_alloc_branch - allocate and set up a chain of blocks.
626  *      @handle: handle for this transaction
627  *      @inode: owner
628  *      @indirect_blks: number of allocated indirect blocks
629  *      @blks: number of allocated direct blocks
630  *      @goal: preferred place for allocation
631  *      @offsets: offsets (in the blocks) to store the pointers to next.
632  *      @branch: place to store the chain in.
633  *
634  *      This function allocates blocks, zeroes out all but the last one,
635  *      links them into chain and (if we are synchronous) writes them to disk.
636  *      In other words, it prepares a branch that can be spliced onto the
637  *      inode. It stores the information about that chain in the branch[], in
638  *      the same format as ext3_get_branch() would do. We are calling it after
639  *      we had read the existing part of chain and partial points to the last
640  *      triple of that (one with zero ->key). Upon the exit we have the same
641  *      picture as after the successful ext3_get_block(), except that in one
642  *      place chain is disconnected - *branch->p is still zero (we did not
643  *      set the last link), but branch->key contains the number that should
644  *      be placed into *branch->p to fill that gap.
645  *
646  *      If allocation fails we free all blocks we've allocated (and forget
647  *      their buffer_heads) and return the error value the from failed
648  *      ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
649  *      as described above and return 0.
650  */
651 static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
652                         int indirect_blks, int *blks, ext3_fsblk_t goal,
653                         int *offsets, Indirect *branch)
654 {
655         int blocksize = inode->i_sb->s_blocksize;
656         int i, n = 0;
657         int err = 0;
658         struct buffer_head *bh;
659         int num;
660         ext3_fsblk_t new_blocks[4];
661         ext3_fsblk_t current_block;
662
663         num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
664                                 *blks, new_blocks, &err);
665         if (err)
666                 return err;
667
668         branch[0].key = cpu_to_le32(new_blocks[0]);
669         /*
670          * metadata blocks and data blocks are allocated.
671          */
672         for (n = 1; n <= indirect_blks;  n++) {
673                 /*
674                  * Get buffer_head for parent block, zero it out
675                  * and set the pointer to new one, then send
676                  * parent to disk.
677                  */
678                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
679                 branch[n].bh = bh;
680                 lock_buffer(bh);
681                 BUFFER_TRACE(bh, "call get_create_access");
682                 err = ext3_journal_get_create_access(handle, bh);
683                 if (err) {
684                         unlock_buffer(bh);
685                         brelse(bh);
686                         goto failed;
687                 }
688
689                 memset(bh->b_data, 0, blocksize);
690                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
691                 branch[n].key = cpu_to_le32(new_blocks[n]);
692                 *branch[n].p = branch[n].key;
693                 if ( n == indirect_blks) {
694                         current_block = new_blocks[n];
695                         /*
696                          * End of chain, update the last new metablock of
697                          * the chain to point to the new allocated
698                          * data blocks numbers
699                          */
700                         for (i=1; i < num; i++)
701                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
702                 }
703                 BUFFER_TRACE(bh, "marking uptodate");
704                 set_buffer_uptodate(bh);
705                 unlock_buffer(bh);
706
707                 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
708                 err = ext3_journal_dirty_metadata(handle, bh);
709                 if (err)
710                         goto failed;
711         }
712         *blks = num;
713         return err;
714 failed:
715         /* Allocation failed, free what we already allocated */
716         for (i = 1; i <= n ; i++) {
717                 BUFFER_TRACE(branch[i].bh, "call journal_forget");
718                 ext3_journal_forget(handle, branch[i].bh);
719         }
720         for (i = 0; i <indirect_blks; i++)
721                 ext3_free_blocks(handle, inode, new_blocks[i], 1);
722
723         ext3_free_blocks(handle, inode, new_blocks[i], num);
724
725         return err;
726 }
727
728 /**
729  * ext3_splice_branch - splice the allocated branch onto inode.
730  * @handle: handle for this transaction
731  * @inode: owner
732  * @block: (logical) number of block we are adding
733  * @where: location of missing link
734  * @num:   number of indirect blocks we are adding
735  * @blks:  number of direct blocks we are adding
736  *
737  * This function fills the missing link and does all housekeeping needed in
738  * inode (->i_blocks, etc.). In case of success we end up with the full
739  * chain to new block and return 0.
740  */
741 static int ext3_splice_branch(handle_t *handle, struct inode *inode,
742                         long block, Indirect *where, int num, int blks)
743 {
744         int i;
745         int err = 0;
746         struct ext3_block_alloc_info *block_i;
747         ext3_fsblk_t current_block;
748         struct ext3_inode_info *ei = EXT3_I(inode);
749         struct timespec now;
750
751         block_i = ei->i_block_alloc_info;
752         /*
753          * If we're splicing into a [td]indirect block (as opposed to the
754          * inode) then we need to get write access to the [td]indirect block
755          * before the splice.
756          */
757         if (where->bh) {
758                 BUFFER_TRACE(where->bh, "get_write_access");
759                 err = ext3_journal_get_write_access(handle, where->bh);
760                 if (err)
761                         goto err_out;
762         }
763         /* That's it */
764
765         *where->p = where->key;
766
767         /*
768          * Update the host buffer_head or inode to point to more just allocated
769          * direct blocks blocks
770          */
771         if (num == 0 && blks > 1) {
772                 current_block = le32_to_cpu(where->key) + 1;
773                 for (i = 1; i < blks; i++)
774                         *(where->p + i ) = cpu_to_le32(current_block++);
775         }
776
777         /*
778          * update the most recently allocated logical & physical block
779          * in i_block_alloc_info, to assist find the proper goal block for next
780          * allocation
781          */
782         if (block_i) {
783                 block_i->last_alloc_logical_block = block + blks - 1;
784                 block_i->last_alloc_physical_block =
785                                 le32_to_cpu(where[num].key) + blks - 1;
786         }
787
788         /* We are done with atomic stuff, now do the rest of housekeeping */
789         now = CURRENT_TIME_SEC;
790         if (!timespec_equal(&inode->i_ctime, &now) || !where->bh) {
791                 inode->i_ctime = now;
792                 ext3_mark_inode_dirty(handle, inode);
793         }
794         /* ext3_mark_inode_dirty already updated i_sync_tid */
795         atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
796
797         /* had we spliced it onto indirect block? */
798         if (where->bh) {
799                 /*
800                  * If we spliced it onto an indirect block, we haven't
801                  * altered the inode.  Note however that if it is being spliced
802                  * onto an indirect block at the very end of the file (the
803                  * file is growing) then we *will* alter the inode to reflect
804                  * the new i_size.  But that is not done here - it is done in
805                  * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
806                  */
807                 jbd_debug(5, "splicing indirect only\n");
808                 BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
809                 err = ext3_journal_dirty_metadata(handle, where->bh);
810                 if (err)
811                         goto err_out;
812         } else {
813                 /*
814                  * OK, we spliced it into the inode itself on a direct block.
815                  * Inode was dirtied above.
816                  */
817                 jbd_debug(5, "splicing direct\n");
818         }
819         return err;
820
821 err_out:
822         for (i = 1; i <= num; i++) {
823                 BUFFER_TRACE(where[i].bh, "call journal_forget");
824                 ext3_journal_forget(handle, where[i].bh);
825                 ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
826         }
827         ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
828
829         return err;
830 }
831
832 /*
833  * Allocation strategy is simple: if we have to allocate something, we will
834  * have to go the whole way to leaf. So let's do it before attaching anything
835  * to tree, set linkage between the newborn blocks, write them if sync is
836  * required, recheck the path, free and repeat if check fails, otherwise
837  * set the last missing link (that will protect us from any truncate-generated
838  * removals - all blocks on the path are immune now) and possibly force the
839  * write on the parent block.
840  * That has a nice additional property: no special recovery from the failed
841  * allocations is needed - we simply release blocks and do not touch anything
842  * reachable from inode.
843  *
844  * `handle' can be NULL if create == 0.
845  *
846  * The BKL may not be held on entry here.  Be sure to take it early.
847  * return > 0, # of blocks mapped or allocated.
848  * return = 0, if plain lookup failed.
849  * return < 0, error case.
850  */
851 int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
852                 sector_t iblock, unsigned long maxblocks,
853                 struct buffer_head *bh_result,
854                 int create)
855 {
856         int err = -EIO;
857         int offsets[4];
858         Indirect chain[4];
859         Indirect *partial;
860         ext3_fsblk_t goal;
861         int indirect_blks;
862         int blocks_to_boundary = 0;
863         int depth;
864         struct ext3_inode_info *ei = EXT3_I(inode);
865         int count = 0;
866         ext3_fsblk_t first_block = 0;
867
868
869         trace_ext3_get_blocks_enter(inode, iblock, maxblocks, create);
870         J_ASSERT(handle != NULL || create == 0);
871         depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
872
873         if (depth == 0)
874                 goto out;
875
876         partial = ext3_get_branch(inode, depth, offsets, chain, &err);
877
878         /* Simplest case - block found, no allocation needed */
879         if (!partial) {
880                 first_block = le32_to_cpu(chain[depth - 1].key);
881                 clear_buffer_new(bh_result);
882                 count++;
883                 /*map more blocks*/
884                 while (count < maxblocks && count <= blocks_to_boundary) {
885                         ext3_fsblk_t blk;
886
887                         if (!verify_chain(chain, chain + depth - 1)) {
888                                 /*
889                                  * Indirect block might be removed by
890                                  * truncate while we were reading it.
891                                  * Handling of that case: forget what we've
892                                  * got now. Flag the err as EAGAIN, so it
893                                  * will reread.
894                                  */
895                                 err = -EAGAIN;
896                                 count = 0;
897                                 break;
898                         }
899                         blk = le32_to_cpu(*(chain[depth-1].p + count));
900
901                         if (blk == first_block + count)
902                                 count++;
903                         else
904                                 break;
905                 }
906                 if (err != -EAGAIN)
907                         goto got_it;
908         }
909
910         /* Next simple case - plain lookup or failed read of indirect block */
911         if (!create || err == -EIO)
912                 goto cleanup;
913
914         /*
915          * Block out ext3_truncate while we alter the tree
916          */
917         mutex_lock(&ei->truncate_mutex);
918
919         /*
920          * If the indirect block is missing while we are reading
921          * the chain(ext3_get_branch() returns -EAGAIN err), or
922          * if the chain has been changed after we grab the semaphore,
923          * (either because another process truncated this branch, or
924          * another get_block allocated this branch) re-grab the chain to see if
925          * the request block has been allocated or not.
926          *
927          * Since we already block the truncate/other get_block
928          * at this point, we will have the current copy of the chain when we
929          * splice the branch into the tree.
930          */
931         if (err == -EAGAIN || !verify_chain(chain, partial)) {
932                 while (partial > chain) {
933                         brelse(partial->bh);
934                         partial--;
935                 }
936                 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
937                 if (!partial) {
938                         count++;
939                         mutex_unlock(&ei->truncate_mutex);
940                         if (err)
941                                 goto cleanup;
942                         clear_buffer_new(bh_result);
943                         goto got_it;
944                 }
945         }
946
947         /*
948          * Okay, we need to do block allocation.  Lazily initialize the block
949          * allocation info here if necessary
950         */
951         if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
952                 ext3_init_block_alloc_info(inode);
953
954         goal = ext3_find_goal(inode, iblock, partial);
955
956         /* the number of blocks need to allocate for [d,t]indirect blocks */
957         indirect_blks = (chain + depth) - partial - 1;
958
959         /*
960          * Next look up the indirect map to count the totoal number of
961          * direct blocks to allocate for this branch.
962          */
963         count = ext3_blks_to_allocate(partial, indirect_blks,
964                                         maxblocks, blocks_to_boundary);
965         err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
966                                 offsets + (partial - chain), partial);
967
968         /*
969          * The ext3_splice_branch call will free and forget any buffers
970          * on the new chain if there is a failure, but that risks using
971          * up transaction credits, especially for bitmaps where the
972          * credits cannot be returned.  Can we handle this somehow?  We
973          * may need to return -EAGAIN upwards in the worst case.  --sct
974          */
975         if (!err)
976                 err = ext3_splice_branch(handle, inode, iblock,
977                                         partial, indirect_blks, count);
978         mutex_unlock(&ei->truncate_mutex);
979         if (err)
980                 goto cleanup;
981
982         set_buffer_new(bh_result);
983 got_it:
984         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
985         if (count > blocks_to_boundary)
986                 set_buffer_boundary(bh_result);
987         err = count;
988         /* Clean up and exit */
989         partial = chain + depth - 1;    /* the whole chain */
990 cleanup:
991         while (partial > chain) {
992                 BUFFER_TRACE(partial->bh, "call brelse");
993                 brelse(partial->bh);
994                 partial--;
995         }
996         BUFFER_TRACE(bh_result, "returned");
997 out:
998         trace_ext3_get_blocks_exit(inode, iblock,
999                                    depth ? le32_to_cpu(chain[depth-1].key) : 0,
1000                                    count, err);
1001         return err;
1002 }
1003
1004 /* Maximum number of blocks we map for direct IO at once. */
1005 #define DIO_MAX_BLOCKS 4096
1006 /*
1007  * Number of credits we need for writing DIO_MAX_BLOCKS:
1008  * We need sb + group descriptor + bitmap + inode -> 4
1009  * For B blocks with A block pointers per block we need:
1010  * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
1011  * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
1012  */
1013 #define DIO_CREDITS 25
1014
1015 static int ext3_get_block(struct inode *inode, sector_t iblock,
1016                         struct buffer_head *bh_result, int create)
1017 {
1018         handle_t *handle = ext3_journal_current_handle();
1019         int ret = 0, started = 0;
1020         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1021
1022         if (create && !handle) {        /* Direct IO write... */
1023                 if (max_blocks > DIO_MAX_BLOCKS)
1024                         max_blocks = DIO_MAX_BLOCKS;
1025                 handle = ext3_journal_start(inode, DIO_CREDITS +
1026                                 EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb));
1027                 if (IS_ERR(handle)) {
1028                         ret = PTR_ERR(handle);
1029                         goto out;
1030                 }
1031                 started = 1;
1032         }
1033
1034         ret = ext3_get_blocks_handle(handle, inode, iblock,
1035                                         max_blocks, bh_result, create);
1036         if (ret > 0) {
1037                 bh_result->b_size = (ret << inode->i_blkbits);
1038                 ret = 0;
1039         }
1040         if (started)
1041                 ext3_journal_stop(handle);
1042 out:
1043         return ret;
1044 }
1045
1046 int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1047                 u64 start, u64 len)
1048 {
1049         return generic_block_fiemap(inode, fieinfo, start, len,
1050                                     ext3_get_block);
1051 }
1052
1053 /*
1054  * `handle' can be NULL if create is zero
1055  */
1056 struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
1057                                 long block, int create, int *errp)
1058 {
1059         struct buffer_head dummy;
1060         int fatal = 0, err;
1061
1062         J_ASSERT(handle != NULL || create == 0);
1063
1064         dummy.b_state = 0;
1065         dummy.b_blocknr = -1000;
1066         buffer_trace_init(&dummy.b_history);
1067         err = ext3_get_blocks_handle(handle, inode, block, 1,
1068                                         &dummy, create);
1069         /*
1070          * ext3_get_blocks_handle() returns number of blocks
1071          * mapped. 0 in case of a HOLE.
1072          */
1073         if (err > 0) {
1074                 if (err > 1)
1075                         WARN_ON(1);
1076                 err = 0;
1077         }
1078         *errp = err;
1079         if (!err && buffer_mapped(&dummy)) {
1080                 struct buffer_head *bh;
1081                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1082                 if (!bh) {
1083                         *errp = -EIO;
1084                         goto err;
1085                 }
1086                 if (buffer_new(&dummy)) {
1087                         J_ASSERT(create != 0);
1088                         J_ASSERT(handle != NULL);
1089
1090                         /*
1091                          * Now that we do not always journal data, we should
1092                          * keep in mind whether this should always journal the
1093                          * new buffer as metadata.  For now, regular file
1094                          * writes use ext3_get_block instead, so it's not a
1095                          * problem.
1096                          */
1097                         lock_buffer(bh);
1098                         BUFFER_TRACE(bh, "call get_create_access");
1099                         fatal = ext3_journal_get_create_access(handle, bh);
1100                         if (!fatal && !buffer_uptodate(bh)) {
1101                                 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1102                                 set_buffer_uptodate(bh);
1103                         }
1104                         unlock_buffer(bh);
1105                         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1106                         err = ext3_journal_dirty_metadata(handle, bh);
1107                         if (!fatal)
1108                                 fatal = err;
1109                 } else {
1110                         BUFFER_TRACE(bh, "not a new buffer");
1111                 }
1112                 if (fatal) {
1113                         *errp = fatal;
1114                         brelse(bh);
1115                         bh = NULL;
1116                 }
1117                 return bh;
1118         }
1119 err:
1120         return NULL;
1121 }
1122
1123 struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
1124                                int block, int create, int *err)
1125 {
1126         struct buffer_head * bh;
1127
1128         bh = ext3_getblk(handle, inode, block, create, err);
1129         if (!bh)
1130                 return bh;
1131         if (bh_uptodate_or_lock(bh))
1132                 return bh;
1133         get_bh(bh);
1134         bh->b_end_io = end_buffer_read_sync;
1135         submit_bh(READ | REQ_META | REQ_PRIO, bh);
1136         wait_on_buffer(bh);
1137         if (buffer_uptodate(bh))
1138                 return bh;
1139         put_bh(bh);
1140         *err = -EIO;
1141         return NULL;
1142 }
1143
1144 static int walk_page_buffers(   handle_t *handle,
1145                                 struct buffer_head *head,
1146                                 unsigned from,
1147                                 unsigned to,
1148                                 int *partial,
1149                                 int (*fn)(      handle_t *handle,
1150                                                 struct buffer_head *bh))
1151 {
1152         struct buffer_head *bh;
1153         unsigned block_start, block_end;
1154         unsigned blocksize = head->b_size;
1155         int err, ret = 0;
1156         struct buffer_head *next;
1157
1158         for (   bh = head, block_start = 0;
1159                 ret == 0 && (bh != head || !block_start);
1160                 block_start = block_end, bh = next)
1161         {
1162                 next = bh->b_this_page;
1163                 block_end = block_start + blocksize;
1164                 if (block_end <= from || block_start >= to) {
1165                         if (partial && !buffer_uptodate(bh))
1166                                 *partial = 1;
1167                         continue;
1168                 }
1169                 err = (*fn)(handle, bh);
1170                 if (!ret)
1171                         ret = err;
1172         }
1173         return ret;
1174 }
1175
1176 /*
1177  * To preserve ordering, it is essential that the hole instantiation and
1178  * the data write be encapsulated in a single transaction.  We cannot
1179  * close off a transaction and start a new one between the ext3_get_block()
1180  * and the commit_write().  So doing the journal_start at the start of
1181  * prepare_write() is the right place.
1182  *
1183  * Also, this function can nest inside ext3_writepage() ->
1184  * block_write_full_page(). In that case, we *know* that ext3_writepage()
1185  * has generated enough buffer credits to do the whole page.  So we won't
1186  * block on the journal in that case, which is good, because the caller may
1187  * be PF_MEMALLOC.
1188  *
1189  * By accident, ext3 can be reentered when a transaction is open via
1190  * quota file writes.  If we were to commit the transaction while thus
1191  * reentered, there can be a deadlock - we would be holding a quota
1192  * lock, and the commit would never complete if another thread had a
1193  * transaction open and was blocking on the quota lock - a ranking
1194  * violation.
1195  *
1196  * So what we do is to rely on the fact that journal_stop/journal_start
1197  * will _not_ run commit under these circumstances because handle->h_ref
1198  * is elevated.  We'll still have enough credits for the tiny quotafile
1199  * write.
1200  */
1201 static int do_journal_get_write_access(handle_t *handle,
1202                                         struct buffer_head *bh)
1203 {
1204         int dirty = buffer_dirty(bh);
1205         int ret;
1206
1207         if (!buffer_mapped(bh) || buffer_freed(bh))
1208                 return 0;
1209         /*
1210          * __block_prepare_write() could have dirtied some buffers. Clean
1211          * the dirty bit as jbd2_journal_get_write_access() could complain
1212          * otherwise about fs integrity issues. Setting of the dirty bit
1213          * by __block_prepare_write() isn't a real problem here as we clear
1214          * the bit before releasing a page lock and thus writeback cannot
1215          * ever write the buffer.
1216          */
1217         if (dirty)
1218                 clear_buffer_dirty(bh);
1219         ret = ext3_journal_get_write_access(handle, bh);
1220         if (!ret && dirty)
1221                 ret = ext3_journal_dirty_metadata(handle, bh);
1222         return ret;
1223 }
1224
1225 /*
1226  * Truncate blocks that were not used by write. We have to truncate the
1227  * pagecache as well so that corresponding buffers get properly unmapped.
1228  */
1229 static void ext3_truncate_failed_write(struct inode *inode)
1230 {
1231         truncate_inode_pages(inode->i_mapping, inode->i_size);
1232         ext3_truncate(inode);
1233 }
1234
1235 /*
1236  * Truncate blocks that were not used by direct IO write. We have to zero out
1237  * the last file block as well because direct IO might have written to it.
1238  */
1239 static void ext3_truncate_failed_direct_write(struct inode *inode)
1240 {
1241         ext3_block_truncate_page(inode, inode->i_size);
1242         ext3_truncate(inode);
1243 }
1244
1245 static int ext3_write_begin(struct file *file, struct address_space *mapping,
1246                                 loff_t pos, unsigned len, unsigned flags,
1247                                 struct page **pagep, void **fsdata)
1248 {
1249         struct inode *inode = mapping->host;
1250         int ret;
1251         handle_t *handle;
1252         int retries = 0;
1253         struct page *page;
1254         pgoff_t index;
1255         unsigned from, to;
1256         /* Reserve one block more for addition to orphan list in case
1257          * we allocate blocks but write fails for some reason */
1258         int needed_blocks = ext3_writepage_trans_blocks(inode) + 1;
1259
1260         trace_ext3_write_begin(inode, pos, len, flags);
1261
1262         index = pos >> PAGE_CACHE_SHIFT;
1263         from = pos & (PAGE_CACHE_SIZE - 1);
1264         to = from + len;
1265
1266 retry:
1267         page = grab_cache_page_write_begin(mapping, index, flags);
1268         if (!page)
1269                 return -ENOMEM;
1270         *pagep = page;
1271
1272         handle = ext3_journal_start(inode, needed_blocks);
1273         if (IS_ERR(handle)) {
1274                 unlock_page(page);
1275                 page_cache_release(page);
1276                 ret = PTR_ERR(handle);
1277                 goto out;
1278         }
1279         ret = __block_write_begin(page, pos, len, ext3_get_block);
1280         if (ret)
1281                 goto write_begin_failed;
1282
1283         if (ext3_should_journal_data(inode)) {
1284                 ret = walk_page_buffers(handle, page_buffers(page),
1285                                 from, to, NULL, do_journal_get_write_access);
1286         }
1287 write_begin_failed:
1288         if (ret) {
1289                 /*
1290                  * block_write_begin may have instantiated a few blocks
1291                  * outside i_size.  Trim these off again. Don't need
1292                  * i_size_read because we hold i_mutex.
1293                  *
1294                  * Add inode to orphan list in case we crash before truncate
1295                  * finishes. Do this only if ext3_can_truncate() agrees so
1296                  * that orphan processing code is happy.
1297                  */
1298                 if (pos + len > inode->i_size && ext3_can_truncate(inode))
1299                         ext3_orphan_add(handle, inode);
1300                 ext3_journal_stop(handle);
1301                 unlock_page(page);
1302                 page_cache_release(page);
1303                 if (pos + len > inode->i_size)
1304                         ext3_truncate_failed_write(inode);
1305         }
1306         if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1307                 goto retry;
1308 out:
1309         return ret;
1310 }
1311
1312
1313 int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1314 {
1315         int err = journal_dirty_data(handle, bh);
1316         if (err)
1317                 ext3_journal_abort_handle(__func__, __func__,
1318                                                 bh, handle, err);
1319         return err;
1320 }
1321
1322 /* For ordered writepage and write_end functions */
1323 static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1324 {
1325         /*
1326          * Write could have mapped the buffer but it didn't copy the data in
1327          * yet. So avoid filing such buffer into a transaction.
1328          */
1329         if (buffer_mapped(bh) && buffer_uptodate(bh))
1330                 return ext3_journal_dirty_data(handle, bh);
1331         return 0;
1332 }
1333
1334 /* For write_end() in data=journal mode */
1335 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1336 {
1337         if (!buffer_mapped(bh) || buffer_freed(bh))
1338                 return 0;
1339         set_buffer_uptodate(bh);
1340         return ext3_journal_dirty_metadata(handle, bh);
1341 }
1342
1343 /*
1344  * This is nasty and subtle: ext3_write_begin() could have allocated blocks
1345  * for the whole page but later we failed to copy the data in. Update inode
1346  * size according to what we managed to copy. The rest is going to be
1347  * truncated in write_end function.
1348  */
1349 static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied)
1350 {
1351         /* What matters to us is i_disksize. We don't write i_size anywhere */
1352         if (pos + copied > inode->i_size)
1353                 i_size_write(inode, pos + copied);
1354         if (pos + copied > EXT3_I(inode)->i_disksize) {
1355                 EXT3_I(inode)->i_disksize = pos + copied;
1356                 mark_inode_dirty(inode);
1357         }
1358 }
1359
1360 /*
1361  * We need to pick up the new inode size which generic_commit_write gave us
1362  * `file' can be NULL - eg, when called from page_symlink().
1363  *
1364  * ext3 never places buffers on inode->i_mapping->private_list.  metadata
1365  * buffers are managed internally.
1366  */
1367 static int ext3_ordered_write_end(struct file *file,
1368                                 struct address_space *mapping,
1369                                 loff_t pos, unsigned len, unsigned copied,
1370                                 struct page *page, void *fsdata)
1371 {
1372         handle_t *handle = ext3_journal_current_handle();
1373         struct inode *inode = file->f_mapping->host;
1374         unsigned from, to;
1375         int ret = 0, ret2;
1376
1377         trace_ext3_ordered_write_end(inode, pos, len, copied);
1378         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1379
1380         from = pos & (PAGE_CACHE_SIZE - 1);
1381         to = from + copied;
1382         ret = walk_page_buffers(handle, page_buffers(page),
1383                 from, to, NULL, journal_dirty_data_fn);
1384
1385         if (ret == 0)
1386                 update_file_sizes(inode, pos, copied);
1387         /*
1388          * There may be allocated blocks outside of i_size because
1389          * we failed to copy some data. Prepare for truncate.
1390          */
1391         if (pos + len > inode->i_size && ext3_can_truncate(inode))
1392                 ext3_orphan_add(handle, inode);
1393         ret2 = ext3_journal_stop(handle);
1394         if (!ret)
1395                 ret = ret2;
1396         unlock_page(page);
1397         page_cache_release(page);
1398
1399         if (pos + len > inode->i_size)
1400                 ext3_truncate_failed_write(inode);
1401         return ret ? ret : copied;
1402 }
1403
1404 static int ext3_writeback_write_end(struct file *file,
1405                                 struct address_space *mapping,
1406                                 loff_t pos, unsigned len, unsigned copied,
1407                                 struct page *page, void *fsdata)
1408 {
1409         handle_t *handle = ext3_journal_current_handle();
1410         struct inode *inode = file->f_mapping->host;
1411         int ret;
1412
1413         trace_ext3_writeback_write_end(inode, pos, len, copied);
1414         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1415         update_file_sizes(inode, pos, copied);
1416         /*
1417          * There may be allocated blocks outside of i_size because
1418          * we failed to copy some data. Prepare for truncate.
1419          */
1420         if (pos + len > inode->i_size && ext3_can_truncate(inode))
1421                 ext3_orphan_add(handle, inode);
1422         ret = ext3_journal_stop(handle);
1423         unlock_page(page);
1424         page_cache_release(page);
1425
1426         if (pos + len > inode->i_size)
1427                 ext3_truncate_failed_write(inode);
1428         return ret ? ret : copied;
1429 }
1430
1431 static int ext3_journalled_write_end(struct file *file,
1432                                 struct address_space *mapping,
1433                                 loff_t pos, unsigned len, unsigned copied,
1434                                 struct page *page, void *fsdata)
1435 {
1436         handle_t *handle = ext3_journal_current_handle();
1437         struct inode *inode = mapping->host;
1438         struct ext3_inode_info *ei = EXT3_I(inode);
1439         int ret = 0, ret2;
1440         int partial = 0;
1441         unsigned from, to;
1442
1443         trace_ext3_journalled_write_end(inode, pos, len, copied);
1444         from = pos & (PAGE_CACHE_SIZE - 1);
1445         to = from + len;
1446
1447         if (copied < len) {
1448                 if (!PageUptodate(page))
1449                         copied = 0;
1450                 page_zero_new_buffers(page, from + copied, to);
1451                 to = from + copied;
1452         }
1453
1454         ret = walk_page_buffers(handle, page_buffers(page), from,
1455                                 to, &partial, write_end_fn);
1456         if (!partial)
1457                 SetPageUptodate(page);
1458
1459         if (pos + copied > inode->i_size)
1460                 i_size_write(inode, pos + copied);
1461         /*
1462          * There may be allocated blocks outside of i_size because
1463          * we failed to copy some data. Prepare for truncate.
1464          */
1465         if (pos + len > inode->i_size && ext3_can_truncate(inode))
1466                 ext3_orphan_add(handle, inode);
1467         ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1468         atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
1469         if (inode->i_size > ei->i_disksize) {
1470                 ei->i_disksize = inode->i_size;
1471                 ret2 = ext3_mark_inode_dirty(handle, inode);
1472                 if (!ret)
1473                         ret = ret2;
1474         }
1475
1476         ret2 = ext3_journal_stop(handle);
1477         if (!ret)
1478                 ret = ret2;
1479         unlock_page(page);
1480         page_cache_release(page);
1481
1482         if (pos + len > inode->i_size)
1483                 ext3_truncate_failed_write(inode);
1484         return ret ? ret : copied;
1485 }
1486
1487 /*
1488  * bmap() is special.  It gets used by applications such as lilo and by
1489  * the swapper to find the on-disk block of a specific piece of data.
1490  *
1491  * Naturally, this is dangerous if the block concerned is still in the
1492  * journal.  If somebody makes a swapfile on an ext3 data-journaling
1493  * filesystem and enables swap, then they may get a nasty shock when the
1494  * data getting swapped to that swapfile suddenly gets overwritten by
1495  * the original zero's written out previously to the journal and
1496  * awaiting writeback in the kernel's buffer cache.
1497  *
1498  * So, if we see any bmap calls here on a modified, data-journaled file,
1499  * take extra steps to flush any blocks which might be in the cache.
1500  */
1501 static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
1502 {
1503         struct inode *inode = mapping->host;
1504         journal_t *journal;
1505         int err;
1506
1507         if (ext3_test_inode_state(inode, EXT3_STATE_JDATA)) {
1508                 /*
1509                  * This is a REALLY heavyweight approach, but the use of
1510                  * bmap on dirty files is expected to be extremely rare:
1511                  * only if we run lilo or swapon on a freshly made file
1512                  * do we expect this to happen.
1513                  *
1514                  * (bmap requires CAP_SYS_RAWIO so this does not
1515                  * represent an unprivileged user DOS attack --- we'd be
1516                  * in trouble if mortal users could trigger this path at
1517                  * will.)
1518                  *
1519                  * NB. EXT3_STATE_JDATA is not set on files other than
1520                  * regular files.  If somebody wants to bmap a directory
1521                  * or symlink and gets confused because the buffer
1522                  * hasn't yet been flushed to disk, they deserve
1523                  * everything they get.
1524                  */
1525
1526                 ext3_clear_inode_state(inode, EXT3_STATE_JDATA);
1527                 journal = EXT3_JOURNAL(inode);
1528                 journal_lock_updates(journal);
1529                 err = journal_flush(journal);
1530                 journal_unlock_updates(journal);
1531
1532                 if (err)
1533                         return 0;
1534         }
1535
1536         return generic_block_bmap(mapping,block,ext3_get_block);
1537 }
1538
1539 static int bget_one(handle_t *handle, struct buffer_head *bh)
1540 {
1541         get_bh(bh);
1542         return 0;
1543 }
1544
1545 static int bput_one(handle_t *handle, struct buffer_head *bh)
1546 {
1547         put_bh(bh);
1548         return 0;
1549 }
1550
1551 static int buffer_unmapped(handle_t *handle, struct buffer_head *bh)
1552 {
1553         return !buffer_mapped(bh);
1554 }
1555
1556 /*
1557  * Note that we always start a transaction even if we're not journalling
1558  * data.  This is to preserve ordering: any hole instantiation within
1559  * __block_write_full_page -> ext3_get_block() should be journalled
1560  * along with the data so we don't crash and then get metadata which
1561  * refers to old data.
1562  *
1563  * In all journalling modes block_write_full_page() will start the I/O.
1564  *
1565  * Problem:
1566  *
1567  *      ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1568  *              ext3_writepage()
1569  *
1570  * Similar for:
1571  *
1572  *      ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1573  *
1574  * Same applies to ext3_get_block().  We will deadlock on various things like
1575  * lock_journal and i_truncate_mutex.
1576  *
1577  * Setting PF_MEMALLOC here doesn't work - too many internal memory
1578  * allocations fail.
1579  *
1580  * 16May01: If we're reentered then journal_current_handle() will be
1581  *          non-zero. We simply *return*.
1582  *
1583  * 1 July 2001: @@@ FIXME:
1584  *   In journalled data mode, a data buffer may be metadata against the
1585  *   current transaction.  But the same file is part of a shared mapping
1586  *   and someone does a writepage() on it.
1587  *
1588  *   We will move the buffer onto the async_data list, but *after* it has
1589  *   been dirtied. So there's a small window where we have dirty data on
1590  *   BJ_Metadata.
1591  *
1592  *   Note that this only applies to the last partial page in the file.  The
1593  *   bit which block_write_full_page() uses prepare/commit for.  (That's
1594  *   broken code anyway: it's wrong for msync()).
1595  *
1596  *   It's a rare case: affects the final partial page, for journalled data
1597  *   where the file is subject to bith write() and writepage() in the same
1598  *   transction.  To fix it we'll need a custom block_write_full_page().
1599  *   We'll probably need that anyway for journalling writepage() output.
1600  *
1601  * We don't honour synchronous mounts for writepage().  That would be
1602  * disastrous.  Any write() or metadata operation will sync the fs for
1603  * us.
1604  *
1605  * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1606  * we don't need to open a transaction here.
1607  */
1608 static int ext3_ordered_writepage(struct page *page,
1609                                 struct writeback_control *wbc)
1610 {
1611         struct inode *inode = page->mapping->host;
1612         struct buffer_head *page_bufs;
1613         handle_t *handle = NULL;
1614         int ret = 0;
1615         int err;
1616
1617         J_ASSERT(PageLocked(page));
1618         /*
1619          * We don't want to warn for emergency remount. The condition is
1620          * ordered to avoid dereferencing inode->i_sb in non-error case to
1621          * avoid slow-downs.
1622          */
1623         WARN_ON_ONCE(IS_RDONLY(inode) &&
1624                      !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
1625
1626         /*
1627          * We give up here if we're reentered, because it might be for a
1628          * different filesystem.
1629          */
1630         if (ext3_journal_current_handle())
1631                 goto out_fail;
1632
1633         trace_ext3_ordered_writepage(page);
1634         if (!page_has_buffers(page)) {
1635                 create_empty_buffers(page, inode->i_sb->s_blocksize,
1636                                 (1 << BH_Dirty)|(1 << BH_Uptodate));
1637                 page_bufs = page_buffers(page);
1638         } else {
1639                 page_bufs = page_buffers(page);
1640                 if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE,
1641                                        NULL, buffer_unmapped)) {
1642                         /* Provide NULL get_block() to catch bugs if buffers
1643                          * weren't really mapped */
1644                         return block_write_full_page(page, NULL, wbc);
1645                 }
1646         }
1647         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1648
1649         if (IS_ERR(handle)) {
1650                 ret = PTR_ERR(handle);
1651                 goto out_fail;
1652         }
1653
1654         walk_page_buffers(handle, page_bufs, 0,
1655                         PAGE_CACHE_SIZE, NULL, bget_one);
1656
1657         ret = block_write_full_page(page, ext3_get_block, wbc);
1658
1659         /*
1660          * The page can become unlocked at any point now, and
1661          * truncate can then come in and change things.  So we
1662          * can't touch *page from now on.  But *page_bufs is
1663          * safe due to elevated refcount.
1664          */
1665
1666         /*
1667          * And attach them to the current transaction.  But only if
1668          * block_write_full_page() succeeded.  Otherwise they are unmapped,
1669          * and generally junk.
1670          */
1671         if (ret == 0) {
1672                 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1673                                         NULL, journal_dirty_data_fn);
1674                 if (!ret)
1675                         ret = err;
1676         }
1677         walk_page_buffers(handle, page_bufs, 0,
1678                         PAGE_CACHE_SIZE, NULL, bput_one);
1679         err = ext3_journal_stop(handle);
1680         if (!ret)
1681                 ret = err;
1682         return ret;
1683
1684 out_fail:
1685         redirty_page_for_writepage(wbc, page);
1686         unlock_page(page);
1687         return ret;
1688 }
1689
1690 static int ext3_writeback_writepage(struct page *page,
1691                                 struct writeback_control *wbc)
1692 {
1693         struct inode *inode = page->mapping->host;
1694         handle_t *handle = NULL;
1695         int ret = 0;
1696         int err;
1697
1698         J_ASSERT(PageLocked(page));
1699         /*
1700          * We don't want to warn for emergency remount. The condition is
1701          * ordered to avoid dereferencing inode->i_sb in non-error case to
1702          * avoid slow-downs.
1703          */
1704         WARN_ON_ONCE(IS_RDONLY(inode) &&
1705                      !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
1706
1707         if (ext3_journal_current_handle())
1708                 goto out_fail;
1709
1710         trace_ext3_writeback_writepage(page);
1711         if (page_has_buffers(page)) {
1712                 if (!walk_page_buffers(NULL, page_buffers(page), 0,
1713                                       PAGE_CACHE_SIZE, NULL, buffer_unmapped)) {
1714                         /* Provide NULL get_block() to catch bugs if buffers
1715                          * weren't really mapped */
1716                         return block_write_full_page(page, NULL, wbc);
1717                 }
1718         }
1719
1720         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1721         if (IS_ERR(handle)) {
1722                 ret = PTR_ERR(handle);
1723                 goto out_fail;
1724         }
1725
1726         ret = block_write_full_page(page, ext3_get_block, wbc);
1727
1728         err = ext3_journal_stop(handle);
1729         if (!ret)
1730                 ret = err;
1731         return ret;
1732
1733 out_fail:
1734         redirty_page_for_writepage(wbc, page);
1735         unlock_page(page);
1736         return ret;
1737 }
1738
1739 static int ext3_journalled_writepage(struct page *page,
1740                                 struct writeback_control *wbc)
1741 {
1742         struct inode *inode = page->mapping->host;
1743         handle_t *handle = NULL;
1744         int ret = 0;
1745         int err;
1746
1747         J_ASSERT(PageLocked(page));
1748         /*
1749          * We don't want to warn for emergency remount. The condition is
1750          * ordered to avoid dereferencing inode->i_sb in non-error case to
1751          * avoid slow-downs.
1752          */
1753         WARN_ON_ONCE(IS_RDONLY(inode) &&
1754                      !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
1755
1756         if (ext3_journal_current_handle())
1757                 goto no_write;
1758
1759         trace_ext3_journalled_writepage(page);
1760         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1761         if (IS_ERR(handle)) {
1762                 ret = PTR_ERR(handle);
1763                 goto no_write;
1764         }
1765
1766         if (!page_has_buffers(page) || PageChecked(page)) {
1767                 /*
1768                  * It's mmapped pagecache.  Add buffers and journal it.  There
1769                  * doesn't seem much point in redirtying the page here.
1770                  */
1771                 ClearPageChecked(page);
1772                 ret = __block_write_begin(page, 0, PAGE_CACHE_SIZE,
1773                                           ext3_get_block);
1774                 if (ret != 0) {
1775                         ext3_journal_stop(handle);
1776                         goto out_unlock;
1777                 }
1778                 ret = walk_page_buffers(handle, page_buffers(page), 0,
1779                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1780
1781                 err = walk_page_buffers(handle, page_buffers(page), 0,
1782                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
1783                 if (ret == 0)
1784                         ret = err;
1785                 ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1786                 atomic_set(&EXT3_I(inode)->i_datasync_tid,
1787                            handle->h_transaction->t_tid);
1788                 unlock_page(page);
1789         } else {
1790                 /*
1791                  * It may be a page full of checkpoint-mode buffers.  We don't
1792                  * really know unless we go poke around in the buffer_heads.
1793                  * But block_write_full_page will do the right thing.
1794                  */
1795                 ret = block_write_full_page(page, ext3_get_block, wbc);
1796         }
1797         err = ext3_journal_stop(handle);
1798         if (!ret)
1799                 ret = err;
1800 out:
1801         return ret;
1802
1803 no_write:
1804         redirty_page_for_writepage(wbc, page);
1805 out_unlock:
1806         unlock_page(page);
1807         goto out;
1808 }
1809
1810 static int ext3_readpage(struct file *file, struct page *page)
1811 {
1812         trace_ext3_readpage(page);
1813         return mpage_readpage(page, ext3_get_block);
1814 }
1815
1816 static int
1817 ext3_readpages(struct file *file, struct address_space *mapping,
1818                 struct list_head *pages, unsigned nr_pages)
1819 {
1820         return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
1821 }
1822
1823 static void ext3_invalidatepage(struct page *page, unsigned long offset)
1824 {
1825         journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1826
1827         trace_ext3_invalidatepage(page, offset);
1828
1829         /*
1830          * If it's a full truncate we just forget about the pending dirtying
1831          */
1832         if (offset == 0)
1833                 ClearPageChecked(page);
1834
1835         journal_invalidatepage(journal, page, offset);
1836 }
1837
1838 static int ext3_releasepage(struct page *page, gfp_t wait)
1839 {
1840         journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1841
1842         trace_ext3_releasepage(page);
1843         WARN_ON(PageChecked(page));
1844         if (!page_has_buffers(page))
1845                 return 0;
1846         return journal_try_to_free_buffers(journal, page, wait);
1847 }
1848
1849 /*
1850  * If the O_DIRECT write will extend the file then add this inode to the
1851  * orphan list.  So recovery will truncate it back to the original size
1852  * if the machine crashes during the write.
1853  *
1854  * If the O_DIRECT write is intantiating holes inside i_size and the machine
1855  * crashes then stale disk data _may_ be exposed inside the file. But current
1856  * VFS code falls back into buffered path in that case so we are safe.
1857  */
1858 static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
1859                         const struct iovec *iov, loff_t offset,
1860                         unsigned long nr_segs)
1861 {
1862         struct file *file = iocb->ki_filp;
1863         struct inode *inode = file->f_mapping->host;
1864         struct ext3_inode_info *ei = EXT3_I(inode);
1865         handle_t *handle;
1866         ssize_t ret;
1867         int orphan = 0;
1868         size_t count = iov_length(iov, nr_segs);
1869         int retries = 0;
1870
1871         trace_ext3_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
1872
1873         if (rw == WRITE) {
1874                 loff_t final_size = offset + count;
1875
1876                 if (final_size > inode->i_size) {
1877                         /* Credits for sb + inode write */
1878                         handle = ext3_journal_start(inode, 2);
1879                         if (IS_ERR(handle)) {
1880                                 ret = PTR_ERR(handle);
1881                                 goto out;
1882                         }
1883                         ret = ext3_orphan_add(handle, inode);
1884                         if (ret) {
1885                                 ext3_journal_stop(handle);
1886                                 goto out;
1887                         }
1888                         orphan = 1;
1889                         ei->i_disksize = inode->i_size;
1890                         ext3_journal_stop(handle);
1891                 }
1892         }
1893
1894 retry:
1895         ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
1896                                  ext3_get_block);
1897         /*
1898          * In case of error extending write may have instantiated a few
1899          * blocks outside i_size. Trim these off again.
1900          */
1901         if (unlikely((rw & WRITE) && ret < 0)) {
1902                 loff_t isize = i_size_read(inode);
1903                 loff_t end = offset + iov_length(iov, nr_segs);
1904
1905                 if (end > isize)
1906                         ext3_truncate_failed_direct_write(inode);
1907         }
1908         if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1909                 goto retry;
1910
1911         if (orphan) {
1912                 int err;
1913
1914                 /* Credits for sb + inode write */
1915                 handle = ext3_journal_start(inode, 2);
1916                 if (IS_ERR(handle)) {
1917                         /* This is really bad luck. We've written the data
1918                          * but cannot extend i_size. Truncate allocated blocks
1919                          * and pretend the write failed... */
1920                         ext3_truncate_failed_direct_write(inode);
1921                         ret = PTR_ERR(handle);
1922                         goto out;
1923                 }
1924                 if (inode->i_nlink)
1925                         ext3_orphan_del(handle, inode);
1926                 if (ret > 0) {
1927                         loff_t end = offset + ret;
1928                         if (end > inode->i_size) {
1929                                 ei->i_disksize = end;
1930                                 i_size_write(inode, end);
1931                                 /*
1932                                  * We're going to return a positive `ret'
1933                                  * here due to non-zero-length I/O, so there's
1934                                  * no way of reporting error returns from
1935                                  * ext3_mark_inode_dirty() to userspace.  So
1936                                  * ignore it.
1937                                  */
1938                                 ext3_mark_inode_dirty(handle, inode);
1939                         }
1940                 }
1941                 err = ext3_journal_stop(handle);
1942                 if (ret == 0)
1943                         ret = err;
1944         }
1945 out:
1946         trace_ext3_direct_IO_exit(inode, offset,
1947                                 iov_length(iov, nr_segs), rw, ret);
1948         return ret;
1949 }
1950
1951 /*
1952  * Pages can be marked dirty completely asynchronously from ext3's journalling
1953  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
1954  * much here because ->set_page_dirty is called under VFS locks.  The page is
1955  * not necessarily locked.
1956  *
1957  * We cannot just dirty the page and leave attached buffers clean, because the
1958  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
1959  * or jbddirty because all the journalling code will explode.
1960  *
1961  * So what we do is to mark the page "pending dirty" and next time writepage
1962  * is called, propagate that into the buffers appropriately.
1963  */
1964 static int ext3_journalled_set_page_dirty(struct page *page)
1965 {
1966         SetPageChecked(page);
1967         return __set_page_dirty_nobuffers(page);
1968 }
1969
1970 static const struct address_space_operations ext3_ordered_aops = {
1971         .readpage               = ext3_readpage,
1972         .readpages              = ext3_readpages,
1973         .writepage              = ext3_ordered_writepage,
1974         .write_begin            = ext3_write_begin,
1975         .write_end              = ext3_ordered_write_end,
1976         .bmap                   = ext3_bmap,
1977         .invalidatepage         = ext3_invalidatepage,
1978         .releasepage            = ext3_releasepage,
1979         .direct_IO              = ext3_direct_IO,
1980         .migratepage            = buffer_migrate_page,
1981         .is_partially_uptodate  = block_is_partially_uptodate,
1982         .error_remove_page      = generic_error_remove_page,
1983 };
1984
1985 static const struct address_space_operations ext3_writeback_aops = {
1986         .readpage               = ext3_readpage,
1987         .readpages              = ext3_readpages,
1988         .writepage              = ext3_writeback_writepage,
1989         .write_begin            = ext3_write_begin,
1990         .write_end              = ext3_writeback_write_end,
1991         .bmap                   = ext3_bmap,
1992         .invalidatepage         = ext3_invalidatepage,
1993         .releasepage            = ext3_releasepage,
1994         .direct_IO              = ext3_direct_IO,
1995         .migratepage            = buffer_migrate_page,
1996         .is_partially_uptodate  = block_is_partially_uptodate,
1997         .error_remove_page      = generic_error_remove_page,
1998 };
1999
2000 static const struct address_space_operations ext3_journalled_aops = {
2001         .readpage               = ext3_readpage,
2002         .readpages              = ext3_readpages,
2003         .writepage              = ext3_journalled_writepage,
2004         .write_begin            = ext3_write_begin,
2005         .write_end              = ext3_journalled_write_end,
2006         .set_page_dirty         = ext3_journalled_set_page_dirty,
2007         .bmap                   = ext3_bmap,
2008         .invalidatepage         = ext3_invalidatepage,
2009         .releasepage            = ext3_releasepage,
2010         .is_partially_uptodate  = block_is_partially_uptodate,
2011         .error_remove_page      = generic_error_remove_page,
2012 };
2013
2014 void ext3_set_aops(struct inode *inode)
2015 {
2016         if (ext3_should_order_data(inode))
2017                 inode->i_mapping->a_ops = &ext3_ordered_aops;
2018         else if (ext3_should_writeback_data(inode))
2019                 inode->i_mapping->a_ops = &ext3_writeback_aops;
2020         else
2021                 inode->i_mapping->a_ops = &ext3_journalled_aops;
2022 }
2023
2024 /*
2025  * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
2026  * up to the end of the block which corresponds to `from'.
2027  * This required during truncate. We need to physically zero the tail end
2028  * of that block so it doesn't yield old data if the file is later grown.
2029  */
2030 static int ext3_block_truncate_page(struct inode *inode, loff_t from)
2031 {
2032         ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
2033         unsigned offset = from & (PAGE_CACHE_SIZE - 1);
2034         unsigned blocksize, iblock, length, pos;
2035         struct page *page;
2036         handle_t *handle = NULL;
2037         struct buffer_head *bh;
2038         int err = 0;
2039
2040         /* Truncated on block boundary - nothing to do */
2041         blocksize = inode->i_sb->s_blocksize;
2042         if ((from & (blocksize - 1)) == 0)
2043                 return 0;
2044
2045         page = grab_cache_page(inode->i_mapping, index);
2046         if (!page)
2047                 return -ENOMEM;
2048         length = blocksize - (offset & (blocksize - 1));
2049         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2050
2051         if (!page_has_buffers(page))
2052                 create_empty_buffers(page, blocksize, 0);
2053
2054         /* Find the buffer that contains "offset" */
2055         bh = page_buffers(page);
2056         pos = blocksize;
2057         while (offset >= pos) {
2058                 bh = bh->b_this_page;
2059                 iblock++;
2060                 pos += blocksize;
2061         }
2062
2063         err = 0;
2064         if (buffer_freed(bh)) {
2065                 BUFFER_TRACE(bh, "freed: skip");
2066                 goto unlock;
2067         }
2068
2069         if (!buffer_mapped(bh)) {
2070                 BUFFER_TRACE(bh, "unmapped");
2071                 ext3_get_block(inode, iblock, bh, 0);
2072                 /* unmapped? It's a hole - nothing to do */
2073                 if (!buffer_mapped(bh)) {
2074                         BUFFER_TRACE(bh, "still unmapped");
2075                         goto unlock;
2076                 }
2077         }
2078
2079         /* Ok, it's mapped. Make sure it's up-to-date */
2080         if (PageUptodate(page))
2081                 set_buffer_uptodate(bh);
2082
2083         if (!bh_uptodate_or_lock(bh)) {
2084                 err = bh_submit_read(bh);
2085                 /* Uhhuh. Read error. Complain and punt. */
2086                 if (err)
2087                         goto unlock;
2088         }
2089
2090         /* data=writeback mode doesn't need transaction to zero-out data */
2091         if (!ext3_should_writeback_data(inode)) {
2092                 /* We journal at most one block */
2093                 handle = ext3_journal_start(inode, 1);
2094                 if (IS_ERR(handle)) {
2095                         clear_highpage(page);
2096                         flush_dcache_page(page);
2097                         err = PTR_ERR(handle);
2098                         goto unlock;
2099                 }
2100         }
2101
2102         if (ext3_should_journal_data(inode)) {
2103                 BUFFER_TRACE(bh, "get write access");
2104                 err = ext3_journal_get_write_access(handle, bh);
2105                 if (err)
2106                         goto stop;
2107         }
2108
2109         zero_user(page, offset, length);
2110         BUFFER_TRACE(bh, "zeroed end of block");
2111
2112         err = 0;
2113         if (ext3_should_journal_data(inode)) {
2114                 err = ext3_journal_dirty_metadata(handle, bh);
2115         } else {
2116                 if (ext3_should_order_data(inode))
2117                         err = ext3_journal_dirty_data(handle, bh);
2118                 mark_buffer_dirty(bh);
2119         }
2120 stop:
2121         if (handle)
2122                 ext3_journal_stop(handle);
2123
2124 unlock:
2125         unlock_page(page);
2126         page_cache_release(page);
2127         return err;
2128 }
2129
2130 /*
2131  * Probably it should be a library function... search for first non-zero word
2132  * or memcmp with zero_page, whatever is better for particular architecture.
2133  * Linus?
2134  */
2135 static inline int all_zeroes(__le32 *p, __le32 *q)
2136 {
2137         while (p < q)
2138                 if (*p++)
2139                         return 0;
2140         return 1;
2141 }
2142
2143 /**
2144  *      ext3_find_shared - find the indirect blocks for partial truncation.
2145  *      @inode:   inode in question
2146  *      @depth:   depth of the affected branch
2147  *      @offsets: offsets of pointers in that branch (see ext3_block_to_path)
2148  *      @chain:   place to store the pointers to partial indirect blocks
2149  *      @top:     place to the (detached) top of branch
2150  *
2151  *      This is a helper function used by ext3_truncate().
2152  *
2153  *      When we do truncate() we may have to clean the ends of several
2154  *      indirect blocks but leave the blocks themselves alive. Block is
2155  *      partially truncated if some data below the new i_size is referred
2156  *      from it (and it is on the path to the first completely truncated
2157  *      data block, indeed).  We have to free the top of that path along
2158  *      with everything to the right of the path. Since no allocation
2159  *      past the truncation point is possible until ext3_truncate()
2160  *      finishes, we may safely do the latter, but top of branch may
2161  *      require special attention - pageout below the truncation point
2162  *      might try to populate it.
2163  *
2164  *      We atomically detach the top of branch from the tree, store the
2165  *      block number of its root in *@top, pointers to buffer_heads of
2166  *      partially truncated blocks - in @chain[].bh and pointers to
2167  *      their last elements that should not be removed - in
2168  *      @chain[].p. Return value is the pointer to last filled element
2169  *      of @chain.
2170  *
2171  *      The work left to caller to do the actual freeing of subtrees:
2172  *              a) free the subtree starting from *@top
2173  *              b) free the subtrees whose roots are stored in
2174  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
2175  *              c) free the subtrees growing from the inode past the @chain[0].
2176  *                      (no partially truncated stuff there).  */
2177
2178 static Indirect *ext3_find_shared(struct inode *inode, int depth,
2179                         int offsets[4], Indirect chain[4], __le32 *top)
2180 {
2181         Indirect *partial, *p;
2182         int k, err;
2183
2184         *top = 0;
2185         /* Make k index the deepest non-null offset + 1 */
2186         for (k = depth; k > 1 && !offsets[k-1]; k--)
2187                 ;
2188         partial = ext3_get_branch(inode, k, offsets, chain, &err);
2189         /* Writer: pointers */
2190         if (!partial)
2191                 partial = chain + k-1;
2192         /*
2193          * If the branch acquired continuation since we've looked at it -
2194          * fine, it should all survive and (new) top doesn't belong to us.
2195          */
2196         if (!partial->key && *partial->p)
2197                 /* Writer: end */
2198                 goto no_top;
2199         for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
2200                 ;
2201         /*
2202          * OK, we've found the last block that must survive. The rest of our
2203          * branch should be detached before unlocking. However, if that rest
2204          * of branch is all ours and does not grow immediately from the inode
2205          * it's easier to cheat and just decrement partial->p.
2206          */
2207         if (p == chain + k - 1 && p > chain) {
2208                 p->p--;
2209         } else {
2210                 *top = *p->p;
2211                 /* Nope, don't do this in ext3.  Must leave the tree intact */
2212 #if 0
2213                 *p->p = 0;
2214 #endif
2215         }
2216         /* Writer: end */
2217
2218         while(partial > p) {
2219                 brelse(partial->bh);
2220                 partial--;
2221         }
2222 no_top:
2223         return partial;
2224 }
2225
2226 /*
2227  * Zero a number of block pointers in either an inode or an indirect block.
2228  * If we restart the transaction we must again get write access to the
2229  * indirect block for further modification.
2230  *
2231  * We release `count' blocks on disk, but (last - first) may be greater
2232  * than `count' because there can be holes in there.
2233  */
2234 static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
2235                 struct buffer_head *bh, ext3_fsblk_t block_to_free,
2236                 unsigned long count, __le32 *first, __le32 *last)
2237 {
2238         __le32 *p;
2239         if (try_to_extend_transaction(handle, inode)) {
2240                 if (bh) {
2241                         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2242                         if (ext3_journal_dirty_metadata(handle, bh))
2243                                 return;
2244                 }
2245                 ext3_mark_inode_dirty(handle, inode);
2246                 truncate_restart_transaction(handle, inode);
2247                 if (bh) {
2248                         BUFFER_TRACE(bh, "retaking write access");
2249                         if (ext3_journal_get_write_access(handle, bh))
2250                                 return;
2251                 }
2252         }
2253
2254         /*
2255          * Any buffers which are on the journal will be in memory. We find
2256          * them on the hash table so journal_revoke() will run journal_forget()
2257          * on them.  We've already detached each block from the file, so
2258          * bforget() in journal_forget() should be safe.
2259          *
2260          * AKPM: turn on bforget in journal_forget()!!!
2261          */
2262         for (p = first; p < last; p++) {
2263                 u32 nr = le32_to_cpu(*p);
2264                 if (nr) {
2265                         struct buffer_head *bh;
2266
2267                         *p = 0;
2268                         bh = sb_find_get_block(inode->i_sb, nr);
2269                         ext3_forget(handle, 0, inode, bh, nr);
2270                 }
2271         }
2272
2273         ext3_free_blocks(handle, inode, block_to_free, count);
2274 }
2275
2276 /**
2277  * ext3_free_data - free a list of data blocks
2278  * @handle:     handle for this transaction
2279  * @inode:      inode we are dealing with
2280  * @this_bh:    indirect buffer_head which contains *@first and *@last
2281  * @first:      array of block numbers
2282  * @last:       points immediately past the end of array
2283  *
2284  * We are freeing all blocks referred from that array (numbers are stored as
2285  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2286  *
2287  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
2288  * blocks are contiguous then releasing them at one time will only affect one
2289  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2290  * actually use a lot of journal space.
2291  *
2292  * @this_bh will be %NULL if @first and @last point into the inode's direct
2293  * block pointers.
2294  */
2295 static void ext3_free_data(handle_t *handle, struct inode *inode,
2296                            struct buffer_head *this_bh,
2297                            __le32 *first, __le32 *last)
2298 {
2299         ext3_fsblk_t block_to_free = 0;    /* Starting block # of a run */
2300         unsigned long count = 0;            /* Number of blocks in the run */
2301         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
2302                                                corresponding to
2303                                                block_to_free */
2304         ext3_fsblk_t nr;                    /* Current block # */
2305         __le32 *p;                          /* Pointer into inode/ind
2306                                                for current block */
2307         int err;
2308
2309         if (this_bh) {                          /* For indirect block */
2310                 BUFFER_TRACE(this_bh, "get_write_access");
2311                 err = ext3_journal_get_write_access(handle, this_bh);
2312                 /* Important: if we can't update the indirect pointers
2313                  * to the blocks, we can't free them. */
2314                 if (err)
2315                         return;
2316         }
2317
2318         for (p = first; p < last; p++) {
2319                 nr = le32_to_cpu(*p);
2320                 if (nr) {
2321                         /* accumulate blocks to free if they're contiguous */
2322                         if (count == 0) {
2323                                 block_to_free = nr;
2324                                 block_to_free_p = p;
2325                                 count = 1;
2326                         } else if (nr == block_to_free + count) {
2327                                 count++;
2328                         } else {
2329                                 ext3_clear_blocks(handle, inode, this_bh,
2330                                                   block_to_free,
2331                                                   count, block_to_free_p, p);
2332                                 block_to_free = nr;
2333                                 block_to_free_p = p;
2334                                 count = 1;
2335                         }
2336                 }
2337         }
2338
2339         if (count > 0)
2340                 ext3_clear_blocks(handle, inode, this_bh, block_to_free,
2341                                   count, block_to_free_p, p);
2342
2343         if (this_bh) {
2344                 BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
2345
2346                 /*
2347                  * The buffer head should have an attached journal head at this
2348                  * point. However, if the data is corrupted and an indirect
2349                  * block pointed to itself, it would have been detached when
2350                  * the block was cleared. Check for this instead of OOPSing.
2351                  */
2352                 if (bh2jh(this_bh))
2353                         ext3_journal_dirty_metadata(handle, this_bh);
2354                 else
2355                         ext3_error(inode->i_sb, "ext3_free_data",
2356                                    "circular indirect block detected, "
2357                                    "inode=%lu, block=%llu",
2358                                    inode->i_ino,
2359                                    (unsigned long long)this_bh->b_blocknr);
2360         }
2361 }
2362
2363 /**
2364  *      ext3_free_branches - free an array of branches
2365  *      @handle: JBD handle for this transaction
2366  *      @inode: inode we are dealing with
2367  *      @parent_bh: the buffer_head which contains *@first and *@last
2368  *      @first: array of block numbers
2369  *      @last:  pointer immediately past the end of array
2370  *      @depth: depth of the branches to free
2371  *
2372  *      We are freeing all blocks referred from these branches (numbers are
2373  *      stored as little-endian 32-bit) and updating @inode->i_blocks
2374  *      appropriately.
2375  */
2376 static void ext3_free_branches(handle_t *handle, struct inode *inode,
2377                                struct buffer_head *parent_bh,
2378                                __le32 *first, __le32 *last, int depth)
2379 {
2380         ext3_fsblk_t nr;
2381         __le32 *p;
2382
2383         if (is_handle_aborted(handle))
2384                 return;
2385
2386         if (depth--) {
2387                 struct buffer_head *bh;
2388                 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2389                 p = last;
2390                 while (--p >= first) {
2391                         nr = le32_to_cpu(*p);
2392                         if (!nr)
2393                                 continue;               /* A hole */
2394
2395                         /* Go read the buffer for the next level down */
2396                         bh = sb_bread(inode->i_sb, nr);
2397
2398                         /*
2399                          * A read failure? Report error and clear slot
2400                          * (should be rare).
2401                          */
2402                         if (!bh) {
2403                                 ext3_error(inode->i_sb, "ext3_free_branches",
2404                                            "Read failure, inode=%lu, block="E3FSBLK,
2405                                            inode->i_ino, nr);
2406                                 continue;
2407                         }
2408
2409                         /* This zaps the entire block.  Bottom up. */
2410                         BUFFER_TRACE(bh, "free child branches");
2411                         ext3_free_branches(handle, inode, bh,
2412                                            (__le32*)bh->b_data,
2413                                            (__le32*)bh->b_data + addr_per_block,
2414                                            depth);
2415
2416                         /*
2417                          * Everything below this this pointer has been
2418                          * released.  Now let this top-of-subtree go.
2419                          *
2420                          * We want the freeing of this indirect block to be
2421                          * atomic in the journal with the updating of the
2422                          * bitmap block which owns it.  So make some room in
2423                          * the journal.
2424                          *
2425                          * We zero the parent pointer *after* freeing its
2426                          * pointee in the bitmaps, so if extend_transaction()
2427                          * for some reason fails to put the bitmap changes and
2428                          * the release into the same transaction, recovery
2429                          * will merely complain about releasing a free block,
2430                          * rather than leaking blocks.
2431                          */
2432                         if (is_handle_aborted(handle))
2433                                 return;
2434                         if (try_to_extend_transaction(handle, inode)) {
2435                                 ext3_mark_inode_dirty(handle, inode);
2436                                 truncate_restart_transaction(handle, inode);
2437                         }
2438
2439                         /*
2440                          * We've probably journalled the indirect block several
2441                          * times during the truncate.  But it's no longer
2442                          * needed and we now drop it from the transaction via
2443                          * journal_revoke().
2444                          *
2445                          * That's easy if it's exclusively part of this
2446                          * transaction.  But if it's part of the committing
2447                          * transaction then journal_forget() will simply
2448                          * brelse() it.  That means that if the underlying
2449                          * block is reallocated in ext3_get_block(),
2450                          * unmap_underlying_metadata() will find this block
2451                          * and will try to get rid of it.  damn, damn. Thus
2452                          * we don't allow a block to be reallocated until
2453                          * a transaction freeing it has fully committed.
2454                          *
2455                          * We also have to make sure journal replay after a
2456                          * crash does not overwrite non-journaled data blocks
2457                          * with old metadata when the block got reallocated for
2458                          * data.  Thus we have to store a revoke record for a
2459                          * block in the same transaction in which we free the
2460                          * block.
2461                          */
2462                         ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
2463
2464                         ext3_free_blocks(handle, inode, nr, 1);
2465
2466                         if (parent_bh) {
2467                                 /*
2468                                  * The block which we have just freed is
2469                                  * pointed to by an indirect block: journal it
2470                                  */
2471                                 BUFFER_TRACE(parent_bh, "get_write_access");
2472                                 if (!ext3_journal_get_write_access(handle,
2473                                                                    parent_bh)){
2474                                         *p = 0;
2475                                         BUFFER_TRACE(parent_bh,
2476                                         "call ext3_journal_dirty_metadata");
2477                                         ext3_journal_dirty_metadata(handle,
2478                                                                     parent_bh);
2479                                 }
2480                         }
2481                 }
2482         } else {
2483                 /* We have reached the bottom of the tree. */
2484                 BUFFER_TRACE(parent_bh, "free data blocks");
2485                 ext3_free_data(handle, inode, parent_bh, first, last);
2486         }
2487 }
2488
2489 int ext3_can_truncate(struct inode *inode)
2490 {
2491         if (S_ISREG(inode->i_mode))
2492                 return 1;
2493         if (S_ISDIR(inode->i_mode))
2494                 return 1;
2495         if (S_ISLNK(inode->i_mode))
2496                 return !ext3_inode_is_fast_symlink(inode);
2497         return 0;
2498 }
2499
2500 /*
2501  * ext3_truncate()
2502  *
2503  * We block out ext3_get_block() block instantiations across the entire
2504  * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2505  * simultaneously on behalf of the same inode.
2506  *
2507  * As we work through the truncate and commit bits of it to the journal there
2508  * is one core, guiding principle: the file's tree must always be consistent on
2509  * disk.  We must be able to restart the truncate after a crash.
2510  *
2511  * The file's tree may be transiently inconsistent in memory (although it
2512  * probably isn't), but whenever we close off and commit a journal transaction,
2513  * the contents of (the filesystem + the journal) must be consistent and
2514  * restartable.  It's pretty simple, really: bottom up, right to left (although
2515  * left-to-right works OK too).
2516  *
2517  * Note that at recovery time, journal replay occurs *before* the restart of
2518  * truncate against the orphan inode list.
2519  *
2520  * The committed inode has the new, desired i_size (which is the same as
2521  * i_disksize in this case).  After a crash, ext3_orphan_cleanup() will see
2522  * that this inode's truncate did not complete and it will again call
2523  * ext3_truncate() to have another go.  So there will be instantiated blocks
2524  * to the right of the truncation point in a crashed ext3 filesystem.  But
2525  * that's fine - as long as they are linked from the inode, the post-crash
2526  * ext3_truncate() run will find them and release them.
2527  */
2528 void ext3_truncate(struct inode *inode)
2529 {
2530         handle_t *handle;
2531         struct ext3_inode_info *ei = EXT3_I(inode);
2532         __le32 *i_data = ei->i_data;
2533         int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2534         int offsets[4];
2535         Indirect chain[4];
2536         Indirect *partial;
2537         __le32 nr = 0;
2538         int n;
2539         long last_block;
2540         unsigned blocksize = inode->i_sb->s_blocksize;
2541
2542         trace_ext3_truncate_enter(inode);
2543
2544         if (!ext3_can_truncate(inode))
2545                 goto out_notrans;
2546
2547         if (inode->i_size == 0 && ext3_should_writeback_data(inode))
2548                 ext3_set_inode_state(inode, EXT3_STATE_FLUSH_ON_CLOSE);
2549
2550         handle = start_transaction(inode);
2551         if (IS_ERR(handle))
2552                 goto out_notrans;
2553
2554         last_block = (inode->i_size + blocksize-1)
2555                                         >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
2556         n = ext3_block_to_path(inode, last_block, offsets, NULL);
2557         if (n == 0)
2558                 goto out_stop;  /* error */
2559
2560         /*
2561          * OK.  This truncate is going to happen.  We add the inode to the
2562          * orphan list, so that if this truncate spans multiple transactions,
2563          * and we crash, we will resume the truncate when the filesystem
2564          * recovers.  It also marks the inode dirty, to catch the new size.
2565          *
2566          * Implication: the file must always be in a sane, consistent
2567          * truncatable state while each transaction commits.
2568          */
2569         if (ext3_orphan_add(handle, inode))
2570                 goto out_stop;
2571
2572         /*
2573          * The orphan list entry will now protect us from any crash which
2574          * occurs before the truncate completes, so it is now safe to propagate
2575          * the new, shorter inode size (held for now in i_size) into the
2576          * on-disk inode. We do this via i_disksize, which is the value which
2577          * ext3 *really* writes onto the disk inode.
2578          */
2579         ei->i_disksize = inode->i_size;
2580
2581         /*
2582          * From here we block out all ext3_get_block() callers who want to
2583          * modify the block allocation tree.
2584          */
2585         mutex_lock(&ei->truncate_mutex);
2586
2587         if (n == 1) {           /* direct blocks */
2588                 ext3_free_data(handle, inode, NULL, i_data+offsets[0],
2589                                i_data + EXT3_NDIR_BLOCKS);
2590                 goto do_indirects;
2591         }
2592
2593         partial = ext3_find_shared(inode, n, offsets, chain, &nr);
2594         /* Kill the top of shared branch (not detached) */
2595         if (nr) {
2596                 if (partial == chain) {
2597                         /* Shared branch grows from the inode */
2598                         ext3_free_branches(handle, inode, NULL,
2599                                            &nr, &nr+1, (chain+n-1) - partial);
2600                         *partial->p = 0;
2601                         /*
2602                          * We mark the inode dirty prior to restart,
2603                          * and prior to stop.  No need for it here.
2604                          */
2605                 } else {
2606                         /* Shared branch grows from an indirect block */
2607                         ext3_free_branches(handle, inode, partial->bh,
2608                                         partial->p,
2609                                         partial->p+1, (chain+n-1) - partial);
2610                 }
2611         }
2612         /* Clear the ends of indirect blocks on the shared branch */
2613         while (partial > chain) {
2614                 ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
2615                                    (__le32*)partial->bh->b_data+addr_per_block,
2616                                    (chain+n-1) - partial);
2617                 BUFFER_TRACE(partial->bh, "call brelse");
2618                 brelse (partial->bh);
2619                 partial--;
2620         }
2621 do_indirects:
2622         /* Kill the remaining (whole) subtrees */
2623         switch (offsets[0]) {
2624         default:
2625                 nr = i_data[EXT3_IND_BLOCK];
2626                 if (nr) {
2627                         ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2628                         i_data[EXT3_IND_BLOCK] = 0;
2629                 }
2630         case EXT3_IND_BLOCK:
2631                 nr = i_data[EXT3_DIND_BLOCK];
2632                 if (nr) {
2633                         ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2634                         i_data[EXT3_DIND_BLOCK] = 0;
2635                 }
2636         case EXT3_DIND_BLOCK:
2637                 nr = i_data[EXT3_TIND_BLOCK];
2638                 if (nr) {
2639                         ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2640                         i_data[EXT3_TIND_BLOCK] = 0;
2641                 }
2642         case EXT3_TIND_BLOCK:
2643                 ;
2644         }
2645
2646         ext3_discard_reservation(inode);
2647
2648         mutex_unlock(&ei->truncate_mutex);
2649         inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
2650         ext3_mark_inode_dirty(handle, inode);
2651
2652         /*
2653          * In a multi-transaction truncate, we only make the final transaction
2654          * synchronous
2655          */
2656         if (IS_SYNC(inode))
2657                 handle->h_sync = 1;
2658 out_stop:
2659         /*
2660          * If this was a simple ftruncate(), and the file will remain alive
2661          * then we need to clear up the orphan record which we created above.
2662          * However, if this was a real unlink then we were called by
2663          * ext3_evict_inode(), and we allow that function to clean up the
2664          * orphan info for us.
2665          */
2666         if (inode->i_nlink)
2667                 ext3_orphan_del(handle, inode);
2668
2669         ext3_journal_stop(handle);
2670         trace_ext3_truncate_exit(inode);
2671         return;
2672 out_notrans:
2673         /*
2674          * Delete the inode from orphan list so that it doesn't stay there
2675          * forever and trigger assertion on umount.
2676          */
2677         if (inode->i_nlink)
2678                 ext3_orphan_del(NULL, inode);
2679         trace_ext3_truncate_exit(inode);
2680 }
2681
2682 static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
2683                 unsigned long ino, struct ext3_iloc *iloc)
2684 {
2685         unsigned long block_group;
2686         unsigned long offset;
2687         ext3_fsblk_t block;
2688         struct ext3_group_desc *gdp;
2689
2690         if (!ext3_valid_inum(sb, ino)) {
2691                 /*
2692                  * This error is already checked for in namei.c unless we are
2693                  * looking at an NFS filehandle, in which case no error
2694                  * report is needed
2695                  */
2696                 return 0;
2697         }
2698
2699         block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
2700         gdp = ext3_get_group_desc(sb, block_group, NULL);
2701         if (!gdp)
2702                 return 0;
2703         /*
2704          * Figure out the offset within the block group inode table
2705          */
2706         offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
2707                 EXT3_INODE_SIZE(sb);
2708         block = le32_to_cpu(gdp->bg_inode_table) +
2709                 (offset >> EXT3_BLOCK_SIZE_BITS(sb));
2710
2711         iloc->block_group = block_group;
2712         iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
2713         return block;
2714 }
2715
2716 /*
2717  * ext3_get_inode_loc returns with an extra refcount against the inode's
2718  * underlying buffer_head on success. If 'in_mem' is true, we have all
2719  * data in memory that is needed to recreate the on-disk version of this
2720  * inode.
2721  */
2722 static int __ext3_get_inode_loc(struct inode *inode,
2723                                 struct ext3_iloc *iloc, int in_mem)
2724 {
2725         ext3_fsblk_t block;
2726         struct buffer_head *bh;
2727
2728         block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2729         if (!block)
2730                 return -EIO;
2731
2732         bh = sb_getblk(inode->i_sb, block);
2733         if (!bh) {
2734                 ext3_error (inode->i_sb, "ext3_get_inode_loc",
2735                                 "unable to read inode block - "
2736                                 "inode=%lu, block="E3FSBLK,
2737                                  inode->i_ino, block);
2738                 return -EIO;
2739         }
2740         if (!buffer_uptodate(bh)) {
2741                 lock_buffer(bh);
2742
2743                 /*
2744                  * If the buffer has the write error flag, we have failed
2745                  * to write out another inode in the same block.  In this
2746                  * case, we don't have to read the block because we may
2747                  * read the old inode data successfully.
2748                  */
2749                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
2750                         set_buffer_uptodate(bh);
2751
2752                 if (buffer_uptodate(bh)) {
2753                         /* someone brought it uptodate while we waited */
2754                         unlock_buffer(bh);
2755                         goto has_buffer;
2756                 }
2757
2758                 /*
2759                  * If we have all information of the inode in memory and this
2760                  * is the only valid inode in the block, we need not read the
2761                  * block.
2762                  */
2763                 if (in_mem) {
2764                         struct buffer_head *bitmap_bh;
2765                         struct ext3_group_desc *desc;
2766                         int inodes_per_buffer;
2767                         int inode_offset, i;
2768                         int block_group;
2769                         int start;
2770
2771                         block_group = (inode->i_ino - 1) /
2772                                         EXT3_INODES_PER_GROUP(inode->i_sb);
2773                         inodes_per_buffer = bh->b_size /
2774                                 EXT3_INODE_SIZE(inode->i_sb);
2775                         inode_offset = ((inode->i_ino - 1) %
2776                                         EXT3_INODES_PER_GROUP(inode->i_sb));
2777                         start = inode_offset & ~(inodes_per_buffer - 1);
2778
2779                         /* Is the inode bitmap in cache? */
2780                         desc = ext3_get_group_desc(inode->i_sb,
2781                                                 block_group, NULL);
2782                         if (!desc)
2783                                 goto make_io;
2784
2785                         bitmap_bh = sb_getblk(inode->i_sb,
2786                                         le32_to_cpu(desc->bg_inode_bitmap));
2787                         if (!bitmap_bh)
2788                                 goto make_io;
2789
2790                         /*
2791                          * If the inode bitmap isn't in cache then the
2792                          * optimisation may end up performing two reads instead
2793                          * of one, so skip it.
2794                          */
2795                         if (!buffer_uptodate(bitmap_bh)) {
2796                                 brelse(bitmap_bh);
2797                                 goto make_io;
2798                         }
2799                         for (i = start; i < start + inodes_per_buffer; i++) {
2800                                 if (i == inode_offset)
2801                                         continue;
2802                                 if (ext3_test_bit(i, bitmap_bh->b_data))
2803                                         break;
2804                         }
2805                         brelse(bitmap_bh);
2806                         if (i == start + inodes_per_buffer) {
2807                                 /* all other inodes are free, so skip I/O */
2808                                 memset(bh->b_data, 0, bh->b_size);
2809                                 set_buffer_uptodate(bh);
2810                                 unlock_buffer(bh);
2811                                 goto has_buffer;
2812                         }
2813                 }
2814
2815 make_io:
2816                 /*
2817                  * There are other valid inodes in the buffer, this inode
2818                  * has in-inode xattrs, or we don't have this inode in memory.
2819                  * Read the block from disk.
2820                  */
2821                 trace_ext3_load_inode(inode);
2822                 get_bh(bh);
2823                 bh->b_end_io = end_buffer_read_sync;
2824                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
2825                 wait_on_buffer(bh);
2826                 if (!buffer_uptodate(bh)) {
2827                         ext3_error(inode->i_sb, "ext3_get_inode_loc",
2828                                         "unable to read inode block - "
2829                                         "inode=%lu, block="E3FSBLK,
2830                                         inode->i_ino, block);
2831                         brelse(bh);
2832                         return -EIO;
2833                 }
2834         }
2835 has_buffer:
2836         iloc->bh = bh;
2837         return 0;
2838 }
2839
2840 int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
2841 {
2842         /* We have all inode data except xattrs in memory here. */
2843         return __ext3_get_inode_loc(inode, iloc,
2844                 !ext3_test_inode_state(inode, EXT3_STATE_XATTR));
2845 }
2846
2847 void ext3_set_inode_flags(struct inode *inode)
2848 {
2849         unsigned int flags = EXT3_I(inode)->i_flags;
2850
2851         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2852         if (flags & EXT3_SYNC_FL)
2853                 inode->i_flags |= S_SYNC;
2854         if (flags & EXT3_APPEND_FL)
2855                 inode->i_flags |= S_APPEND;
2856         if (flags & EXT3_IMMUTABLE_FL)
2857                 inode->i_flags |= S_IMMUTABLE;
2858         if (flags & EXT3_NOATIME_FL)
2859                 inode->i_flags |= S_NOATIME;
2860         if (flags & EXT3_DIRSYNC_FL)
2861                 inode->i_flags |= S_DIRSYNC;
2862 }
2863
2864 /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
2865 void ext3_get_inode_flags(struct ext3_inode_info *ei)
2866 {
2867         unsigned int flags = ei->vfs_inode.i_flags;
2868
2869         ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
2870                         EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
2871         if (flags & S_SYNC)
2872                 ei->i_flags |= EXT3_SYNC_FL;
2873         if (flags & S_APPEND)
2874                 ei->i_flags |= EXT3_APPEND_FL;
2875         if (flags & S_IMMUTABLE)
2876                 ei->i_flags |= EXT3_IMMUTABLE_FL;
2877         if (flags & S_NOATIME)
2878                 ei->i_flags |= EXT3_NOATIME_FL;
2879         if (flags & S_DIRSYNC)
2880                 ei->i_flags |= EXT3_DIRSYNC_FL;
2881 }
2882
2883 struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
2884 {
2885         struct ext3_iloc iloc;
2886         struct ext3_inode *raw_inode;
2887         struct ext3_inode_info *ei;
2888         struct buffer_head *bh;
2889         struct inode *inode;
2890         journal_t *journal = EXT3_SB(sb)->s_journal;
2891         transaction_t *transaction;
2892         long ret;
2893         int block;
2894         uid_t i_uid;
2895         gid_t i_gid;
2896
2897         inode = iget_locked(sb, ino);
2898         if (!inode)
2899                 return ERR_PTR(-ENOMEM);
2900         if (!(inode->i_state & I_NEW))
2901                 return inode;
2902
2903         ei = EXT3_I(inode);
2904         ei->i_block_alloc_info = NULL;
2905
2906         ret = __ext3_get_inode_loc(inode, &iloc, 0);
2907         if (ret < 0)
2908                 goto bad_inode;
2909         bh = iloc.bh;
2910         raw_inode = ext3_raw_inode(&iloc);
2911         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2912         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2913         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2914         if(!(test_opt (inode->i_sb, NO_UID32))) {
2915                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2916                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2917         }
2918         i_uid_write(inode, i_uid);
2919         i_gid_write(inode, i_gid);
2920         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
2921         inode->i_size = le32_to_cpu(raw_inode->i_size);
2922         inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
2923         inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
2924         inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
2925         inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
2926
2927         ei->i_state_flags = 0;
2928         ei->i_dir_start_lookup = 0;
2929         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2930         /* We now have enough fields to check if the inode was active or not.
2931          * This is needed because nfsd might try to access dead inodes
2932          * the test is that same one that e2fsck uses
2933          * NeilBrown 1999oct15
2934          */
2935         if (inode->i_nlink == 0) {
2936                 if (inode->i_mode == 0 ||
2937                     !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
2938                         /* this inode is deleted */
2939                         brelse (bh);
2940                         ret = -ESTALE;
2941                         goto bad_inode;
2942                 }
2943                 /* The only unlinked inodes we let through here have
2944                  * valid i_mode and are being read by the orphan
2945                  * recovery code: that's fine, we're about to complete
2946                  * the process of deleting those. */
2947         }
2948         inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2949         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2950 #ifdef EXT3_FRAGMENTS
2951         ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2952         ei->i_frag_no = raw_inode->i_frag;
2953         ei->i_frag_size = raw_inode->i_fsize;
2954 #endif
2955         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2956         if (!S_ISREG(inode->i_mode)) {
2957                 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2958         } else {
2959                 inode->i_size |=
2960                         ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2961         }
2962         ei->i_disksize = inode->i_size;
2963         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2964         ei->i_block_group = iloc.block_group;
2965         /*
2966          * NOTE! The in-memory inode i_data array is in little-endian order
2967          * even on big-endian machines: we do NOT byteswap the block numbers!
2968          */
2969         for (block = 0; block < EXT3_N_BLOCKS; block++)
2970                 ei->i_data[block] = raw_inode->i_block[block];
2971         INIT_LIST_HEAD(&ei->i_orphan);
2972
2973         /*
2974          * Set transaction id's of transactions that have to be committed
2975          * to finish f[data]sync. We set them to currently running transaction
2976          * as we cannot be sure that the inode or some of its metadata isn't
2977          * part of the transaction - the inode could have been reclaimed and
2978          * now it is reread from disk.
2979          */
2980         if (journal) {
2981                 tid_t tid;
2982
2983                 spin_lock(&journal->j_state_lock);
2984                 if (journal->j_running_transaction)
2985                         transaction = journal->j_running_transaction;
2986                 else
2987                         transaction = journal->j_committing_transaction;
2988                 if (transaction)
2989                         tid = transaction->t_tid;
2990                 else
2991                         tid = journal->j_commit_sequence;
2992                 spin_unlock(&journal->j_state_lock);
2993                 atomic_set(&ei->i_sync_tid, tid);
2994                 atomic_set(&ei->i_datasync_tid, tid);
2995         }
2996
2997         if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
2998             EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
2999                 /*
3000                  * When mke2fs creates big inodes it does not zero out
3001                  * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
3002                  * so ignore those first few inodes.
3003                  */
3004                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3005                 if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3006                     EXT3_INODE_SIZE(inode->i_sb)) {
3007                         brelse (bh);
3008                         ret = -EIO;
3009                         goto bad_inode;
3010                 }
3011                 if (ei->i_extra_isize == 0) {
3012                         /* The extra space is currently unused. Use it. */
3013                         ei->i_extra_isize = sizeof(struct ext3_inode) -
3014                                             EXT3_GOOD_OLD_INODE_SIZE;
3015                 } else {
3016                         __le32 *magic = (void *)raw_inode +
3017                                         EXT3_GOOD_OLD_INODE_SIZE +
3018                                         ei->i_extra_isize;
3019                         if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
3020                                  ext3_set_inode_state(inode, EXT3_STATE_XATTR);
3021                 }
3022         } else
3023                 ei->i_extra_isize = 0;
3024
3025         if (S_ISREG(inode->i_mode)) {
3026                 inode->i_op = &ext3_file_inode_operations;
3027                 inode->i_fop = &ext3_file_operations;
3028                 ext3_set_aops(inode);
3029         } else if (S_ISDIR(inode->i_mode)) {
3030                 inode->i_op = &ext3_dir_inode_operations;
3031                 inode->i_fop = &ext3_dir_operations;
3032         } else if (S_ISLNK(inode->i_mode)) {
3033                 if (ext3_inode_is_fast_symlink(inode)) {
3034                         inode->i_op = &ext3_fast_symlink_inode_operations;
3035                         nd_terminate_link(ei->i_data, inode->i_size,
3036                                 sizeof(ei->i_data) - 1);
3037                 } else {
3038                         inode->i_op = &ext3_symlink_inode_operations;
3039                         ext3_set_aops(inode);
3040                 }
3041         } else {
3042                 inode->i_op = &ext3_special_inode_operations;
3043                 if (raw_inode->i_block[0])
3044                         init_special_inode(inode, inode->i_mode,
3045                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3046                 else
3047                         init_special_inode(inode, inode->i_mode,
3048                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3049         }
3050         brelse (iloc.bh);
3051         ext3_set_inode_flags(inode);
3052         unlock_new_inode(inode);
3053         return inode;
3054
3055 bad_inode:
3056         iget_failed(inode);
3057         return ERR_PTR(ret);
3058 }
3059
3060 /*
3061  * Post the struct inode info into an on-disk inode location in the
3062  * buffer-cache.  This gobbles the caller's reference to the
3063  * buffer_head in the inode location struct.
3064  *
3065  * The caller must have write access to iloc->bh.
3066  */
3067 static int ext3_do_update_inode(handle_t *handle,
3068                                 struct inode *inode,
3069                                 struct ext3_iloc *iloc)
3070 {
3071         struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
3072         struct ext3_inode_info *ei = EXT3_I(inode);
3073         struct buffer_head *bh = iloc->bh;
3074         int err = 0, rc, block;
3075         int need_datasync = 0;
3076         __le32 disksize;
3077         uid_t i_uid;
3078         gid_t i_gid;
3079
3080 again:
3081         /* we can't allow multiple procs in here at once, its a bit racey */
3082         lock_buffer(bh);
3083
3084         /* For fields not not tracking in the in-memory inode,
3085          * initialise them to zero for new inodes. */
3086         if (ext3_test_inode_state(inode, EXT3_STATE_NEW))
3087                 memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
3088
3089         ext3_get_inode_flags(ei);
3090         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3091         i_uid = i_uid_read(inode);
3092         i_gid = i_gid_read(inode);
3093         if(!(test_opt(inode->i_sb, NO_UID32))) {
3094                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
3095                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
3096 /*
3097  * Fix up interoperability with old kernels. Otherwise, old inodes get
3098  * re-used with the upper 16 bits of the uid/gid intact
3099  */
3100                 if(!ei->i_dtime) {
3101                         raw_inode->i_uid_high =
3102                                 cpu_to_le16(high_16_bits(i_uid));
3103                         raw_inode->i_gid_high =
3104                                 cpu_to_le16(high_16_bits(i_gid));
3105                 } else {
3106                         raw_inode->i_uid_high = 0;
3107                         raw_inode->i_gid_high = 0;
3108                 }
3109         } else {
3110                 raw_inode->i_uid_low =
3111                         cpu_to_le16(fs_high2lowuid(i_uid));
3112                 raw_inode->i_gid_low =
3113                         cpu_to_le16(fs_high2lowgid(i_gid));
3114                 raw_inode->i_uid_high = 0;
3115                 raw_inode->i_gid_high = 0;
3116         }
3117         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3118         disksize = cpu_to_le32(ei->i_disksize);
3119         if (disksize != raw_inode->i_size) {
3120                 need_datasync = 1;
3121                 raw_inode->i_size = disksize;
3122         }
3123         raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
3124         raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
3125         raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
3126         raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
3127         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3128         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
3129 #ifdef EXT3_FRAGMENTS
3130         raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
3131         raw_inode->i_frag = ei->i_frag_no;
3132         raw_inode->i_fsize = ei->i_frag_size;
3133 #endif
3134         raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
3135         if (!S_ISREG(inode->i_mode)) {
3136                 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
3137         } else {
3138                 disksize = cpu_to_le32(ei->i_disksize >> 32);
3139                 if (disksize != raw_inode->i_size_high) {
3140                         raw_inode->i_size_high = disksize;
3141                         need_datasync = 1;
3142                 }
3143                 if (ei->i_disksize > 0x7fffffffULL) {
3144                         struct super_block *sb = inode->i_sb;
3145                         if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
3146                                         EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
3147                             EXT3_SB(sb)->s_es->s_rev_level ==
3148                                         cpu_to_le32(EXT3_GOOD_OLD_REV)) {
3149                                /* If this is the first large file
3150                                 * created, add a flag to the superblock.
3151                                 */
3152                                 unlock_buffer(bh);
3153                                 err = ext3_journal_get_write_access(handle,
3154                                                 EXT3_SB(sb)->s_sbh);
3155                                 if (err)
3156                                         goto out_brelse;
3157
3158                                 ext3_update_dynamic_rev(sb);
3159                                 EXT3_SET_RO_COMPAT_FEATURE(sb,
3160                                         EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
3161                                 handle->h_sync = 1;
3162                                 err = ext3_journal_dirty_metadata(handle,
3163                                                 EXT3_SB(sb)->s_sbh);
3164                                 /* get our lock and start over */
3165                                 goto again;
3166                         }
3167                 }
3168         }
3169         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3170         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3171                 if (old_valid_dev(inode->i_rdev)) {
3172                         raw_inode->i_block[0] =
3173                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
3174                         raw_inode->i_block[1] = 0;
3175                 } else {
3176                         raw_inode->i_block[0] = 0;
3177                         raw_inode->i_block[1] =
3178                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
3179                         raw_inode->i_block[2] = 0;
3180                 }
3181         } else for (block = 0; block < EXT3_N_BLOCKS; block++)
3182                 raw_inode->i_block[block] = ei->i_data[block];
3183
3184         if (ei->i_extra_isize)
3185                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3186
3187         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
3188         unlock_buffer(bh);
3189         rc = ext3_journal_dirty_metadata(handle, bh);
3190         if (!err)
3191                 err = rc;
3192         ext3_clear_inode_state(inode, EXT3_STATE_NEW);
3193
3194         atomic_set(&ei->i_sync_tid, handle->h_transaction->t_tid);
3195         if (need_datasync)
3196                 atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
3197 out_brelse:
3198         brelse (bh);
3199         ext3_std_error(inode->i_sb, err);
3200         return err;
3201 }
3202
3203 /*
3204  * ext3_write_inode()
3205  *
3206  * We are called from a few places:
3207  *
3208  * - Within generic_file_write() for O_SYNC files.
3209  *   Here, there will be no transaction running. We wait for any running
3210  *   trasnaction to commit.
3211  *
3212  * - Within sys_sync(), kupdate and such.
3213  *   We wait on commit, if tol to.
3214  *
3215  * - Within prune_icache() (PF_MEMALLOC == true)
3216  *   Here we simply return.  We can't afford to block kswapd on the
3217  *   journal commit.
3218  *
3219  * In all cases it is actually safe for us to return without doing anything,
3220  * because the inode has been copied into a raw inode buffer in
3221  * ext3_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3222  * knfsd.
3223  *
3224  * Note that we are absolutely dependent upon all inode dirtiers doing the
3225  * right thing: they *must* call mark_inode_dirty() after dirtying info in
3226  * which we are interested.
3227  *
3228  * It would be a bug for them to not do this.  The code:
3229  *
3230  *      mark_inode_dirty(inode)
3231  *      stuff();
3232  *      inode->i_size = expr;
3233  *
3234  * is in error because a kswapd-driven write_inode() could occur while
3235  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
3236  * will no longer be on the superblock's dirty inode list.
3237  */
3238 int ext3_write_inode(struct inode *inode, struct writeback_control *wbc)
3239 {
3240         if (current->flags & PF_MEMALLOC)
3241                 return 0;
3242
3243         if (ext3_journal_current_handle()) {
3244                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3245                 dump_stack();
3246                 return -EIO;
3247         }
3248
3249         if (wbc->sync_mode != WB_SYNC_ALL)
3250                 return 0;
3251
3252         return ext3_force_commit(inode->i_sb);
3253 }
3254
3255 /*
3256  * ext3_setattr()
3257  *
3258  * Called from notify_change.
3259  *
3260  * We want to trap VFS attempts to truncate the file as soon as
3261  * possible.  In particular, we want to make sure that when the VFS
3262  * shrinks i_size, we put the inode on the orphan list and modify
3263  * i_disksize immediately, so that during the subsequent flushing of
3264  * dirty pages and freeing of disk blocks, we can guarantee that any
3265  * commit will leave the blocks being flushed in an unused state on
3266  * disk.  (On recovery, the inode will get truncated and the blocks will
3267  * be freed, so we have a strong guarantee that no future commit will
3268  * leave these blocks visible to the user.)
3269  *
3270  * Called with inode->sem down.
3271  */
3272 int ext3_setattr(struct dentry *dentry, struct iattr *attr)
3273 {
3274         struct inode *inode = dentry->d_inode;
3275         int error, rc = 0;
3276         const unsigned int ia_valid = attr->ia_valid;
3277
3278         error = inode_change_ok(inode, attr);
3279         if (error)
3280                 return error;
3281
3282         if (is_quota_modification(inode, attr))
3283                 dquot_initialize(inode);
3284         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
3285             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
3286                 handle_t *handle;
3287
3288                 /* (user+group)*(old+new) structure, inode write (sb,
3289                  * inode block, ? - but truncate inode update has it) */
3290                 handle = ext3_journal_start(inode, EXT3_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
3291                                         EXT3_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)+3);
3292                 if (IS_ERR(handle)) {
3293                         error = PTR_ERR(handle);
3294                         goto err_out;
3295                 }
3296                 error = dquot_transfer(inode, attr);
3297                 if (error) {
3298                         ext3_journal_stop(handle);
3299                         return error;
3300                 }
3301                 /* Update corresponding info in inode so that everything is in
3302                  * one transaction */
3303                 if (attr->ia_valid & ATTR_UID)
3304                         inode->i_uid = attr->ia_uid;
3305                 if (attr->ia_valid & ATTR_GID)
3306                         inode->i_gid = attr->ia_gid;
3307                 error = ext3_mark_inode_dirty(handle, inode);
3308                 ext3_journal_stop(handle);
3309         }
3310
3311         if (attr->ia_valid & ATTR_SIZE)
3312                 inode_dio_wait(inode);
3313
3314         if (S_ISREG(inode->i_mode) &&
3315             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3316                 handle_t *handle;
3317
3318                 handle = ext3_journal_start(inode, 3);
3319                 if (IS_ERR(handle)) {
3320                         error = PTR_ERR(handle);
3321                         goto err_out;
3322                 }
3323
3324                 error = ext3_orphan_add(handle, inode);
3325                 if (error) {
3326                         ext3_journal_stop(handle);
3327                         goto err_out;
3328                 }
3329                 EXT3_I(inode)->i_disksize = attr->ia_size;
3330                 error = ext3_mark_inode_dirty(handle, inode);
3331                 ext3_journal_stop(handle);
3332                 if (error) {
3333                         /* Some hard fs error must have happened. Bail out. */
3334                         ext3_orphan_del(NULL, inode);
3335                         goto err_out;
3336                 }
3337                 rc = ext3_block_truncate_page(inode, attr->ia_size);
3338                 if (rc) {
3339                         /* Cleanup orphan list and exit */
3340                         handle = ext3_journal_start(inode, 3);
3341                         if (IS_ERR(handle)) {
3342                                 ext3_orphan_del(NULL, inode);
3343                                 goto err_out;
3344                         }
3345                         ext3_orphan_del(handle, inode);
3346                         ext3_journal_stop(handle);
3347                         goto err_out;
3348                 }
3349         }
3350
3351         if ((attr->ia_valid & ATTR_SIZE) &&
3352             attr->ia_size != i_size_read(inode)) {
3353                 truncate_setsize(inode, attr->ia_size);
3354                 ext3_truncate(inode);
3355         }
3356
3357         setattr_copy(inode, attr);
3358         mark_inode_dirty(inode);
3359
3360         if (ia_valid & ATTR_MODE)
3361                 rc = ext3_acl_chmod(inode);
3362
3363 err_out:
3364         ext3_std_error(inode->i_sb, error);
3365         if (!error)
3366                 error = rc;
3367         return error;
3368 }
3369
3370
3371 /*
3372  * How many blocks doth make a writepage()?
3373  *
3374  * With N blocks per page, it may be:
3375  * N data blocks
3376  * 2 indirect block
3377  * 2 dindirect
3378  * 1 tindirect
3379  * N+5 bitmap blocks (from the above)
3380  * N+5 group descriptor summary blocks
3381  * 1 inode block
3382  * 1 superblock.
3383  * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
3384  *
3385  * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
3386  *
3387  * With ordered or writeback data it's the same, less the N data blocks.
3388  *
3389  * If the inode's direct blocks can hold an integral number of pages then a
3390  * page cannot straddle two indirect blocks, and we can only touch one indirect
3391  * and dindirect block, and the "5" above becomes "3".
3392  *
3393  * This still overestimates under most circumstances.  If we were to pass the
3394  * start and end offsets in here as well we could do block_to_path() on each
3395  * block and work out the exact number of indirects which are touched.  Pah.
3396  */
3397
3398 static int ext3_writepage_trans_blocks(struct inode *inode)
3399 {
3400         int bpp = ext3_journal_blocks_per_page(inode);
3401         int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
3402         int ret;
3403
3404         if (ext3_should_journal_data(inode))
3405                 ret = 3 * (bpp + indirects) + 2;
3406         else
3407                 ret = 2 * (bpp + indirects) + indirects + 2;
3408
3409 #ifdef CONFIG_QUOTA
3410         /* We know that structure was already allocated during dquot_initialize so
3411          * we will be updating only the data blocks + inodes */
3412         ret += EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
3413 #endif
3414
3415         return ret;
3416 }
3417
3418 /*
3419  * The caller must have previously called ext3_reserve_inode_write().
3420  * Give this, we know that the caller already has write access to iloc->bh.
3421  */
3422 int ext3_mark_iloc_dirty(handle_t *handle,
3423                 struct inode *inode, struct ext3_iloc *iloc)
3424 {
3425         int err = 0;
3426
3427         /* the do_update_inode consumes one bh->b_count */
3428         get_bh(iloc->bh);
3429
3430         /* ext3_do_update_inode() does journal_dirty_metadata */
3431         err = ext3_do_update_inode(handle, inode, iloc);
3432         put_bh(iloc->bh);
3433         return err;
3434 }
3435
3436 /*
3437  * On success, We end up with an outstanding reference count against
3438  * iloc->bh.  This _must_ be cleaned up later.
3439  */
3440
3441 int
3442 ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
3443                          struct ext3_iloc *iloc)
3444 {
3445         int err = 0;
3446         if (handle) {
3447                 err = ext3_get_inode_loc(inode, iloc);
3448                 if (!err) {
3449                         BUFFER_TRACE(iloc->bh, "get_write_access");
3450                         err = ext3_journal_get_write_access(handle, iloc->bh);
3451                         if (err) {
3452                                 brelse(iloc->bh);
3453                                 iloc->bh = NULL;
3454                         }
3455                 }
3456         }
3457         ext3_std_error(inode->i_sb, err);
3458         return err;
3459 }
3460
3461 /*
3462  * What we do here is to mark the in-core inode as clean with respect to inode
3463  * dirtiness (it may still be data-dirty).
3464  * This means that the in-core inode may be reaped by prune_icache
3465  * without having to perform any I/O.  This is a very good thing,
3466  * because *any* task may call prune_icache - even ones which
3467  * have a transaction open against a different journal.
3468  *
3469  * Is this cheating?  Not really.  Sure, we haven't written the
3470  * inode out, but prune_icache isn't a user-visible syncing function.
3471  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3472  * we start and wait on commits.
3473  */
3474 int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
3475 {
3476         struct ext3_iloc iloc;
3477         int err;
3478
3479         might_sleep();
3480         trace_ext3_mark_inode_dirty(inode, _RET_IP_);
3481         err = ext3_reserve_inode_write(handle, inode, &iloc);
3482         if (!err)
3483                 err = ext3_mark_iloc_dirty(handle, inode, &iloc);
3484         return err;
3485 }
3486
3487 /*
3488  * ext3_dirty_inode() is called from __mark_inode_dirty()
3489  *
3490  * We're really interested in the case where a file is being extended.
3491  * i_size has been changed by generic_commit_write() and we thus need
3492  * to include the updated inode in the current transaction.
3493  *
3494  * Also, dquot_alloc_space() will always dirty the inode when blocks
3495  * are allocated to the file.
3496  *
3497  * If the inode is marked synchronous, we don't honour that here - doing
3498  * so would cause a commit on atime updates, which we don't bother doing.
3499  * We handle synchronous inodes at the highest possible level.
3500  */
3501 void ext3_dirty_inode(struct inode *inode, int flags)
3502 {
3503         handle_t *current_handle = ext3_journal_current_handle();
3504         handle_t *handle;
3505
3506         handle = ext3_journal_start(inode, 2);
3507         if (IS_ERR(handle))
3508                 goto out;
3509         if (current_handle &&
3510                 current_handle->h_transaction != handle->h_transaction) {
3511                 /* This task has a transaction open against a different fs */
3512                 printk(KERN_EMERG "%s: transactions do not match!\n",
3513                        __func__);
3514         } else {
3515                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
3516                                 current_handle);
3517                 ext3_mark_inode_dirty(handle, inode);
3518         }
3519         ext3_journal_stop(handle);
3520 out:
3521         return;
3522 }
3523
3524 #if 0
3525 /*
3526  * Bind an inode's backing buffer_head into this transaction, to prevent
3527  * it from being flushed to disk early.  Unlike
3528  * ext3_reserve_inode_write, this leaves behind no bh reference and
3529  * returns no iloc structure, so the caller needs to repeat the iloc
3530  * lookup to mark the inode dirty later.
3531  */
3532 static int ext3_pin_inode(handle_t *handle, struct inode *inode)
3533 {
3534         struct ext3_iloc iloc;
3535
3536         int err = 0;
3537         if (handle) {
3538                 err = ext3_get_inode_loc(inode, &iloc);
3539                 if (!err) {
3540                         BUFFER_TRACE(iloc.bh, "get_write_access");
3541                         err = journal_get_write_access(handle, iloc.bh);
3542                         if (!err)
3543                                 err = ext3_journal_dirty_metadata(handle,
3544                                                                   iloc.bh);
3545                         brelse(iloc.bh);
3546                 }
3547         }
3548         ext3_std_error(inode->i_sb, err);
3549         return err;
3550 }
3551 #endif
3552
3553 int ext3_change_inode_journal_flag(struct inode *inode, int val)
3554 {
3555         journal_t *journal;
3556         handle_t *handle;
3557         int err;
3558
3559         /*
3560          * We have to be very careful here: changing a data block's
3561          * journaling status dynamically is dangerous.  If we write a
3562          * data block to the journal, change the status and then delete
3563          * that block, we risk forgetting to revoke the old log record
3564          * from the journal and so a subsequent replay can corrupt data.
3565          * So, first we make sure that the journal is empty and that
3566          * nobody is changing anything.
3567          */
3568
3569         journal = EXT3_JOURNAL(inode);
3570         if (is_journal_aborted(journal))
3571                 return -EROFS;
3572
3573         journal_lock_updates(journal);
3574         journal_flush(journal);
3575
3576         /*
3577          * OK, there are no updates running now, and all cached data is
3578          * synced to disk.  We are now in a completely consistent state
3579          * which doesn't have anything in the journal, and we know that
3580          * no filesystem updates are running, so it is safe to modify
3581          * the inode's in-core data-journaling state flag now.
3582          */
3583
3584         if (val)
3585                 EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
3586         else
3587                 EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
3588         ext3_set_aops(inode);
3589
3590         journal_unlock_updates(journal);
3591
3592         /* Finally we can mark the inode as dirty. */
3593
3594         handle = ext3_journal_start(inode, 1);
3595         if (IS_ERR(handle))
3596                 return PTR_ERR(handle);
3597
3598         err = ext3_mark_inode_dirty(handle, inode);
3599         handle->h_sync = 1;
3600         ext3_journal_stop(handle);
3601         ext3_std_error(inode->i_sb, err);
3602
3603         return err;
3604 }