init: raise log level
[platform/adaptation/renesas_rcar/renesas_kernel.git] / fs / ext3 / inode.c
1 /*
2  *  linux/fs/ext3/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/highuid.h>
26 #include <linux/quotaops.h>
27 #include <linux/writeback.h>
28 #include <linux/mpage.h>
29 #include <linux/namei.h>
30 #include "ext3.h"
31 #include "xattr.h"
32 #include "acl.h"
33
34 static int ext3_writepage_trans_blocks(struct inode *inode);
35 static int ext3_block_truncate_page(struct inode *inode, loff_t from);
36
37 /*
38  * Test whether an inode is a fast symlink.
39  */
40 static int ext3_inode_is_fast_symlink(struct inode *inode)
41 {
42         int ea_blocks = EXT3_I(inode)->i_file_acl ?
43                 (inode->i_sb->s_blocksize >> 9) : 0;
44
45         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
46 }
47
48 /*
49  * The ext3 forget function must perform a revoke if we are freeing data
50  * which has been journaled.  Metadata (eg. indirect blocks) must be
51  * revoked in all cases.
52  *
53  * "bh" may be NULL: a metadata block may have been freed from memory
54  * but there may still be a record of it in the journal, and that record
55  * still needs to be revoked.
56  */
57 int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
58                         struct buffer_head *bh, ext3_fsblk_t blocknr)
59 {
60         int err;
61
62         might_sleep();
63
64         trace_ext3_forget(inode, is_metadata, blocknr);
65         BUFFER_TRACE(bh, "enter");
66
67         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
68                   "data mode %lx\n",
69                   bh, is_metadata, inode->i_mode,
70                   test_opt(inode->i_sb, DATA_FLAGS));
71
72         /* Never use the revoke function if we are doing full data
73          * journaling: there is no need to, and a V1 superblock won't
74          * support it.  Otherwise, only skip the revoke on un-journaled
75          * data blocks. */
76
77         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
78             (!is_metadata && !ext3_should_journal_data(inode))) {
79                 if (bh) {
80                         BUFFER_TRACE(bh, "call journal_forget");
81                         return ext3_journal_forget(handle, bh);
82                 }
83                 return 0;
84         }
85
86         /*
87          * data!=journal && (is_metadata || should_journal_data(inode))
88          */
89         BUFFER_TRACE(bh, "call ext3_journal_revoke");
90         err = ext3_journal_revoke(handle, blocknr, bh);
91         if (err)
92                 ext3_abort(inode->i_sb, __func__,
93                            "error %d when attempting revoke", err);
94         BUFFER_TRACE(bh, "exit");
95         return err;
96 }
97
98 /*
99  * Work out how many blocks we need to proceed with the next chunk of a
100  * truncate transaction.
101  */
102 static unsigned long blocks_for_truncate(struct inode *inode)
103 {
104         unsigned long needed;
105
106         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
107
108         /* Give ourselves just enough room to cope with inodes in which
109          * i_blocks is corrupt: we've seen disk corruptions in the past
110          * which resulted in random data in an inode which looked enough
111          * like a regular file for ext3 to try to delete it.  Things
112          * will go a bit crazy if that happens, but at least we should
113          * try not to panic the whole kernel. */
114         if (needed < 2)
115                 needed = 2;
116
117         /* But we need to bound the transaction so we don't overflow the
118          * journal. */
119         if (needed > EXT3_MAX_TRANS_DATA)
120                 needed = EXT3_MAX_TRANS_DATA;
121
122         return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
123 }
124
125 /*
126  * Truncate transactions can be complex and absolutely huge.  So we need to
127  * be able to restart the transaction at a conventient checkpoint to make
128  * sure we don't overflow the journal.
129  *
130  * start_transaction gets us a new handle for a truncate transaction,
131  * and extend_transaction tries to extend the existing one a bit.  If
132  * extend fails, we need to propagate the failure up and restart the
133  * transaction in the top-level truncate loop. --sct
134  */
135 static handle_t *start_transaction(struct inode *inode)
136 {
137         handle_t *result;
138
139         result = ext3_journal_start(inode, blocks_for_truncate(inode));
140         if (!IS_ERR(result))
141                 return result;
142
143         ext3_std_error(inode->i_sb, PTR_ERR(result));
144         return result;
145 }
146
147 /*
148  * Try to extend this transaction for the purposes of truncation.
149  *
150  * Returns 0 if we managed to create more room.  If we can't create more
151  * room, and the transaction must be restarted we return 1.
152  */
153 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
154 {
155         if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
156                 return 0;
157         if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
158                 return 0;
159         return 1;
160 }
161
162 /*
163  * Restart the transaction associated with *handle.  This does a commit,
164  * so before we call here everything must be consistently dirtied against
165  * this transaction.
166  */
167 static int truncate_restart_transaction(handle_t *handle, struct inode *inode)
168 {
169         int ret;
170
171         jbd_debug(2, "restarting handle %p\n", handle);
172         /*
173          * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
174          * At this moment, get_block can be called only for blocks inside
175          * i_size since page cache has been already dropped and writes are
176          * blocked by i_mutex. So we can safely drop the truncate_mutex.
177          */
178         mutex_unlock(&EXT3_I(inode)->truncate_mutex);
179         ret = ext3_journal_restart(handle, blocks_for_truncate(inode));
180         mutex_lock(&EXT3_I(inode)->truncate_mutex);
181         return ret;
182 }
183
184 /*
185  * Called at inode eviction from icache
186  */
187 void ext3_evict_inode (struct inode *inode)
188 {
189         struct ext3_inode_info *ei = EXT3_I(inode);
190         struct ext3_block_alloc_info *rsv;
191         handle_t *handle;
192         int want_delete = 0;
193
194         trace_ext3_evict_inode(inode);
195         if (!inode->i_nlink && !is_bad_inode(inode)) {
196                 dquot_initialize(inode);
197                 want_delete = 1;
198         }
199
200         /*
201          * When journalling data dirty buffers are tracked only in the journal.
202          * So although mm thinks everything is clean and ready for reaping the
203          * inode might still have some pages to write in the running
204          * transaction or waiting to be checkpointed. Thus calling
205          * journal_invalidatepage() (via truncate_inode_pages()) to discard
206          * these buffers can cause data loss. Also even if we did not discard
207          * these buffers, we would have no way to find them after the inode
208          * is reaped and thus user could see stale data if he tries to read
209          * them before the transaction is checkpointed. So be careful and
210          * force everything to disk here... We use ei->i_datasync_tid to
211          * store the newest transaction containing inode's data.
212          *
213          * Note that directories do not have this problem because they don't
214          * use page cache.
215          *
216          * The s_journal check handles the case when ext3_get_journal() fails
217          * and puts the journal inode.
218          */
219         if (inode->i_nlink && ext3_should_journal_data(inode) &&
220             EXT3_SB(inode->i_sb)->s_journal &&
221             (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
222                 tid_t commit_tid = atomic_read(&ei->i_datasync_tid);
223                 journal_t *journal = EXT3_SB(inode->i_sb)->s_journal;
224
225                 log_start_commit(journal, commit_tid);
226                 log_wait_commit(journal, commit_tid);
227                 filemap_write_and_wait(&inode->i_data);
228         }
229         truncate_inode_pages(&inode->i_data, 0);
230
231         ext3_discard_reservation(inode);
232         rsv = ei->i_block_alloc_info;
233         ei->i_block_alloc_info = NULL;
234         if (unlikely(rsv))
235                 kfree(rsv);
236
237         if (!want_delete)
238                 goto no_delete;
239
240         handle = start_transaction(inode);
241         if (IS_ERR(handle)) {
242                 /*
243                  * If we're going to skip the normal cleanup, we still need to
244                  * make sure that the in-core orphan linked list is properly
245                  * cleaned up.
246                  */
247                 ext3_orphan_del(NULL, inode);
248                 goto no_delete;
249         }
250
251         if (IS_SYNC(inode))
252                 handle->h_sync = 1;
253         inode->i_size = 0;
254         if (inode->i_blocks)
255                 ext3_truncate(inode);
256         /*
257          * Kill off the orphan record created when the inode lost the last
258          * link.  Note that ext3_orphan_del() has to be able to cope with the
259          * deletion of a non-existent orphan - ext3_truncate() could
260          * have removed the record.
261          */
262         ext3_orphan_del(handle, inode);
263         ei->i_dtime = get_seconds();
264
265         /*
266          * One subtle ordering requirement: if anything has gone wrong
267          * (transaction abort, IO errors, whatever), then we can still
268          * do these next steps (the fs will already have been marked as
269          * having errors), but we can't free the inode if the mark_dirty
270          * fails.
271          */
272         if (ext3_mark_inode_dirty(handle, inode)) {
273                 /* If that failed, just dquot_drop() and be done with that */
274                 dquot_drop(inode);
275                 clear_inode(inode);
276         } else {
277                 ext3_xattr_delete_inode(handle, inode);
278                 dquot_free_inode(inode);
279                 dquot_drop(inode);
280                 clear_inode(inode);
281                 ext3_free_inode(handle, inode);
282         }
283         ext3_journal_stop(handle);
284         return;
285 no_delete:
286         clear_inode(inode);
287         dquot_drop(inode);
288 }
289
290 typedef struct {
291         __le32  *p;
292         __le32  key;
293         struct buffer_head *bh;
294 } Indirect;
295
296 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
297 {
298         p->key = *(p->p = v);
299         p->bh = bh;
300 }
301
302 static int verify_chain(Indirect *from, Indirect *to)
303 {
304         while (from <= to && from->key == *from->p)
305                 from++;
306         return (from > to);
307 }
308
309 /**
310  *      ext3_block_to_path - parse the block number into array of offsets
311  *      @inode: inode in question (we are only interested in its superblock)
312  *      @i_block: block number to be parsed
313  *      @offsets: array to store the offsets in
314  *      @boundary: set this non-zero if the referred-to block is likely to be
315  *             followed (on disk) by an indirect block.
316  *
317  *      To store the locations of file's data ext3 uses a data structure common
318  *      for UNIX filesystems - tree of pointers anchored in the inode, with
319  *      data blocks at leaves and indirect blocks in intermediate nodes.
320  *      This function translates the block number into path in that tree -
321  *      return value is the path length and @offsets[n] is the offset of
322  *      pointer to (n+1)th node in the nth one. If @block is out of range
323  *      (negative or too large) warning is printed and zero returned.
324  *
325  *      Note: function doesn't find node addresses, so no IO is needed. All
326  *      we need to know is the capacity of indirect blocks (taken from the
327  *      inode->i_sb).
328  */
329
330 /*
331  * Portability note: the last comparison (check that we fit into triple
332  * indirect block) is spelled differently, because otherwise on an
333  * architecture with 32-bit longs and 8Kb pages we might get into trouble
334  * if our filesystem had 8Kb blocks. We might use long long, but that would
335  * kill us on x86. Oh, well, at least the sign propagation does not matter -
336  * i_block would have to be negative in the very beginning, so we would not
337  * get there at all.
338  */
339
340 static int ext3_block_to_path(struct inode *inode,
341                         long i_block, int offsets[4], int *boundary)
342 {
343         int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
344         int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
345         const long direct_blocks = EXT3_NDIR_BLOCKS,
346                 indirect_blocks = ptrs,
347                 double_blocks = (1 << (ptrs_bits * 2));
348         int n = 0;
349         int final = 0;
350
351         if (i_block < 0) {
352                 ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
353         } else if (i_block < direct_blocks) {
354                 offsets[n++] = i_block;
355                 final = direct_blocks;
356         } else if ( (i_block -= direct_blocks) < indirect_blocks) {
357                 offsets[n++] = EXT3_IND_BLOCK;
358                 offsets[n++] = i_block;
359                 final = ptrs;
360         } else if ((i_block -= indirect_blocks) < double_blocks) {
361                 offsets[n++] = EXT3_DIND_BLOCK;
362                 offsets[n++] = i_block >> ptrs_bits;
363                 offsets[n++] = i_block & (ptrs - 1);
364                 final = ptrs;
365         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
366                 offsets[n++] = EXT3_TIND_BLOCK;
367                 offsets[n++] = i_block >> (ptrs_bits * 2);
368                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
369                 offsets[n++] = i_block & (ptrs - 1);
370                 final = ptrs;
371         } else {
372                 ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
373         }
374         if (boundary)
375                 *boundary = final - 1 - (i_block & (ptrs - 1));
376         return n;
377 }
378
379 /**
380  *      ext3_get_branch - read the chain of indirect blocks leading to data
381  *      @inode: inode in question
382  *      @depth: depth of the chain (1 - direct pointer, etc.)
383  *      @offsets: offsets of pointers in inode/indirect blocks
384  *      @chain: place to store the result
385  *      @err: here we store the error value
386  *
387  *      Function fills the array of triples <key, p, bh> and returns %NULL
388  *      if everything went OK or the pointer to the last filled triple
389  *      (incomplete one) otherwise. Upon the return chain[i].key contains
390  *      the number of (i+1)-th block in the chain (as it is stored in memory,
391  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
392  *      number (it points into struct inode for i==0 and into the bh->b_data
393  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
394  *      block for i>0 and NULL for i==0. In other words, it holds the block
395  *      numbers of the chain, addresses they were taken from (and where we can
396  *      verify that chain did not change) and buffer_heads hosting these
397  *      numbers.
398  *
399  *      Function stops when it stumbles upon zero pointer (absent block)
400  *              (pointer to last triple returned, *@err == 0)
401  *      or when it gets an IO error reading an indirect block
402  *              (ditto, *@err == -EIO)
403  *      or when it notices that chain had been changed while it was reading
404  *              (ditto, *@err == -EAGAIN)
405  *      or when it reads all @depth-1 indirect blocks successfully and finds
406  *      the whole chain, all way to the data (returns %NULL, *err == 0).
407  */
408 static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
409                                  Indirect chain[4], int *err)
410 {
411         struct super_block *sb = inode->i_sb;
412         Indirect *p = chain;
413         struct buffer_head *bh;
414
415         *err = 0;
416         /* i_data is not going away, no lock needed */
417         add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
418         if (!p->key)
419                 goto no_block;
420         while (--depth) {
421                 bh = sb_bread(sb, le32_to_cpu(p->key));
422                 if (!bh)
423                         goto failure;
424                 /* Reader: pointers */
425                 if (!verify_chain(chain, p))
426                         goto changed;
427                 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
428                 /* Reader: end */
429                 if (!p->key)
430                         goto no_block;
431         }
432         return NULL;
433
434 changed:
435         brelse(bh);
436         *err = -EAGAIN;
437         goto no_block;
438 failure:
439         *err = -EIO;
440 no_block:
441         return p;
442 }
443
444 /**
445  *      ext3_find_near - find a place for allocation with sufficient locality
446  *      @inode: owner
447  *      @ind: descriptor of indirect block.
448  *
449  *      This function returns the preferred place for block allocation.
450  *      It is used when heuristic for sequential allocation fails.
451  *      Rules are:
452  *        + if there is a block to the left of our position - allocate near it.
453  *        + if pointer will live in indirect block - allocate near that block.
454  *        + if pointer will live in inode - allocate in the same
455  *          cylinder group.
456  *
457  * In the latter case we colour the starting block by the callers PID to
458  * prevent it from clashing with concurrent allocations for a different inode
459  * in the same block group.   The PID is used here so that functionally related
460  * files will be close-by on-disk.
461  *
462  *      Caller must make sure that @ind is valid and will stay that way.
463  */
464 static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
465 {
466         struct ext3_inode_info *ei = EXT3_I(inode);
467         __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
468         __le32 *p;
469         ext3_fsblk_t bg_start;
470         ext3_grpblk_t colour;
471
472         /* Try to find previous block */
473         for (p = ind->p - 1; p >= start; p--) {
474                 if (*p)
475                         return le32_to_cpu(*p);
476         }
477
478         /* No such thing, so let's try location of indirect block */
479         if (ind->bh)
480                 return ind->bh->b_blocknr;
481
482         /*
483          * It is going to be referred to from the inode itself? OK, just put it
484          * into the same cylinder group then.
485          */
486         bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
487         colour = (current->pid % 16) *
488                         (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
489         return bg_start + colour;
490 }
491
492 /**
493  *      ext3_find_goal - find a preferred place for allocation.
494  *      @inode: owner
495  *      @block:  block we want
496  *      @partial: pointer to the last triple within a chain
497  *
498  *      Normally this function find the preferred place for block allocation,
499  *      returns it.
500  */
501
502 static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
503                                    Indirect *partial)
504 {
505         struct ext3_block_alloc_info *block_i;
506
507         block_i =  EXT3_I(inode)->i_block_alloc_info;
508
509         /*
510          * try the heuristic for sequential allocation,
511          * failing that at least try to get decent locality.
512          */
513         if (block_i && (block == block_i->last_alloc_logical_block + 1)
514                 && (block_i->last_alloc_physical_block != 0)) {
515                 return block_i->last_alloc_physical_block + 1;
516         }
517
518         return ext3_find_near(inode, partial);
519 }
520
521 /**
522  *      ext3_blks_to_allocate - Look up the block map and count the number
523  *      of direct blocks need to be allocated for the given branch.
524  *
525  *      @branch: chain of indirect blocks
526  *      @k: number of blocks need for indirect blocks
527  *      @blks: number of data blocks to be mapped.
528  *      @blocks_to_boundary:  the offset in the indirect block
529  *
530  *      return the total number of blocks to be allocate, including the
531  *      direct and indirect blocks.
532  */
533 static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
534                 int blocks_to_boundary)
535 {
536         unsigned long count = 0;
537
538         /*
539          * Simple case, [t,d]Indirect block(s) has not allocated yet
540          * then it's clear blocks on that path have not allocated
541          */
542         if (k > 0) {
543                 /* right now we don't handle cross boundary allocation */
544                 if (blks < blocks_to_boundary + 1)
545                         count += blks;
546                 else
547                         count += blocks_to_boundary + 1;
548                 return count;
549         }
550
551         count++;
552         while (count < blks && count <= blocks_to_boundary &&
553                 le32_to_cpu(*(branch[0].p + count)) == 0) {
554                 count++;
555         }
556         return count;
557 }
558
559 /**
560  *      ext3_alloc_blocks - multiple allocate blocks needed for a branch
561  *      @handle: handle for this transaction
562  *      @inode: owner
563  *      @goal: preferred place for allocation
564  *      @indirect_blks: the number of blocks need to allocate for indirect
565  *                      blocks
566  *      @blks:  number of blocks need to allocated for direct blocks
567  *      @new_blocks: on return it will store the new block numbers for
568  *      the indirect blocks(if needed) and the first direct block,
569  *      @err: here we store the error value
570  *
571  *      return the number of direct blocks allocated
572  */
573 static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
574                         ext3_fsblk_t goal, int indirect_blks, int blks,
575                         ext3_fsblk_t new_blocks[4], int *err)
576 {
577         int target, i;
578         unsigned long count = 0;
579         int index = 0;
580         ext3_fsblk_t current_block = 0;
581         int ret = 0;
582
583         /*
584          * Here we try to allocate the requested multiple blocks at once,
585          * on a best-effort basis.
586          * To build a branch, we should allocate blocks for
587          * the indirect blocks(if not allocated yet), and at least
588          * the first direct block of this branch.  That's the
589          * minimum number of blocks need to allocate(required)
590          */
591         target = blks + indirect_blks;
592
593         while (1) {
594                 count = target;
595                 /* allocating blocks for indirect blocks and direct blocks */
596                 current_block = ext3_new_blocks(handle,inode,goal,&count,err);
597                 if (*err)
598                         goto failed_out;
599
600                 target -= count;
601                 /* allocate blocks for indirect blocks */
602                 while (index < indirect_blks && count) {
603                         new_blocks[index++] = current_block++;
604                         count--;
605                 }
606
607                 if (count > 0)
608                         break;
609         }
610
611         /* save the new block number for the first direct block */
612         new_blocks[index] = current_block;
613
614         /* total number of blocks allocated for direct blocks */
615         ret = count;
616         *err = 0;
617         return ret;
618 failed_out:
619         for (i = 0; i <index; i++)
620                 ext3_free_blocks(handle, inode, new_blocks[i], 1);
621         return ret;
622 }
623
624 /**
625  *      ext3_alloc_branch - allocate and set up a chain of blocks.
626  *      @handle: handle for this transaction
627  *      @inode: owner
628  *      @indirect_blks: number of allocated indirect blocks
629  *      @blks: number of allocated direct blocks
630  *      @goal: preferred place for allocation
631  *      @offsets: offsets (in the blocks) to store the pointers to next.
632  *      @branch: place to store the chain in.
633  *
634  *      This function allocates blocks, zeroes out all but the last one,
635  *      links them into chain and (if we are synchronous) writes them to disk.
636  *      In other words, it prepares a branch that can be spliced onto the
637  *      inode. It stores the information about that chain in the branch[], in
638  *      the same format as ext3_get_branch() would do. We are calling it after
639  *      we had read the existing part of chain and partial points to the last
640  *      triple of that (one with zero ->key). Upon the exit we have the same
641  *      picture as after the successful ext3_get_block(), except that in one
642  *      place chain is disconnected - *branch->p is still zero (we did not
643  *      set the last link), but branch->key contains the number that should
644  *      be placed into *branch->p to fill that gap.
645  *
646  *      If allocation fails we free all blocks we've allocated (and forget
647  *      their buffer_heads) and return the error value the from failed
648  *      ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
649  *      as described above and return 0.
650  */
651 static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
652                         int indirect_blks, int *blks, ext3_fsblk_t goal,
653                         int *offsets, Indirect *branch)
654 {
655         int blocksize = inode->i_sb->s_blocksize;
656         int i, n = 0;
657         int err = 0;
658         struct buffer_head *bh;
659         int num;
660         ext3_fsblk_t new_blocks[4];
661         ext3_fsblk_t current_block;
662
663         num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
664                                 *blks, new_blocks, &err);
665         if (err)
666                 return err;
667
668         branch[0].key = cpu_to_le32(new_blocks[0]);
669         /*
670          * metadata blocks and data blocks are allocated.
671          */
672         for (n = 1; n <= indirect_blks;  n++) {
673                 /*
674                  * Get buffer_head for parent block, zero it out
675                  * and set the pointer to new one, then send
676                  * parent to disk.
677                  */
678                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
679                 if (unlikely(!bh)) {
680                         err = -ENOMEM;
681                         goto failed;
682                 }
683                 branch[n].bh = bh;
684                 lock_buffer(bh);
685                 BUFFER_TRACE(bh, "call get_create_access");
686                 err = ext3_journal_get_create_access(handle, bh);
687                 if (err) {
688                         unlock_buffer(bh);
689                         brelse(bh);
690                         goto failed;
691                 }
692
693                 memset(bh->b_data, 0, blocksize);
694                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
695                 branch[n].key = cpu_to_le32(new_blocks[n]);
696                 *branch[n].p = branch[n].key;
697                 if ( n == indirect_blks) {
698                         current_block = new_blocks[n];
699                         /*
700                          * End of chain, update the last new metablock of
701                          * the chain to point to the new allocated
702                          * data blocks numbers
703                          */
704                         for (i=1; i < num; i++)
705                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
706                 }
707                 BUFFER_TRACE(bh, "marking uptodate");
708                 set_buffer_uptodate(bh);
709                 unlock_buffer(bh);
710
711                 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
712                 err = ext3_journal_dirty_metadata(handle, bh);
713                 if (err)
714                         goto failed;
715         }
716         *blks = num;
717         return err;
718 failed:
719         /* Allocation failed, free what we already allocated */
720         for (i = 1; i <= n ; i++) {
721                 BUFFER_TRACE(branch[i].bh, "call journal_forget");
722                 ext3_journal_forget(handle, branch[i].bh);
723         }
724         for (i = 0; i < indirect_blks; i++)
725                 ext3_free_blocks(handle, inode, new_blocks[i], 1);
726
727         ext3_free_blocks(handle, inode, new_blocks[i], num);
728
729         return err;
730 }
731
732 /**
733  * ext3_splice_branch - splice the allocated branch onto inode.
734  * @handle: handle for this transaction
735  * @inode: owner
736  * @block: (logical) number of block we are adding
737  * @where: location of missing link
738  * @num:   number of indirect blocks we are adding
739  * @blks:  number of direct blocks we are adding
740  *
741  * This function fills the missing link and does all housekeeping needed in
742  * inode (->i_blocks, etc.). In case of success we end up with the full
743  * chain to new block and return 0.
744  */
745 static int ext3_splice_branch(handle_t *handle, struct inode *inode,
746                         long block, Indirect *where, int num, int blks)
747 {
748         int i;
749         int err = 0;
750         struct ext3_block_alloc_info *block_i;
751         ext3_fsblk_t current_block;
752         struct ext3_inode_info *ei = EXT3_I(inode);
753         struct timespec now;
754
755         block_i = ei->i_block_alloc_info;
756         /*
757          * If we're splicing into a [td]indirect block (as opposed to the
758          * inode) then we need to get write access to the [td]indirect block
759          * before the splice.
760          */
761         if (where->bh) {
762                 BUFFER_TRACE(where->bh, "get_write_access");
763                 err = ext3_journal_get_write_access(handle, where->bh);
764                 if (err)
765                         goto err_out;
766         }
767         /* That's it */
768
769         *where->p = where->key;
770
771         /*
772          * Update the host buffer_head or inode to point to more just allocated
773          * direct blocks blocks
774          */
775         if (num == 0 && blks > 1) {
776                 current_block = le32_to_cpu(where->key) + 1;
777                 for (i = 1; i < blks; i++)
778                         *(where->p + i ) = cpu_to_le32(current_block++);
779         }
780
781         /*
782          * update the most recently allocated logical & physical block
783          * in i_block_alloc_info, to assist find the proper goal block for next
784          * allocation
785          */
786         if (block_i) {
787                 block_i->last_alloc_logical_block = block + blks - 1;
788                 block_i->last_alloc_physical_block =
789                                 le32_to_cpu(where[num].key) + blks - 1;
790         }
791
792         /* We are done with atomic stuff, now do the rest of housekeeping */
793         now = CURRENT_TIME_SEC;
794         if (!timespec_equal(&inode->i_ctime, &now) || !where->bh) {
795                 inode->i_ctime = now;
796                 ext3_mark_inode_dirty(handle, inode);
797         }
798         /* ext3_mark_inode_dirty already updated i_sync_tid */
799         atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
800
801         /* had we spliced it onto indirect block? */
802         if (where->bh) {
803                 /*
804                  * If we spliced it onto an indirect block, we haven't
805                  * altered the inode.  Note however that if it is being spliced
806                  * onto an indirect block at the very end of the file (the
807                  * file is growing) then we *will* alter the inode to reflect
808                  * the new i_size.  But that is not done here - it is done in
809                  * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
810                  */
811                 jbd_debug(5, "splicing indirect only\n");
812                 BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
813                 err = ext3_journal_dirty_metadata(handle, where->bh);
814                 if (err)
815                         goto err_out;
816         } else {
817                 /*
818                  * OK, we spliced it into the inode itself on a direct block.
819                  * Inode was dirtied above.
820                  */
821                 jbd_debug(5, "splicing direct\n");
822         }
823         return err;
824
825 err_out:
826         for (i = 1; i <= num; i++) {
827                 BUFFER_TRACE(where[i].bh, "call journal_forget");
828                 ext3_journal_forget(handle, where[i].bh);
829                 ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
830         }
831         ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
832
833         return err;
834 }
835
836 /*
837  * Allocation strategy is simple: if we have to allocate something, we will
838  * have to go the whole way to leaf. So let's do it before attaching anything
839  * to tree, set linkage between the newborn blocks, write them if sync is
840  * required, recheck the path, free and repeat if check fails, otherwise
841  * set the last missing link (that will protect us from any truncate-generated
842  * removals - all blocks on the path are immune now) and possibly force the
843  * write on the parent block.
844  * That has a nice additional property: no special recovery from the failed
845  * allocations is needed - we simply release blocks and do not touch anything
846  * reachable from inode.
847  *
848  * `handle' can be NULL if create == 0.
849  *
850  * The BKL may not be held on entry here.  Be sure to take it early.
851  * return > 0, # of blocks mapped or allocated.
852  * return = 0, if plain lookup failed.
853  * return < 0, error case.
854  */
855 int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
856                 sector_t iblock, unsigned long maxblocks,
857                 struct buffer_head *bh_result,
858                 int create)
859 {
860         int err = -EIO;
861         int offsets[4];
862         Indirect chain[4];
863         Indirect *partial;
864         ext3_fsblk_t goal;
865         int indirect_blks;
866         int blocks_to_boundary = 0;
867         int depth;
868         struct ext3_inode_info *ei = EXT3_I(inode);
869         int count = 0;
870         ext3_fsblk_t first_block = 0;
871
872
873         trace_ext3_get_blocks_enter(inode, iblock, maxblocks, create);
874         J_ASSERT(handle != NULL || create == 0);
875         depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
876
877         if (depth == 0)
878                 goto out;
879
880         partial = ext3_get_branch(inode, depth, offsets, chain, &err);
881
882         /* Simplest case - block found, no allocation needed */
883         if (!partial) {
884                 first_block = le32_to_cpu(chain[depth - 1].key);
885                 clear_buffer_new(bh_result);
886                 count++;
887                 /*map more blocks*/
888                 while (count < maxblocks && count <= blocks_to_boundary) {
889                         ext3_fsblk_t blk;
890
891                         if (!verify_chain(chain, chain + depth - 1)) {
892                                 /*
893                                  * Indirect block might be removed by
894                                  * truncate while we were reading it.
895                                  * Handling of that case: forget what we've
896                                  * got now. Flag the err as EAGAIN, so it
897                                  * will reread.
898                                  */
899                                 err = -EAGAIN;
900                                 count = 0;
901                                 break;
902                         }
903                         blk = le32_to_cpu(*(chain[depth-1].p + count));
904
905                         if (blk == first_block + count)
906                                 count++;
907                         else
908                                 break;
909                 }
910                 if (err != -EAGAIN)
911                         goto got_it;
912         }
913
914         /* Next simple case - plain lookup or failed read of indirect block */
915         if (!create || err == -EIO)
916                 goto cleanup;
917
918         /*
919          * Block out ext3_truncate while we alter the tree
920          */
921         mutex_lock(&ei->truncate_mutex);
922
923         /*
924          * If the indirect block is missing while we are reading
925          * the chain(ext3_get_branch() returns -EAGAIN err), or
926          * if the chain has been changed after we grab the semaphore,
927          * (either because another process truncated this branch, or
928          * another get_block allocated this branch) re-grab the chain to see if
929          * the request block has been allocated or not.
930          *
931          * Since we already block the truncate/other get_block
932          * at this point, we will have the current copy of the chain when we
933          * splice the branch into the tree.
934          */
935         if (err == -EAGAIN || !verify_chain(chain, partial)) {
936                 while (partial > chain) {
937                         brelse(partial->bh);
938                         partial--;
939                 }
940                 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
941                 if (!partial) {
942                         count++;
943                         mutex_unlock(&ei->truncate_mutex);
944                         if (err)
945                                 goto cleanup;
946                         clear_buffer_new(bh_result);
947                         goto got_it;
948                 }
949         }
950
951         /*
952          * Okay, we need to do block allocation.  Lazily initialize the block
953          * allocation info here if necessary
954         */
955         if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
956                 ext3_init_block_alloc_info(inode);
957
958         goal = ext3_find_goal(inode, iblock, partial);
959
960         /* the number of blocks need to allocate for [d,t]indirect blocks */
961         indirect_blks = (chain + depth) - partial - 1;
962
963         /*
964          * Next look up the indirect map to count the totoal number of
965          * direct blocks to allocate for this branch.
966          */
967         count = ext3_blks_to_allocate(partial, indirect_blks,
968                                         maxblocks, blocks_to_boundary);
969         err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
970                                 offsets + (partial - chain), partial);
971
972         /*
973          * The ext3_splice_branch call will free and forget any buffers
974          * on the new chain if there is a failure, but that risks using
975          * up transaction credits, especially for bitmaps where the
976          * credits cannot be returned.  Can we handle this somehow?  We
977          * may need to return -EAGAIN upwards in the worst case.  --sct
978          */
979         if (!err)
980                 err = ext3_splice_branch(handle, inode, iblock,
981                                         partial, indirect_blks, count);
982         mutex_unlock(&ei->truncate_mutex);
983         if (err)
984                 goto cleanup;
985
986         set_buffer_new(bh_result);
987 got_it:
988         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
989         if (count > blocks_to_boundary)
990                 set_buffer_boundary(bh_result);
991         err = count;
992         /* Clean up and exit */
993         partial = chain + depth - 1;    /* the whole chain */
994 cleanup:
995         while (partial > chain) {
996                 BUFFER_TRACE(partial->bh, "call brelse");
997                 brelse(partial->bh);
998                 partial--;
999         }
1000         BUFFER_TRACE(bh_result, "returned");
1001 out:
1002         trace_ext3_get_blocks_exit(inode, iblock,
1003                                    depth ? le32_to_cpu(chain[depth-1].key) : 0,
1004                                    count, err);
1005         return err;
1006 }
1007
1008 /* Maximum number of blocks we map for direct IO at once. */
1009 #define DIO_MAX_BLOCKS 4096
1010 /*
1011  * Number of credits we need for writing DIO_MAX_BLOCKS:
1012  * We need sb + group descriptor + bitmap + inode -> 4
1013  * For B blocks with A block pointers per block we need:
1014  * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
1015  * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
1016  */
1017 #define DIO_CREDITS 25
1018
1019 static int ext3_get_block(struct inode *inode, sector_t iblock,
1020                         struct buffer_head *bh_result, int create)
1021 {
1022         handle_t *handle = ext3_journal_current_handle();
1023         int ret = 0, started = 0;
1024         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1025
1026         if (create && !handle) {        /* Direct IO write... */
1027                 if (max_blocks > DIO_MAX_BLOCKS)
1028                         max_blocks = DIO_MAX_BLOCKS;
1029                 handle = ext3_journal_start(inode, DIO_CREDITS +
1030                                 EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb));
1031                 if (IS_ERR(handle)) {
1032                         ret = PTR_ERR(handle);
1033                         goto out;
1034                 }
1035                 started = 1;
1036         }
1037
1038         ret = ext3_get_blocks_handle(handle, inode, iblock,
1039                                         max_blocks, bh_result, create);
1040         if (ret > 0) {
1041                 bh_result->b_size = (ret << inode->i_blkbits);
1042                 ret = 0;
1043         }
1044         if (started)
1045                 ext3_journal_stop(handle);
1046 out:
1047         return ret;
1048 }
1049
1050 int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1051                 u64 start, u64 len)
1052 {
1053         return generic_block_fiemap(inode, fieinfo, start, len,
1054                                     ext3_get_block);
1055 }
1056
1057 /*
1058  * `handle' can be NULL if create is zero
1059  */
1060 struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
1061                                 long block, int create, int *errp)
1062 {
1063         struct buffer_head dummy;
1064         int fatal = 0, err;
1065
1066         J_ASSERT(handle != NULL || create == 0);
1067
1068         dummy.b_state = 0;
1069         dummy.b_blocknr = -1000;
1070         buffer_trace_init(&dummy.b_history);
1071         err = ext3_get_blocks_handle(handle, inode, block, 1,
1072                                         &dummy, create);
1073         /*
1074          * ext3_get_blocks_handle() returns number of blocks
1075          * mapped. 0 in case of a HOLE.
1076          */
1077         if (err > 0) {
1078                 WARN_ON(err > 1);
1079                 err = 0;
1080         }
1081         *errp = err;
1082         if (!err && buffer_mapped(&dummy)) {
1083                 struct buffer_head *bh;
1084                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1085                 if (unlikely(!bh)) {
1086                         *errp = -ENOMEM;
1087                         goto err;
1088                 }
1089                 if (buffer_new(&dummy)) {
1090                         J_ASSERT(create != 0);
1091                         J_ASSERT(handle != NULL);
1092
1093                         /*
1094                          * Now that we do not always journal data, we should
1095                          * keep in mind whether this should always journal the
1096                          * new buffer as metadata.  For now, regular file
1097                          * writes use ext3_get_block instead, so it's not a
1098                          * problem.
1099                          */
1100                         lock_buffer(bh);
1101                         BUFFER_TRACE(bh, "call get_create_access");
1102                         fatal = ext3_journal_get_create_access(handle, bh);
1103                         if (!fatal && !buffer_uptodate(bh)) {
1104                                 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1105                                 set_buffer_uptodate(bh);
1106                         }
1107                         unlock_buffer(bh);
1108                         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1109                         err = ext3_journal_dirty_metadata(handle, bh);
1110                         if (!fatal)
1111                                 fatal = err;
1112                 } else {
1113                         BUFFER_TRACE(bh, "not a new buffer");
1114                 }
1115                 if (fatal) {
1116                         *errp = fatal;
1117                         brelse(bh);
1118                         bh = NULL;
1119                 }
1120                 return bh;
1121         }
1122 err:
1123         return NULL;
1124 }
1125
1126 struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
1127                                int block, int create, int *err)
1128 {
1129         struct buffer_head * bh;
1130
1131         bh = ext3_getblk(handle, inode, block, create, err);
1132         if (!bh)
1133                 return bh;
1134         if (bh_uptodate_or_lock(bh))
1135                 return bh;
1136         get_bh(bh);
1137         bh->b_end_io = end_buffer_read_sync;
1138         submit_bh(READ | REQ_META | REQ_PRIO, bh);
1139         wait_on_buffer(bh);
1140         if (buffer_uptodate(bh))
1141                 return bh;
1142         put_bh(bh);
1143         *err = -EIO;
1144         return NULL;
1145 }
1146
1147 static int walk_page_buffers(   handle_t *handle,
1148                                 struct buffer_head *head,
1149                                 unsigned from,
1150                                 unsigned to,
1151                                 int *partial,
1152                                 int (*fn)(      handle_t *handle,
1153                                                 struct buffer_head *bh))
1154 {
1155         struct buffer_head *bh;
1156         unsigned block_start, block_end;
1157         unsigned blocksize = head->b_size;
1158         int err, ret = 0;
1159         struct buffer_head *next;
1160
1161         for (   bh = head, block_start = 0;
1162                 ret == 0 && (bh != head || !block_start);
1163                 block_start = block_end, bh = next)
1164         {
1165                 next = bh->b_this_page;
1166                 block_end = block_start + blocksize;
1167                 if (block_end <= from || block_start >= to) {
1168                         if (partial && !buffer_uptodate(bh))
1169                                 *partial = 1;
1170                         continue;
1171                 }
1172                 err = (*fn)(handle, bh);
1173                 if (!ret)
1174                         ret = err;
1175         }
1176         return ret;
1177 }
1178
1179 /*
1180  * To preserve ordering, it is essential that the hole instantiation and
1181  * the data write be encapsulated in a single transaction.  We cannot
1182  * close off a transaction and start a new one between the ext3_get_block()
1183  * and the commit_write().  So doing the journal_start at the start of
1184  * prepare_write() is the right place.
1185  *
1186  * Also, this function can nest inside ext3_writepage() ->
1187  * block_write_full_page(). In that case, we *know* that ext3_writepage()
1188  * has generated enough buffer credits to do the whole page.  So we won't
1189  * block on the journal in that case, which is good, because the caller may
1190  * be PF_MEMALLOC.
1191  *
1192  * By accident, ext3 can be reentered when a transaction is open via
1193  * quota file writes.  If we were to commit the transaction while thus
1194  * reentered, there can be a deadlock - we would be holding a quota
1195  * lock, and the commit would never complete if another thread had a
1196  * transaction open and was blocking on the quota lock - a ranking
1197  * violation.
1198  *
1199  * So what we do is to rely on the fact that journal_stop/journal_start
1200  * will _not_ run commit under these circumstances because handle->h_ref
1201  * is elevated.  We'll still have enough credits for the tiny quotafile
1202  * write.
1203  */
1204 static int do_journal_get_write_access(handle_t *handle,
1205                                         struct buffer_head *bh)
1206 {
1207         int dirty = buffer_dirty(bh);
1208         int ret;
1209
1210         if (!buffer_mapped(bh) || buffer_freed(bh))
1211                 return 0;
1212         /*
1213          * __block_prepare_write() could have dirtied some buffers. Clean
1214          * the dirty bit as jbd2_journal_get_write_access() could complain
1215          * otherwise about fs integrity issues. Setting of the dirty bit
1216          * by __block_prepare_write() isn't a real problem here as we clear
1217          * the bit before releasing a page lock and thus writeback cannot
1218          * ever write the buffer.
1219          */
1220         if (dirty)
1221                 clear_buffer_dirty(bh);
1222         ret = ext3_journal_get_write_access(handle, bh);
1223         if (!ret && dirty)
1224                 ret = ext3_journal_dirty_metadata(handle, bh);
1225         return ret;
1226 }
1227
1228 /*
1229  * Truncate blocks that were not used by write. We have to truncate the
1230  * pagecache as well so that corresponding buffers get properly unmapped.
1231  */
1232 static void ext3_truncate_failed_write(struct inode *inode)
1233 {
1234         truncate_inode_pages(inode->i_mapping, inode->i_size);
1235         ext3_truncate(inode);
1236 }
1237
1238 /*
1239  * Truncate blocks that were not used by direct IO write. We have to zero out
1240  * the last file block as well because direct IO might have written to it.
1241  */
1242 static void ext3_truncate_failed_direct_write(struct inode *inode)
1243 {
1244         ext3_block_truncate_page(inode, inode->i_size);
1245         ext3_truncate(inode);
1246 }
1247
1248 static int ext3_write_begin(struct file *file, struct address_space *mapping,
1249                                 loff_t pos, unsigned len, unsigned flags,
1250                                 struct page **pagep, void **fsdata)
1251 {
1252         struct inode *inode = mapping->host;
1253         int ret;
1254         handle_t *handle;
1255         int retries = 0;
1256         struct page *page;
1257         pgoff_t index;
1258         unsigned from, to;
1259         /* Reserve one block more for addition to orphan list in case
1260          * we allocate blocks but write fails for some reason */
1261         int needed_blocks = ext3_writepage_trans_blocks(inode) + 1;
1262
1263         trace_ext3_write_begin(inode, pos, len, flags);
1264
1265         index = pos >> PAGE_CACHE_SHIFT;
1266         from = pos & (PAGE_CACHE_SIZE - 1);
1267         to = from + len;
1268
1269 retry:
1270         page = grab_cache_page_write_begin(mapping, index, flags);
1271         if (!page)
1272                 return -ENOMEM;
1273         *pagep = page;
1274
1275         handle = ext3_journal_start(inode, needed_blocks);
1276         if (IS_ERR(handle)) {
1277                 unlock_page(page);
1278                 page_cache_release(page);
1279                 ret = PTR_ERR(handle);
1280                 goto out;
1281         }
1282         ret = __block_write_begin(page, pos, len, ext3_get_block);
1283         if (ret)
1284                 goto write_begin_failed;
1285
1286         if (ext3_should_journal_data(inode)) {
1287                 ret = walk_page_buffers(handle, page_buffers(page),
1288                                 from, to, NULL, do_journal_get_write_access);
1289         }
1290 write_begin_failed:
1291         if (ret) {
1292                 /*
1293                  * block_write_begin may have instantiated a few blocks
1294                  * outside i_size.  Trim these off again. Don't need
1295                  * i_size_read because we hold i_mutex.
1296                  *
1297                  * Add inode to orphan list in case we crash before truncate
1298                  * finishes. Do this only if ext3_can_truncate() agrees so
1299                  * that orphan processing code is happy.
1300                  */
1301                 if (pos + len > inode->i_size && ext3_can_truncate(inode))
1302                         ext3_orphan_add(handle, inode);
1303                 ext3_journal_stop(handle);
1304                 unlock_page(page);
1305                 page_cache_release(page);
1306                 if (pos + len > inode->i_size)
1307                         ext3_truncate_failed_write(inode);
1308         }
1309         if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1310                 goto retry;
1311 out:
1312         return ret;
1313 }
1314
1315
1316 int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1317 {
1318         int err = journal_dirty_data(handle, bh);
1319         if (err)
1320                 ext3_journal_abort_handle(__func__, __func__,
1321                                                 bh, handle, err);
1322         return err;
1323 }
1324
1325 /* For ordered writepage and write_end functions */
1326 static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1327 {
1328         /*
1329          * Write could have mapped the buffer but it didn't copy the data in
1330          * yet. So avoid filing such buffer into a transaction.
1331          */
1332         if (buffer_mapped(bh) && buffer_uptodate(bh))
1333                 return ext3_journal_dirty_data(handle, bh);
1334         return 0;
1335 }
1336
1337 /* For write_end() in data=journal mode */
1338 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1339 {
1340         if (!buffer_mapped(bh) || buffer_freed(bh))
1341                 return 0;
1342         set_buffer_uptodate(bh);
1343         return ext3_journal_dirty_metadata(handle, bh);
1344 }
1345
1346 /*
1347  * This is nasty and subtle: ext3_write_begin() could have allocated blocks
1348  * for the whole page but later we failed to copy the data in. Update inode
1349  * size according to what we managed to copy. The rest is going to be
1350  * truncated in write_end function.
1351  */
1352 static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied)
1353 {
1354         /* What matters to us is i_disksize. We don't write i_size anywhere */
1355         if (pos + copied > inode->i_size)
1356                 i_size_write(inode, pos + copied);
1357         if (pos + copied > EXT3_I(inode)->i_disksize) {
1358                 EXT3_I(inode)->i_disksize = pos + copied;
1359                 mark_inode_dirty(inode);
1360         }
1361 }
1362
1363 /*
1364  * We need to pick up the new inode size which generic_commit_write gave us
1365  * `file' can be NULL - eg, when called from page_symlink().
1366  *
1367  * ext3 never places buffers on inode->i_mapping->private_list.  metadata
1368  * buffers are managed internally.
1369  */
1370 static int ext3_ordered_write_end(struct file *file,
1371                                 struct address_space *mapping,
1372                                 loff_t pos, unsigned len, unsigned copied,
1373                                 struct page *page, void *fsdata)
1374 {
1375         handle_t *handle = ext3_journal_current_handle();
1376         struct inode *inode = file->f_mapping->host;
1377         unsigned from, to;
1378         int ret = 0, ret2;
1379
1380         trace_ext3_ordered_write_end(inode, pos, len, copied);
1381         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1382
1383         from = pos & (PAGE_CACHE_SIZE - 1);
1384         to = from + copied;
1385         ret = walk_page_buffers(handle, page_buffers(page),
1386                 from, to, NULL, journal_dirty_data_fn);
1387
1388         if (ret == 0)
1389                 update_file_sizes(inode, pos, copied);
1390         /*
1391          * There may be allocated blocks outside of i_size because
1392          * we failed to copy some data. Prepare for truncate.
1393          */
1394         if (pos + len > inode->i_size && ext3_can_truncate(inode))
1395                 ext3_orphan_add(handle, inode);
1396         ret2 = ext3_journal_stop(handle);
1397         if (!ret)
1398                 ret = ret2;
1399         unlock_page(page);
1400         page_cache_release(page);
1401
1402         if (pos + len > inode->i_size)
1403                 ext3_truncate_failed_write(inode);
1404         return ret ? ret : copied;
1405 }
1406
1407 static int ext3_writeback_write_end(struct file *file,
1408                                 struct address_space *mapping,
1409                                 loff_t pos, unsigned len, unsigned copied,
1410                                 struct page *page, void *fsdata)
1411 {
1412         handle_t *handle = ext3_journal_current_handle();
1413         struct inode *inode = file->f_mapping->host;
1414         int ret;
1415
1416         trace_ext3_writeback_write_end(inode, pos, len, copied);
1417         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1418         update_file_sizes(inode, pos, copied);
1419         /*
1420          * There may be allocated blocks outside of i_size because
1421          * we failed to copy some data. Prepare for truncate.
1422          */
1423         if (pos + len > inode->i_size && ext3_can_truncate(inode))
1424                 ext3_orphan_add(handle, inode);
1425         ret = ext3_journal_stop(handle);
1426         unlock_page(page);
1427         page_cache_release(page);
1428
1429         if (pos + len > inode->i_size)
1430                 ext3_truncate_failed_write(inode);
1431         return ret ? ret : copied;
1432 }
1433
1434 static int ext3_journalled_write_end(struct file *file,
1435                                 struct address_space *mapping,
1436                                 loff_t pos, unsigned len, unsigned copied,
1437                                 struct page *page, void *fsdata)
1438 {
1439         handle_t *handle = ext3_journal_current_handle();
1440         struct inode *inode = mapping->host;
1441         struct ext3_inode_info *ei = EXT3_I(inode);
1442         int ret = 0, ret2;
1443         int partial = 0;
1444         unsigned from, to;
1445
1446         trace_ext3_journalled_write_end(inode, pos, len, copied);
1447         from = pos & (PAGE_CACHE_SIZE - 1);
1448         to = from + len;
1449
1450         if (copied < len) {
1451                 if (!PageUptodate(page))
1452                         copied = 0;
1453                 page_zero_new_buffers(page, from + copied, to);
1454                 to = from + copied;
1455         }
1456
1457         ret = walk_page_buffers(handle, page_buffers(page), from,
1458                                 to, &partial, write_end_fn);
1459         if (!partial)
1460                 SetPageUptodate(page);
1461
1462         if (pos + copied > inode->i_size)
1463                 i_size_write(inode, pos + copied);
1464         /*
1465          * There may be allocated blocks outside of i_size because
1466          * we failed to copy some data. Prepare for truncate.
1467          */
1468         if (pos + len > inode->i_size && ext3_can_truncate(inode))
1469                 ext3_orphan_add(handle, inode);
1470         ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1471         atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
1472         if (inode->i_size > ei->i_disksize) {
1473                 ei->i_disksize = inode->i_size;
1474                 ret2 = ext3_mark_inode_dirty(handle, inode);
1475                 if (!ret)
1476                         ret = ret2;
1477         }
1478
1479         ret2 = ext3_journal_stop(handle);
1480         if (!ret)
1481                 ret = ret2;
1482         unlock_page(page);
1483         page_cache_release(page);
1484
1485         if (pos + len > inode->i_size)
1486                 ext3_truncate_failed_write(inode);
1487         return ret ? ret : copied;
1488 }
1489
1490 /*
1491  * bmap() is special.  It gets used by applications such as lilo and by
1492  * the swapper to find the on-disk block of a specific piece of data.
1493  *
1494  * Naturally, this is dangerous if the block concerned is still in the
1495  * journal.  If somebody makes a swapfile on an ext3 data-journaling
1496  * filesystem and enables swap, then they may get a nasty shock when the
1497  * data getting swapped to that swapfile suddenly gets overwritten by
1498  * the original zero's written out previously to the journal and
1499  * awaiting writeback in the kernel's buffer cache.
1500  *
1501  * So, if we see any bmap calls here on a modified, data-journaled file,
1502  * take extra steps to flush any blocks which might be in the cache.
1503  */
1504 static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
1505 {
1506         struct inode *inode = mapping->host;
1507         journal_t *journal;
1508         int err;
1509
1510         if (ext3_test_inode_state(inode, EXT3_STATE_JDATA)) {
1511                 /*
1512                  * This is a REALLY heavyweight approach, but the use of
1513                  * bmap on dirty files is expected to be extremely rare:
1514                  * only if we run lilo or swapon on a freshly made file
1515                  * do we expect this to happen.
1516                  *
1517                  * (bmap requires CAP_SYS_RAWIO so this does not
1518                  * represent an unprivileged user DOS attack --- we'd be
1519                  * in trouble if mortal users could trigger this path at
1520                  * will.)
1521                  *
1522                  * NB. EXT3_STATE_JDATA is not set on files other than
1523                  * regular files.  If somebody wants to bmap a directory
1524                  * or symlink and gets confused because the buffer
1525                  * hasn't yet been flushed to disk, they deserve
1526                  * everything they get.
1527                  */
1528
1529                 ext3_clear_inode_state(inode, EXT3_STATE_JDATA);
1530                 journal = EXT3_JOURNAL(inode);
1531                 journal_lock_updates(journal);
1532                 err = journal_flush(journal);
1533                 journal_unlock_updates(journal);
1534
1535                 if (err)
1536                         return 0;
1537         }
1538
1539         return generic_block_bmap(mapping,block,ext3_get_block);
1540 }
1541
1542 static int bget_one(handle_t *handle, struct buffer_head *bh)
1543 {
1544         get_bh(bh);
1545         return 0;
1546 }
1547
1548 static int bput_one(handle_t *handle, struct buffer_head *bh)
1549 {
1550         put_bh(bh);
1551         return 0;
1552 }
1553
1554 static int buffer_unmapped(handle_t *handle, struct buffer_head *bh)
1555 {
1556         return !buffer_mapped(bh);
1557 }
1558
1559 /*
1560  * Note that we always start a transaction even if we're not journalling
1561  * data.  This is to preserve ordering: any hole instantiation within
1562  * __block_write_full_page -> ext3_get_block() should be journalled
1563  * along with the data so we don't crash and then get metadata which
1564  * refers to old data.
1565  *
1566  * In all journalling modes block_write_full_page() will start the I/O.
1567  *
1568  * Problem:
1569  *
1570  *      ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1571  *              ext3_writepage()
1572  *
1573  * Similar for:
1574  *
1575  *      ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1576  *
1577  * Same applies to ext3_get_block().  We will deadlock on various things like
1578  * lock_journal and i_truncate_mutex.
1579  *
1580  * Setting PF_MEMALLOC here doesn't work - too many internal memory
1581  * allocations fail.
1582  *
1583  * 16May01: If we're reentered then journal_current_handle() will be
1584  *          non-zero. We simply *return*.
1585  *
1586  * 1 July 2001: @@@ FIXME:
1587  *   In journalled data mode, a data buffer may be metadata against the
1588  *   current transaction.  But the same file is part of a shared mapping
1589  *   and someone does a writepage() on it.
1590  *
1591  *   We will move the buffer onto the async_data list, but *after* it has
1592  *   been dirtied. So there's a small window where we have dirty data on
1593  *   BJ_Metadata.
1594  *
1595  *   Note that this only applies to the last partial page in the file.  The
1596  *   bit which block_write_full_page() uses prepare/commit for.  (That's
1597  *   broken code anyway: it's wrong for msync()).
1598  *
1599  *   It's a rare case: affects the final partial page, for journalled data
1600  *   where the file is subject to bith write() and writepage() in the same
1601  *   transction.  To fix it we'll need a custom block_write_full_page().
1602  *   We'll probably need that anyway for journalling writepage() output.
1603  *
1604  * We don't honour synchronous mounts for writepage().  That would be
1605  * disastrous.  Any write() or metadata operation will sync the fs for
1606  * us.
1607  *
1608  * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1609  * we don't need to open a transaction here.
1610  */
1611 static int ext3_ordered_writepage(struct page *page,
1612                                 struct writeback_control *wbc)
1613 {
1614         struct inode *inode = page->mapping->host;
1615         struct buffer_head *page_bufs;
1616         handle_t *handle = NULL;
1617         int ret = 0;
1618         int err;
1619
1620         J_ASSERT(PageLocked(page));
1621         /*
1622          * We don't want to warn for emergency remount. The condition is
1623          * ordered to avoid dereferencing inode->i_sb in non-error case to
1624          * avoid slow-downs.
1625          */
1626         WARN_ON_ONCE(IS_RDONLY(inode) &&
1627                      !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
1628
1629         /*
1630          * We give up here if we're reentered, because it might be for a
1631          * different filesystem.
1632          */
1633         if (ext3_journal_current_handle())
1634                 goto out_fail;
1635
1636         trace_ext3_ordered_writepage(page);
1637         if (!page_has_buffers(page)) {
1638                 create_empty_buffers(page, inode->i_sb->s_blocksize,
1639                                 (1 << BH_Dirty)|(1 << BH_Uptodate));
1640                 page_bufs = page_buffers(page);
1641         } else {
1642                 page_bufs = page_buffers(page);
1643                 if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE,
1644                                        NULL, buffer_unmapped)) {
1645                         /* Provide NULL get_block() to catch bugs if buffers
1646                          * weren't really mapped */
1647                         return block_write_full_page(page, NULL, wbc);
1648                 }
1649         }
1650         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1651
1652         if (IS_ERR(handle)) {
1653                 ret = PTR_ERR(handle);
1654                 goto out_fail;
1655         }
1656
1657         walk_page_buffers(handle, page_bufs, 0,
1658                         PAGE_CACHE_SIZE, NULL, bget_one);
1659
1660         ret = block_write_full_page(page, ext3_get_block, wbc);
1661
1662         /*
1663          * The page can become unlocked at any point now, and
1664          * truncate can then come in and change things.  So we
1665          * can't touch *page from now on.  But *page_bufs is
1666          * safe due to elevated refcount.
1667          */
1668
1669         /*
1670          * And attach them to the current transaction.  But only if
1671          * block_write_full_page() succeeded.  Otherwise they are unmapped,
1672          * and generally junk.
1673          */
1674         if (ret == 0) {
1675                 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1676                                         NULL, journal_dirty_data_fn);
1677                 if (!ret)
1678                         ret = err;
1679         }
1680         walk_page_buffers(handle, page_bufs, 0,
1681                         PAGE_CACHE_SIZE, NULL, bput_one);
1682         err = ext3_journal_stop(handle);
1683         if (!ret)
1684                 ret = err;
1685         return ret;
1686
1687 out_fail:
1688         redirty_page_for_writepage(wbc, page);
1689         unlock_page(page);
1690         return ret;
1691 }
1692
1693 static int ext3_writeback_writepage(struct page *page,
1694                                 struct writeback_control *wbc)
1695 {
1696         struct inode *inode = page->mapping->host;
1697         handle_t *handle = NULL;
1698         int ret = 0;
1699         int err;
1700
1701         J_ASSERT(PageLocked(page));
1702         /*
1703          * We don't want to warn for emergency remount. The condition is
1704          * ordered to avoid dereferencing inode->i_sb in non-error case to
1705          * avoid slow-downs.
1706          */
1707         WARN_ON_ONCE(IS_RDONLY(inode) &&
1708                      !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
1709
1710         if (ext3_journal_current_handle())
1711                 goto out_fail;
1712
1713         trace_ext3_writeback_writepage(page);
1714         if (page_has_buffers(page)) {
1715                 if (!walk_page_buffers(NULL, page_buffers(page), 0,
1716                                       PAGE_CACHE_SIZE, NULL, buffer_unmapped)) {
1717                         /* Provide NULL get_block() to catch bugs if buffers
1718                          * weren't really mapped */
1719                         return block_write_full_page(page, NULL, wbc);
1720                 }
1721         }
1722
1723         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1724         if (IS_ERR(handle)) {
1725                 ret = PTR_ERR(handle);
1726                 goto out_fail;
1727         }
1728
1729         ret = block_write_full_page(page, ext3_get_block, wbc);
1730
1731         err = ext3_journal_stop(handle);
1732         if (!ret)
1733                 ret = err;
1734         return ret;
1735
1736 out_fail:
1737         redirty_page_for_writepage(wbc, page);
1738         unlock_page(page);
1739         return ret;
1740 }
1741
1742 static int ext3_journalled_writepage(struct page *page,
1743                                 struct writeback_control *wbc)
1744 {
1745         struct inode *inode = page->mapping->host;
1746         handle_t *handle = NULL;
1747         int ret = 0;
1748         int err;
1749
1750         J_ASSERT(PageLocked(page));
1751         /*
1752          * We don't want to warn for emergency remount. The condition is
1753          * ordered to avoid dereferencing inode->i_sb in non-error case to
1754          * avoid slow-downs.
1755          */
1756         WARN_ON_ONCE(IS_RDONLY(inode) &&
1757                      !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
1758
1759         if (ext3_journal_current_handle())
1760                 goto no_write;
1761
1762         trace_ext3_journalled_writepage(page);
1763         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1764         if (IS_ERR(handle)) {
1765                 ret = PTR_ERR(handle);
1766                 goto no_write;
1767         }
1768
1769         if (!page_has_buffers(page) || PageChecked(page)) {
1770                 /*
1771                  * It's mmapped pagecache.  Add buffers and journal it.  There
1772                  * doesn't seem much point in redirtying the page here.
1773                  */
1774                 ClearPageChecked(page);
1775                 ret = __block_write_begin(page, 0, PAGE_CACHE_SIZE,
1776                                           ext3_get_block);
1777                 if (ret != 0) {
1778                         ext3_journal_stop(handle);
1779                         goto out_unlock;
1780                 }
1781                 ret = walk_page_buffers(handle, page_buffers(page), 0,
1782                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1783
1784                 err = walk_page_buffers(handle, page_buffers(page), 0,
1785                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
1786                 if (ret == 0)
1787                         ret = err;
1788                 ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1789                 atomic_set(&EXT3_I(inode)->i_datasync_tid,
1790                            handle->h_transaction->t_tid);
1791                 unlock_page(page);
1792         } else {
1793                 /*
1794                  * It may be a page full of checkpoint-mode buffers.  We don't
1795                  * really know unless we go poke around in the buffer_heads.
1796                  * But block_write_full_page will do the right thing.
1797                  */
1798                 ret = block_write_full_page(page, ext3_get_block, wbc);
1799         }
1800         err = ext3_journal_stop(handle);
1801         if (!ret)
1802                 ret = err;
1803 out:
1804         return ret;
1805
1806 no_write:
1807         redirty_page_for_writepage(wbc, page);
1808 out_unlock:
1809         unlock_page(page);
1810         goto out;
1811 }
1812
1813 static int ext3_readpage(struct file *file, struct page *page)
1814 {
1815         trace_ext3_readpage(page);
1816         return mpage_readpage(page, ext3_get_block);
1817 }
1818
1819 static int
1820 ext3_readpages(struct file *file, struct address_space *mapping,
1821                 struct list_head *pages, unsigned nr_pages)
1822 {
1823         return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
1824 }
1825
1826 static void ext3_invalidatepage(struct page *page, unsigned long offset)
1827 {
1828         journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1829
1830         trace_ext3_invalidatepage(page, offset);
1831
1832         /*
1833          * If it's a full truncate we just forget about the pending dirtying
1834          */
1835         if (offset == 0)
1836                 ClearPageChecked(page);
1837
1838         journal_invalidatepage(journal, page, offset);
1839 }
1840
1841 static int ext3_releasepage(struct page *page, gfp_t wait)
1842 {
1843         journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1844
1845         trace_ext3_releasepage(page);
1846         WARN_ON(PageChecked(page));
1847         if (!page_has_buffers(page))
1848                 return 0;
1849         return journal_try_to_free_buffers(journal, page, wait);
1850 }
1851
1852 /*
1853  * If the O_DIRECT write will extend the file then add this inode to the
1854  * orphan list.  So recovery will truncate it back to the original size
1855  * if the machine crashes during the write.
1856  *
1857  * If the O_DIRECT write is intantiating holes inside i_size and the machine
1858  * crashes then stale disk data _may_ be exposed inside the file. But current
1859  * VFS code falls back into buffered path in that case so we are safe.
1860  */
1861 static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
1862                         const struct iovec *iov, loff_t offset,
1863                         unsigned long nr_segs)
1864 {
1865         struct file *file = iocb->ki_filp;
1866         struct inode *inode = file->f_mapping->host;
1867         struct ext3_inode_info *ei = EXT3_I(inode);
1868         handle_t *handle;
1869         ssize_t ret;
1870         int orphan = 0;
1871         size_t count = iov_length(iov, nr_segs);
1872         int retries = 0;
1873
1874         trace_ext3_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
1875
1876         if (rw == WRITE) {
1877                 loff_t final_size = offset + count;
1878
1879                 if (final_size > inode->i_size) {
1880                         /* Credits for sb + inode write */
1881                         handle = ext3_journal_start(inode, 2);
1882                         if (IS_ERR(handle)) {
1883                                 ret = PTR_ERR(handle);
1884                                 goto out;
1885                         }
1886                         ret = ext3_orphan_add(handle, inode);
1887                         if (ret) {
1888                                 ext3_journal_stop(handle);
1889                                 goto out;
1890                         }
1891                         orphan = 1;
1892                         ei->i_disksize = inode->i_size;
1893                         ext3_journal_stop(handle);
1894                 }
1895         }
1896
1897 retry:
1898         ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
1899                                  ext3_get_block);
1900         /*
1901          * In case of error extending write may have instantiated a few
1902          * blocks outside i_size. Trim these off again.
1903          */
1904         if (unlikely((rw & WRITE) && ret < 0)) {
1905                 loff_t isize = i_size_read(inode);
1906                 loff_t end = offset + iov_length(iov, nr_segs);
1907
1908                 if (end > isize)
1909                         ext3_truncate_failed_direct_write(inode);
1910         }
1911         if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1912                 goto retry;
1913
1914         if (orphan) {
1915                 int err;
1916
1917                 /* Credits for sb + inode write */
1918                 handle = ext3_journal_start(inode, 2);
1919                 if (IS_ERR(handle)) {
1920                         /* This is really bad luck. We've written the data
1921                          * but cannot extend i_size. Truncate allocated blocks
1922                          * and pretend the write failed... */
1923                         ext3_truncate_failed_direct_write(inode);
1924                         ret = PTR_ERR(handle);
1925                         goto out;
1926                 }
1927                 if (inode->i_nlink)
1928                         ext3_orphan_del(handle, inode);
1929                 if (ret > 0) {
1930                         loff_t end = offset + ret;
1931                         if (end > inode->i_size) {
1932                                 ei->i_disksize = end;
1933                                 i_size_write(inode, end);
1934                                 /*
1935                                  * We're going to return a positive `ret'
1936                                  * here due to non-zero-length I/O, so there's
1937                                  * no way of reporting error returns from
1938                                  * ext3_mark_inode_dirty() to userspace.  So
1939                                  * ignore it.
1940                                  */
1941                                 ext3_mark_inode_dirty(handle, inode);
1942                         }
1943                 }
1944                 err = ext3_journal_stop(handle);
1945                 if (ret == 0)
1946                         ret = err;
1947         }
1948 out:
1949         trace_ext3_direct_IO_exit(inode, offset,
1950                                 iov_length(iov, nr_segs), rw, ret);
1951         return ret;
1952 }
1953
1954 /*
1955  * Pages can be marked dirty completely asynchronously from ext3's journalling
1956  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
1957  * much here because ->set_page_dirty is called under VFS locks.  The page is
1958  * not necessarily locked.
1959  *
1960  * We cannot just dirty the page and leave attached buffers clean, because the
1961  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
1962  * or jbddirty because all the journalling code will explode.
1963  *
1964  * So what we do is to mark the page "pending dirty" and next time writepage
1965  * is called, propagate that into the buffers appropriately.
1966  */
1967 static int ext3_journalled_set_page_dirty(struct page *page)
1968 {
1969         SetPageChecked(page);
1970         return __set_page_dirty_nobuffers(page);
1971 }
1972
1973 static const struct address_space_operations ext3_ordered_aops = {
1974         .readpage               = ext3_readpage,
1975         .readpages              = ext3_readpages,
1976         .writepage              = ext3_ordered_writepage,
1977         .write_begin            = ext3_write_begin,
1978         .write_end              = ext3_ordered_write_end,
1979         .bmap                   = ext3_bmap,
1980         .invalidatepage         = ext3_invalidatepage,
1981         .releasepage            = ext3_releasepage,
1982         .direct_IO              = ext3_direct_IO,
1983         .migratepage            = buffer_migrate_page,
1984         .is_partially_uptodate  = block_is_partially_uptodate,
1985         .error_remove_page      = generic_error_remove_page,
1986 };
1987
1988 static const struct address_space_operations ext3_writeback_aops = {
1989         .readpage               = ext3_readpage,
1990         .readpages              = ext3_readpages,
1991         .writepage              = ext3_writeback_writepage,
1992         .write_begin            = ext3_write_begin,
1993         .write_end              = ext3_writeback_write_end,
1994         .bmap                   = ext3_bmap,
1995         .invalidatepage         = ext3_invalidatepage,
1996         .releasepage            = ext3_releasepage,
1997         .direct_IO              = ext3_direct_IO,
1998         .migratepage            = buffer_migrate_page,
1999         .is_partially_uptodate  = block_is_partially_uptodate,
2000         .error_remove_page      = generic_error_remove_page,
2001 };
2002
2003 static const struct address_space_operations ext3_journalled_aops = {
2004         .readpage               = ext3_readpage,
2005         .readpages              = ext3_readpages,
2006         .writepage              = ext3_journalled_writepage,
2007         .write_begin            = ext3_write_begin,
2008         .write_end              = ext3_journalled_write_end,
2009         .set_page_dirty         = ext3_journalled_set_page_dirty,
2010         .bmap                   = ext3_bmap,
2011         .invalidatepage         = ext3_invalidatepage,
2012         .releasepage            = ext3_releasepage,
2013         .is_partially_uptodate  = block_is_partially_uptodate,
2014         .error_remove_page      = generic_error_remove_page,
2015 };
2016
2017 void ext3_set_aops(struct inode *inode)
2018 {
2019         if (ext3_should_order_data(inode))
2020                 inode->i_mapping->a_ops = &ext3_ordered_aops;
2021         else if (ext3_should_writeback_data(inode))
2022                 inode->i_mapping->a_ops = &ext3_writeback_aops;
2023         else
2024                 inode->i_mapping->a_ops = &ext3_journalled_aops;
2025 }
2026
2027 /*
2028  * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
2029  * up to the end of the block which corresponds to `from'.
2030  * This required during truncate. We need to physically zero the tail end
2031  * of that block so it doesn't yield old data if the file is later grown.
2032  */
2033 static int ext3_block_truncate_page(struct inode *inode, loff_t from)
2034 {
2035         ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
2036         unsigned offset = from & (PAGE_CACHE_SIZE - 1);
2037         unsigned blocksize, iblock, length, pos;
2038         struct page *page;
2039         handle_t *handle = NULL;
2040         struct buffer_head *bh;
2041         int err = 0;
2042
2043         /* Truncated on block boundary - nothing to do */
2044         blocksize = inode->i_sb->s_blocksize;
2045         if ((from & (blocksize - 1)) == 0)
2046                 return 0;
2047
2048         page = grab_cache_page(inode->i_mapping, index);
2049         if (!page)
2050                 return -ENOMEM;
2051         length = blocksize - (offset & (blocksize - 1));
2052         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2053
2054         if (!page_has_buffers(page))
2055                 create_empty_buffers(page, blocksize, 0);
2056
2057         /* Find the buffer that contains "offset" */
2058         bh = page_buffers(page);
2059         pos = blocksize;
2060         while (offset >= pos) {
2061                 bh = bh->b_this_page;
2062                 iblock++;
2063                 pos += blocksize;
2064         }
2065
2066         err = 0;
2067         if (buffer_freed(bh)) {
2068                 BUFFER_TRACE(bh, "freed: skip");
2069                 goto unlock;
2070         }
2071
2072         if (!buffer_mapped(bh)) {
2073                 BUFFER_TRACE(bh, "unmapped");
2074                 ext3_get_block(inode, iblock, bh, 0);
2075                 /* unmapped? It's a hole - nothing to do */
2076                 if (!buffer_mapped(bh)) {
2077                         BUFFER_TRACE(bh, "still unmapped");
2078                         goto unlock;
2079                 }
2080         }
2081
2082         /* Ok, it's mapped. Make sure it's up-to-date */
2083         if (PageUptodate(page))
2084                 set_buffer_uptodate(bh);
2085
2086         if (!bh_uptodate_or_lock(bh)) {
2087                 err = bh_submit_read(bh);
2088                 /* Uhhuh. Read error. Complain and punt. */
2089                 if (err)
2090                         goto unlock;
2091         }
2092
2093         /* data=writeback mode doesn't need transaction to zero-out data */
2094         if (!ext3_should_writeback_data(inode)) {
2095                 /* We journal at most one block */
2096                 handle = ext3_journal_start(inode, 1);
2097                 if (IS_ERR(handle)) {
2098                         clear_highpage(page);
2099                         flush_dcache_page(page);
2100                         err = PTR_ERR(handle);
2101                         goto unlock;
2102                 }
2103         }
2104
2105         if (ext3_should_journal_data(inode)) {
2106                 BUFFER_TRACE(bh, "get write access");
2107                 err = ext3_journal_get_write_access(handle, bh);
2108                 if (err)
2109                         goto stop;
2110         }
2111
2112         zero_user(page, offset, length);
2113         BUFFER_TRACE(bh, "zeroed end of block");
2114
2115         err = 0;
2116         if (ext3_should_journal_data(inode)) {
2117                 err = ext3_journal_dirty_metadata(handle, bh);
2118         } else {
2119                 if (ext3_should_order_data(inode))
2120                         err = ext3_journal_dirty_data(handle, bh);
2121                 mark_buffer_dirty(bh);
2122         }
2123 stop:
2124         if (handle)
2125                 ext3_journal_stop(handle);
2126
2127 unlock:
2128         unlock_page(page);
2129         page_cache_release(page);
2130         return err;
2131 }
2132
2133 /*
2134  * Probably it should be a library function... search for first non-zero word
2135  * or memcmp with zero_page, whatever is better for particular architecture.
2136  * Linus?
2137  */
2138 static inline int all_zeroes(__le32 *p, __le32 *q)
2139 {
2140         while (p < q)
2141                 if (*p++)
2142                         return 0;
2143         return 1;
2144 }
2145
2146 /**
2147  *      ext3_find_shared - find the indirect blocks for partial truncation.
2148  *      @inode:   inode in question
2149  *      @depth:   depth of the affected branch
2150  *      @offsets: offsets of pointers in that branch (see ext3_block_to_path)
2151  *      @chain:   place to store the pointers to partial indirect blocks
2152  *      @top:     place to the (detached) top of branch
2153  *
2154  *      This is a helper function used by ext3_truncate().
2155  *
2156  *      When we do truncate() we may have to clean the ends of several
2157  *      indirect blocks but leave the blocks themselves alive. Block is
2158  *      partially truncated if some data below the new i_size is referred
2159  *      from it (and it is on the path to the first completely truncated
2160  *      data block, indeed).  We have to free the top of that path along
2161  *      with everything to the right of the path. Since no allocation
2162  *      past the truncation point is possible until ext3_truncate()
2163  *      finishes, we may safely do the latter, but top of branch may
2164  *      require special attention - pageout below the truncation point
2165  *      might try to populate it.
2166  *
2167  *      We atomically detach the top of branch from the tree, store the
2168  *      block number of its root in *@top, pointers to buffer_heads of
2169  *      partially truncated blocks - in @chain[].bh and pointers to
2170  *      their last elements that should not be removed - in
2171  *      @chain[].p. Return value is the pointer to last filled element
2172  *      of @chain.
2173  *
2174  *      The work left to caller to do the actual freeing of subtrees:
2175  *              a) free the subtree starting from *@top
2176  *              b) free the subtrees whose roots are stored in
2177  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
2178  *              c) free the subtrees growing from the inode past the @chain[0].
2179  *                      (no partially truncated stuff there).  */
2180
2181 static Indirect *ext3_find_shared(struct inode *inode, int depth,
2182                         int offsets[4], Indirect chain[4], __le32 *top)
2183 {
2184         Indirect *partial, *p;
2185         int k, err;
2186
2187         *top = 0;
2188         /* Make k index the deepest non-null offset + 1 */
2189         for (k = depth; k > 1 && !offsets[k-1]; k--)
2190                 ;
2191         partial = ext3_get_branch(inode, k, offsets, chain, &err);
2192         /* Writer: pointers */
2193         if (!partial)
2194                 partial = chain + k-1;
2195         /*
2196          * If the branch acquired continuation since we've looked at it -
2197          * fine, it should all survive and (new) top doesn't belong to us.
2198          */
2199         if (!partial->key && *partial->p)
2200                 /* Writer: end */
2201                 goto no_top;
2202         for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
2203                 ;
2204         /*
2205          * OK, we've found the last block that must survive. The rest of our
2206          * branch should be detached before unlocking. However, if that rest
2207          * of branch is all ours and does not grow immediately from the inode
2208          * it's easier to cheat and just decrement partial->p.
2209          */
2210         if (p == chain + k - 1 && p > chain) {
2211                 p->p--;
2212         } else {
2213                 *top = *p->p;
2214                 /* Nope, don't do this in ext3.  Must leave the tree intact */
2215 #if 0
2216                 *p->p = 0;
2217 #endif
2218         }
2219         /* Writer: end */
2220
2221         while(partial > p) {
2222                 brelse(partial->bh);
2223                 partial--;
2224         }
2225 no_top:
2226         return partial;
2227 }
2228
2229 /*
2230  * Zero a number of block pointers in either an inode or an indirect block.
2231  * If we restart the transaction we must again get write access to the
2232  * indirect block for further modification.
2233  *
2234  * We release `count' blocks on disk, but (last - first) may be greater
2235  * than `count' because there can be holes in there.
2236  */
2237 static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
2238                 struct buffer_head *bh, ext3_fsblk_t block_to_free,
2239                 unsigned long count, __le32 *first, __le32 *last)
2240 {
2241         __le32 *p;
2242         if (try_to_extend_transaction(handle, inode)) {
2243                 if (bh) {
2244                         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2245                         if (ext3_journal_dirty_metadata(handle, bh))
2246                                 return;
2247                 }
2248                 ext3_mark_inode_dirty(handle, inode);
2249                 truncate_restart_transaction(handle, inode);
2250                 if (bh) {
2251                         BUFFER_TRACE(bh, "retaking write access");
2252                         if (ext3_journal_get_write_access(handle, bh))
2253                                 return;
2254                 }
2255         }
2256
2257         /*
2258          * Any buffers which are on the journal will be in memory. We find
2259          * them on the hash table so journal_revoke() will run journal_forget()
2260          * on them.  We've already detached each block from the file, so
2261          * bforget() in journal_forget() should be safe.
2262          *
2263          * AKPM: turn on bforget in journal_forget()!!!
2264          */
2265         for (p = first; p < last; p++) {
2266                 u32 nr = le32_to_cpu(*p);
2267                 if (nr) {
2268                         struct buffer_head *bh;
2269
2270                         *p = 0;
2271                         bh = sb_find_get_block(inode->i_sb, nr);
2272                         ext3_forget(handle, 0, inode, bh, nr);
2273                 }
2274         }
2275
2276         ext3_free_blocks(handle, inode, block_to_free, count);
2277 }
2278
2279 /**
2280  * ext3_free_data - free a list of data blocks
2281  * @handle:     handle for this transaction
2282  * @inode:      inode we are dealing with
2283  * @this_bh:    indirect buffer_head which contains *@first and *@last
2284  * @first:      array of block numbers
2285  * @last:       points immediately past the end of array
2286  *
2287  * We are freeing all blocks referred from that array (numbers are stored as
2288  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2289  *
2290  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
2291  * blocks are contiguous then releasing them at one time will only affect one
2292  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2293  * actually use a lot of journal space.
2294  *
2295  * @this_bh will be %NULL if @first and @last point into the inode's direct
2296  * block pointers.
2297  */
2298 static void ext3_free_data(handle_t *handle, struct inode *inode,
2299                            struct buffer_head *this_bh,
2300                            __le32 *first, __le32 *last)
2301 {
2302         ext3_fsblk_t block_to_free = 0;    /* Starting block # of a run */
2303         unsigned long count = 0;            /* Number of blocks in the run */
2304         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
2305                                                corresponding to
2306                                                block_to_free */
2307         ext3_fsblk_t nr;                    /* Current block # */
2308         __le32 *p;                          /* Pointer into inode/ind
2309                                                for current block */
2310         int err;
2311
2312         if (this_bh) {                          /* For indirect block */
2313                 BUFFER_TRACE(this_bh, "get_write_access");
2314                 err = ext3_journal_get_write_access(handle, this_bh);
2315                 /* Important: if we can't update the indirect pointers
2316                  * to the blocks, we can't free them. */
2317                 if (err)
2318                         return;
2319         }
2320
2321         for (p = first; p < last; p++) {
2322                 nr = le32_to_cpu(*p);
2323                 if (nr) {
2324                         /* accumulate blocks to free if they're contiguous */
2325                         if (count == 0) {
2326                                 block_to_free = nr;
2327                                 block_to_free_p = p;
2328                                 count = 1;
2329                         } else if (nr == block_to_free + count) {
2330                                 count++;
2331                         } else {
2332                                 ext3_clear_blocks(handle, inode, this_bh,
2333                                                   block_to_free,
2334                                                   count, block_to_free_p, p);
2335                                 block_to_free = nr;
2336                                 block_to_free_p = p;
2337                                 count = 1;
2338                         }
2339                 }
2340         }
2341
2342         if (count > 0)
2343                 ext3_clear_blocks(handle, inode, this_bh, block_to_free,
2344                                   count, block_to_free_p, p);
2345
2346         if (this_bh) {
2347                 BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
2348
2349                 /*
2350                  * The buffer head should have an attached journal head at this
2351                  * point. However, if the data is corrupted and an indirect
2352                  * block pointed to itself, it would have been detached when
2353                  * the block was cleared. Check for this instead of OOPSing.
2354                  */
2355                 if (bh2jh(this_bh))
2356                         ext3_journal_dirty_metadata(handle, this_bh);
2357                 else
2358                         ext3_error(inode->i_sb, "ext3_free_data",
2359                                    "circular indirect block detected, "
2360                                    "inode=%lu, block=%llu",
2361                                    inode->i_ino,
2362                                    (unsigned long long)this_bh->b_blocknr);
2363         }
2364 }
2365
2366 /**
2367  *      ext3_free_branches - free an array of branches
2368  *      @handle: JBD handle for this transaction
2369  *      @inode: inode we are dealing with
2370  *      @parent_bh: the buffer_head which contains *@first and *@last
2371  *      @first: array of block numbers
2372  *      @last:  pointer immediately past the end of array
2373  *      @depth: depth of the branches to free
2374  *
2375  *      We are freeing all blocks referred from these branches (numbers are
2376  *      stored as little-endian 32-bit) and updating @inode->i_blocks
2377  *      appropriately.
2378  */
2379 static void ext3_free_branches(handle_t *handle, struct inode *inode,
2380                                struct buffer_head *parent_bh,
2381                                __le32 *first, __le32 *last, int depth)
2382 {
2383         ext3_fsblk_t nr;
2384         __le32 *p;
2385
2386         if (is_handle_aborted(handle))
2387                 return;
2388
2389         if (depth--) {
2390                 struct buffer_head *bh;
2391                 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2392                 p = last;
2393                 while (--p >= first) {
2394                         nr = le32_to_cpu(*p);
2395                         if (!nr)
2396                                 continue;               /* A hole */
2397
2398                         /* Go read the buffer for the next level down */
2399                         bh = sb_bread(inode->i_sb, nr);
2400
2401                         /*
2402                          * A read failure? Report error and clear slot
2403                          * (should be rare).
2404                          */
2405                         if (!bh) {
2406                                 ext3_error(inode->i_sb, "ext3_free_branches",
2407                                            "Read failure, inode=%lu, block="E3FSBLK,
2408                                            inode->i_ino, nr);
2409                                 continue;
2410                         }
2411
2412                         /* This zaps the entire block.  Bottom up. */
2413                         BUFFER_TRACE(bh, "free child branches");
2414                         ext3_free_branches(handle, inode, bh,
2415                                            (__le32*)bh->b_data,
2416                                            (__le32*)bh->b_data + addr_per_block,
2417                                            depth);
2418
2419                         /*
2420                          * Everything below this this pointer has been
2421                          * released.  Now let this top-of-subtree go.
2422                          *
2423                          * We want the freeing of this indirect block to be
2424                          * atomic in the journal with the updating of the
2425                          * bitmap block which owns it.  So make some room in
2426                          * the journal.
2427                          *
2428                          * We zero the parent pointer *after* freeing its
2429                          * pointee in the bitmaps, so if extend_transaction()
2430                          * for some reason fails to put the bitmap changes and
2431                          * the release into the same transaction, recovery
2432                          * will merely complain about releasing a free block,
2433                          * rather than leaking blocks.
2434                          */
2435                         if (is_handle_aborted(handle))
2436                                 return;
2437                         if (try_to_extend_transaction(handle, inode)) {
2438                                 ext3_mark_inode_dirty(handle, inode);
2439                                 truncate_restart_transaction(handle, inode);
2440                         }
2441
2442                         /*
2443                          * We've probably journalled the indirect block several
2444                          * times during the truncate.  But it's no longer
2445                          * needed and we now drop it from the transaction via
2446                          * journal_revoke().
2447                          *
2448                          * That's easy if it's exclusively part of this
2449                          * transaction.  But if it's part of the committing
2450                          * transaction then journal_forget() will simply
2451                          * brelse() it.  That means that if the underlying
2452                          * block is reallocated in ext3_get_block(),
2453                          * unmap_underlying_metadata() will find this block
2454                          * and will try to get rid of it.  damn, damn. Thus
2455                          * we don't allow a block to be reallocated until
2456                          * a transaction freeing it has fully committed.
2457                          *
2458                          * We also have to make sure journal replay after a
2459                          * crash does not overwrite non-journaled data blocks
2460                          * with old metadata when the block got reallocated for
2461                          * data.  Thus we have to store a revoke record for a
2462                          * block in the same transaction in which we free the
2463                          * block.
2464                          */
2465                         ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
2466
2467                         ext3_free_blocks(handle, inode, nr, 1);
2468
2469                         if (parent_bh) {
2470                                 /*
2471                                  * The block which we have just freed is
2472                                  * pointed to by an indirect block: journal it
2473                                  */
2474                                 BUFFER_TRACE(parent_bh, "get_write_access");
2475                                 if (!ext3_journal_get_write_access(handle,
2476                                                                    parent_bh)){
2477                                         *p = 0;
2478                                         BUFFER_TRACE(parent_bh,
2479                                         "call ext3_journal_dirty_metadata");
2480                                         ext3_journal_dirty_metadata(handle,
2481                                                                     parent_bh);
2482                                 }
2483                         }
2484                 }
2485         } else {
2486                 /* We have reached the bottom of the tree. */
2487                 BUFFER_TRACE(parent_bh, "free data blocks");
2488                 ext3_free_data(handle, inode, parent_bh, first, last);
2489         }
2490 }
2491
2492 int ext3_can_truncate(struct inode *inode)
2493 {
2494         if (S_ISREG(inode->i_mode))
2495                 return 1;
2496         if (S_ISDIR(inode->i_mode))
2497                 return 1;
2498         if (S_ISLNK(inode->i_mode))
2499                 return !ext3_inode_is_fast_symlink(inode);
2500         return 0;
2501 }
2502
2503 /*
2504  * ext3_truncate()
2505  *
2506  * We block out ext3_get_block() block instantiations across the entire
2507  * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2508  * simultaneously on behalf of the same inode.
2509  *
2510  * As we work through the truncate and commit bits of it to the journal there
2511  * is one core, guiding principle: the file's tree must always be consistent on
2512  * disk.  We must be able to restart the truncate after a crash.
2513  *
2514  * The file's tree may be transiently inconsistent in memory (although it
2515  * probably isn't), but whenever we close off and commit a journal transaction,
2516  * the contents of (the filesystem + the journal) must be consistent and
2517  * restartable.  It's pretty simple, really: bottom up, right to left (although
2518  * left-to-right works OK too).
2519  *
2520  * Note that at recovery time, journal replay occurs *before* the restart of
2521  * truncate against the orphan inode list.
2522  *
2523  * The committed inode has the new, desired i_size (which is the same as
2524  * i_disksize in this case).  After a crash, ext3_orphan_cleanup() will see
2525  * that this inode's truncate did not complete and it will again call
2526  * ext3_truncate() to have another go.  So there will be instantiated blocks
2527  * to the right of the truncation point in a crashed ext3 filesystem.  But
2528  * that's fine - as long as they are linked from the inode, the post-crash
2529  * ext3_truncate() run will find them and release them.
2530  */
2531 void ext3_truncate(struct inode *inode)
2532 {
2533         handle_t *handle;
2534         struct ext3_inode_info *ei = EXT3_I(inode);
2535         __le32 *i_data = ei->i_data;
2536         int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2537         int offsets[4];
2538         Indirect chain[4];
2539         Indirect *partial;
2540         __le32 nr = 0;
2541         int n;
2542         long last_block;
2543         unsigned blocksize = inode->i_sb->s_blocksize;
2544
2545         trace_ext3_truncate_enter(inode);
2546
2547         if (!ext3_can_truncate(inode))
2548                 goto out_notrans;
2549
2550         if (inode->i_size == 0 && ext3_should_writeback_data(inode))
2551                 ext3_set_inode_state(inode, EXT3_STATE_FLUSH_ON_CLOSE);
2552
2553         handle = start_transaction(inode);
2554         if (IS_ERR(handle))
2555                 goto out_notrans;
2556
2557         last_block = (inode->i_size + blocksize-1)
2558                                         >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
2559         n = ext3_block_to_path(inode, last_block, offsets, NULL);
2560         if (n == 0)
2561                 goto out_stop;  /* error */
2562
2563         /*
2564          * OK.  This truncate is going to happen.  We add the inode to the
2565          * orphan list, so that if this truncate spans multiple transactions,
2566          * and we crash, we will resume the truncate when the filesystem
2567          * recovers.  It also marks the inode dirty, to catch the new size.
2568          *
2569          * Implication: the file must always be in a sane, consistent
2570          * truncatable state while each transaction commits.
2571          */
2572         if (ext3_orphan_add(handle, inode))
2573                 goto out_stop;
2574
2575         /*
2576          * The orphan list entry will now protect us from any crash which
2577          * occurs before the truncate completes, so it is now safe to propagate
2578          * the new, shorter inode size (held for now in i_size) into the
2579          * on-disk inode. We do this via i_disksize, which is the value which
2580          * ext3 *really* writes onto the disk inode.
2581          */
2582         ei->i_disksize = inode->i_size;
2583
2584         /*
2585          * From here we block out all ext3_get_block() callers who want to
2586          * modify the block allocation tree.
2587          */
2588         mutex_lock(&ei->truncate_mutex);
2589
2590         if (n == 1) {           /* direct blocks */
2591                 ext3_free_data(handle, inode, NULL, i_data+offsets[0],
2592                                i_data + EXT3_NDIR_BLOCKS);
2593                 goto do_indirects;
2594         }
2595
2596         partial = ext3_find_shared(inode, n, offsets, chain, &nr);
2597         /* Kill the top of shared branch (not detached) */
2598         if (nr) {
2599                 if (partial == chain) {
2600                         /* Shared branch grows from the inode */
2601                         ext3_free_branches(handle, inode, NULL,
2602                                            &nr, &nr+1, (chain+n-1) - partial);
2603                         *partial->p = 0;
2604                         /*
2605                          * We mark the inode dirty prior to restart,
2606                          * and prior to stop.  No need for it here.
2607                          */
2608                 } else {
2609                         /* Shared branch grows from an indirect block */
2610                         ext3_free_branches(handle, inode, partial->bh,
2611                                         partial->p,
2612                                         partial->p+1, (chain+n-1) - partial);
2613                 }
2614         }
2615         /* Clear the ends of indirect blocks on the shared branch */
2616         while (partial > chain) {
2617                 ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
2618                                    (__le32*)partial->bh->b_data+addr_per_block,
2619                                    (chain+n-1) - partial);
2620                 BUFFER_TRACE(partial->bh, "call brelse");
2621                 brelse (partial->bh);
2622                 partial--;
2623         }
2624 do_indirects:
2625         /* Kill the remaining (whole) subtrees */
2626         switch (offsets[0]) {
2627         default:
2628                 nr = i_data[EXT3_IND_BLOCK];
2629                 if (nr) {
2630                         ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2631                         i_data[EXT3_IND_BLOCK] = 0;
2632                 }
2633         case EXT3_IND_BLOCK:
2634                 nr = i_data[EXT3_DIND_BLOCK];
2635                 if (nr) {
2636                         ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2637                         i_data[EXT3_DIND_BLOCK] = 0;
2638                 }
2639         case EXT3_DIND_BLOCK:
2640                 nr = i_data[EXT3_TIND_BLOCK];
2641                 if (nr) {
2642                         ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2643                         i_data[EXT3_TIND_BLOCK] = 0;
2644                 }
2645         case EXT3_TIND_BLOCK:
2646                 ;
2647         }
2648
2649         ext3_discard_reservation(inode);
2650
2651         mutex_unlock(&ei->truncate_mutex);
2652         inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
2653         ext3_mark_inode_dirty(handle, inode);
2654
2655         /*
2656          * In a multi-transaction truncate, we only make the final transaction
2657          * synchronous
2658          */
2659         if (IS_SYNC(inode))
2660                 handle->h_sync = 1;
2661 out_stop:
2662         /*
2663          * If this was a simple ftruncate(), and the file will remain alive
2664          * then we need to clear up the orphan record which we created above.
2665          * However, if this was a real unlink then we were called by
2666          * ext3_evict_inode(), and we allow that function to clean up the
2667          * orphan info for us.
2668          */
2669         if (inode->i_nlink)
2670                 ext3_orphan_del(handle, inode);
2671
2672         ext3_journal_stop(handle);
2673         trace_ext3_truncate_exit(inode);
2674         return;
2675 out_notrans:
2676         /*
2677          * Delete the inode from orphan list so that it doesn't stay there
2678          * forever and trigger assertion on umount.
2679          */
2680         if (inode->i_nlink)
2681                 ext3_orphan_del(NULL, inode);
2682         trace_ext3_truncate_exit(inode);
2683 }
2684
2685 static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
2686                 unsigned long ino, struct ext3_iloc *iloc)
2687 {
2688         unsigned long block_group;
2689         unsigned long offset;
2690         ext3_fsblk_t block;
2691         struct ext3_group_desc *gdp;
2692
2693         if (!ext3_valid_inum(sb, ino)) {
2694                 /*
2695                  * This error is already checked for in namei.c unless we are
2696                  * looking at an NFS filehandle, in which case no error
2697                  * report is needed
2698                  */
2699                 return 0;
2700         }
2701
2702         block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
2703         gdp = ext3_get_group_desc(sb, block_group, NULL);
2704         if (!gdp)
2705                 return 0;
2706         /*
2707          * Figure out the offset within the block group inode table
2708          */
2709         offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
2710                 EXT3_INODE_SIZE(sb);
2711         block = le32_to_cpu(gdp->bg_inode_table) +
2712                 (offset >> EXT3_BLOCK_SIZE_BITS(sb));
2713
2714         iloc->block_group = block_group;
2715         iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
2716         return block;
2717 }
2718
2719 /*
2720  * ext3_get_inode_loc returns with an extra refcount against the inode's
2721  * underlying buffer_head on success. If 'in_mem' is true, we have all
2722  * data in memory that is needed to recreate the on-disk version of this
2723  * inode.
2724  */
2725 static int __ext3_get_inode_loc(struct inode *inode,
2726                                 struct ext3_iloc *iloc, int in_mem)
2727 {
2728         ext3_fsblk_t block;
2729         struct buffer_head *bh;
2730
2731         block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2732         if (!block)
2733                 return -EIO;
2734
2735         bh = sb_getblk(inode->i_sb, block);
2736         if (unlikely(!bh)) {
2737                 ext3_error (inode->i_sb, "ext3_get_inode_loc",
2738                                 "unable to read inode block - "
2739                                 "inode=%lu, block="E3FSBLK,
2740                                  inode->i_ino, block);
2741                 return -ENOMEM;
2742         }
2743         if (!buffer_uptodate(bh)) {
2744                 lock_buffer(bh);
2745
2746                 /*
2747                  * If the buffer has the write error flag, we have failed
2748                  * to write out another inode in the same block.  In this
2749                  * case, we don't have to read the block because we may
2750                  * read the old inode data successfully.
2751                  */
2752                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
2753                         set_buffer_uptodate(bh);
2754
2755                 if (buffer_uptodate(bh)) {
2756                         /* someone brought it uptodate while we waited */
2757                         unlock_buffer(bh);
2758                         goto has_buffer;
2759                 }
2760
2761                 /*
2762                  * If we have all information of the inode in memory and this
2763                  * is the only valid inode in the block, we need not read the
2764                  * block.
2765                  */
2766                 if (in_mem) {
2767                         struct buffer_head *bitmap_bh;
2768                         struct ext3_group_desc *desc;
2769                         int inodes_per_buffer;
2770                         int inode_offset, i;
2771                         int block_group;
2772                         int start;
2773
2774                         block_group = (inode->i_ino - 1) /
2775                                         EXT3_INODES_PER_GROUP(inode->i_sb);
2776                         inodes_per_buffer = bh->b_size /
2777                                 EXT3_INODE_SIZE(inode->i_sb);
2778                         inode_offset = ((inode->i_ino - 1) %
2779                                         EXT3_INODES_PER_GROUP(inode->i_sb));
2780                         start = inode_offset & ~(inodes_per_buffer - 1);
2781
2782                         /* Is the inode bitmap in cache? */
2783                         desc = ext3_get_group_desc(inode->i_sb,
2784                                                 block_group, NULL);
2785                         if (!desc)
2786                                 goto make_io;
2787
2788                         bitmap_bh = sb_getblk(inode->i_sb,
2789                                         le32_to_cpu(desc->bg_inode_bitmap));
2790                         if (unlikely(!bitmap_bh))
2791                                 goto make_io;
2792
2793                         /*
2794                          * If the inode bitmap isn't in cache then the
2795                          * optimisation may end up performing two reads instead
2796                          * of one, so skip it.
2797                          */
2798                         if (!buffer_uptodate(bitmap_bh)) {
2799                                 brelse(bitmap_bh);
2800                                 goto make_io;
2801                         }
2802                         for (i = start; i < start + inodes_per_buffer; i++) {
2803                                 if (i == inode_offset)
2804                                         continue;
2805                                 if (ext3_test_bit(i, bitmap_bh->b_data))
2806                                         break;
2807                         }
2808                         brelse(bitmap_bh);
2809                         if (i == start + inodes_per_buffer) {
2810                                 /* all other inodes are free, so skip I/O */
2811                                 memset(bh->b_data, 0, bh->b_size);
2812                                 set_buffer_uptodate(bh);
2813                                 unlock_buffer(bh);
2814                                 goto has_buffer;
2815                         }
2816                 }
2817
2818 make_io:
2819                 /*
2820                  * There are other valid inodes in the buffer, this inode
2821                  * has in-inode xattrs, or we don't have this inode in memory.
2822                  * Read the block from disk.
2823                  */
2824                 trace_ext3_load_inode(inode);
2825                 get_bh(bh);
2826                 bh->b_end_io = end_buffer_read_sync;
2827                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
2828                 wait_on_buffer(bh);
2829                 if (!buffer_uptodate(bh)) {
2830                         ext3_error(inode->i_sb, "ext3_get_inode_loc",
2831                                         "unable to read inode block - "
2832                                         "inode=%lu, block="E3FSBLK,
2833                                         inode->i_ino, block);
2834                         brelse(bh);
2835                         return -EIO;
2836                 }
2837         }
2838 has_buffer:
2839         iloc->bh = bh;
2840         return 0;
2841 }
2842
2843 int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
2844 {
2845         /* We have all inode data except xattrs in memory here. */
2846         return __ext3_get_inode_loc(inode, iloc,
2847                 !ext3_test_inode_state(inode, EXT3_STATE_XATTR));
2848 }
2849
2850 void ext3_set_inode_flags(struct inode *inode)
2851 {
2852         unsigned int flags = EXT3_I(inode)->i_flags;
2853
2854         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2855         if (flags & EXT3_SYNC_FL)
2856                 inode->i_flags |= S_SYNC;
2857         if (flags & EXT3_APPEND_FL)
2858                 inode->i_flags |= S_APPEND;
2859         if (flags & EXT3_IMMUTABLE_FL)
2860                 inode->i_flags |= S_IMMUTABLE;
2861         if (flags & EXT3_NOATIME_FL)
2862                 inode->i_flags |= S_NOATIME;
2863         if (flags & EXT3_DIRSYNC_FL)
2864                 inode->i_flags |= S_DIRSYNC;
2865 }
2866
2867 /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
2868 void ext3_get_inode_flags(struct ext3_inode_info *ei)
2869 {
2870         unsigned int flags = ei->vfs_inode.i_flags;
2871
2872         ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
2873                         EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
2874         if (flags & S_SYNC)
2875                 ei->i_flags |= EXT3_SYNC_FL;
2876         if (flags & S_APPEND)
2877                 ei->i_flags |= EXT3_APPEND_FL;
2878         if (flags & S_IMMUTABLE)
2879                 ei->i_flags |= EXT3_IMMUTABLE_FL;
2880         if (flags & S_NOATIME)
2881                 ei->i_flags |= EXT3_NOATIME_FL;
2882         if (flags & S_DIRSYNC)
2883                 ei->i_flags |= EXT3_DIRSYNC_FL;
2884 }
2885
2886 struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
2887 {
2888         struct ext3_iloc iloc;
2889         struct ext3_inode *raw_inode;
2890         struct ext3_inode_info *ei;
2891         struct buffer_head *bh;
2892         struct inode *inode;
2893         journal_t *journal = EXT3_SB(sb)->s_journal;
2894         transaction_t *transaction;
2895         long ret;
2896         int block;
2897         uid_t i_uid;
2898         gid_t i_gid;
2899
2900         inode = iget_locked(sb, ino);
2901         if (!inode)
2902                 return ERR_PTR(-ENOMEM);
2903         if (!(inode->i_state & I_NEW))
2904                 return inode;
2905
2906         ei = EXT3_I(inode);
2907         ei->i_block_alloc_info = NULL;
2908
2909         ret = __ext3_get_inode_loc(inode, &iloc, 0);
2910         if (ret < 0)
2911                 goto bad_inode;
2912         bh = iloc.bh;
2913         raw_inode = ext3_raw_inode(&iloc);
2914         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2915         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2916         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2917         if(!(test_opt (inode->i_sb, NO_UID32))) {
2918                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2919                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2920         }
2921         i_uid_write(inode, i_uid);
2922         i_gid_write(inode, i_gid);
2923         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
2924         inode->i_size = le32_to_cpu(raw_inode->i_size);
2925         inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
2926         inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
2927         inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
2928         inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
2929
2930         ei->i_state_flags = 0;
2931         ei->i_dir_start_lookup = 0;
2932         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2933         /* We now have enough fields to check if the inode was active or not.
2934          * This is needed because nfsd might try to access dead inodes
2935          * the test is that same one that e2fsck uses
2936          * NeilBrown 1999oct15
2937          */
2938         if (inode->i_nlink == 0) {
2939                 if (inode->i_mode == 0 ||
2940                     !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
2941                         /* this inode is deleted */
2942                         brelse (bh);
2943                         ret = -ESTALE;
2944                         goto bad_inode;
2945                 }
2946                 /* The only unlinked inodes we let through here have
2947                  * valid i_mode and are being read by the orphan
2948                  * recovery code: that's fine, we're about to complete
2949                  * the process of deleting those. */
2950         }
2951         inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2952         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2953 #ifdef EXT3_FRAGMENTS
2954         ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2955         ei->i_frag_no = raw_inode->i_frag;
2956         ei->i_frag_size = raw_inode->i_fsize;
2957 #endif
2958         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2959         if (!S_ISREG(inode->i_mode)) {
2960                 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2961         } else {
2962                 inode->i_size |=
2963                         ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2964         }
2965         ei->i_disksize = inode->i_size;
2966         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2967         ei->i_block_group = iloc.block_group;
2968         /*
2969          * NOTE! The in-memory inode i_data array is in little-endian order
2970          * even on big-endian machines: we do NOT byteswap the block numbers!
2971          */
2972         for (block = 0; block < EXT3_N_BLOCKS; block++)
2973                 ei->i_data[block] = raw_inode->i_block[block];
2974         INIT_LIST_HEAD(&ei->i_orphan);
2975
2976         /*
2977          * Set transaction id's of transactions that have to be committed
2978          * to finish f[data]sync. We set them to currently running transaction
2979          * as we cannot be sure that the inode or some of its metadata isn't
2980          * part of the transaction - the inode could have been reclaimed and
2981          * now it is reread from disk.
2982          */
2983         if (journal) {
2984                 tid_t tid;
2985
2986                 spin_lock(&journal->j_state_lock);
2987                 if (journal->j_running_transaction)
2988                         transaction = journal->j_running_transaction;
2989                 else
2990                         transaction = journal->j_committing_transaction;
2991                 if (transaction)
2992                         tid = transaction->t_tid;
2993                 else
2994                         tid = journal->j_commit_sequence;
2995                 spin_unlock(&journal->j_state_lock);
2996                 atomic_set(&ei->i_sync_tid, tid);
2997                 atomic_set(&ei->i_datasync_tid, tid);
2998         }
2999
3000         if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
3001             EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
3002                 /*
3003                  * When mke2fs creates big inodes it does not zero out
3004                  * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
3005                  * so ignore those first few inodes.
3006                  */
3007                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3008                 if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3009                     EXT3_INODE_SIZE(inode->i_sb)) {
3010                         brelse (bh);
3011                         ret = -EIO;
3012                         goto bad_inode;
3013                 }
3014                 if (ei->i_extra_isize == 0) {
3015                         /* The extra space is currently unused. Use it. */
3016                         ei->i_extra_isize = sizeof(struct ext3_inode) -
3017                                             EXT3_GOOD_OLD_INODE_SIZE;
3018                 } else {
3019                         __le32 *magic = (void *)raw_inode +
3020                                         EXT3_GOOD_OLD_INODE_SIZE +
3021                                         ei->i_extra_isize;
3022                         if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
3023                                  ext3_set_inode_state(inode, EXT3_STATE_XATTR);
3024                 }
3025         } else
3026                 ei->i_extra_isize = 0;
3027
3028         if (S_ISREG(inode->i_mode)) {
3029                 inode->i_op = &ext3_file_inode_operations;
3030                 inode->i_fop = &ext3_file_operations;
3031                 ext3_set_aops(inode);
3032         } else if (S_ISDIR(inode->i_mode)) {
3033                 inode->i_op = &ext3_dir_inode_operations;
3034                 inode->i_fop = &ext3_dir_operations;
3035         } else if (S_ISLNK(inode->i_mode)) {
3036                 if (ext3_inode_is_fast_symlink(inode)) {
3037                         inode->i_op = &ext3_fast_symlink_inode_operations;
3038                         nd_terminate_link(ei->i_data, inode->i_size,
3039                                 sizeof(ei->i_data) - 1);
3040                 } else {
3041                         inode->i_op = &ext3_symlink_inode_operations;
3042                         ext3_set_aops(inode);
3043                 }
3044         } else {
3045                 inode->i_op = &ext3_special_inode_operations;
3046                 if (raw_inode->i_block[0])
3047                         init_special_inode(inode, inode->i_mode,
3048                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3049                 else
3050                         init_special_inode(inode, inode->i_mode,
3051                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3052         }
3053         brelse (iloc.bh);
3054         ext3_set_inode_flags(inode);
3055         unlock_new_inode(inode);
3056         return inode;
3057
3058 bad_inode:
3059         iget_failed(inode);
3060         return ERR_PTR(ret);
3061 }
3062
3063 /*
3064  * Post the struct inode info into an on-disk inode location in the
3065  * buffer-cache.  This gobbles the caller's reference to the
3066  * buffer_head in the inode location struct.
3067  *
3068  * The caller must have write access to iloc->bh.
3069  */
3070 static int ext3_do_update_inode(handle_t *handle,
3071                                 struct inode *inode,
3072                                 struct ext3_iloc *iloc)
3073 {
3074         struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
3075         struct ext3_inode_info *ei = EXT3_I(inode);
3076         struct buffer_head *bh = iloc->bh;
3077         int err = 0, rc, block;
3078         int need_datasync = 0;
3079         __le32 disksize;
3080         uid_t i_uid;
3081         gid_t i_gid;
3082
3083 again:
3084         /* we can't allow multiple procs in here at once, its a bit racey */
3085         lock_buffer(bh);
3086
3087         /* For fields not not tracking in the in-memory inode,
3088          * initialise them to zero for new inodes. */
3089         if (ext3_test_inode_state(inode, EXT3_STATE_NEW))
3090                 memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
3091
3092         ext3_get_inode_flags(ei);
3093         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3094         i_uid = i_uid_read(inode);
3095         i_gid = i_gid_read(inode);
3096         if(!(test_opt(inode->i_sb, NO_UID32))) {
3097                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
3098                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
3099 /*
3100  * Fix up interoperability with old kernels. Otherwise, old inodes get
3101  * re-used with the upper 16 bits of the uid/gid intact
3102  */
3103                 if(!ei->i_dtime) {
3104                         raw_inode->i_uid_high =
3105                                 cpu_to_le16(high_16_bits(i_uid));
3106                         raw_inode->i_gid_high =
3107                                 cpu_to_le16(high_16_bits(i_gid));
3108                 } else {
3109                         raw_inode->i_uid_high = 0;
3110                         raw_inode->i_gid_high = 0;
3111                 }
3112         } else {
3113                 raw_inode->i_uid_low =
3114                         cpu_to_le16(fs_high2lowuid(i_uid));
3115                 raw_inode->i_gid_low =
3116                         cpu_to_le16(fs_high2lowgid(i_gid));
3117                 raw_inode->i_uid_high = 0;
3118                 raw_inode->i_gid_high = 0;
3119         }
3120         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3121         disksize = cpu_to_le32(ei->i_disksize);
3122         if (disksize != raw_inode->i_size) {
3123                 need_datasync = 1;
3124                 raw_inode->i_size = disksize;
3125         }
3126         raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
3127         raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
3128         raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
3129         raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
3130         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3131         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
3132 #ifdef EXT3_FRAGMENTS
3133         raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
3134         raw_inode->i_frag = ei->i_frag_no;
3135         raw_inode->i_fsize = ei->i_frag_size;
3136 #endif
3137         raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
3138         if (!S_ISREG(inode->i_mode)) {
3139                 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
3140         } else {
3141                 disksize = cpu_to_le32(ei->i_disksize >> 32);
3142                 if (disksize != raw_inode->i_size_high) {
3143                         raw_inode->i_size_high = disksize;
3144                         need_datasync = 1;
3145                 }
3146                 if (ei->i_disksize > 0x7fffffffULL) {
3147                         struct super_block *sb = inode->i_sb;
3148                         if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
3149                                         EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
3150                             EXT3_SB(sb)->s_es->s_rev_level ==
3151                                         cpu_to_le32(EXT3_GOOD_OLD_REV)) {
3152                                /* If this is the first large file
3153                                 * created, add a flag to the superblock.
3154                                 */
3155                                 unlock_buffer(bh);
3156                                 err = ext3_journal_get_write_access(handle,
3157                                                 EXT3_SB(sb)->s_sbh);
3158                                 if (err)
3159                                         goto out_brelse;
3160
3161                                 ext3_update_dynamic_rev(sb);
3162                                 EXT3_SET_RO_COMPAT_FEATURE(sb,
3163                                         EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
3164                                 handle->h_sync = 1;
3165                                 err = ext3_journal_dirty_metadata(handle,
3166                                                 EXT3_SB(sb)->s_sbh);
3167                                 /* get our lock and start over */
3168                                 goto again;
3169                         }
3170                 }
3171         }
3172         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3173         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3174                 if (old_valid_dev(inode->i_rdev)) {
3175                         raw_inode->i_block[0] =
3176                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
3177                         raw_inode->i_block[1] = 0;
3178                 } else {
3179                         raw_inode->i_block[0] = 0;
3180                         raw_inode->i_block[1] =
3181                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
3182                         raw_inode->i_block[2] = 0;
3183                 }
3184         } else for (block = 0; block < EXT3_N_BLOCKS; block++)
3185                 raw_inode->i_block[block] = ei->i_data[block];
3186
3187         if (ei->i_extra_isize)
3188                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3189
3190         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
3191         unlock_buffer(bh);
3192         rc = ext3_journal_dirty_metadata(handle, bh);
3193         if (!err)
3194                 err = rc;
3195         ext3_clear_inode_state(inode, EXT3_STATE_NEW);
3196
3197         atomic_set(&ei->i_sync_tid, handle->h_transaction->t_tid);
3198         if (need_datasync)
3199                 atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
3200 out_brelse:
3201         brelse (bh);
3202         ext3_std_error(inode->i_sb, err);
3203         return err;
3204 }
3205
3206 /*
3207  * ext3_write_inode()
3208  *
3209  * We are called from a few places:
3210  *
3211  * - Within generic_file_write() for O_SYNC files.
3212  *   Here, there will be no transaction running. We wait for any running
3213  *   transaction to commit.
3214  *
3215  * - Within sys_sync(), kupdate and such.
3216  *   We wait on commit, if tol to.
3217  *
3218  * - Within prune_icache() (PF_MEMALLOC == true)
3219  *   Here we simply return.  We can't afford to block kswapd on the
3220  *   journal commit.
3221  *
3222  * In all cases it is actually safe for us to return without doing anything,
3223  * because the inode has been copied into a raw inode buffer in
3224  * ext3_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3225  * knfsd.
3226  *
3227  * Note that we are absolutely dependent upon all inode dirtiers doing the
3228  * right thing: they *must* call mark_inode_dirty() after dirtying info in
3229  * which we are interested.
3230  *
3231  * It would be a bug for them to not do this.  The code:
3232  *
3233  *      mark_inode_dirty(inode)
3234  *      stuff();
3235  *      inode->i_size = expr;
3236  *
3237  * is in error because a kswapd-driven write_inode() could occur while
3238  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
3239  * will no longer be on the superblock's dirty inode list.
3240  */
3241 int ext3_write_inode(struct inode *inode, struct writeback_control *wbc)
3242 {
3243         if (current->flags & PF_MEMALLOC)
3244                 return 0;
3245
3246         if (ext3_journal_current_handle()) {
3247                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3248                 dump_stack();
3249                 return -EIO;
3250         }
3251
3252         if (wbc->sync_mode != WB_SYNC_ALL)
3253                 return 0;
3254
3255         return ext3_force_commit(inode->i_sb);
3256 }
3257
3258 /*
3259  * ext3_setattr()
3260  *
3261  * Called from notify_change.
3262  *
3263  * We want to trap VFS attempts to truncate the file as soon as
3264  * possible.  In particular, we want to make sure that when the VFS
3265  * shrinks i_size, we put the inode on the orphan list and modify
3266  * i_disksize immediately, so that during the subsequent flushing of
3267  * dirty pages and freeing of disk blocks, we can guarantee that any
3268  * commit will leave the blocks being flushed in an unused state on
3269  * disk.  (On recovery, the inode will get truncated and the blocks will
3270  * be freed, so we have a strong guarantee that no future commit will
3271  * leave these blocks visible to the user.)
3272  *
3273  * Called with inode->sem down.
3274  */
3275 int ext3_setattr(struct dentry *dentry, struct iattr *attr)
3276 {
3277         struct inode *inode = dentry->d_inode;
3278         int error, rc = 0;
3279         const unsigned int ia_valid = attr->ia_valid;
3280
3281         error = inode_change_ok(inode, attr);
3282         if (error)
3283                 return error;
3284
3285         if (is_quota_modification(inode, attr))
3286                 dquot_initialize(inode);
3287         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
3288             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
3289                 handle_t *handle;
3290
3291                 /* (user+group)*(old+new) structure, inode write (sb,
3292                  * inode block, ? - but truncate inode update has it) */
3293                 handle = ext3_journal_start(inode, EXT3_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
3294                                         EXT3_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)+3);
3295                 if (IS_ERR(handle)) {
3296                         error = PTR_ERR(handle);
3297                         goto err_out;
3298                 }
3299                 error = dquot_transfer(inode, attr);
3300                 if (error) {
3301                         ext3_journal_stop(handle);
3302                         return error;
3303                 }
3304                 /* Update corresponding info in inode so that everything is in
3305                  * one transaction */
3306                 if (attr->ia_valid & ATTR_UID)
3307                         inode->i_uid = attr->ia_uid;
3308                 if (attr->ia_valid & ATTR_GID)
3309                         inode->i_gid = attr->ia_gid;
3310                 error = ext3_mark_inode_dirty(handle, inode);
3311                 ext3_journal_stop(handle);
3312         }
3313
3314         if (attr->ia_valid & ATTR_SIZE)
3315                 inode_dio_wait(inode);
3316
3317         if (S_ISREG(inode->i_mode) &&
3318             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3319                 handle_t *handle;
3320
3321                 handle = ext3_journal_start(inode, 3);
3322                 if (IS_ERR(handle)) {
3323                         error = PTR_ERR(handle);
3324                         goto err_out;
3325                 }
3326
3327                 error = ext3_orphan_add(handle, inode);
3328                 if (error) {
3329                         ext3_journal_stop(handle);
3330                         goto err_out;
3331                 }
3332                 EXT3_I(inode)->i_disksize = attr->ia_size;
3333                 error = ext3_mark_inode_dirty(handle, inode);
3334                 ext3_journal_stop(handle);
3335                 if (error) {
3336                         /* Some hard fs error must have happened. Bail out. */
3337                         ext3_orphan_del(NULL, inode);
3338                         goto err_out;
3339                 }
3340                 rc = ext3_block_truncate_page(inode, attr->ia_size);
3341                 if (rc) {
3342                         /* Cleanup orphan list and exit */
3343                         handle = ext3_journal_start(inode, 3);
3344                         if (IS_ERR(handle)) {
3345                                 ext3_orphan_del(NULL, inode);
3346                                 goto err_out;
3347                         }
3348                         ext3_orphan_del(handle, inode);
3349                         ext3_journal_stop(handle);
3350                         goto err_out;
3351                 }
3352         }
3353
3354         if ((attr->ia_valid & ATTR_SIZE) &&
3355             attr->ia_size != i_size_read(inode)) {
3356                 truncate_setsize(inode, attr->ia_size);
3357                 ext3_truncate(inode);
3358         }
3359
3360         setattr_copy(inode, attr);
3361         mark_inode_dirty(inode);
3362
3363         if (ia_valid & ATTR_MODE)
3364                 rc = ext3_acl_chmod(inode);
3365
3366 err_out:
3367         ext3_std_error(inode->i_sb, error);
3368         if (!error)
3369                 error = rc;
3370         return error;
3371 }
3372
3373
3374 /*
3375  * How many blocks doth make a writepage()?
3376  *
3377  * With N blocks per page, it may be:
3378  * N data blocks
3379  * 2 indirect block
3380  * 2 dindirect
3381  * 1 tindirect
3382  * N+5 bitmap blocks (from the above)
3383  * N+5 group descriptor summary blocks
3384  * 1 inode block
3385  * 1 superblock.
3386  * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
3387  *
3388  * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
3389  *
3390  * With ordered or writeback data it's the same, less the N data blocks.
3391  *
3392  * If the inode's direct blocks can hold an integral number of pages then a
3393  * page cannot straddle two indirect blocks, and we can only touch one indirect
3394  * and dindirect block, and the "5" above becomes "3".
3395  *
3396  * This still overestimates under most circumstances.  If we were to pass the
3397  * start and end offsets in here as well we could do block_to_path() on each
3398  * block and work out the exact number of indirects which are touched.  Pah.
3399  */
3400
3401 static int ext3_writepage_trans_blocks(struct inode *inode)
3402 {
3403         int bpp = ext3_journal_blocks_per_page(inode);
3404         int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
3405         int ret;
3406
3407         if (ext3_should_journal_data(inode))
3408                 ret = 3 * (bpp + indirects) + 2;
3409         else
3410                 ret = 2 * (bpp + indirects) + indirects + 2;
3411
3412 #ifdef CONFIG_QUOTA
3413         /* We know that structure was already allocated during dquot_initialize so
3414          * we will be updating only the data blocks + inodes */
3415         ret += EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
3416 #endif
3417
3418         return ret;
3419 }
3420
3421 /*
3422  * The caller must have previously called ext3_reserve_inode_write().
3423  * Give this, we know that the caller already has write access to iloc->bh.
3424  */
3425 int ext3_mark_iloc_dirty(handle_t *handle,
3426                 struct inode *inode, struct ext3_iloc *iloc)
3427 {
3428         int err = 0;
3429
3430         /* the do_update_inode consumes one bh->b_count */
3431         get_bh(iloc->bh);
3432
3433         /* ext3_do_update_inode() does journal_dirty_metadata */
3434         err = ext3_do_update_inode(handle, inode, iloc);
3435         put_bh(iloc->bh);
3436         return err;
3437 }
3438
3439 /*
3440  * On success, We end up with an outstanding reference count against
3441  * iloc->bh.  This _must_ be cleaned up later.
3442  */
3443
3444 int
3445 ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
3446                          struct ext3_iloc *iloc)
3447 {
3448         int err = 0;
3449         if (handle) {
3450                 err = ext3_get_inode_loc(inode, iloc);
3451                 if (!err) {
3452                         BUFFER_TRACE(iloc->bh, "get_write_access");
3453                         err = ext3_journal_get_write_access(handle, iloc->bh);
3454                         if (err) {
3455                                 brelse(iloc->bh);
3456                                 iloc->bh = NULL;
3457                         }
3458                 }
3459         }
3460         ext3_std_error(inode->i_sb, err);
3461         return err;
3462 }
3463
3464 /*
3465  * What we do here is to mark the in-core inode as clean with respect to inode
3466  * dirtiness (it may still be data-dirty).
3467  * This means that the in-core inode may be reaped by prune_icache
3468  * without having to perform any I/O.  This is a very good thing,
3469  * because *any* task may call prune_icache - even ones which
3470  * have a transaction open against a different journal.
3471  *
3472  * Is this cheating?  Not really.  Sure, we haven't written the
3473  * inode out, but prune_icache isn't a user-visible syncing function.
3474  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3475  * we start and wait on commits.
3476  */
3477 int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
3478 {
3479         struct ext3_iloc iloc;
3480         int err;
3481
3482         might_sleep();
3483         trace_ext3_mark_inode_dirty(inode, _RET_IP_);
3484         err = ext3_reserve_inode_write(handle, inode, &iloc);
3485         if (!err)
3486                 err = ext3_mark_iloc_dirty(handle, inode, &iloc);
3487         return err;
3488 }
3489
3490 /*
3491  * ext3_dirty_inode() is called from __mark_inode_dirty()
3492  *
3493  * We're really interested in the case where a file is being extended.
3494  * i_size has been changed by generic_commit_write() and we thus need
3495  * to include the updated inode in the current transaction.
3496  *
3497  * Also, dquot_alloc_space() will always dirty the inode when blocks
3498  * are allocated to the file.
3499  *
3500  * If the inode is marked synchronous, we don't honour that here - doing
3501  * so would cause a commit on atime updates, which we don't bother doing.
3502  * We handle synchronous inodes at the highest possible level.
3503  */
3504 void ext3_dirty_inode(struct inode *inode, int flags)
3505 {
3506         handle_t *current_handle = ext3_journal_current_handle();
3507         handle_t *handle;
3508
3509         handle = ext3_journal_start(inode, 2);
3510         if (IS_ERR(handle))
3511                 goto out;
3512         if (current_handle &&
3513                 current_handle->h_transaction != handle->h_transaction) {
3514                 /* This task has a transaction open against a different fs */
3515                 printk(KERN_EMERG "%s: transactions do not match!\n",
3516                        __func__);
3517         } else {
3518                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
3519                                 current_handle);
3520                 ext3_mark_inode_dirty(handle, inode);
3521         }
3522         ext3_journal_stop(handle);
3523 out:
3524         return;
3525 }
3526
3527 #if 0
3528 /*
3529  * Bind an inode's backing buffer_head into this transaction, to prevent
3530  * it from being flushed to disk early.  Unlike
3531  * ext3_reserve_inode_write, this leaves behind no bh reference and
3532  * returns no iloc structure, so the caller needs to repeat the iloc
3533  * lookup to mark the inode dirty later.
3534  */
3535 static int ext3_pin_inode(handle_t *handle, struct inode *inode)
3536 {
3537         struct ext3_iloc iloc;
3538
3539         int err = 0;
3540         if (handle) {
3541                 err = ext3_get_inode_loc(inode, &iloc);
3542                 if (!err) {
3543                         BUFFER_TRACE(iloc.bh, "get_write_access");
3544                         err = journal_get_write_access(handle, iloc.bh);
3545                         if (!err)
3546                                 err = ext3_journal_dirty_metadata(handle,
3547                                                                   iloc.bh);
3548                         brelse(iloc.bh);
3549                 }
3550         }
3551         ext3_std_error(inode->i_sb, err);
3552         return err;
3553 }
3554 #endif
3555
3556 int ext3_change_inode_journal_flag(struct inode *inode, int val)
3557 {
3558         journal_t *journal;
3559         handle_t *handle;
3560         int err;
3561
3562         /*
3563          * We have to be very careful here: changing a data block's
3564          * journaling status dynamically is dangerous.  If we write a
3565          * data block to the journal, change the status and then delete
3566          * that block, we risk forgetting to revoke the old log record
3567          * from the journal and so a subsequent replay can corrupt data.
3568          * So, first we make sure that the journal is empty and that
3569          * nobody is changing anything.
3570          */
3571
3572         journal = EXT3_JOURNAL(inode);
3573         if (is_journal_aborted(journal))
3574                 return -EROFS;
3575
3576         journal_lock_updates(journal);
3577         journal_flush(journal);
3578
3579         /*
3580          * OK, there are no updates running now, and all cached data is
3581          * synced to disk.  We are now in a completely consistent state
3582          * which doesn't have anything in the journal, and we know that
3583          * no filesystem updates are running, so it is safe to modify
3584          * the inode's in-core data-journaling state flag now.
3585          */
3586
3587         if (val)
3588                 EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
3589         else
3590                 EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
3591         ext3_set_aops(inode);
3592
3593         journal_unlock_updates(journal);
3594
3595         /* Finally we can mark the inode as dirty. */
3596
3597         handle = ext3_journal_start(inode, 1);
3598         if (IS_ERR(handle))
3599                 return PTR_ERR(handle);
3600
3601         err = ext3_mark_inode_dirty(handle, inode);
3602         handle->h_sync = 1;
3603         ext3_journal_stop(handle);
3604         ext3_std_error(inode->i_sb, err);
3605
3606         return err;
3607 }