Merge remote branch 'anholt/drm-intel-next' into drm-linus
[platform/adaptation/renesas_rcar/renesas_kernel.git] / fs / ext3 / inode.c
1 /*
2  *  linux/fs/ext3/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/ext3_jbd.h>
29 #include <linux/jbd.h>
30 #include <linux/highuid.h>
31 #include <linux/pagemap.h>
32 #include <linux/quotaops.h>
33 #include <linux/string.h>
34 #include <linux/buffer_head.h>
35 #include <linux/writeback.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include <linux/fiemap.h>
40 #include <linux/namei.h>
41 #include "xattr.h"
42 #include "acl.h"
43
44 static int ext3_writepage_trans_blocks(struct inode *inode);
45
46 /*
47  * Test whether an inode is a fast symlink.
48  */
49 static int ext3_inode_is_fast_symlink(struct inode *inode)
50 {
51         int ea_blocks = EXT3_I(inode)->i_file_acl ?
52                 (inode->i_sb->s_blocksize >> 9) : 0;
53
54         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
55 }
56
57 /*
58  * The ext3 forget function must perform a revoke if we are freeing data
59  * which has been journaled.  Metadata (eg. indirect blocks) must be
60  * revoked in all cases.
61  *
62  * "bh" may be NULL: a metadata block may have been freed from memory
63  * but there may still be a record of it in the journal, and that record
64  * still needs to be revoked.
65  */
66 int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
67                         struct buffer_head *bh, ext3_fsblk_t blocknr)
68 {
69         int err;
70
71         might_sleep();
72
73         BUFFER_TRACE(bh, "enter");
74
75         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
76                   "data mode %lx\n",
77                   bh, is_metadata, inode->i_mode,
78                   test_opt(inode->i_sb, DATA_FLAGS));
79
80         /* Never use the revoke function if we are doing full data
81          * journaling: there is no need to, and a V1 superblock won't
82          * support it.  Otherwise, only skip the revoke on un-journaled
83          * data blocks. */
84
85         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
86             (!is_metadata && !ext3_should_journal_data(inode))) {
87                 if (bh) {
88                         BUFFER_TRACE(bh, "call journal_forget");
89                         return ext3_journal_forget(handle, bh);
90                 }
91                 return 0;
92         }
93
94         /*
95          * data!=journal && (is_metadata || should_journal_data(inode))
96          */
97         BUFFER_TRACE(bh, "call ext3_journal_revoke");
98         err = ext3_journal_revoke(handle, blocknr, bh);
99         if (err)
100                 ext3_abort(inode->i_sb, __func__,
101                            "error %d when attempting revoke", err);
102         BUFFER_TRACE(bh, "exit");
103         return err;
104 }
105
106 /*
107  * Work out how many blocks we need to proceed with the next chunk of a
108  * truncate transaction.
109  */
110 static unsigned long blocks_for_truncate(struct inode *inode)
111 {
112         unsigned long needed;
113
114         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
115
116         /* Give ourselves just enough room to cope with inodes in which
117          * i_blocks is corrupt: we've seen disk corruptions in the past
118          * which resulted in random data in an inode which looked enough
119          * like a regular file for ext3 to try to delete it.  Things
120          * will go a bit crazy if that happens, but at least we should
121          * try not to panic the whole kernel. */
122         if (needed < 2)
123                 needed = 2;
124
125         /* But we need to bound the transaction so we don't overflow the
126          * journal. */
127         if (needed > EXT3_MAX_TRANS_DATA)
128                 needed = EXT3_MAX_TRANS_DATA;
129
130         return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
131 }
132
133 /*
134  * Truncate transactions can be complex and absolutely huge.  So we need to
135  * be able to restart the transaction at a conventient checkpoint to make
136  * sure we don't overflow the journal.
137  *
138  * start_transaction gets us a new handle for a truncate transaction,
139  * and extend_transaction tries to extend the existing one a bit.  If
140  * extend fails, we need to propagate the failure up and restart the
141  * transaction in the top-level truncate loop. --sct
142  */
143 static handle_t *start_transaction(struct inode *inode)
144 {
145         handle_t *result;
146
147         result = ext3_journal_start(inode, blocks_for_truncate(inode));
148         if (!IS_ERR(result))
149                 return result;
150
151         ext3_std_error(inode->i_sb, PTR_ERR(result));
152         return result;
153 }
154
155 /*
156  * Try to extend this transaction for the purposes of truncation.
157  *
158  * Returns 0 if we managed to create more room.  If we can't create more
159  * room, and the transaction must be restarted we return 1.
160  */
161 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
162 {
163         if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
164                 return 0;
165         if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
166                 return 0;
167         return 1;
168 }
169
170 /*
171  * Restart the transaction associated with *handle.  This does a commit,
172  * so before we call here everything must be consistently dirtied against
173  * this transaction.
174  */
175 static int truncate_restart_transaction(handle_t *handle, struct inode *inode)
176 {
177         int ret;
178
179         jbd_debug(2, "restarting handle %p\n", handle);
180         /*
181          * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
182          * At this moment, get_block can be called only for blocks inside
183          * i_size since page cache has been already dropped and writes are
184          * blocked by i_mutex. So we can safely drop the truncate_mutex.
185          */
186         mutex_unlock(&EXT3_I(inode)->truncate_mutex);
187         ret = ext3_journal_restart(handle, blocks_for_truncate(inode));
188         mutex_lock(&EXT3_I(inode)->truncate_mutex);
189         return ret;
190 }
191
192 /*
193  * Called at the last iput() if i_nlink is zero.
194  */
195 void ext3_delete_inode (struct inode * inode)
196 {
197         handle_t *handle;
198
199         truncate_inode_pages(&inode->i_data, 0);
200
201         if (is_bad_inode(inode))
202                 goto no_delete;
203
204         handle = start_transaction(inode);
205         if (IS_ERR(handle)) {
206                 /*
207                  * If we're going to skip the normal cleanup, we still need to
208                  * make sure that the in-core orphan linked list is properly
209                  * cleaned up.
210                  */
211                 ext3_orphan_del(NULL, inode);
212                 goto no_delete;
213         }
214
215         if (IS_SYNC(inode))
216                 handle->h_sync = 1;
217         inode->i_size = 0;
218         if (inode->i_blocks)
219                 ext3_truncate(inode);
220         /*
221          * Kill off the orphan record which ext3_truncate created.
222          * AKPM: I think this can be inside the above `if'.
223          * Note that ext3_orphan_del() has to be able to cope with the
224          * deletion of a non-existent orphan - this is because we don't
225          * know if ext3_truncate() actually created an orphan record.
226          * (Well, we could do this if we need to, but heck - it works)
227          */
228         ext3_orphan_del(handle, inode);
229         EXT3_I(inode)->i_dtime  = get_seconds();
230
231         /*
232          * One subtle ordering requirement: if anything has gone wrong
233          * (transaction abort, IO errors, whatever), then we can still
234          * do these next steps (the fs will already have been marked as
235          * having errors), but we can't free the inode if the mark_dirty
236          * fails.
237          */
238         if (ext3_mark_inode_dirty(handle, inode))
239                 /* If that failed, just do the required in-core inode clear. */
240                 clear_inode(inode);
241         else
242                 ext3_free_inode(handle, inode);
243         ext3_journal_stop(handle);
244         return;
245 no_delete:
246         clear_inode(inode);     /* We must guarantee clearing of inode... */
247 }
248
249 typedef struct {
250         __le32  *p;
251         __le32  key;
252         struct buffer_head *bh;
253 } Indirect;
254
255 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
256 {
257         p->key = *(p->p = v);
258         p->bh = bh;
259 }
260
261 static int verify_chain(Indirect *from, Indirect *to)
262 {
263         while (from <= to && from->key == *from->p)
264                 from++;
265         return (from > to);
266 }
267
268 /**
269  *      ext3_block_to_path - parse the block number into array of offsets
270  *      @inode: inode in question (we are only interested in its superblock)
271  *      @i_block: block number to be parsed
272  *      @offsets: array to store the offsets in
273  *      @boundary: set this non-zero if the referred-to block is likely to be
274  *             followed (on disk) by an indirect block.
275  *
276  *      To store the locations of file's data ext3 uses a data structure common
277  *      for UNIX filesystems - tree of pointers anchored in the inode, with
278  *      data blocks at leaves and indirect blocks in intermediate nodes.
279  *      This function translates the block number into path in that tree -
280  *      return value is the path length and @offsets[n] is the offset of
281  *      pointer to (n+1)th node in the nth one. If @block is out of range
282  *      (negative or too large) warning is printed and zero returned.
283  *
284  *      Note: function doesn't find node addresses, so no IO is needed. All
285  *      we need to know is the capacity of indirect blocks (taken from the
286  *      inode->i_sb).
287  */
288
289 /*
290  * Portability note: the last comparison (check that we fit into triple
291  * indirect block) is spelled differently, because otherwise on an
292  * architecture with 32-bit longs and 8Kb pages we might get into trouble
293  * if our filesystem had 8Kb blocks. We might use long long, but that would
294  * kill us on x86. Oh, well, at least the sign propagation does not matter -
295  * i_block would have to be negative in the very beginning, so we would not
296  * get there at all.
297  */
298
299 static int ext3_block_to_path(struct inode *inode,
300                         long i_block, int offsets[4], int *boundary)
301 {
302         int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
303         int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
304         const long direct_blocks = EXT3_NDIR_BLOCKS,
305                 indirect_blocks = ptrs,
306                 double_blocks = (1 << (ptrs_bits * 2));
307         int n = 0;
308         int final = 0;
309
310         if (i_block < 0) {
311                 ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
312         } else if (i_block < direct_blocks) {
313                 offsets[n++] = i_block;
314                 final = direct_blocks;
315         } else if ( (i_block -= direct_blocks) < indirect_blocks) {
316                 offsets[n++] = EXT3_IND_BLOCK;
317                 offsets[n++] = i_block;
318                 final = ptrs;
319         } else if ((i_block -= indirect_blocks) < double_blocks) {
320                 offsets[n++] = EXT3_DIND_BLOCK;
321                 offsets[n++] = i_block >> ptrs_bits;
322                 offsets[n++] = i_block & (ptrs - 1);
323                 final = ptrs;
324         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
325                 offsets[n++] = EXT3_TIND_BLOCK;
326                 offsets[n++] = i_block >> (ptrs_bits * 2);
327                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
328                 offsets[n++] = i_block & (ptrs - 1);
329                 final = ptrs;
330         } else {
331                 ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
332         }
333         if (boundary)
334                 *boundary = final - 1 - (i_block & (ptrs - 1));
335         return n;
336 }
337
338 /**
339  *      ext3_get_branch - read the chain of indirect blocks leading to data
340  *      @inode: inode in question
341  *      @depth: depth of the chain (1 - direct pointer, etc.)
342  *      @offsets: offsets of pointers in inode/indirect blocks
343  *      @chain: place to store the result
344  *      @err: here we store the error value
345  *
346  *      Function fills the array of triples <key, p, bh> and returns %NULL
347  *      if everything went OK or the pointer to the last filled triple
348  *      (incomplete one) otherwise. Upon the return chain[i].key contains
349  *      the number of (i+1)-th block in the chain (as it is stored in memory,
350  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
351  *      number (it points into struct inode for i==0 and into the bh->b_data
352  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
353  *      block for i>0 and NULL for i==0. In other words, it holds the block
354  *      numbers of the chain, addresses they were taken from (and where we can
355  *      verify that chain did not change) and buffer_heads hosting these
356  *      numbers.
357  *
358  *      Function stops when it stumbles upon zero pointer (absent block)
359  *              (pointer to last triple returned, *@err == 0)
360  *      or when it gets an IO error reading an indirect block
361  *              (ditto, *@err == -EIO)
362  *      or when it notices that chain had been changed while it was reading
363  *              (ditto, *@err == -EAGAIN)
364  *      or when it reads all @depth-1 indirect blocks successfully and finds
365  *      the whole chain, all way to the data (returns %NULL, *err == 0).
366  */
367 static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
368                                  Indirect chain[4], int *err)
369 {
370         struct super_block *sb = inode->i_sb;
371         Indirect *p = chain;
372         struct buffer_head *bh;
373
374         *err = 0;
375         /* i_data is not going away, no lock needed */
376         add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
377         if (!p->key)
378                 goto no_block;
379         while (--depth) {
380                 bh = sb_bread(sb, le32_to_cpu(p->key));
381                 if (!bh)
382                         goto failure;
383                 /* Reader: pointers */
384                 if (!verify_chain(chain, p))
385                         goto changed;
386                 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
387                 /* Reader: end */
388                 if (!p->key)
389                         goto no_block;
390         }
391         return NULL;
392
393 changed:
394         brelse(bh);
395         *err = -EAGAIN;
396         goto no_block;
397 failure:
398         *err = -EIO;
399 no_block:
400         return p;
401 }
402
403 /**
404  *      ext3_find_near - find a place for allocation with sufficient locality
405  *      @inode: owner
406  *      @ind: descriptor of indirect block.
407  *
408  *      This function returns the preferred place for block allocation.
409  *      It is used when heuristic for sequential allocation fails.
410  *      Rules are:
411  *        + if there is a block to the left of our position - allocate near it.
412  *        + if pointer will live in indirect block - allocate near that block.
413  *        + if pointer will live in inode - allocate in the same
414  *          cylinder group.
415  *
416  * In the latter case we colour the starting block by the callers PID to
417  * prevent it from clashing with concurrent allocations for a different inode
418  * in the same block group.   The PID is used here so that functionally related
419  * files will be close-by on-disk.
420  *
421  *      Caller must make sure that @ind is valid and will stay that way.
422  */
423 static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
424 {
425         struct ext3_inode_info *ei = EXT3_I(inode);
426         __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
427         __le32 *p;
428         ext3_fsblk_t bg_start;
429         ext3_grpblk_t colour;
430
431         /* Try to find previous block */
432         for (p = ind->p - 1; p >= start; p--) {
433                 if (*p)
434                         return le32_to_cpu(*p);
435         }
436
437         /* No such thing, so let's try location of indirect block */
438         if (ind->bh)
439                 return ind->bh->b_blocknr;
440
441         /*
442          * It is going to be referred to from the inode itself? OK, just put it
443          * into the same cylinder group then.
444          */
445         bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
446         colour = (current->pid % 16) *
447                         (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
448         return bg_start + colour;
449 }
450
451 /**
452  *      ext3_find_goal - find a preferred place for allocation.
453  *      @inode: owner
454  *      @block:  block we want
455  *      @partial: pointer to the last triple within a chain
456  *
457  *      Normally this function find the preferred place for block allocation,
458  *      returns it.
459  */
460
461 static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
462                                    Indirect *partial)
463 {
464         struct ext3_block_alloc_info *block_i;
465
466         block_i =  EXT3_I(inode)->i_block_alloc_info;
467
468         /*
469          * try the heuristic for sequential allocation,
470          * failing that at least try to get decent locality.
471          */
472         if (block_i && (block == block_i->last_alloc_logical_block + 1)
473                 && (block_i->last_alloc_physical_block != 0)) {
474                 return block_i->last_alloc_physical_block + 1;
475         }
476
477         return ext3_find_near(inode, partial);
478 }
479
480 /**
481  *      ext3_blks_to_allocate: Look up the block map and count the number
482  *      of direct blocks need to be allocated for the given branch.
483  *
484  *      @branch: chain of indirect blocks
485  *      @k: number of blocks need for indirect blocks
486  *      @blks: number of data blocks to be mapped.
487  *      @blocks_to_boundary:  the offset in the indirect block
488  *
489  *      return the total number of blocks to be allocate, including the
490  *      direct and indirect blocks.
491  */
492 static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
493                 int blocks_to_boundary)
494 {
495         unsigned long count = 0;
496
497         /*
498          * Simple case, [t,d]Indirect block(s) has not allocated yet
499          * then it's clear blocks on that path have not allocated
500          */
501         if (k > 0) {
502                 /* right now we don't handle cross boundary allocation */
503                 if (blks < blocks_to_boundary + 1)
504                         count += blks;
505                 else
506                         count += blocks_to_boundary + 1;
507                 return count;
508         }
509
510         count++;
511         while (count < blks && count <= blocks_to_boundary &&
512                 le32_to_cpu(*(branch[0].p + count)) == 0) {
513                 count++;
514         }
515         return count;
516 }
517
518 /**
519  *      ext3_alloc_blocks: multiple allocate blocks needed for a branch
520  *      @indirect_blks: the number of blocks need to allocate for indirect
521  *                      blocks
522  *
523  *      @new_blocks: on return it will store the new block numbers for
524  *      the indirect blocks(if needed) and the first direct block,
525  *      @blks:  on return it will store the total number of allocated
526  *              direct blocks
527  */
528 static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
529                         ext3_fsblk_t goal, int indirect_blks, int blks,
530                         ext3_fsblk_t new_blocks[4], int *err)
531 {
532         int target, i;
533         unsigned long count = 0;
534         int index = 0;
535         ext3_fsblk_t current_block = 0;
536         int ret = 0;
537
538         /*
539          * Here we try to allocate the requested multiple blocks at once,
540          * on a best-effort basis.
541          * To build a branch, we should allocate blocks for
542          * the indirect blocks(if not allocated yet), and at least
543          * the first direct block of this branch.  That's the
544          * minimum number of blocks need to allocate(required)
545          */
546         target = blks + indirect_blks;
547
548         while (1) {
549                 count = target;
550                 /* allocating blocks for indirect blocks and direct blocks */
551                 current_block = ext3_new_blocks(handle,inode,goal,&count,err);
552                 if (*err)
553                         goto failed_out;
554
555                 target -= count;
556                 /* allocate blocks for indirect blocks */
557                 while (index < indirect_blks && count) {
558                         new_blocks[index++] = current_block++;
559                         count--;
560                 }
561
562                 if (count > 0)
563                         break;
564         }
565
566         /* save the new block number for the first direct block */
567         new_blocks[index] = current_block;
568
569         /* total number of blocks allocated for direct blocks */
570         ret = count;
571         *err = 0;
572         return ret;
573 failed_out:
574         for (i = 0; i <index; i++)
575                 ext3_free_blocks(handle, inode, new_blocks[i], 1);
576         return ret;
577 }
578
579 /**
580  *      ext3_alloc_branch - allocate and set up a chain of blocks.
581  *      @inode: owner
582  *      @indirect_blks: number of allocated indirect blocks
583  *      @blks: number of allocated direct blocks
584  *      @offsets: offsets (in the blocks) to store the pointers to next.
585  *      @branch: place to store the chain in.
586  *
587  *      This function allocates blocks, zeroes out all but the last one,
588  *      links them into chain and (if we are synchronous) writes them to disk.
589  *      In other words, it prepares a branch that can be spliced onto the
590  *      inode. It stores the information about that chain in the branch[], in
591  *      the same format as ext3_get_branch() would do. We are calling it after
592  *      we had read the existing part of chain and partial points to the last
593  *      triple of that (one with zero ->key). Upon the exit we have the same
594  *      picture as after the successful ext3_get_block(), except that in one
595  *      place chain is disconnected - *branch->p is still zero (we did not
596  *      set the last link), but branch->key contains the number that should
597  *      be placed into *branch->p to fill that gap.
598  *
599  *      If allocation fails we free all blocks we've allocated (and forget
600  *      their buffer_heads) and return the error value the from failed
601  *      ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
602  *      as described above and return 0.
603  */
604 static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
605                         int indirect_blks, int *blks, ext3_fsblk_t goal,
606                         int *offsets, Indirect *branch)
607 {
608         int blocksize = inode->i_sb->s_blocksize;
609         int i, n = 0;
610         int err = 0;
611         struct buffer_head *bh;
612         int num;
613         ext3_fsblk_t new_blocks[4];
614         ext3_fsblk_t current_block;
615
616         num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
617                                 *blks, new_blocks, &err);
618         if (err)
619                 return err;
620
621         branch[0].key = cpu_to_le32(new_blocks[0]);
622         /*
623          * metadata blocks and data blocks are allocated.
624          */
625         for (n = 1; n <= indirect_blks;  n++) {
626                 /*
627                  * Get buffer_head for parent block, zero it out
628                  * and set the pointer to new one, then send
629                  * parent to disk.
630                  */
631                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
632                 branch[n].bh = bh;
633                 lock_buffer(bh);
634                 BUFFER_TRACE(bh, "call get_create_access");
635                 err = ext3_journal_get_create_access(handle, bh);
636                 if (err) {
637                         unlock_buffer(bh);
638                         brelse(bh);
639                         goto failed;
640                 }
641
642                 memset(bh->b_data, 0, blocksize);
643                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
644                 branch[n].key = cpu_to_le32(new_blocks[n]);
645                 *branch[n].p = branch[n].key;
646                 if ( n == indirect_blks) {
647                         current_block = new_blocks[n];
648                         /*
649                          * End of chain, update the last new metablock of
650                          * the chain to point to the new allocated
651                          * data blocks numbers
652                          */
653                         for (i=1; i < num; i++)
654                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
655                 }
656                 BUFFER_TRACE(bh, "marking uptodate");
657                 set_buffer_uptodate(bh);
658                 unlock_buffer(bh);
659
660                 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
661                 err = ext3_journal_dirty_metadata(handle, bh);
662                 if (err)
663                         goto failed;
664         }
665         *blks = num;
666         return err;
667 failed:
668         /* Allocation failed, free what we already allocated */
669         for (i = 1; i <= n ; i++) {
670                 BUFFER_TRACE(branch[i].bh, "call journal_forget");
671                 ext3_journal_forget(handle, branch[i].bh);
672         }
673         for (i = 0; i <indirect_blks; i++)
674                 ext3_free_blocks(handle, inode, new_blocks[i], 1);
675
676         ext3_free_blocks(handle, inode, new_blocks[i], num);
677
678         return err;
679 }
680
681 /**
682  * ext3_splice_branch - splice the allocated branch onto inode.
683  * @inode: owner
684  * @block: (logical) number of block we are adding
685  * @chain: chain of indirect blocks (with a missing link - see
686  *      ext3_alloc_branch)
687  * @where: location of missing link
688  * @num:   number of indirect blocks we are adding
689  * @blks:  number of direct blocks we are adding
690  *
691  * This function fills the missing link and does all housekeeping needed in
692  * inode (->i_blocks, etc.). In case of success we end up with the full
693  * chain to new block and return 0.
694  */
695 static int ext3_splice_branch(handle_t *handle, struct inode *inode,
696                         long block, Indirect *where, int num, int blks)
697 {
698         int i;
699         int err = 0;
700         struct ext3_block_alloc_info *block_i;
701         ext3_fsblk_t current_block;
702         struct ext3_inode_info *ei = EXT3_I(inode);
703
704         block_i = ei->i_block_alloc_info;
705         /*
706          * If we're splicing into a [td]indirect block (as opposed to the
707          * inode) then we need to get write access to the [td]indirect block
708          * before the splice.
709          */
710         if (where->bh) {
711                 BUFFER_TRACE(where->bh, "get_write_access");
712                 err = ext3_journal_get_write_access(handle, where->bh);
713                 if (err)
714                         goto err_out;
715         }
716         /* That's it */
717
718         *where->p = where->key;
719
720         /*
721          * Update the host buffer_head or inode to point to more just allocated
722          * direct blocks blocks
723          */
724         if (num == 0 && blks > 1) {
725                 current_block = le32_to_cpu(where->key) + 1;
726                 for (i = 1; i < blks; i++)
727                         *(where->p + i ) = cpu_to_le32(current_block++);
728         }
729
730         /*
731          * update the most recently allocated logical & physical block
732          * in i_block_alloc_info, to assist find the proper goal block for next
733          * allocation
734          */
735         if (block_i) {
736                 block_i->last_alloc_logical_block = block + blks - 1;
737                 block_i->last_alloc_physical_block =
738                                 le32_to_cpu(where[num].key) + blks - 1;
739         }
740
741         /* We are done with atomic stuff, now do the rest of housekeeping */
742
743         inode->i_ctime = CURRENT_TIME_SEC;
744         ext3_mark_inode_dirty(handle, inode);
745         /* ext3_mark_inode_dirty already updated i_sync_tid */
746         atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
747
748         /* had we spliced it onto indirect block? */
749         if (where->bh) {
750                 /*
751                  * If we spliced it onto an indirect block, we haven't
752                  * altered the inode.  Note however that if it is being spliced
753                  * onto an indirect block at the very end of the file (the
754                  * file is growing) then we *will* alter the inode to reflect
755                  * the new i_size.  But that is not done here - it is done in
756                  * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
757                  */
758                 jbd_debug(5, "splicing indirect only\n");
759                 BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
760                 err = ext3_journal_dirty_metadata(handle, where->bh);
761                 if (err)
762                         goto err_out;
763         } else {
764                 /*
765                  * OK, we spliced it into the inode itself on a direct block.
766                  * Inode was dirtied above.
767                  */
768                 jbd_debug(5, "splicing direct\n");
769         }
770         return err;
771
772 err_out:
773         for (i = 1; i <= num; i++) {
774                 BUFFER_TRACE(where[i].bh, "call journal_forget");
775                 ext3_journal_forget(handle, where[i].bh);
776                 ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
777         }
778         ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
779
780         return err;
781 }
782
783 /*
784  * Allocation strategy is simple: if we have to allocate something, we will
785  * have to go the whole way to leaf. So let's do it before attaching anything
786  * to tree, set linkage between the newborn blocks, write them if sync is
787  * required, recheck the path, free and repeat if check fails, otherwise
788  * set the last missing link (that will protect us from any truncate-generated
789  * removals - all blocks on the path are immune now) and possibly force the
790  * write on the parent block.
791  * That has a nice additional property: no special recovery from the failed
792  * allocations is needed - we simply release blocks and do not touch anything
793  * reachable from inode.
794  *
795  * `handle' can be NULL if create == 0.
796  *
797  * The BKL may not be held on entry here.  Be sure to take it early.
798  * return > 0, # of blocks mapped or allocated.
799  * return = 0, if plain lookup failed.
800  * return < 0, error case.
801  */
802 int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
803                 sector_t iblock, unsigned long maxblocks,
804                 struct buffer_head *bh_result,
805                 int create)
806 {
807         int err = -EIO;
808         int offsets[4];
809         Indirect chain[4];
810         Indirect *partial;
811         ext3_fsblk_t goal;
812         int indirect_blks;
813         int blocks_to_boundary = 0;
814         int depth;
815         struct ext3_inode_info *ei = EXT3_I(inode);
816         int count = 0;
817         ext3_fsblk_t first_block = 0;
818
819
820         J_ASSERT(handle != NULL || create == 0);
821         depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
822
823         if (depth == 0)
824                 goto out;
825
826         partial = ext3_get_branch(inode, depth, offsets, chain, &err);
827
828         /* Simplest case - block found, no allocation needed */
829         if (!partial) {
830                 first_block = le32_to_cpu(chain[depth - 1].key);
831                 clear_buffer_new(bh_result);
832                 count++;
833                 /*map more blocks*/
834                 while (count < maxblocks && count <= blocks_to_boundary) {
835                         ext3_fsblk_t blk;
836
837                         if (!verify_chain(chain, chain + depth - 1)) {
838                                 /*
839                                  * Indirect block might be removed by
840                                  * truncate while we were reading it.
841                                  * Handling of that case: forget what we've
842                                  * got now. Flag the err as EAGAIN, so it
843                                  * will reread.
844                                  */
845                                 err = -EAGAIN;
846                                 count = 0;
847                                 break;
848                         }
849                         blk = le32_to_cpu(*(chain[depth-1].p + count));
850
851                         if (blk == first_block + count)
852                                 count++;
853                         else
854                                 break;
855                 }
856                 if (err != -EAGAIN)
857                         goto got_it;
858         }
859
860         /* Next simple case - plain lookup or failed read of indirect block */
861         if (!create || err == -EIO)
862                 goto cleanup;
863
864         mutex_lock(&ei->truncate_mutex);
865
866         /*
867          * If the indirect block is missing while we are reading
868          * the chain(ext3_get_branch() returns -EAGAIN err), or
869          * if the chain has been changed after we grab the semaphore,
870          * (either because another process truncated this branch, or
871          * another get_block allocated this branch) re-grab the chain to see if
872          * the request block has been allocated or not.
873          *
874          * Since we already block the truncate/other get_block
875          * at this point, we will have the current copy of the chain when we
876          * splice the branch into the tree.
877          */
878         if (err == -EAGAIN || !verify_chain(chain, partial)) {
879                 while (partial > chain) {
880                         brelse(partial->bh);
881                         partial--;
882                 }
883                 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
884                 if (!partial) {
885                         count++;
886                         mutex_unlock(&ei->truncate_mutex);
887                         if (err)
888                                 goto cleanup;
889                         clear_buffer_new(bh_result);
890                         goto got_it;
891                 }
892         }
893
894         /*
895          * Okay, we need to do block allocation.  Lazily initialize the block
896          * allocation info here if necessary
897         */
898         if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
899                 ext3_init_block_alloc_info(inode);
900
901         goal = ext3_find_goal(inode, iblock, partial);
902
903         /* the number of blocks need to allocate for [d,t]indirect blocks */
904         indirect_blks = (chain + depth) - partial - 1;
905
906         /*
907          * Next look up the indirect map to count the totoal number of
908          * direct blocks to allocate for this branch.
909          */
910         count = ext3_blks_to_allocate(partial, indirect_blks,
911                                         maxblocks, blocks_to_boundary);
912         /*
913          * Block out ext3_truncate while we alter the tree
914          */
915         err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
916                                 offsets + (partial - chain), partial);
917
918         /*
919          * The ext3_splice_branch call will free and forget any buffers
920          * on the new chain if there is a failure, but that risks using
921          * up transaction credits, especially for bitmaps where the
922          * credits cannot be returned.  Can we handle this somehow?  We
923          * may need to return -EAGAIN upwards in the worst case.  --sct
924          */
925         if (!err)
926                 err = ext3_splice_branch(handle, inode, iblock,
927                                         partial, indirect_blks, count);
928         mutex_unlock(&ei->truncate_mutex);
929         if (err)
930                 goto cleanup;
931
932         set_buffer_new(bh_result);
933 got_it:
934         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
935         if (count > blocks_to_boundary)
936                 set_buffer_boundary(bh_result);
937         err = count;
938         /* Clean up and exit */
939         partial = chain + depth - 1;    /* the whole chain */
940 cleanup:
941         while (partial > chain) {
942                 BUFFER_TRACE(partial->bh, "call brelse");
943                 brelse(partial->bh);
944                 partial--;
945         }
946         BUFFER_TRACE(bh_result, "returned");
947 out:
948         return err;
949 }
950
951 /* Maximum number of blocks we map for direct IO at once. */
952 #define DIO_MAX_BLOCKS 4096
953 /*
954  * Number of credits we need for writing DIO_MAX_BLOCKS:
955  * We need sb + group descriptor + bitmap + inode -> 4
956  * For B blocks with A block pointers per block we need:
957  * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
958  * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
959  */
960 #define DIO_CREDITS 25
961
962 static int ext3_get_block(struct inode *inode, sector_t iblock,
963                         struct buffer_head *bh_result, int create)
964 {
965         handle_t *handle = ext3_journal_current_handle();
966         int ret = 0, started = 0;
967         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
968
969         if (create && !handle) {        /* Direct IO write... */
970                 if (max_blocks > DIO_MAX_BLOCKS)
971                         max_blocks = DIO_MAX_BLOCKS;
972                 handle = ext3_journal_start(inode, DIO_CREDITS +
973                                 2 * EXT3_QUOTA_TRANS_BLOCKS(inode->i_sb));
974                 if (IS_ERR(handle)) {
975                         ret = PTR_ERR(handle);
976                         goto out;
977                 }
978                 started = 1;
979         }
980
981         ret = ext3_get_blocks_handle(handle, inode, iblock,
982                                         max_blocks, bh_result, create);
983         if (ret > 0) {
984                 bh_result->b_size = (ret << inode->i_blkbits);
985                 ret = 0;
986         }
987         if (started)
988                 ext3_journal_stop(handle);
989 out:
990         return ret;
991 }
992
993 int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
994                 u64 start, u64 len)
995 {
996         return generic_block_fiemap(inode, fieinfo, start, len,
997                                     ext3_get_block);
998 }
999
1000 /*
1001  * `handle' can be NULL if create is zero
1002  */
1003 struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
1004                                 long block, int create, int *errp)
1005 {
1006         struct buffer_head dummy;
1007         int fatal = 0, err;
1008
1009         J_ASSERT(handle != NULL || create == 0);
1010
1011         dummy.b_state = 0;
1012         dummy.b_blocknr = -1000;
1013         buffer_trace_init(&dummy.b_history);
1014         err = ext3_get_blocks_handle(handle, inode, block, 1,
1015                                         &dummy, create);
1016         /*
1017          * ext3_get_blocks_handle() returns number of blocks
1018          * mapped. 0 in case of a HOLE.
1019          */
1020         if (err > 0) {
1021                 if (err > 1)
1022                         WARN_ON(1);
1023                 err = 0;
1024         }
1025         *errp = err;
1026         if (!err && buffer_mapped(&dummy)) {
1027                 struct buffer_head *bh;
1028                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1029                 if (!bh) {
1030                         *errp = -EIO;
1031                         goto err;
1032                 }
1033                 if (buffer_new(&dummy)) {
1034                         J_ASSERT(create != 0);
1035                         J_ASSERT(handle != NULL);
1036
1037                         /*
1038                          * Now that we do not always journal data, we should
1039                          * keep in mind whether this should always journal the
1040                          * new buffer as metadata.  For now, regular file
1041                          * writes use ext3_get_block instead, so it's not a
1042                          * problem.
1043                          */
1044                         lock_buffer(bh);
1045                         BUFFER_TRACE(bh, "call get_create_access");
1046                         fatal = ext3_journal_get_create_access(handle, bh);
1047                         if (!fatal && !buffer_uptodate(bh)) {
1048                                 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1049                                 set_buffer_uptodate(bh);
1050                         }
1051                         unlock_buffer(bh);
1052                         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1053                         err = ext3_journal_dirty_metadata(handle, bh);
1054                         if (!fatal)
1055                                 fatal = err;
1056                 } else {
1057                         BUFFER_TRACE(bh, "not a new buffer");
1058                 }
1059                 if (fatal) {
1060                         *errp = fatal;
1061                         brelse(bh);
1062                         bh = NULL;
1063                 }
1064                 return bh;
1065         }
1066 err:
1067         return NULL;
1068 }
1069
1070 struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
1071                                int block, int create, int *err)
1072 {
1073         struct buffer_head * bh;
1074
1075         bh = ext3_getblk(handle, inode, block, create, err);
1076         if (!bh)
1077                 return bh;
1078         if (buffer_uptodate(bh))
1079                 return bh;
1080         ll_rw_block(READ_META, 1, &bh);
1081         wait_on_buffer(bh);
1082         if (buffer_uptodate(bh))
1083                 return bh;
1084         put_bh(bh);
1085         *err = -EIO;
1086         return NULL;
1087 }
1088
1089 static int walk_page_buffers(   handle_t *handle,
1090                                 struct buffer_head *head,
1091                                 unsigned from,
1092                                 unsigned to,
1093                                 int *partial,
1094                                 int (*fn)(      handle_t *handle,
1095                                                 struct buffer_head *bh))
1096 {
1097         struct buffer_head *bh;
1098         unsigned block_start, block_end;
1099         unsigned blocksize = head->b_size;
1100         int err, ret = 0;
1101         struct buffer_head *next;
1102
1103         for (   bh = head, block_start = 0;
1104                 ret == 0 && (bh != head || !block_start);
1105                 block_start = block_end, bh = next)
1106         {
1107                 next = bh->b_this_page;
1108                 block_end = block_start + blocksize;
1109                 if (block_end <= from || block_start >= to) {
1110                         if (partial && !buffer_uptodate(bh))
1111                                 *partial = 1;
1112                         continue;
1113                 }
1114                 err = (*fn)(handle, bh);
1115                 if (!ret)
1116                         ret = err;
1117         }
1118         return ret;
1119 }
1120
1121 /*
1122  * To preserve ordering, it is essential that the hole instantiation and
1123  * the data write be encapsulated in a single transaction.  We cannot
1124  * close off a transaction and start a new one between the ext3_get_block()
1125  * and the commit_write().  So doing the journal_start at the start of
1126  * prepare_write() is the right place.
1127  *
1128  * Also, this function can nest inside ext3_writepage() ->
1129  * block_write_full_page(). In that case, we *know* that ext3_writepage()
1130  * has generated enough buffer credits to do the whole page.  So we won't
1131  * block on the journal in that case, which is good, because the caller may
1132  * be PF_MEMALLOC.
1133  *
1134  * By accident, ext3 can be reentered when a transaction is open via
1135  * quota file writes.  If we were to commit the transaction while thus
1136  * reentered, there can be a deadlock - we would be holding a quota
1137  * lock, and the commit would never complete if another thread had a
1138  * transaction open and was blocking on the quota lock - a ranking
1139  * violation.
1140  *
1141  * So what we do is to rely on the fact that journal_stop/journal_start
1142  * will _not_ run commit under these circumstances because handle->h_ref
1143  * is elevated.  We'll still have enough credits for the tiny quotafile
1144  * write.
1145  */
1146 static int do_journal_get_write_access(handle_t *handle,
1147                                         struct buffer_head *bh)
1148 {
1149         if (!buffer_mapped(bh) || buffer_freed(bh))
1150                 return 0;
1151         return ext3_journal_get_write_access(handle, bh);
1152 }
1153
1154 static int ext3_write_begin(struct file *file, struct address_space *mapping,
1155                                 loff_t pos, unsigned len, unsigned flags,
1156                                 struct page **pagep, void **fsdata)
1157 {
1158         struct inode *inode = mapping->host;
1159         int ret;
1160         handle_t *handle;
1161         int retries = 0;
1162         struct page *page;
1163         pgoff_t index;
1164         unsigned from, to;
1165         /* Reserve one block more for addition to orphan list in case
1166          * we allocate blocks but write fails for some reason */
1167         int needed_blocks = ext3_writepage_trans_blocks(inode) + 1;
1168
1169         index = pos >> PAGE_CACHE_SHIFT;
1170         from = pos & (PAGE_CACHE_SIZE - 1);
1171         to = from + len;
1172
1173 retry:
1174         page = grab_cache_page_write_begin(mapping, index, flags);
1175         if (!page)
1176                 return -ENOMEM;
1177         *pagep = page;
1178
1179         handle = ext3_journal_start(inode, needed_blocks);
1180         if (IS_ERR(handle)) {
1181                 unlock_page(page);
1182                 page_cache_release(page);
1183                 ret = PTR_ERR(handle);
1184                 goto out;
1185         }
1186         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1187                                                         ext3_get_block);
1188         if (ret)
1189                 goto write_begin_failed;
1190
1191         if (ext3_should_journal_data(inode)) {
1192                 ret = walk_page_buffers(handle, page_buffers(page),
1193                                 from, to, NULL, do_journal_get_write_access);
1194         }
1195 write_begin_failed:
1196         if (ret) {
1197                 /*
1198                  * block_write_begin may have instantiated a few blocks
1199                  * outside i_size.  Trim these off again. Don't need
1200                  * i_size_read because we hold i_mutex.
1201                  *
1202                  * Add inode to orphan list in case we crash before truncate
1203                  * finishes. Do this only if ext3_can_truncate() agrees so
1204                  * that orphan processing code is happy.
1205                  */
1206                 if (pos + len > inode->i_size && ext3_can_truncate(inode))
1207                         ext3_orphan_add(handle, inode);
1208                 ext3_journal_stop(handle);
1209                 unlock_page(page);
1210                 page_cache_release(page);
1211                 if (pos + len > inode->i_size)
1212                         ext3_truncate(inode);
1213         }
1214         if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1215                 goto retry;
1216 out:
1217         return ret;
1218 }
1219
1220
1221 int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1222 {
1223         int err = journal_dirty_data(handle, bh);
1224         if (err)
1225                 ext3_journal_abort_handle(__func__, __func__,
1226                                                 bh, handle, err);
1227         return err;
1228 }
1229
1230 /* For ordered writepage and write_end functions */
1231 static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1232 {
1233         /*
1234          * Write could have mapped the buffer but it didn't copy the data in
1235          * yet. So avoid filing such buffer into a transaction.
1236          */
1237         if (buffer_mapped(bh) && buffer_uptodate(bh))
1238                 return ext3_journal_dirty_data(handle, bh);
1239         return 0;
1240 }
1241
1242 /* For write_end() in data=journal mode */
1243 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1244 {
1245         if (!buffer_mapped(bh) || buffer_freed(bh))
1246                 return 0;
1247         set_buffer_uptodate(bh);
1248         return ext3_journal_dirty_metadata(handle, bh);
1249 }
1250
1251 /*
1252  * This is nasty and subtle: ext3_write_begin() could have allocated blocks
1253  * for the whole page but later we failed to copy the data in. Update inode
1254  * size according to what we managed to copy. The rest is going to be
1255  * truncated in write_end function.
1256  */
1257 static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied)
1258 {
1259         /* What matters to us is i_disksize. We don't write i_size anywhere */
1260         if (pos + copied > inode->i_size)
1261                 i_size_write(inode, pos + copied);
1262         if (pos + copied > EXT3_I(inode)->i_disksize) {
1263                 EXT3_I(inode)->i_disksize = pos + copied;
1264                 mark_inode_dirty(inode);
1265         }
1266 }
1267
1268 /*
1269  * We need to pick up the new inode size which generic_commit_write gave us
1270  * `file' can be NULL - eg, when called from page_symlink().
1271  *
1272  * ext3 never places buffers on inode->i_mapping->private_list.  metadata
1273  * buffers are managed internally.
1274  */
1275 static int ext3_ordered_write_end(struct file *file,
1276                                 struct address_space *mapping,
1277                                 loff_t pos, unsigned len, unsigned copied,
1278                                 struct page *page, void *fsdata)
1279 {
1280         handle_t *handle = ext3_journal_current_handle();
1281         struct inode *inode = file->f_mapping->host;
1282         unsigned from, to;
1283         int ret = 0, ret2;
1284
1285         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1286
1287         from = pos & (PAGE_CACHE_SIZE - 1);
1288         to = from + copied;
1289         ret = walk_page_buffers(handle, page_buffers(page),
1290                 from, to, NULL, journal_dirty_data_fn);
1291
1292         if (ret == 0)
1293                 update_file_sizes(inode, pos, copied);
1294         /*
1295          * There may be allocated blocks outside of i_size because
1296          * we failed to copy some data. Prepare for truncate.
1297          */
1298         if (pos + len > inode->i_size && ext3_can_truncate(inode))
1299                 ext3_orphan_add(handle, inode);
1300         ret2 = ext3_journal_stop(handle);
1301         if (!ret)
1302                 ret = ret2;
1303         unlock_page(page);
1304         page_cache_release(page);
1305
1306         if (pos + len > inode->i_size)
1307                 ext3_truncate(inode);
1308         return ret ? ret : copied;
1309 }
1310
1311 static int ext3_writeback_write_end(struct file *file,
1312                                 struct address_space *mapping,
1313                                 loff_t pos, unsigned len, unsigned copied,
1314                                 struct page *page, void *fsdata)
1315 {
1316         handle_t *handle = ext3_journal_current_handle();
1317         struct inode *inode = file->f_mapping->host;
1318         int ret;
1319
1320         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1321         update_file_sizes(inode, pos, copied);
1322         /*
1323          * There may be allocated blocks outside of i_size because
1324          * we failed to copy some data. Prepare for truncate.
1325          */
1326         if (pos + len > inode->i_size && ext3_can_truncate(inode))
1327                 ext3_orphan_add(handle, inode);
1328         ret = ext3_journal_stop(handle);
1329         unlock_page(page);
1330         page_cache_release(page);
1331
1332         if (pos + len > inode->i_size)
1333                 ext3_truncate(inode);
1334         return ret ? ret : copied;
1335 }
1336
1337 static int ext3_journalled_write_end(struct file *file,
1338                                 struct address_space *mapping,
1339                                 loff_t pos, unsigned len, unsigned copied,
1340                                 struct page *page, void *fsdata)
1341 {
1342         handle_t *handle = ext3_journal_current_handle();
1343         struct inode *inode = mapping->host;
1344         int ret = 0, ret2;
1345         int partial = 0;
1346         unsigned from, to;
1347
1348         from = pos & (PAGE_CACHE_SIZE - 1);
1349         to = from + len;
1350
1351         if (copied < len) {
1352                 if (!PageUptodate(page))
1353                         copied = 0;
1354                 page_zero_new_buffers(page, from + copied, to);
1355                 to = from + copied;
1356         }
1357
1358         ret = walk_page_buffers(handle, page_buffers(page), from,
1359                                 to, &partial, write_end_fn);
1360         if (!partial)
1361                 SetPageUptodate(page);
1362
1363         if (pos + copied > inode->i_size)
1364                 i_size_write(inode, pos + copied);
1365         /*
1366          * There may be allocated blocks outside of i_size because
1367          * we failed to copy some data. Prepare for truncate.
1368          */
1369         if (pos + len > inode->i_size && ext3_can_truncate(inode))
1370                 ext3_orphan_add(handle, inode);
1371         EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
1372         if (inode->i_size > EXT3_I(inode)->i_disksize) {
1373                 EXT3_I(inode)->i_disksize = inode->i_size;
1374                 ret2 = ext3_mark_inode_dirty(handle, inode);
1375                 if (!ret)
1376                         ret = ret2;
1377         }
1378
1379         ret2 = ext3_journal_stop(handle);
1380         if (!ret)
1381                 ret = ret2;
1382         unlock_page(page);
1383         page_cache_release(page);
1384
1385         if (pos + len > inode->i_size)
1386                 ext3_truncate(inode);
1387         return ret ? ret : copied;
1388 }
1389
1390 /*
1391  * bmap() is special.  It gets used by applications such as lilo and by
1392  * the swapper to find the on-disk block of a specific piece of data.
1393  *
1394  * Naturally, this is dangerous if the block concerned is still in the
1395  * journal.  If somebody makes a swapfile on an ext3 data-journaling
1396  * filesystem and enables swap, then they may get a nasty shock when the
1397  * data getting swapped to that swapfile suddenly gets overwritten by
1398  * the original zero's written out previously to the journal and
1399  * awaiting writeback in the kernel's buffer cache.
1400  *
1401  * So, if we see any bmap calls here on a modified, data-journaled file,
1402  * take extra steps to flush any blocks which might be in the cache.
1403  */
1404 static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
1405 {
1406         struct inode *inode = mapping->host;
1407         journal_t *journal;
1408         int err;
1409
1410         if (EXT3_I(inode)->i_state & EXT3_STATE_JDATA) {
1411                 /*
1412                  * This is a REALLY heavyweight approach, but the use of
1413                  * bmap on dirty files is expected to be extremely rare:
1414                  * only if we run lilo or swapon on a freshly made file
1415                  * do we expect this to happen.
1416                  *
1417                  * (bmap requires CAP_SYS_RAWIO so this does not
1418                  * represent an unprivileged user DOS attack --- we'd be
1419                  * in trouble if mortal users could trigger this path at
1420                  * will.)
1421                  *
1422                  * NB. EXT3_STATE_JDATA is not set on files other than
1423                  * regular files.  If somebody wants to bmap a directory
1424                  * or symlink and gets confused because the buffer
1425                  * hasn't yet been flushed to disk, they deserve
1426                  * everything they get.
1427                  */
1428
1429                 EXT3_I(inode)->i_state &= ~EXT3_STATE_JDATA;
1430                 journal = EXT3_JOURNAL(inode);
1431                 journal_lock_updates(journal);
1432                 err = journal_flush(journal);
1433                 journal_unlock_updates(journal);
1434
1435                 if (err)
1436                         return 0;
1437         }
1438
1439         return generic_block_bmap(mapping,block,ext3_get_block);
1440 }
1441
1442 static int bget_one(handle_t *handle, struct buffer_head *bh)
1443 {
1444         get_bh(bh);
1445         return 0;
1446 }
1447
1448 static int bput_one(handle_t *handle, struct buffer_head *bh)
1449 {
1450         put_bh(bh);
1451         return 0;
1452 }
1453
1454 static int buffer_unmapped(handle_t *handle, struct buffer_head *bh)
1455 {
1456         return !buffer_mapped(bh);
1457 }
1458
1459 /*
1460  * Note that we always start a transaction even if we're not journalling
1461  * data.  This is to preserve ordering: any hole instantiation within
1462  * __block_write_full_page -> ext3_get_block() should be journalled
1463  * along with the data so we don't crash and then get metadata which
1464  * refers to old data.
1465  *
1466  * In all journalling modes block_write_full_page() will start the I/O.
1467  *
1468  * Problem:
1469  *
1470  *      ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1471  *              ext3_writepage()
1472  *
1473  * Similar for:
1474  *
1475  *      ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1476  *
1477  * Same applies to ext3_get_block().  We will deadlock on various things like
1478  * lock_journal and i_truncate_mutex.
1479  *
1480  * Setting PF_MEMALLOC here doesn't work - too many internal memory
1481  * allocations fail.
1482  *
1483  * 16May01: If we're reentered then journal_current_handle() will be
1484  *          non-zero. We simply *return*.
1485  *
1486  * 1 July 2001: @@@ FIXME:
1487  *   In journalled data mode, a data buffer may be metadata against the
1488  *   current transaction.  But the same file is part of a shared mapping
1489  *   and someone does a writepage() on it.
1490  *
1491  *   We will move the buffer onto the async_data list, but *after* it has
1492  *   been dirtied. So there's a small window where we have dirty data on
1493  *   BJ_Metadata.
1494  *
1495  *   Note that this only applies to the last partial page in the file.  The
1496  *   bit which block_write_full_page() uses prepare/commit for.  (That's
1497  *   broken code anyway: it's wrong for msync()).
1498  *
1499  *   It's a rare case: affects the final partial page, for journalled data
1500  *   where the file is subject to bith write() and writepage() in the same
1501  *   transction.  To fix it we'll need a custom block_write_full_page().
1502  *   We'll probably need that anyway for journalling writepage() output.
1503  *
1504  * We don't honour synchronous mounts for writepage().  That would be
1505  * disastrous.  Any write() or metadata operation will sync the fs for
1506  * us.
1507  *
1508  * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1509  * we don't need to open a transaction here.
1510  */
1511 static int ext3_ordered_writepage(struct page *page,
1512                                 struct writeback_control *wbc)
1513 {
1514         struct inode *inode = page->mapping->host;
1515         struct buffer_head *page_bufs;
1516         handle_t *handle = NULL;
1517         int ret = 0;
1518         int err;
1519
1520         J_ASSERT(PageLocked(page));
1521
1522         /*
1523          * We give up here if we're reentered, because it might be for a
1524          * different filesystem.
1525          */
1526         if (ext3_journal_current_handle())
1527                 goto out_fail;
1528
1529         if (!page_has_buffers(page)) {
1530                 create_empty_buffers(page, inode->i_sb->s_blocksize,
1531                                 (1 << BH_Dirty)|(1 << BH_Uptodate));
1532                 page_bufs = page_buffers(page);
1533         } else {
1534                 page_bufs = page_buffers(page);
1535                 if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE,
1536                                        NULL, buffer_unmapped)) {
1537                         /* Provide NULL get_block() to catch bugs if buffers
1538                          * weren't really mapped */
1539                         return block_write_full_page(page, NULL, wbc);
1540                 }
1541         }
1542         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1543
1544         if (IS_ERR(handle)) {
1545                 ret = PTR_ERR(handle);
1546                 goto out_fail;
1547         }
1548
1549         walk_page_buffers(handle, page_bufs, 0,
1550                         PAGE_CACHE_SIZE, NULL, bget_one);
1551
1552         ret = block_write_full_page(page, ext3_get_block, wbc);
1553
1554         /*
1555          * The page can become unlocked at any point now, and
1556          * truncate can then come in and change things.  So we
1557          * can't touch *page from now on.  But *page_bufs is
1558          * safe due to elevated refcount.
1559          */
1560
1561         /*
1562          * And attach them to the current transaction.  But only if
1563          * block_write_full_page() succeeded.  Otherwise they are unmapped,
1564          * and generally junk.
1565          */
1566         if (ret == 0) {
1567                 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1568                                         NULL, journal_dirty_data_fn);
1569                 if (!ret)
1570                         ret = err;
1571         }
1572         walk_page_buffers(handle, page_bufs, 0,
1573                         PAGE_CACHE_SIZE, NULL, bput_one);
1574         err = ext3_journal_stop(handle);
1575         if (!ret)
1576                 ret = err;
1577         return ret;
1578
1579 out_fail:
1580         redirty_page_for_writepage(wbc, page);
1581         unlock_page(page);
1582         return ret;
1583 }
1584
1585 static int ext3_writeback_writepage(struct page *page,
1586                                 struct writeback_control *wbc)
1587 {
1588         struct inode *inode = page->mapping->host;
1589         handle_t *handle = NULL;
1590         int ret = 0;
1591         int err;
1592
1593         if (ext3_journal_current_handle())
1594                 goto out_fail;
1595
1596         if (page_has_buffers(page)) {
1597                 if (!walk_page_buffers(NULL, page_buffers(page), 0,
1598                                       PAGE_CACHE_SIZE, NULL, buffer_unmapped)) {
1599                         /* Provide NULL get_block() to catch bugs if buffers
1600                          * weren't really mapped */
1601                         return block_write_full_page(page, NULL, wbc);
1602                 }
1603         }
1604
1605         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1606         if (IS_ERR(handle)) {
1607                 ret = PTR_ERR(handle);
1608                 goto out_fail;
1609         }
1610
1611         if (test_opt(inode->i_sb, NOBH) && ext3_should_writeback_data(inode))
1612                 ret = nobh_writepage(page, ext3_get_block, wbc);
1613         else
1614                 ret = block_write_full_page(page, ext3_get_block, wbc);
1615
1616         err = ext3_journal_stop(handle);
1617         if (!ret)
1618                 ret = err;
1619         return ret;
1620
1621 out_fail:
1622         redirty_page_for_writepage(wbc, page);
1623         unlock_page(page);
1624         return ret;
1625 }
1626
1627 static int ext3_journalled_writepage(struct page *page,
1628                                 struct writeback_control *wbc)
1629 {
1630         struct inode *inode = page->mapping->host;
1631         handle_t *handle = NULL;
1632         int ret = 0;
1633         int err;
1634
1635         if (ext3_journal_current_handle())
1636                 goto no_write;
1637
1638         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1639         if (IS_ERR(handle)) {
1640                 ret = PTR_ERR(handle);
1641                 goto no_write;
1642         }
1643
1644         if (!page_has_buffers(page) || PageChecked(page)) {
1645                 /*
1646                  * It's mmapped pagecache.  Add buffers and journal it.  There
1647                  * doesn't seem much point in redirtying the page here.
1648                  */
1649                 ClearPageChecked(page);
1650                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1651                                         ext3_get_block);
1652                 if (ret != 0) {
1653                         ext3_journal_stop(handle);
1654                         goto out_unlock;
1655                 }
1656                 ret = walk_page_buffers(handle, page_buffers(page), 0,
1657                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1658
1659                 err = walk_page_buffers(handle, page_buffers(page), 0,
1660                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
1661                 if (ret == 0)
1662                         ret = err;
1663                 EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
1664                 unlock_page(page);
1665         } else {
1666                 /*
1667                  * It may be a page full of checkpoint-mode buffers.  We don't
1668                  * really know unless we go poke around in the buffer_heads.
1669                  * But block_write_full_page will do the right thing.
1670                  */
1671                 ret = block_write_full_page(page, ext3_get_block, wbc);
1672         }
1673         err = ext3_journal_stop(handle);
1674         if (!ret)
1675                 ret = err;
1676 out:
1677         return ret;
1678
1679 no_write:
1680         redirty_page_for_writepage(wbc, page);
1681 out_unlock:
1682         unlock_page(page);
1683         goto out;
1684 }
1685
1686 static int ext3_readpage(struct file *file, struct page *page)
1687 {
1688         return mpage_readpage(page, ext3_get_block);
1689 }
1690
1691 static int
1692 ext3_readpages(struct file *file, struct address_space *mapping,
1693                 struct list_head *pages, unsigned nr_pages)
1694 {
1695         return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
1696 }
1697
1698 static void ext3_invalidatepage(struct page *page, unsigned long offset)
1699 {
1700         journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1701
1702         /*
1703          * If it's a full truncate we just forget about the pending dirtying
1704          */
1705         if (offset == 0)
1706                 ClearPageChecked(page);
1707
1708         journal_invalidatepage(journal, page, offset);
1709 }
1710
1711 static int ext3_releasepage(struct page *page, gfp_t wait)
1712 {
1713         journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1714
1715         WARN_ON(PageChecked(page));
1716         if (!page_has_buffers(page))
1717                 return 0;
1718         return journal_try_to_free_buffers(journal, page, wait);
1719 }
1720
1721 /*
1722  * If the O_DIRECT write will extend the file then add this inode to the
1723  * orphan list.  So recovery will truncate it back to the original size
1724  * if the machine crashes during the write.
1725  *
1726  * If the O_DIRECT write is intantiating holes inside i_size and the machine
1727  * crashes then stale disk data _may_ be exposed inside the file. But current
1728  * VFS code falls back into buffered path in that case so we are safe.
1729  */
1730 static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
1731                         const struct iovec *iov, loff_t offset,
1732                         unsigned long nr_segs)
1733 {
1734         struct file *file = iocb->ki_filp;
1735         struct inode *inode = file->f_mapping->host;
1736         struct ext3_inode_info *ei = EXT3_I(inode);
1737         handle_t *handle;
1738         ssize_t ret;
1739         int orphan = 0;
1740         size_t count = iov_length(iov, nr_segs);
1741         int retries = 0;
1742
1743         if (rw == WRITE) {
1744                 loff_t final_size = offset + count;
1745
1746                 if (final_size > inode->i_size) {
1747                         /* Credits for sb + inode write */
1748                         handle = ext3_journal_start(inode, 2);
1749                         if (IS_ERR(handle)) {
1750                                 ret = PTR_ERR(handle);
1751                                 goto out;
1752                         }
1753                         ret = ext3_orphan_add(handle, inode);
1754                         if (ret) {
1755                                 ext3_journal_stop(handle);
1756                                 goto out;
1757                         }
1758                         orphan = 1;
1759                         ei->i_disksize = inode->i_size;
1760                         ext3_journal_stop(handle);
1761                 }
1762         }
1763
1764 retry:
1765         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1766                                  offset, nr_segs,
1767                                  ext3_get_block, NULL);
1768         if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1769                 goto retry;
1770
1771         if (orphan) {
1772                 int err;
1773
1774                 /* Credits for sb + inode write */
1775                 handle = ext3_journal_start(inode, 2);
1776                 if (IS_ERR(handle)) {
1777                         /* This is really bad luck. We've written the data
1778                          * but cannot extend i_size. Bail out and pretend
1779                          * the write failed... */
1780                         ret = PTR_ERR(handle);
1781                         goto out;
1782                 }
1783                 if (inode->i_nlink)
1784                         ext3_orphan_del(handle, inode);
1785                 if (ret > 0) {
1786                         loff_t end = offset + ret;
1787                         if (end > inode->i_size) {
1788                                 ei->i_disksize = end;
1789                                 i_size_write(inode, end);
1790                                 /*
1791                                  * We're going to return a positive `ret'
1792                                  * here due to non-zero-length I/O, so there's
1793                                  * no way of reporting error returns from
1794                                  * ext3_mark_inode_dirty() to userspace.  So
1795                                  * ignore it.
1796                                  */
1797                                 ext3_mark_inode_dirty(handle, inode);
1798                         }
1799                 }
1800                 err = ext3_journal_stop(handle);
1801                 if (ret == 0)
1802                         ret = err;
1803         }
1804 out:
1805         return ret;
1806 }
1807
1808 /*
1809  * Pages can be marked dirty completely asynchronously from ext3's journalling
1810  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
1811  * much here because ->set_page_dirty is called under VFS locks.  The page is
1812  * not necessarily locked.
1813  *
1814  * We cannot just dirty the page and leave attached buffers clean, because the
1815  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
1816  * or jbddirty because all the journalling code will explode.
1817  *
1818  * So what we do is to mark the page "pending dirty" and next time writepage
1819  * is called, propagate that into the buffers appropriately.
1820  */
1821 static int ext3_journalled_set_page_dirty(struct page *page)
1822 {
1823         SetPageChecked(page);
1824         return __set_page_dirty_nobuffers(page);
1825 }
1826
1827 static const struct address_space_operations ext3_ordered_aops = {
1828         .readpage               = ext3_readpage,
1829         .readpages              = ext3_readpages,
1830         .writepage              = ext3_ordered_writepage,
1831         .sync_page              = block_sync_page,
1832         .write_begin            = ext3_write_begin,
1833         .write_end              = ext3_ordered_write_end,
1834         .bmap                   = ext3_bmap,
1835         .invalidatepage         = ext3_invalidatepage,
1836         .releasepage            = ext3_releasepage,
1837         .direct_IO              = ext3_direct_IO,
1838         .migratepage            = buffer_migrate_page,
1839         .is_partially_uptodate  = block_is_partially_uptodate,
1840         .error_remove_page      = generic_error_remove_page,
1841 };
1842
1843 static const struct address_space_operations ext3_writeback_aops = {
1844         .readpage               = ext3_readpage,
1845         .readpages              = ext3_readpages,
1846         .writepage              = ext3_writeback_writepage,
1847         .sync_page              = block_sync_page,
1848         .write_begin            = ext3_write_begin,
1849         .write_end              = ext3_writeback_write_end,
1850         .bmap                   = ext3_bmap,
1851         .invalidatepage         = ext3_invalidatepage,
1852         .releasepage            = ext3_releasepage,
1853         .direct_IO              = ext3_direct_IO,
1854         .migratepage            = buffer_migrate_page,
1855         .is_partially_uptodate  = block_is_partially_uptodate,
1856         .error_remove_page      = generic_error_remove_page,
1857 };
1858
1859 static const struct address_space_operations ext3_journalled_aops = {
1860         .readpage               = ext3_readpage,
1861         .readpages              = ext3_readpages,
1862         .writepage              = ext3_journalled_writepage,
1863         .sync_page              = block_sync_page,
1864         .write_begin            = ext3_write_begin,
1865         .write_end              = ext3_journalled_write_end,
1866         .set_page_dirty         = ext3_journalled_set_page_dirty,
1867         .bmap                   = ext3_bmap,
1868         .invalidatepage         = ext3_invalidatepage,
1869         .releasepage            = ext3_releasepage,
1870         .is_partially_uptodate  = block_is_partially_uptodate,
1871         .error_remove_page      = generic_error_remove_page,
1872 };
1873
1874 void ext3_set_aops(struct inode *inode)
1875 {
1876         if (ext3_should_order_data(inode))
1877                 inode->i_mapping->a_ops = &ext3_ordered_aops;
1878         else if (ext3_should_writeback_data(inode))
1879                 inode->i_mapping->a_ops = &ext3_writeback_aops;
1880         else
1881                 inode->i_mapping->a_ops = &ext3_journalled_aops;
1882 }
1883
1884 /*
1885  * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
1886  * up to the end of the block which corresponds to `from'.
1887  * This required during truncate. We need to physically zero the tail end
1888  * of that block so it doesn't yield old data if the file is later grown.
1889  */
1890 static int ext3_block_truncate_page(handle_t *handle, struct page *page,
1891                 struct address_space *mapping, loff_t from)
1892 {
1893         ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1894         unsigned offset = from & (PAGE_CACHE_SIZE-1);
1895         unsigned blocksize, iblock, length, pos;
1896         struct inode *inode = mapping->host;
1897         struct buffer_head *bh;
1898         int err = 0;
1899
1900         blocksize = inode->i_sb->s_blocksize;
1901         length = blocksize - (offset & (blocksize - 1));
1902         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1903
1904         /*
1905          * For "nobh" option,  we can only work if we don't need to
1906          * read-in the page - otherwise we create buffers to do the IO.
1907          */
1908         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
1909              ext3_should_writeback_data(inode) && PageUptodate(page)) {
1910                 zero_user(page, offset, length);
1911                 set_page_dirty(page);
1912                 goto unlock;
1913         }
1914
1915         if (!page_has_buffers(page))
1916                 create_empty_buffers(page, blocksize, 0);
1917
1918         /* Find the buffer that contains "offset" */
1919         bh = page_buffers(page);
1920         pos = blocksize;
1921         while (offset >= pos) {
1922                 bh = bh->b_this_page;
1923                 iblock++;
1924                 pos += blocksize;
1925         }
1926
1927         err = 0;
1928         if (buffer_freed(bh)) {
1929                 BUFFER_TRACE(bh, "freed: skip");
1930                 goto unlock;
1931         }
1932
1933         if (!buffer_mapped(bh)) {
1934                 BUFFER_TRACE(bh, "unmapped");
1935                 ext3_get_block(inode, iblock, bh, 0);
1936                 /* unmapped? It's a hole - nothing to do */
1937                 if (!buffer_mapped(bh)) {
1938                         BUFFER_TRACE(bh, "still unmapped");
1939                         goto unlock;
1940                 }
1941         }
1942
1943         /* Ok, it's mapped. Make sure it's up-to-date */
1944         if (PageUptodate(page))
1945                 set_buffer_uptodate(bh);
1946
1947         if (!buffer_uptodate(bh)) {
1948                 err = -EIO;
1949                 ll_rw_block(READ, 1, &bh);
1950                 wait_on_buffer(bh);
1951                 /* Uhhuh. Read error. Complain and punt. */
1952                 if (!buffer_uptodate(bh))
1953                         goto unlock;
1954         }
1955
1956         if (ext3_should_journal_data(inode)) {
1957                 BUFFER_TRACE(bh, "get write access");
1958                 err = ext3_journal_get_write_access(handle, bh);
1959                 if (err)
1960                         goto unlock;
1961         }
1962
1963         zero_user(page, offset, length);
1964         BUFFER_TRACE(bh, "zeroed end of block");
1965
1966         err = 0;
1967         if (ext3_should_journal_data(inode)) {
1968                 err = ext3_journal_dirty_metadata(handle, bh);
1969         } else {
1970                 if (ext3_should_order_data(inode))
1971                         err = ext3_journal_dirty_data(handle, bh);
1972                 mark_buffer_dirty(bh);
1973         }
1974
1975 unlock:
1976         unlock_page(page);
1977         page_cache_release(page);
1978         return err;
1979 }
1980
1981 /*
1982  * Probably it should be a library function... search for first non-zero word
1983  * or memcmp with zero_page, whatever is better for particular architecture.
1984  * Linus?
1985  */
1986 static inline int all_zeroes(__le32 *p, __le32 *q)
1987 {
1988         while (p < q)
1989                 if (*p++)
1990                         return 0;
1991         return 1;
1992 }
1993
1994 /**
1995  *      ext3_find_shared - find the indirect blocks for partial truncation.
1996  *      @inode:   inode in question
1997  *      @depth:   depth of the affected branch
1998  *      @offsets: offsets of pointers in that branch (see ext3_block_to_path)
1999  *      @chain:   place to store the pointers to partial indirect blocks
2000  *      @top:     place to the (detached) top of branch
2001  *
2002  *      This is a helper function used by ext3_truncate().
2003  *
2004  *      When we do truncate() we may have to clean the ends of several
2005  *      indirect blocks but leave the blocks themselves alive. Block is
2006  *      partially truncated if some data below the new i_size is refered
2007  *      from it (and it is on the path to the first completely truncated
2008  *      data block, indeed).  We have to free the top of that path along
2009  *      with everything to the right of the path. Since no allocation
2010  *      past the truncation point is possible until ext3_truncate()
2011  *      finishes, we may safely do the latter, but top of branch may
2012  *      require special attention - pageout below the truncation point
2013  *      might try to populate it.
2014  *
2015  *      We atomically detach the top of branch from the tree, store the
2016  *      block number of its root in *@top, pointers to buffer_heads of
2017  *      partially truncated blocks - in @chain[].bh and pointers to
2018  *      their last elements that should not be removed - in
2019  *      @chain[].p. Return value is the pointer to last filled element
2020  *      of @chain.
2021  *
2022  *      The work left to caller to do the actual freeing of subtrees:
2023  *              a) free the subtree starting from *@top
2024  *              b) free the subtrees whose roots are stored in
2025  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
2026  *              c) free the subtrees growing from the inode past the @chain[0].
2027  *                      (no partially truncated stuff there).  */
2028
2029 static Indirect *ext3_find_shared(struct inode *inode, int depth,
2030                         int offsets[4], Indirect chain[4], __le32 *top)
2031 {
2032         Indirect *partial, *p;
2033         int k, err;
2034
2035         *top = 0;
2036         /* Make k index the deepest non-null offest + 1 */
2037         for (k = depth; k > 1 && !offsets[k-1]; k--)
2038                 ;
2039         partial = ext3_get_branch(inode, k, offsets, chain, &err);
2040         /* Writer: pointers */
2041         if (!partial)
2042                 partial = chain + k-1;
2043         /*
2044          * If the branch acquired continuation since we've looked at it -
2045          * fine, it should all survive and (new) top doesn't belong to us.
2046          */
2047         if (!partial->key && *partial->p)
2048                 /* Writer: end */
2049                 goto no_top;
2050         for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
2051                 ;
2052         /*
2053          * OK, we've found the last block that must survive. The rest of our
2054          * branch should be detached before unlocking. However, if that rest
2055          * of branch is all ours and does not grow immediately from the inode
2056          * it's easier to cheat and just decrement partial->p.
2057          */
2058         if (p == chain + k - 1 && p > chain) {
2059                 p->p--;
2060         } else {
2061                 *top = *p->p;
2062                 /* Nope, don't do this in ext3.  Must leave the tree intact */
2063 #if 0
2064                 *p->p = 0;
2065 #endif
2066         }
2067         /* Writer: end */
2068
2069         while(partial > p) {
2070                 brelse(partial->bh);
2071                 partial--;
2072         }
2073 no_top:
2074         return partial;
2075 }
2076
2077 /*
2078  * Zero a number of block pointers in either an inode or an indirect block.
2079  * If we restart the transaction we must again get write access to the
2080  * indirect block for further modification.
2081  *
2082  * We release `count' blocks on disk, but (last - first) may be greater
2083  * than `count' because there can be holes in there.
2084  */
2085 static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
2086                 struct buffer_head *bh, ext3_fsblk_t block_to_free,
2087                 unsigned long count, __le32 *first, __le32 *last)
2088 {
2089         __le32 *p;
2090         if (try_to_extend_transaction(handle, inode)) {
2091                 if (bh) {
2092                         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2093                         ext3_journal_dirty_metadata(handle, bh);
2094                 }
2095                 ext3_mark_inode_dirty(handle, inode);
2096                 truncate_restart_transaction(handle, inode);
2097                 if (bh) {
2098                         BUFFER_TRACE(bh, "retaking write access");
2099                         ext3_journal_get_write_access(handle, bh);
2100                 }
2101         }
2102
2103         /*
2104          * Any buffers which are on the journal will be in memory. We find
2105          * them on the hash table so journal_revoke() will run journal_forget()
2106          * on them.  We've already detached each block from the file, so
2107          * bforget() in journal_forget() should be safe.
2108          *
2109          * AKPM: turn on bforget in journal_forget()!!!
2110          */
2111         for (p = first; p < last; p++) {
2112                 u32 nr = le32_to_cpu(*p);
2113                 if (nr) {
2114                         struct buffer_head *bh;
2115
2116                         *p = 0;
2117                         bh = sb_find_get_block(inode->i_sb, nr);
2118                         ext3_forget(handle, 0, inode, bh, nr);
2119                 }
2120         }
2121
2122         ext3_free_blocks(handle, inode, block_to_free, count);
2123 }
2124
2125 /**
2126  * ext3_free_data - free a list of data blocks
2127  * @handle:     handle for this transaction
2128  * @inode:      inode we are dealing with
2129  * @this_bh:    indirect buffer_head which contains *@first and *@last
2130  * @first:      array of block numbers
2131  * @last:       points immediately past the end of array
2132  *
2133  * We are freeing all blocks refered from that array (numbers are stored as
2134  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2135  *
2136  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
2137  * blocks are contiguous then releasing them at one time will only affect one
2138  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2139  * actually use a lot of journal space.
2140  *
2141  * @this_bh will be %NULL if @first and @last point into the inode's direct
2142  * block pointers.
2143  */
2144 static void ext3_free_data(handle_t *handle, struct inode *inode,
2145                            struct buffer_head *this_bh,
2146                            __le32 *first, __le32 *last)
2147 {
2148         ext3_fsblk_t block_to_free = 0;    /* Starting block # of a run */
2149         unsigned long count = 0;            /* Number of blocks in the run */
2150         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
2151                                                corresponding to
2152                                                block_to_free */
2153         ext3_fsblk_t nr;                    /* Current block # */
2154         __le32 *p;                          /* Pointer into inode/ind
2155                                                for current block */
2156         int err;
2157
2158         if (this_bh) {                          /* For indirect block */
2159                 BUFFER_TRACE(this_bh, "get_write_access");
2160                 err = ext3_journal_get_write_access(handle, this_bh);
2161                 /* Important: if we can't update the indirect pointers
2162                  * to the blocks, we can't free them. */
2163                 if (err)
2164                         return;
2165         }
2166
2167         for (p = first; p < last; p++) {
2168                 nr = le32_to_cpu(*p);
2169                 if (nr) {
2170                         /* accumulate blocks to free if they're contiguous */
2171                         if (count == 0) {
2172                                 block_to_free = nr;
2173                                 block_to_free_p = p;
2174                                 count = 1;
2175                         } else if (nr == block_to_free + count) {
2176                                 count++;
2177                         } else {
2178                                 ext3_clear_blocks(handle, inode, this_bh,
2179                                                   block_to_free,
2180                                                   count, block_to_free_p, p);
2181                                 block_to_free = nr;
2182                                 block_to_free_p = p;
2183                                 count = 1;
2184                         }
2185                 }
2186         }
2187
2188         if (count > 0)
2189                 ext3_clear_blocks(handle, inode, this_bh, block_to_free,
2190                                   count, block_to_free_p, p);
2191
2192         if (this_bh) {
2193                 BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
2194
2195                 /*
2196                  * The buffer head should have an attached journal head at this
2197                  * point. However, if the data is corrupted and an indirect
2198                  * block pointed to itself, it would have been detached when
2199                  * the block was cleared. Check for this instead of OOPSing.
2200                  */
2201                 if (bh2jh(this_bh))
2202                         ext3_journal_dirty_metadata(handle, this_bh);
2203                 else
2204                         ext3_error(inode->i_sb, "ext3_free_data",
2205                                    "circular indirect block detected, "
2206                                    "inode=%lu, block=%llu",
2207                                    inode->i_ino,
2208                                    (unsigned long long)this_bh->b_blocknr);
2209         }
2210 }
2211
2212 /**
2213  *      ext3_free_branches - free an array of branches
2214  *      @handle: JBD handle for this transaction
2215  *      @inode: inode we are dealing with
2216  *      @parent_bh: the buffer_head which contains *@first and *@last
2217  *      @first: array of block numbers
2218  *      @last:  pointer immediately past the end of array
2219  *      @depth: depth of the branches to free
2220  *
2221  *      We are freeing all blocks refered from these branches (numbers are
2222  *      stored as little-endian 32-bit) and updating @inode->i_blocks
2223  *      appropriately.
2224  */
2225 static void ext3_free_branches(handle_t *handle, struct inode *inode,
2226                                struct buffer_head *parent_bh,
2227                                __le32 *first, __le32 *last, int depth)
2228 {
2229         ext3_fsblk_t nr;
2230         __le32 *p;
2231
2232         if (is_handle_aborted(handle))
2233                 return;
2234
2235         if (depth--) {
2236                 struct buffer_head *bh;
2237                 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2238                 p = last;
2239                 while (--p >= first) {
2240                         nr = le32_to_cpu(*p);
2241                         if (!nr)
2242                                 continue;               /* A hole */
2243
2244                         /* Go read the buffer for the next level down */
2245                         bh = sb_bread(inode->i_sb, nr);
2246
2247                         /*
2248                          * A read failure? Report error and clear slot
2249                          * (should be rare).
2250                          */
2251                         if (!bh) {
2252                                 ext3_error(inode->i_sb, "ext3_free_branches",
2253                                            "Read failure, inode=%lu, block="E3FSBLK,
2254                                            inode->i_ino, nr);
2255                                 continue;
2256                         }
2257
2258                         /* This zaps the entire block.  Bottom up. */
2259                         BUFFER_TRACE(bh, "free child branches");
2260                         ext3_free_branches(handle, inode, bh,
2261                                            (__le32*)bh->b_data,
2262                                            (__le32*)bh->b_data + addr_per_block,
2263                                            depth);
2264
2265                         /*
2266                          * We've probably journalled the indirect block several
2267                          * times during the truncate.  But it's no longer
2268                          * needed and we now drop it from the transaction via
2269                          * journal_revoke().
2270                          *
2271                          * That's easy if it's exclusively part of this
2272                          * transaction.  But if it's part of the committing
2273                          * transaction then journal_forget() will simply
2274                          * brelse() it.  That means that if the underlying
2275                          * block is reallocated in ext3_get_block(),
2276                          * unmap_underlying_metadata() will find this block
2277                          * and will try to get rid of it.  damn, damn.
2278                          *
2279                          * If this block has already been committed to the
2280                          * journal, a revoke record will be written.  And
2281                          * revoke records must be emitted *before* clearing
2282                          * this block's bit in the bitmaps.
2283                          */
2284                         ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
2285
2286                         /*
2287                          * Everything below this this pointer has been
2288                          * released.  Now let this top-of-subtree go.
2289                          *
2290                          * We want the freeing of this indirect block to be
2291                          * atomic in the journal with the updating of the
2292                          * bitmap block which owns it.  So make some room in
2293                          * the journal.
2294                          *
2295                          * We zero the parent pointer *after* freeing its
2296                          * pointee in the bitmaps, so if extend_transaction()
2297                          * for some reason fails to put the bitmap changes and
2298                          * the release into the same transaction, recovery
2299                          * will merely complain about releasing a free block,
2300                          * rather than leaking blocks.
2301                          */
2302                         if (is_handle_aborted(handle))
2303                                 return;
2304                         if (try_to_extend_transaction(handle, inode)) {
2305                                 ext3_mark_inode_dirty(handle, inode);
2306                                 truncate_restart_transaction(handle, inode);
2307                         }
2308
2309                         ext3_free_blocks(handle, inode, nr, 1);
2310
2311                         if (parent_bh) {
2312                                 /*
2313                                  * The block which we have just freed is
2314                                  * pointed to by an indirect block: journal it
2315                                  */
2316                                 BUFFER_TRACE(parent_bh, "get_write_access");
2317                                 if (!ext3_journal_get_write_access(handle,
2318                                                                    parent_bh)){
2319                                         *p = 0;
2320                                         BUFFER_TRACE(parent_bh,
2321                                         "call ext3_journal_dirty_metadata");
2322                                         ext3_journal_dirty_metadata(handle,
2323                                                                     parent_bh);
2324                                 }
2325                         }
2326                 }
2327         } else {
2328                 /* We have reached the bottom of the tree. */
2329                 BUFFER_TRACE(parent_bh, "free data blocks");
2330                 ext3_free_data(handle, inode, parent_bh, first, last);
2331         }
2332 }
2333
2334 int ext3_can_truncate(struct inode *inode)
2335 {
2336         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2337                 return 0;
2338         if (S_ISREG(inode->i_mode))
2339                 return 1;
2340         if (S_ISDIR(inode->i_mode))
2341                 return 1;
2342         if (S_ISLNK(inode->i_mode))
2343                 return !ext3_inode_is_fast_symlink(inode);
2344         return 0;
2345 }
2346
2347 /*
2348  * ext3_truncate()
2349  *
2350  * We block out ext3_get_block() block instantiations across the entire
2351  * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2352  * simultaneously on behalf of the same inode.
2353  *
2354  * As we work through the truncate and commmit bits of it to the journal there
2355  * is one core, guiding principle: the file's tree must always be consistent on
2356  * disk.  We must be able to restart the truncate after a crash.
2357  *
2358  * The file's tree may be transiently inconsistent in memory (although it
2359  * probably isn't), but whenever we close off and commit a journal transaction,
2360  * the contents of (the filesystem + the journal) must be consistent and
2361  * restartable.  It's pretty simple, really: bottom up, right to left (although
2362  * left-to-right works OK too).
2363  *
2364  * Note that at recovery time, journal replay occurs *before* the restart of
2365  * truncate against the orphan inode list.
2366  *
2367  * The committed inode has the new, desired i_size (which is the same as
2368  * i_disksize in this case).  After a crash, ext3_orphan_cleanup() will see
2369  * that this inode's truncate did not complete and it will again call
2370  * ext3_truncate() to have another go.  So there will be instantiated blocks
2371  * to the right of the truncation point in a crashed ext3 filesystem.  But
2372  * that's fine - as long as they are linked from the inode, the post-crash
2373  * ext3_truncate() run will find them and release them.
2374  */
2375 void ext3_truncate(struct inode *inode)
2376 {
2377         handle_t *handle;
2378         struct ext3_inode_info *ei = EXT3_I(inode);
2379         __le32 *i_data = ei->i_data;
2380         int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2381         struct address_space *mapping = inode->i_mapping;
2382         int offsets[4];
2383         Indirect chain[4];
2384         Indirect *partial;
2385         __le32 nr = 0;
2386         int n;
2387         long last_block;
2388         unsigned blocksize = inode->i_sb->s_blocksize;
2389         struct page *page;
2390
2391         if (!ext3_can_truncate(inode))
2392                 goto out_notrans;
2393
2394         if (inode->i_size == 0 && ext3_should_writeback_data(inode))
2395                 ei->i_state |= EXT3_STATE_FLUSH_ON_CLOSE;
2396
2397         /*
2398          * We have to lock the EOF page here, because lock_page() nests
2399          * outside journal_start().
2400          */
2401         if ((inode->i_size & (blocksize - 1)) == 0) {
2402                 /* Block boundary? Nothing to do */
2403                 page = NULL;
2404         } else {
2405                 page = grab_cache_page(mapping,
2406                                 inode->i_size >> PAGE_CACHE_SHIFT);
2407                 if (!page)
2408                         goto out_notrans;
2409         }
2410
2411         handle = start_transaction(inode);
2412         if (IS_ERR(handle)) {
2413                 if (page) {
2414                         clear_highpage(page);
2415                         flush_dcache_page(page);
2416                         unlock_page(page);
2417                         page_cache_release(page);
2418                 }
2419                 goto out_notrans;
2420         }
2421
2422         last_block = (inode->i_size + blocksize-1)
2423                                         >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
2424
2425         if (page)
2426                 ext3_block_truncate_page(handle, page, mapping, inode->i_size);
2427
2428         n = ext3_block_to_path(inode, last_block, offsets, NULL);
2429         if (n == 0)
2430                 goto out_stop;  /* error */
2431
2432         /*
2433          * OK.  This truncate is going to happen.  We add the inode to the
2434          * orphan list, so that if this truncate spans multiple transactions,
2435          * and we crash, we will resume the truncate when the filesystem
2436          * recovers.  It also marks the inode dirty, to catch the new size.
2437          *
2438          * Implication: the file must always be in a sane, consistent
2439          * truncatable state while each transaction commits.
2440          */
2441         if (ext3_orphan_add(handle, inode))
2442                 goto out_stop;
2443
2444         /*
2445          * The orphan list entry will now protect us from any crash which
2446          * occurs before the truncate completes, so it is now safe to propagate
2447          * the new, shorter inode size (held for now in i_size) into the
2448          * on-disk inode. We do this via i_disksize, which is the value which
2449          * ext3 *really* writes onto the disk inode.
2450          */
2451         ei->i_disksize = inode->i_size;
2452
2453         /*
2454          * From here we block out all ext3_get_block() callers who want to
2455          * modify the block allocation tree.
2456          */
2457         mutex_lock(&ei->truncate_mutex);
2458
2459         if (n == 1) {           /* direct blocks */
2460                 ext3_free_data(handle, inode, NULL, i_data+offsets[0],
2461                                i_data + EXT3_NDIR_BLOCKS);
2462                 goto do_indirects;
2463         }
2464
2465         partial = ext3_find_shared(inode, n, offsets, chain, &nr);
2466         /* Kill the top of shared branch (not detached) */
2467         if (nr) {
2468                 if (partial == chain) {
2469                         /* Shared branch grows from the inode */
2470                         ext3_free_branches(handle, inode, NULL,
2471                                            &nr, &nr+1, (chain+n-1) - partial);
2472                         *partial->p = 0;
2473                         /*
2474                          * We mark the inode dirty prior to restart,
2475                          * and prior to stop.  No need for it here.
2476                          */
2477                 } else {
2478                         /* Shared branch grows from an indirect block */
2479                         BUFFER_TRACE(partial->bh, "get_write_access");
2480                         ext3_free_branches(handle, inode, partial->bh,
2481                                         partial->p,
2482                                         partial->p+1, (chain+n-1) - partial);
2483                 }
2484         }
2485         /* Clear the ends of indirect blocks on the shared branch */
2486         while (partial > chain) {
2487                 ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
2488                                    (__le32*)partial->bh->b_data+addr_per_block,
2489                                    (chain+n-1) - partial);
2490                 BUFFER_TRACE(partial->bh, "call brelse");
2491                 brelse (partial->bh);
2492                 partial--;
2493         }
2494 do_indirects:
2495         /* Kill the remaining (whole) subtrees */
2496         switch (offsets[0]) {
2497         default:
2498                 nr = i_data[EXT3_IND_BLOCK];
2499                 if (nr) {
2500                         ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2501                         i_data[EXT3_IND_BLOCK] = 0;
2502                 }
2503         case EXT3_IND_BLOCK:
2504                 nr = i_data[EXT3_DIND_BLOCK];
2505                 if (nr) {
2506                         ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2507                         i_data[EXT3_DIND_BLOCK] = 0;
2508                 }
2509         case EXT3_DIND_BLOCK:
2510                 nr = i_data[EXT3_TIND_BLOCK];
2511                 if (nr) {
2512                         ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2513                         i_data[EXT3_TIND_BLOCK] = 0;
2514                 }
2515         case EXT3_TIND_BLOCK:
2516                 ;
2517         }
2518
2519         ext3_discard_reservation(inode);
2520
2521         mutex_unlock(&ei->truncate_mutex);
2522         inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
2523         ext3_mark_inode_dirty(handle, inode);
2524
2525         /*
2526          * In a multi-transaction truncate, we only make the final transaction
2527          * synchronous
2528          */
2529         if (IS_SYNC(inode))
2530                 handle->h_sync = 1;
2531 out_stop:
2532         /*
2533          * If this was a simple ftruncate(), and the file will remain alive
2534          * then we need to clear up the orphan record which we created above.
2535          * However, if this was a real unlink then we were called by
2536          * ext3_delete_inode(), and we allow that function to clean up the
2537          * orphan info for us.
2538          */
2539         if (inode->i_nlink)
2540                 ext3_orphan_del(handle, inode);
2541
2542         ext3_journal_stop(handle);
2543         return;
2544 out_notrans:
2545         /*
2546          * Delete the inode from orphan list so that it doesn't stay there
2547          * forever and trigger assertion on umount.
2548          */
2549         if (inode->i_nlink)
2550                 ext3_orphan_del(NULL, inode);
2551 }
2552
2553 static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
2554                 unsigned long ino, struct ext3_iloc *iloc)
2555 {
2556         unsigned long block_group;
2557         unsigned long offset;
2558         ext3_fsblk_t block;
2559         struct ext3_group_desc *gdp;
2560
2561         if (!ext3_valid_inum(sb, ino)) {
2562                 /*
2563                  * This error is already checked for in namei.c unless we are
2564                  * looking at an NFS filehandle, in which case no error
2565                  * report is needed
2566                  */
2567                 return 0;
2568         }
2569
2570         block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
2571         gdp = ext3_get_group_desc(sb, block_group, NULL);
2572         if (!gdp)
2573                 return 0;
2574         /*
2575          * Figure out the offset within the block group inode table
2576          */
2577         offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
2578                 EXT3_INODE_SIZE(sb);
2579         block = le32_to_cpu(gdp->bg_inode_table) +
2580                 (offset >> EXT3_BLOCK_SIZE_BITS(sb));
2581
2582         iloc->block_group = block_group;
2583         iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
2584         return block;
2585 }
2586
2587 /*
2588  * ext3_get_inode_loc returns with an extra refcount against the inode's
2589  * underlying buffer_head on success. If 'in_mem' is true, we have all
2590  * data in memory that is needed to recreate the on-disk version of this
2591  * inode.
2592  */
2593 static int __ext3_get_inode_loc(struct inode *inode,
2594                                 struct ext3_iloc *iloc, int in_mem)
2595 {
2596         ext3_fsblk_t block;
2597         struct buffer_head *bh;
2598
2599         block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2600         if (!block)
2601                 return -EIO;
2602
2603         bh = sb_getblk(inode->i_sb, block);
2604         if (!bh) {
2605                 ext3_error (inode->i_sb, "ext3_get_inode_loc",
2606                                 "unable to read inode block - "
2607                                 "inode=%lu, block="E3FSBLK,
2608                                  inode->i_ino, block);
2609                 return -EIO;
2610         }
2611         if (!buffer_uptodate(bh)) {
2612                 lock_buffer(bh);
2613
2614                 /*
2615                  * If the buffer has the write error flag, we have failed
2616                  * to write out another inode in the same block.  In this
2617                  * case, we don't have to read the block because we may
2618                  * read the old inode data successfully.
2619                  */
2620                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
2621                         set_buffer_uptodate(bh);
2622
2623                 if (buffer_uptodate(bh)) {
2624                         /* someone brought it uptodate while we waited */
2625                         unlock_buffer(bh);
2626                         goto has_buffer;
2627                 }
2628
2629                 /*
2630                  * If we have all information of the inode in memory and this
2631                  * is the only valid inode in the block, we need not read the
2632                  * block.
2633                  */
2634                 if (in_mem) {
2635                         struct buffer_head *bitmap_bh;
2636                         struct ext3_group_desc *desc;
2637                         int inodes_per_buffer;
2638                         int inode_offset, i;
2639                         int block_group;
2640                         int start;
2641
2642                         block_group = (inode->i_ino - 1) /
2643                                         EXT3_INODES_PER_GROUP(inode->i_sb);
2644                         inodes_per_buffer = bh->b_size /
2645                                 EXT3_INODE_SIZE(inode->i_sb);
2646                         inode_offset = ((inode->i_ino - 1) %
2647                                         EXT3_INODES_PER_GROUP(inode->i_sb));
2648                         start = inode_offset & ~(inodes_per_buffer - 1);
2649
2650                         /* Is the inode bitmap in cache? */
2651                         desc = ext3_get_group_desc(inode->i_sb,
2652                                                 block_group, NULL);
2653                         if (!desc)
2654                                 goto make_io;
2655
2656                         bitmap_bh = sb_getblk(inode->i_sb,
2657                                         le32_to_cpu(desc->bg_inode_bitmap));
2658                         if (!bitmap_bh)
2659                                 goto make_io;
2660
2661                         /*
2662                          * If the inode bitmap isn't in cache then the
2663                          * optimisation may end up performing two reads instead
2664                          * of one, so skip it.
2665                          */
2666                         if (!buffer_uptodate(bitmap_bh)) {
2667                                 brelse(bitmap_bh);
2668                                 goto make_io;
2669                         }
2670                         for (i = start; i < start + inodes_per_buffer; i++) {
2671                                 if (i == inode_offset)
2672                                         continue;
2673                                 if (ext3_test_bit(i, bitmap_bh->b_data))
2674                                         break;
2675                         }
2676                         brelse(bitmap_bh);
2677                         if (i == start + inodes_per_buffer) {
2678                                 /* all other inodes are free, so skip I/O */
2679                                 memset(bh->b_data, 0, bh->b_size);
2680                                 set_buffer_uptodate(bh);
2681                                 unlock_buffer(bh);
2682                                 goto has_buffer;
2683                         }
2684                 }
2685
2686 make_io:
2687                 /*
2688                  * There are other valid inodes in the buffer, this inode
2689                  * has in-inode xattrs, or we don't have this inode in memory.
2690                  * Read the block from disk.
2691                  */
2692                 get_bh(bh);
2693                 bh->b_end_io = end_buffer_read_sync;
2694                 submit_bh(READ_META, bh);
2695                 wait_on_buffer(bh);
2696                 if (!buffer_uptodate(bh)) {
2697                         ext3_error(inode->i_sb, "ext3_get_inode_loc",
2698                                         "unable to read inode block - "
2699                                         "inode=%lu, block="E3FSBLK,
2700                                         inode->i_ino, block);
2701                         brelse(bh);
2702                         return -EIO;
2703                 }
2704         }
2705 has_buffer:
2706         iloc->bh = bh;
2707         return 0;
2708 }
2709
2710 int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
2711 {
2712         /* We have all inode data except xattrs in memory here. */
2713         return __ext3_get_inode_loc(inode, iloc,
2714                 !(EXT3_I(inode)->i_state & EXT3_STATE_XATTR));
2715 }
2716
2717 void ext3_set_inode_flags(struct inode *inode)
2718 {
2719         unsigned int flags = EXT3_I(inode)->i_flags;
2720
2721         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2722         if (flags & EXT3_SYNC_FL)
2723                 inode->i_flags |= S_SYNC;
2724         if (flags & EXT3_APPEND_FL)
2725                 inode->i_flags |= S_APPEND;
2726         if (flags & EXT3_IMMUTABLE_FL)
2727                 inode->i_flags |= S_IMMUTABLE;
2728         if (flags & EXT3_NOATIME_FL)
2729                 inode->i_flags |= S_NOATIME;
2730         if (flags & EXT3_DIRSYNC_FL)
2731                 inode->i_flags |= S_DIRSYNC;
2732 }
2733
2734 /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
2735 void ext3_get_inode_flags(struct ext3_inode_info *ei)
2736 {
2737         unsigned int flags = ei->vfs_inode.i_flags;
2738
2739         ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
2740                         EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
2741         if (flags & S_SYNC)
2742                 ei->i_flags |= EXT3_SYNC_FL;
2743         if (flags & S_APPEND)
2744                 ei->i_flags |= EXT3_APPEND_FL;
2745         if (flags & S_IMMUTABLE)
2746                 ei->i_flags |= EXT3_IMMUTABLE_FL;
2747         if (flags & S_NOATIME)
2748                 ei->i_flags |= EXT3_NOATIME_FL;
2749         if (flags & S_DIRSYNC)
2750                 ei->i_flags |= EXT3_DIRSYNC_FL;
2751 }
2752
2753 struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
2754 {
2755         struct ext3_iloc iloc;
2756         struct ext3_inode *raw_inode;
2757         struct ext3_inode_info *ei;
2758         struct buffer_head *bh;
2759         struct inode *inode;
2760         journal_t *journal = EXT3_SB(sb)->s_journal;
2761         transaction_t *transaction;
2762         long ret;
2763         int block;
2764
2765         inode = iget_locked(sb, ino);
2766         if (!inode)
2767                 return ERR_PTR(-ENOMEM);
2768         if (!(inode->i_state & I_NEW))
2769                 return inode;
2770
2771         ei = EXT3_I(inode);
2772         ei->i_block_alloc_info = NULL;
2773
2774         ret = __ext3_get_inode_loc(inode, &iloc, 0);
2775         if (ret < 0)
2776                 goto bad_inode;
2777         bh = iloc.bh;
2778         raw_inode = ext3_raw_inode(&iloc);
2779         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2780         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2781         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2782         if(!(test_opt (inode->i_sb, NO_UID32))) {
2783                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2784                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2785         }
2786         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2787         inode->i_size = le32_to_cpu(raw_inode->i_size);
2788         inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
2789         inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
2790         inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
2791         inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
2792
2793         ei->i_state = 0;
2794         ei->i_dir_start_lookup = 0;
2795         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2796         /* We now have enough fields to check if the inode was active or not.
2797          * This is needed because nfsd might try to access dead inodes
2798          * the test is that same one that e2fsck uses
2799          * NeilBrown 1999oct15
2800          */
2801         if (inode->i_nlink == 0) {
2802                 if (inode->i_mode == 0 ||
2803                     !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
2804                         /* this inode is deleted */
2805                         brelse (bh);
2806                         ret = -ESTALE;
2807                         goto bad_inode;
2808                 }
2809                 /* The only unlinked inodes we let through here have
2810                  * valid i_mode and are being read by the orphan
2811                  * recovery code: that's fine, we're about to complete
2812                  * the process of deleting those. */
2813         }
2814         inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2815         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2816 #ifdef EXT3_FRAGMENTS
2817         ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2818         ei->i_frag_no = raw_inode->i_frag;
2819         ei->i_frag_size = raw_inode->i_fsize;
2820 #endif
2821         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2822         if (!S_ISREG(inode->i_mode)) {
2823                 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2824         } else {
2825                 inode->i_size |=
2826                         ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2827         }
2828         ei->i_disksize = inode->i_size;
2829         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2830         ei->i_block_group = iloc.block_group;
2831         /*
2832          * NOTE! The in-memory inode i_data array is in little-endian order
2833          * even on big-endian machines: we do NOT byteswap the block numbers!
2834          */
2835         for (block = 0; block < EXT3_N_BLOCKS; block++)
2836                 ei->i_data[block] = raw_inode->i_block[block];
2837         INIT_LIST_HEAD(&ei->i_orphan);
2838
2839         /*
2840          * Set transaction id's of transactions that have to be committed
2841          * to finish f[data]sync. We set them to currently running transaction
2842          * as we cannot be sure that the inode or some of its metadata isn't
2843          * part of the transaction - the inode could have been reclaimed and
2844          * now it is reread from disk.
2845          */
2846         if (journal) {
2847                 tid_t tid;
2848
2849                 spin_lock(&journal->j_state_lock);
2850                 if (journal->j_running_transaction)
2851                         transaction = journal->j_running_transaction;
2852                 else
2853                         transaction = journal->j_committing_transaction;
2854                 if (transaction)
2855                         tid = transaction->t_tid;
2856                 else
2857                         tid = journal->j_commit_sequence;
2858                 spin_unlock(&journal->j_state_lock);
2859                 atomic_set(&ei->i_sync_tid, tid);
2860                 atomic_set(&ei->i_datasync_tid, tid);
2861         }
2862
2863         if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
2864             EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
2865                 /*
2866                  * When mke2fs creates big inodes it does not zero out
2867                  * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
2868                  * so ignore those first few inodes.
2869                  */
2870                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2871                 if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2872                     EXT3_INODE_SIZE(inode->i_sb)) {
2873                         brelse (bh);
2874                         ret = -EIO;
2875                         goto bad_inode;
2876                 }
2877                 if (ei->i_extra_isize == 0) {
2878                         /* The extra space is currently unused. Use it. */
2879                         ei->i_extra_isize = sizeof(struct ext3_inode) -
2880                                             EXT3_GOOD_OLD_INODE_SIZE;
2881                 } else {
2882                         __le32 *magic = (void *)raw_inode +
2883                                         EXT3_GOOD_OLD_INODE_SIZE +
2884                                         ei->i_extra_isize;
2885                         if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
2886                                  ei->i_state |= EXT3_STATE_XATTR;
2887                 }
2888         } else
2889                 ei->i_extra_isize = 0;
2890
2891         if (S_ISREG(inode->i_mode)) {
2892                 inode->i_op = &ext3_file_inode_operations;
2893                 inode->i_fop = &ext3_file_operations;
2894                 ext3_set_aops(inode);
2895         } else if (S_ISDIR(inode->i_mode)) {
2896                 inode->i_op = &ext3_dir_inode_operations;
2897                 inode->i_fop = &ext3_dir_operations;
2898         } else if (S_ISLNK(inode->i_mode)) {
2899                 if (ext3_inode_is_fast_symlink(inode)) {
2900                         inode->i_op = &ext3_fast_symlink_inode_operations;
2901                         nd_terminate_link(ei->i_data, inode->i_size,
2902                                 sizeof(ei->i_data) - 1);
2903                 } else {
2904                         inode->i_op = &ext3_symlink_inode_operations;
2905                         ext3_set_aops(inode);
2906                 }
2907         } else {
2908                 inode->i_op = &ext3_special_inode_operations;
2909                 if (raw_inode->i_block[0])
2910                         init_special_inode(inode, inode->i_mode,
2911                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2912                 else
2913                         init_special_inode(inode, inode->i_mode,
2914                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2915         }
2916         brelse (iloc.bh);
2917         ext3_set_inode_flags(inode);
2918         unlock_new_inode(inode);
2919         return inode;
2920
2921 bad_inode:
2922         iget_failed(inode);
2923         return ERR_PTR(ret);
2924 }
2925
2926 /*
2927  * Post the struct inode info into an on-disk inode location in the
2928  * buffer-cache.  This gobbles the caller's reference to the
2929  * buffer_head in the inode location struct.
2930  *
2931  * The caller must have write access to iloc->bh.
2932  */
2933 static int ext3_do_update_inode(handle_t *handle,
2934                                 struct inode *inode,
2935                                 struct ext3_iloc *iloc)
2936 {
2937         struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
2938         struct ext3_inode_info *ei = EXT3_I(inode);
2939         struct buffer_head *bh = iloc->bh;
2940         int err = 0, rc, block;
2941
2942 again:
2943         /* we can't allow multiple procs in here at once, its a bit racey */
2944         lock_buffer(bh);
2945
2946         /* For fields not not tracking in the in-memory inode,
2947          * initialise them to zero for new inodes. */
2948         if (ei->i_state & EXT3_STATE_NEW)
2949                 memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
2950
2951         ext3_get_inode_flags(ei);
2952         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2953         if(!(test_opt(inode->i_sb, NO_UID32))) {
2954                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2955                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2956 /*
2957  * Fix up interoperability with old kernels. Otherwise, old inodes get
2958  * re-used with the upper 16 bits of the uid/gid intact
2959  */
2960                 if(!ei->i_dtime) {
2961                         raw_inode->i_uid_high =
2962                                 cpu_to_le16(high_16_bits(inode->i_uid));
2963                         raw_inode->i_gid_high =
2964                                 cpu_to_le16(high_16_bits(inode->i_gid));
2965                 } else {
2966                         raw_inode->i_uid_high = 0;
2967                         raw_inode->i_gid_high = 0;
2968                 }
2969         } else {
2970                 raw_inode->i_uid_low =
2971                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
2972                 raw_inode->i_gid_low =
2973                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
2974                 raw_inode->i_uid_high = 0;
2975                 raw_inode->i_gid_high = 0;
2976         }
2977         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
2978         raw_inode->i_size = cpu_to_le32(ei->i_disksize);
2979         raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
2980         raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
2981         raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
2982         raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
2983         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
2984         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
2985 #ifdef EXT3_FRAGMENTS
2986         raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
2987         raw_inode->i_frag = ei->i_frag_no;
2988         raw_inode->i_fsize = ei->i_frag_size;
2989 #endif
2990         raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
2991         if (!S_ISREG(inode->i_mode)) {
2992                 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
2993         } else {
2994                 raw_inode->i_size_high =
2995                         cpu_to_le32(ei->i_disksize >> 32);
2996                 if (ei->i_disksize > 0x7fffffffULL) {
2997                         struct super_block *sb = inode->i_sb;
2998                         if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
2999                                         EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
3000                             EXT3_SB(sb)->s_es->s_rev_level ==
3001                                         cpu_to_le32(EXT3_GOOD_OLD_REV)) {
3002                                /* If this is the first large file
3003                                 * created, add a flag to the superblock.
3004                                 */
3005                                 unlock_buffer(bh);
3006                                 err = ext3_journal_get_write_access(handle,
3007                                                 EXT3_SB(sb)->s_sbh);
3008                                 if (err)
3009                                         goto out_brelse;
3010
3011                                 ext3_update_dynamic_rev(sb);
3012                                 EXT3_SET_RO_COMPAT_FEATURE(sb,
3013                                         EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
3014                                 handle->h_sync = 1;
3015                                 err = ext3_journal_dirty_metadata(handle,
3016                                                 EXT3_SB(sb)->s_sbh);
3017                                 /* get our lock and start over */
3018                                 goto again;
3019                         }
3020                 }
3021         }
3022         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3023         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3024                 if (old_valid_dev(inode->i_rdev)) {
3025                         raw_inode->i_block[0] =
3026                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
3027                         raw_inode->i_block[1] = 0;
3028                 } else {
3029                         raw_inode->i_block[0] = 0;
3030                         raw_inode->i_block[1] =
3031                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
3032                         raw_inode->i_block[2] = 0;
3033                 }
3034         } else for (block = 0; block < EXT3_N_BLOCKS; block++)
3035                 raw_inode->i_block[block] = ei->i_data[block];
3036
3037         if (ei->i_extra_isize)
3038                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3039
3040         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
3041         unlock_buffer(bh);
3042         rc = ext3_journal_dirty_metadata(handle, bh);
3043         if (!err)
3044                 err = rc;
3045         ei->i_state &= ~EXT3_STATE_NEW;
3046
3047         atomic_set(&ei->i_sync_tid, handle->h_transaction->t_tid);
3048 out_brelse:
3049         brelse (bh);
3050         ext3_std_error(inode->i_sb, err);
3051         return err;
3052 }
3053
3054 /*
3055  * ext3_write_inode()
3056  *
3057  * We are called from a few places:
3058  *
3059  * - Within generic_file_write() for O_SYNC files.
3060  *   Here, there will be no transaction running. We wait for any running
3061  *   trasnaction to commit.
3062  *
3063  * - Within sys_sync(), kupdate and such.
3064  *   We wait on commit, if tol to.
3065  *
3066  * - Within prune_icache() (PF_MEMALLOC == true)
3067  *   Here we simply return.  We can't afford to block kswapd on the
3068  *   journal commit.
3069  *
3070  * In all cases it is actually safe for us to return without doing anything,
3071  * because the inode has been copied into a raw inode buffer in
3072  * ext3_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3073  * knfsd.
3074  *
3075  * Note that we are absolutely dependent upon all inode dirtiers doing the
3076  * right thing: they *must* call mark_inode_dirty() after dirtying info in
3077  * which we are interested.
3078  *
3079  * It would be a bug for them to not do this.  The code:
3080  *
3081  *      mark_inode_dirty(inode)
3082  *      stuff();
3083  *      inode->i_size = expr;
3084  *
3085  * is in error because a kswapd-driven write_inode() could occur while
3086  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
3087  * will no longer be on the superblock's dirty inode list.
3088  */
3089 int ext3_write_inode(struct inode *inode, int wait)
3090 {
3091         if (current->flags & PF_MEMALLOC)
3092                 return 0;
3093
3094         if (ext3_journal_current_handle()) {
3095                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3096                 dump_stack();
3097                 return -EIO;
3098         }
3099
3100         if (!wait)
3101                 return 0;
3102
3103         return ext3_force_commit(inode->i_sb);
3104 }
3105
3106 /*
3107  * ext3_setattr()
3108  *
3109  * Called from notify_change.
3110  *
3111  * We want to trap VFS attempts to truncate the file as soon as
3112  * possible.  In particular, we want to make sure that when the VFS
3113  * shrinks i_size, we put the inode on the orphan list and modify
3114  * i_disksize immediately, so that during the subsequent flushing of
3115  * dirty pages and freeing of disk blocks, we can guarantee that any
3116  * commit will leave the blocks being flushed in an unused state on
3117  * disk.  (On recovery, the inode will get truncated and the blocks will
3118  * be freed, so we have a strong guarantee that no future commit will
3119  * leave these blocks visible to the user.)
3120  *
3121  * Called with inode->sem down.
3122  */
3123 int ext3_setattr(struct dentry *dentry, struct iattr *attr)
3124 {
3125         struct inode *inode = dentry->d_inode;
3126         int error, rc = 0;
3127         const unsigned int ia_valid = attr->ia_valid;
3128
3129         error = inode_change_ok(inode, attr);
3130         if (error)
3131                 return error;
3132
3133         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3134                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3135                 handle_t *handle;
3136
3137                 /* (user+group)*(old+new) structure, inode write (sb,
3138                  * inode block, ? - but truncate inode update has it) */
3139                 handle = ext3_journal_start(inode, 2*(EXT3_QUOTA_INIT_BLOCKS(inode->i_sb)+
3140                                         EXT3_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
3141                 if (IS_ERR(handle)) {
3142                         error = PTR_ERR(handle);
3143                         goto err_out;
3144                 }
3145                 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
3146                 if (error) {
3147                         ext3_journal_stop(handle);
3148                         return error;
3149                 }
3150                 /* Update corresponding info in inode so that everything is in
3151                  * one transaction */
3152                 if (attr->ia_valid & ATTR_UID)
3153                         inode->i_uid = attr->ia_uid;
3154                 if (attr->ia_valid & ATTR_GID)
3155                         inode->i_gid = attr->ia_gid;
3156                 error = ext3_mark_inode_dirty(handle, inode);
3157                 ext3_journal_stop(handle);
3158         }
3159
3160         if (S_ISREG(inode->i_mode) &&
3161             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3162                 handle_t *handle;
3163
3164                 handle = ext3_journal_start(inode, 3);
3165                 if (IS_ERR(handle)) {
3166                         error = PTR_ERR(handle);
3167                         goto err_out;
3168                 }
3169
3170                 error = ext3_orphan_add(handle, inode);
3171                 EXT3_I(inode)->i_disksize = attr->ia_size;
3172                 rc = ext3_mark_inode_dirty(handle, inode);
3173                 if (!error)
3174                         error = rc;
3175                 ext3_journal_stop(handle);
3176         }
3177
3178         rc = inode_setattr(inode, attr);
3179
3180         if (!rc && (ia_valid & ATTR_MODE))
3181                 rc = ext3_acl_chmod(inode);
3182
3183 err_out:
3184         ext3_std_error(inode->i_sb, error);
3185         if (!error)
3186                 error = rc;
3187         return error;
3188 }
3189
3190
3191 /*
3192  * How many blocks doth make a writepage()?
3193  *
3194  * With N blocks per page, it may be:
3195  * N data blocks
3196  * 2 indirect block
3197  * 2 dindirect
3198  * 1 tindirect
3199  * N+5 bitmap blocks (from the above)
3200  * N+5 group descriptor summary blocks
3201  * 1 inode block
3202  * 1 superblock.
3203  * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
3204  *
3205  * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
3206  *
3207  * With ordered or writeback data it's the same, less the N data blocks.
3208  *
3209  * If the inode's direct blocks can hold an integral number of pages then a
3210  * page cannot straddle two indirect blocks, and we can only touch one indirect
3211  * and dindirect block, and the "5" above becomes "3".
3212  *
3213  * This still overestimates under most circumstances.  If we were to pass the
3214  * start and end offsets in here as well we could do block_to_path() on each
3215  * block and work out the exact number of indirects which are touched.  Pah.
3216  */
3217
3218 static int ext3_writepage_trans_blocks(struct inode *inode)
3219 {
3220         int bpp = ext3_journal_blocks_per_page(inode);
3221         int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
3222         int ret;
3223
3224         if (ext3_should_journal_data(inode))
3225                 ret = 3 * (bpp + indirects) + 2;
3226         else
3227                 ret = 2 * (bpp + indirects) + 2;
3228
3229 #ifdef CONFIG_QUOTA
3230         /* We know that structure was already allocated during vfs_dq_init so
3231          * we will be updating only the data blocks + inodes */
3232         ret += 2*EXT3_QUOTA_TRANS_BLOCKS(inode->i_sb);
3233 #endif
3234
3235         return ret;
3236 }
3237
3238 /*
3239  * The caller must have previously called ext3_reserve_inode_write().
3240  * Give this, we know that the caller already has write access to iloc->bh.
3241  */
3242 int ext3_mark_iloc_dirty(handle_t *handle,
3243                 struct inode *inode, struct ext3_iloc *iloc)
3244 {
3245         int err = 0;
3246
3247         /* the do_update_inode consumes one bh->b_count */
3248         get_bh(iloc->bh);
3249
3250         /* ext3_do_update_inode() does journal_dirty_metadata */
3251         err = ext3_do_update_inode(handle, inode, iloc);
3252         put_bh(iloc->bh);
3253         return err;
3254 }
3255
3256 /*
3257  * On success, We end up with an outstanding reference count against
3258  * iloc->bh.  This _must_ be cleaned up later.
3259  */
3260
3261 int
3262 ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
3263                          struct ext3_iloc *iloc)
3264 {
3265         int err = 0;
3266         if (handle) {
3267                 err = ext3_get_inode_loc(inode, iloc);
3268                 if (!err) {
3269                         BUFFER_TRACE(iloc->bh, "get_write_access");
3270                         err = ext3_journal_get_write_access(handle, iloc->bh);
3271                         if (err) {
3272                                 brelse(iloc->bh);
3273                                 iloc->bh = NULL;
3274                         }
3275                 }
3276         }
3277         ext3_std_error(inode->i_sb, err);
3278         return err;
3279 }
3280
3281 /*
3282  * What we do here is to mark the in-core inode as clean with respect to inode
3283  * dirtiness (it may still be data-dirty).
3284  * This means that the in-core inode may be reaped by prune_icache
3285  * without having to perform any I/O.  This is a very good thing,
3286  * because *any* task may call prune_icache - even ones which
3287  * have a transaction open against a different journal.
3288  *
3289  * Is this cheating?  Not really.  Sure, we haven't written the
3290  * inode out, but prune_icache isn't a user-visible syncing function.
3291  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3292  * we start and wait on commits.
3293  *
3294  * Is this efficient/effective?  Well, we're being nice to the system
3295  * by cleaning up our inodes proactively so they can be reaped
3296  * without I/O.  But we are potentially leaving up to five seconds'
3297  * worth of inodes floating about which prune_icache wants us to
3298  * write out.  One way to fix that would be to get prune_icache()
3299  * to do a write_super() to free up some memory.  It has the desired
3300  * effect.
3301  */
3302 int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
3303 {
3304         struct ext3_iloc iloc;
3305         int err;
3306
3307         might_sleep();
3308         err = ext3_reserve_inode_write(handle, inode, &iloc);
3309         if (!err)
3310                 err = ext3_mark_iloc_dirty(handle, inode, &iloc);
3311         return err;
3312 }
3313
3314 /*
3315  * ext3_dirty_inode() is called from __mark_inode_dirty()
3316  *
3317  * We're really interested in the case where a file is being extended.
3318  * i_size has been changed by generic_commit_write() and we thus need
3319  * to include the updated inode in the current transaction.
3320  *
3321  * Also, vfs_dq_alloc_space() will always dirty the inode when blocks
3322  * are allocated to the file.
3323  *
3324  * If the inode is marked synchronous, we don't honour that here - doing
3325  * so would cause a commit on atime updates, which we don't bother doing.
3326  * We handle synchronous inodes at the highest possible level.
3327  */
3328 void ext3_dirty_inode(struct inode *inode)
3329 {
3330         handle_t *current_handle = ext3_journal_current_handle();
3331         handle_t *handle;
3332
3333         handle = ext3_journal_start(inode, 2);
3334         if (IS_ERR(handle))
3335                 goto out;
3336         if (current_handle &&
3337                 current_handle->h_transaction != handle->h_transaction) {
3338                 /* This task has a transaction open against a different fs */
3339                 printk(KERN_EMERG "%s: transactions do not match!\n",
3340                        __func__);
3341         } else {
3342                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
3343                                 current_handle);
3344                 ext3_mark_inode_dirty(handle, inode);
3345         }
3346         ext3_journal_stop(handle);
3347 out:
3348         return;
3349 }
3350
3351 #if 0
3352 /*
3353  * Bind an inode's backing buffer_head into this transaction, to prevent
3354  * it from being flushed to disk early.  Unlike
3355  * ext3_reserve_inode_write, this leaves behind no bh reference and
3356  * returns no iloc structure, so the caller needs to repeat the iloc
3357  * lookup to mark the inode dirty later.
3358  */
3359 static int ext3_pin_inode(handle_t *handle, struct inode *inode)
3360 {
3361         struct ext3_iloc iloc;
3362
3363         int err = 0;
3364         if (handle) {
3365                 err = ext3_get_inode_loc(inode, &iloc);
3366                 if (!err) {
3367                         BUFFER_TRACE(iloc.bh, "get_write_access");
3368                         err = journal_get_write_access(handle, iloc.bh);
3369                         if (!err)
3370                                 err = ext3_journal_dirty_metadata(handle,
3371                                                                   iloc.bh);
3372                         brelse(iloc.bh);
3373                 }
3374         }
3375         ext3_std_error(inode->i_sb, err);
3376         return err;
3377 }
3378 #endif
3379
3380 int ext3_change_inode_journal_flag(struct inode *inode, int val)
3381 {
3382         journal_t *journal;
3383         handle_t *handle;
3384         int err;
3385
3386         /*
3387          * We have to be very careful here: changing a data block's
3388          * journaling status dynamically is dangerous.  If we write a
3389          * data block to the journal, change the status and then delete
3390          * that block, we risk forgetting to revoke the old log record
3391          * from the journal and so a subsequent replay can corrupt data.
3392          * So, first we make sure that the journal is empty and that
3393          * nobody is changing anything.
3394          */
3395
3396         journal = EXT3_JOURNAL(inode);
3397         if (is_journal_aborted(journal))
3398                 return -EROFS;
3399
3400         journal_lock_updates(journal);
3401         journal_flush(journal);
3402
3403         /*
3404          * OK, there are no updates running now, and all cached data is
3405          * synced to disk.  We are now in a completely consistent state
3406          * which doesn't have anything in the journal, and we know that
3407          * no filesystem updates are running, so it is safe to modify
3408          * the inode's in-core data-journaling state flag now.
3409          */
3410
3411         if (val)
3412                 EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
3413         else
3414                 EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
3415         ext3_set_aops(inode);
3416
3417         journal_unlock_updates(journal);
3418
3419         /* Finally we can mark the inode as dirty. */
3420
3421         handle = ext3_journal_start(inode, 1);
3422         if (IS_ERR(handle))
3423                 return PTR_ERR(handle);
3424
3425         err = ext3_mark_inode_dirty(handle, inode);
3426         handle->h_sync = 1;
3427         ext3_journal_stop(handle);
3428         ext3_std_error(inode->i_sb, err);
3429
3430         return err;
3431 }