1 // SPDX-License-Identifier: GPL-2.0
3 * linux/fs/ext2/inode.c
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
12 * linux/fs/minix/inode.c
14 * Copyright (C) 1991, 1992 Linus Torvalds
16 * Goal-directed block allocation by Stephen Tweedie
17 * (sct@dcs.ed.ac.uk), 1993, 1998
18 * Big-endian to little-endian byte-swapping/bitmaps by
19 * David S. Miller (davem@caip.rutgers.edu), 1995
20 * 64-bit file support on 64-bit platforms by Jakub Jelinek
21 * (jj@sunsite.ms.mff.cuni.cz)
23 * Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
26 #include <linux/time.h>
27 #include <linux/highuid.h>
28 #include <linux/pagemap.h>
29 #include <linux/dax.h>
30 #include <linux/blkdev.h>
31 #include <linux/quotaops.h>
32 #include <linux/writeback.h>
33 #include <linux/buffer_head.h>
34 #include <linux/mpage.h>
35 #include <linux/fiemap.h>
36 #include <linux/iomap.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
43 static int __ext2_write_inode(struct inode *inode, int do_sync);
46 * Test whether an inode is a fast symlink.
48 static inline int ext2_inode_is_fast_symlink(struct inode *inode)
50 int ea_blocks = EXT2_I(inode)->i_file_acl ?
51 (inode->i_sb->s_blocksize >> 9) : 0;
53 return (S_ISLNK(inode->i_mode) &&
54 inode->i_blocks - ea_blocks == 0);
57 static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
59 void ext2_write_failed(struct address_space *mapping, loff_t to)
61 struct inode *inode = mapping->host;
63 if (to > inode->i_size) {
64 truncate_pagecache(inode, inode->i_size);
65 ext2_truncate_blocks(inode, inode->i_size);
70 * Called at the last iput() if i_nlink is zero.
72 void ext2_evict_inode(struct inode * inode)
74 struct ext2_block_alloc_info *rsv;
77 if (!inode->i_nlink && !is_bad_inode(inode)) {
79 dquot_initialize(inode);
84 truncate_inode_pages_final(&inode->i_data);
87 sb_start_intwrite(inode->i_sb);
89 EXT2_I(inode)->i_dtime = ktime_get_real_seconds();
90 mark_inode_dirty(inode);
91 __ext2_write_inode(inode, inode_needs_sync(inode));
95 ext2_truncate_blocks(inode, 0);
96 ext2_xattr_delete_inode(inode);
99 invalidate_inode_buffers(inode);
102 ext2_discard_reservation(inode);
103 rsv = EXT2_I(inode)->i_block_alloc_info;
104 EXT2_I(inode)->i_block_alloc_info = NULL;
109 ext2_free_inode(inode);
110 sb_end_intwrite(inode->i_sb);
117 struct buffer_head *bh;
120 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
122 p->key = *(p->p = v);
126 static inline int verify_chain(Indirect *from, Indirect *to)
128 while (from <= to && from->key == *from->p)
134 * ext2_block_to_path - parse the block number into array of offsets
135 * @inode: inode in question (we are only interested in its superblock)
136 * @i_block: block number to be parsed
137 * @offsets: array to store the offsets in
138 * @boundary: set this non-zero if the referred-to block is likely to be
139 * followed (on disk) by an indirect block.
140 * To store the locations of file's data ext2 uses a data structure common
141 * for UNIX filesystems - tree of pointers anchored in the inode, with
142 * data blocks at leaves and indirect blocks in intermediate nodes.
143 * This function translates the block number into path in that tree -
144 * return value is the path length and @offsets[n] is the offset of
145 * pointer to (n+1)th node in the nth one. If @block is out of range
146 * (negative or too large) warning is printed and zero returned.
148 * Note: function doesn't find node addresses, so no IO is needed. All
149 * we need to know is the capacity of indirect blocks (taken from the
154 * Portability note: the last comparison (check that we fit into triple
155 * indirect block) is spelled differently, because otherwise on an
156 * architecture with 32-bit longs and 8Kb pages we might get into trouble
157 * if our filesystem had 8Kb blocks. We might use long long, but that would
158 * kill us on x86. Oh, well, at least the sign propagation does not matter -
159 * i_block would have to be negative in the very beginning, so we would not
163 static int ext2_block_to_path(struct inode *inode,
164 long i_block, int offsets[4], int *boundary)
166 int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
167 int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
168 const long direct_blocks = EXT2_NDIR_BLOCKS,
169 indirect_blocks = ptrs,
170 double_blocks = (1 << (ptrs_bits * 2));
175 ext2_msg(inode->i_sb, KERN_WARNING,
176 "warning: %s: block < 0", __func__);
177 } else if (i_block < direct_blocks) {
178 offsets[n++] = i_block;
179 final = direct_blocks;
180 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
181 offsets[n++] = EXT2_IND_BLOCK;
182 offsets[n++] = i_block;
184 } else if ((i_block -= indirect_blocks) < double_blocks) {
185 offsets[n++] = EXT2_DIND_BLOCK;
186 offsets[n++] = i_block >> ptrs_bits;
187 offsets[n++] = i_block & (ptrs - 1);
189 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
190 offsets[n++] = EXT2_TIND_BLOCK;
191 offsets[n++] = i_block >> (ptrs_bits * 2);
192 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
193 offsets[n++] = i_block & (ptrs - 1);
196 ext2_msg(inode->i_sb, KERN_WARNING,
197 "warning: %s: block is too big", __func__);
200 *boundary = final - 1 - (i_block & (ptrs - 1));
206 * ext2_get_branch - read the chain of indirect blocks leading to data
207 * @inode: inode in question
208 * @depth: depth of the chain (1 - direct pointer, etc.)
209 * @offsets: offsets of pointers in inode/indirect blocks
210 * @chain: place to store the result
211 * @err: here we store the error value
213 * Function fills the array of triples <key, p, bh> and returns %NULL
214 * if everything went OK or the pointer to the last filled triple
215 * (incomplete one) otherwise. Upon the return chain[i].key contains
216 * the number of (i+1)-th block in the chain (as it is stored in memory,
217 * i.e. little-endian 32-bit), chain[i].p contains the address of that
218 * number (it points into struct inode for i==0 and into the bh->b_data
219 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
220 * block for i>0 and NULL for i==0. In other words, it holds the block
221 * numbers of the chain, addresses they were taken from (and where we can
222 * verify that chain did not change) and buffer_heads hosting these
225 * Function stops when it stumbles upon zero pointer (absent block)
226 * (pointer to last triple returned, *@err == 0)
227 * or when it gets an IO error reading an indirect block
228 * (ditto, *@err == -EIO)
229 * or when it notices that chain had been changed while it was reading
230 * (ditto, *@err == -EAGAIN)
231 * or when it reads all @depth-1 indirect blocks successfully and finds
232 * the whole chain, all way to the data (returns %NULL, *err == 0).
234 static Indirect *ext2_get_branch(struct inode *inode,
240 struct super_block *sb = inode->i_sb;
242 struct buffer_head *bh;
245 /* i_data is not going away, no lock needed */
246 add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
250 bh = sb_bread(sb, le32_to_cpu(p->key));
253 read_lock(&EXT2_I(inode)->i_meta_lock);
254 if (!verify_chain(chain, p))
256 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
257 read_unlock(&EXT2_I(inode)->i_meta_lock);
264 read_unlock(&EXT2_I(inode)->i_meta_lock);
275 * ext2_find_near - find a place for allocation with sufficient locality
277 * @ind: descriptor of indirect block.
279 * This function returns the preferred place for block allocation.
280 * It is used when heuristic for sequential allocation fails.
282 * + if there is a block to the left of our position - allocate near it.
283 * + if pointer will live in indirect block - allocate near that block.
284 * + if pointer will live in inode - allocate in the same cylinder group.
286 * In the latter case we colour the starting block by the callers PID to
287 * prevent it from clashing with concurrent allocations for a different inode
288 * in the same block group. The PID is used here so that functionally related
289 * files will be close-by on-disk.
291 * Caller must make sure that @ind is valid and will stay that way.
294 static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
296 struct ext2_inode_info *ei = EXT2_I(inode);
297 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
299 ext2_fsblk_t bg_start;
302 /* Try to find previous block */
303 for (p = ind->p - 1; p >= start; p--)
305 return le32_to_cpu(*p);
307 /* No such thing, so let's try location of indirect block */
309 return ind->bh->b_blocknr;
312 * It is going to be referred from inode itself? OK, just put it into
313 * the same cylinder group then.
315 bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
316 colour = (current->pid % 16) *
317 (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
318 return bg_start + colour;
322 * ext2_find_goal - find a preferred place for allocation.
324 * @block: block we want
325 * @partial: pointer to the last triple within a chain
327 * Returns preferred place for a block (the goal).
330 static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
333 struct ext2_block_alloc_info *block_i;
335 block_i = EXT2_I(inode)->i_block_alloc_info;
338 * try the heuristic for sequential allocation,
339 * failing that at least try to get decent locality.
341 if (block_i && (block == block_i->last_alloc_logical_block + 1)
342 && (block_i->last_alloc_physical_block != 0)) {
343 return block_i->last_alloc_physical_block + 1;
346 return ext2_find_near(inode, partial);
350 * ext2_blks_to_allocate: Look up the block map and count the number
351 * of direct blocks need to be allocated for the given branch.
353 * @branch: chain of indirect blocks
354 * @k: number of blocks need for indirect blocks
355 * @blks: number of data blocks to be mapped.
356 * @blocks_to_boundary: the offset in the indirect block
358 * return the number of direct blocks to allocate.
361 ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
362 int blocks_to_boundary)
364 unsigned long count = 0;
367 * Simple case, [t,d]Indirect block(s) has not allocated yet
368 * then it's clear blocks on that path have not allocated
371 /* right now don't hanel cross boundary allocation */
372 if (blks < blocks_to_boundary + 1)
375 count += blocks_to_boundary + 1;
380 while (count < blks && count <= blocks_to_boundary
381 && le32_to_cpu(*(branch[0].p + count)) == 0) {
388 * ext2_alloc_blocks: multiple allocate blocks needed for a branch
389 * @indirect_blks: the number of blocks need to allocate for indirect
391 * @blks: the number of blocks need to allocate for direct blocks
392 * @new_blocks: on return it will store the new block numbers for
393 * the indirect blocks(if needed) and the first direct block,
395 static int ext2_alloc_blocks(struct inode *inode,
396 ext2_fsblk_t goal, int indirect_blks, int blks,
397 ext2_fsblk_t new_blocks[4], int *err)
400 unsigned long count = 0;
402 ext2_fsblk_t current_block = 0;
406 * Here we try to allocate the requested multiple blocks at once,
407 * on a best-effort basis.
408 * To build a branch, we should allocate blocks for
409 * the indirect blocks(if not allocated yet), and at least
410 * the first direct block of this branch. That's the
411 * minimum number of blocks need to allocate(required)
413 target = blks + indirect_blks;
417 /* allocating blocks for indirect blocks and direct blocks */
418 current_block = ext2_new_blocks(inode,goal,&count,err);
423 /* allocate blocks for indirect blocks */
424 while (index < indirect_blks && count) {
425 new_blocks[index++] = current_block++;
433 /* save the new block number for the first direct block */
434 new_blocks[index] = current_block;
436 /* total number of blocks allocated for direct blocks */
441 for (i = 0; i <index; i++)
442 ext2_free_blocks(inode, new_blocks[i], 1);
444 mark_inode_dirty(inode);
449 * ext2_alloc_branch - allocate and set up a chain of blocks.
451 * @indirect_blks: depth of the chain (number of blocks to allocate)
452 * @blks: number of allocated direct blocks
453 * @goal: preferred place for allocation
454 * @offsets: offsets (in the blocks) to store the pointers to next.
455 * @branch: place to store the chain in.
457 * This function allocates @num blocks, zeroes out all but the last one,
458 * links them into chain and (if we are synchronous) writes them to disk.
459 * In other words, it prepares a branch that can be spliced onto the
460 * inode. It stores the information about that chain in the branch[], in
461 * the same format as ext2_get_branch() would do. We are calling it after
462 * we had read the existing part of chain and partial points to the last
463 * triple of that (one with zero ->key). Upon the exit we have the same
464 * picture as after the successful ext2_get_block(), except that in one
465 * place chain is disconnected - *branch->p is still zero (we did not
466 * set the last link), but branch->key contains the number that should
467 * be placed into *branch->p to fill that gap.
469 * If allocation fails we free all blocks we've allocated (and forget
470 * their buffer_heads) and return the error value the from failed
471 * ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
472 * as described above and return 0.
475 static int ext2_alloc_branch(struct inode *inode,
476 int indirect_blks, int *blks, ext2_fsblk_t goal,
477 int *offsets, Indirect *branch)
479 int blocksize = inode->i_sb->s_blocksize;
482 struct buffer_head *bh;
484 ext2_fsblk_t new_blocks[4];
485 ext2_fsblk_t current_block;
487 num = ext2_alloc_blocks(inode, goal, indirect_blks,
488 *blks, new_blocks, &err);
492 branch[0].key = cpu_to_le32(new_blocks[0]);
494 * metadata blocks and data blocks are allocated.
496 for (n = 1; n <= indirect_blks; n++) {
498 * Get buffer_head for parent block, zero it out
499 * and set the pointer to new one, then send
502 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
509 memset(bh->b_data, 0, blocksize);
510 branch[n].p = (__le32 *) bh->b_data + offsets[n];
511 branch[n].key = cpu_to_le32(new_blocks[n]);
512 *branch[n].p = branch[n].key;
513 if ( n == indirect_blks) {
514 current_block = new_blocks[n];
516 * End of chain, update the last new metablock of
517 * the chain to point to the new allocated
518 * data blocks numbers
520 for (i=1; i < num; i++)
521 *(branch[n].p + i) = cpu_to_le32(++current_block);
523 set_buffer_uptodate(bh);
525 mark_buffer_dirty_inode(bh, inode);
526 /* We used to sync bh here if IS_SYNC(inode).
527 * But we now rely upon generic_write_sync()
528 * and b_inode_buffers. But not for directories.
530 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
531 sync_dirty_buffer(bh);
537 for (i = 1; i < n; i++)
538 bforget(branch[i].bh);
539 for (i = 0; i < indirect_blks; i++)
540 ext2_free_blocks(inode, new_blocks[i], 1);
541 ext2_free_blocks(inode, new_blocks[i], num);
546 * ext2_splice_branch - splice the allocated branch onto inode.
548 * @block: (logical) number of block we are adding
549 * @where: location of missing link
550 * @num: number of indirect blocks we are adding
551 * @blks: number of direct blocks we are adding
553 * This function fills the missing link and does all housekeeping needed in
554 * inode (->i_blocks, etc.). In case of success we end up with the full
555 * chain to new block and return 0.
557 static void ext2_splice_branch(struct inode *inode,
558 long block, Indirect *where, int num, int blks)
561 struct ext2_block_alloc_info *block_i;
562 ext2_fsblk_t current_block;
564 block_i = EXT2_I(inode)->i_block_alloc_info;
566 /* XXX LOCKING probably should have i_meta_lock ?*/
569 *where->p = where->key;
572 * Update the host buffer_head or inode to point to more just allocated
573 * direct blocks blocks
575 if (num == 0 && blks > 1) {
576 current_block = le32_to_cpu(where->key) + 1;
577 for (i = 1; i < blks; i++)
578 *(where->p + i ) = cpu_to_le32(current_block++);
582 * update the most recently allocated logical & physical block
583 * in i_block_alloc_info, to assist find the proper goal block for next
587 block_i->last_alloc_logical_block = block + blks - 1;
588 block_i->last_alloc_physical_block =
589 le32_to_cpu(where[num].key) + blks - 1;
592 /* We are done with atomic stuff, now do the rest of housekeeping */
594 /* had we spliced it onto indirect block? */
596 mark_buffer_dirty_inode(where->bh, inode);
598 inode->i_ctime = current_time(inode);
599 mark_inode_dirty(inode);
603 * Allocation strategy is simple: if we have to allocate something, we will
604 * have to go the whole way to leaf. So let's do it before attaching anything
605 * to tree, set linkage between the newborn blocks, write them if sync is
606 * required, recheck the path, free and repeat if check fails, otherwise
607 * set the last missing link (that will protect us from any truncate-generated
608 * removals - all blocks on the path are immune now) and possibly force the
609 * write on the parent block.
610 * That has a nice additional property: no special recovery from the failed
611 * allocations is needed - we simply release blocks and do not touch anything
612 * reachable from inode.
614 * `handle' can be NULL if create == 0.
616 * return > 0, # of blocks mapped or allocated.
617 * return = 0, if plain lookup failed.
618 * return < 0, error case.
620 static int ext2_get_blocks(struct inode *inode,
621 sector_t iblock, unsigned long maxblocks,
622 u32 *bno, bool *new, bool *boundary,
631 int blocks_to_boundary = 0;
633 struct ext2_inode_info *ei = EXT2_I(inode);
635 ext2_fsblk_t first_block = 0;
637 BUG_ON(maxblocks == 0);
639 depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
644 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
645 /* Simplest case - block found, no allocation needed */
647 first_block = le32_to_cpu(chain[depth - 1].key);
650 while (count < maxblocks && count <= blocks_to_boundary) {
653 if (!verify_chain(chain, chain + depth - 1)) {
655 * Indirect block might be removed by
656 * truncate while we were reading it.
657 * Handling of that case: forget what we've
658 * got now, go to reread.
662 partial = chain + depth - 1;
665 blk = le32_to_cpu(*(chain[depth-1].p + count));
666 if (blk == first_block + count)
675 /* Next simple case - plain lookup or failed read of indirect block */
676 if (!create || err == -EIO)
679 mutex_lock(&ei->truncate_mutex);
681 * If the indirect block is missing while we are reading
682 * the chain(ext2_get_branch() returns -EAGAIN err), or
683 * if the chain has been changed after we grab the semaphore,
684 * (either because another process truncated this branch, or
685 * another get_block allocated this branch) re-grab the chain to see if
686 * the request block has been allocated or not.
688 * Since we already block the truncate/other get_block
689 * at this point, we will have the current copy of the chain when we
690 * splice the branch into the tree.
692 if (err == -EAGAIN || !verify_chain(chain, partial)) {
693 while (partial > chain) {
697 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
700 mutex_unlock(&ei->truncate_mutex);
705 mutex_unlock(&ei->truncate_mutex);
711 * Okay, we need to do block allocation. Lazily initialize the block
712 * allocation info here if necessary
714 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
715 ext2_init_block_alloc_info(inode);
717 goal = ext2_find_goal(inode, iblock, partial);
719 /* the number of blocks need to allocate for [d,t]indirect blocks */
720 indirect_blks = (chain + depth) - partial - 1;
722 * Next look up the indirect map to count the total number of
723 * direct blocks to allocate for this branch.
725 count = ext2_blks_to_allocate(partial, indirect_blks,
726 maxblocks, blocks_to_boundary);
728 * XXX ???? Block out ext2_truncate while we alter the tree
730 err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
731 offsets + (partial - chain), partial);
734 mutex_unlock(&ei->truncate_mutex);
740 * We must unmap blocks before zeroing so that writeback cannot
741 * overwrite zeros with stale data from block device page cache.
743 clean_bdev_aliases(inode->i_sb->s_bdev,
744 le32_to_cpu(chain[depth-1].key),
747 * block must be initialised before we put it in the tree
748 * so that it's not found by another thread before it's
751 err = sb_issue_zeroout(inode->i_sb,
752 le32_to_cpu(chain[depth-1].key), count,
755 mutex_unlock(&ei->truncate_mutex);
761 ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
762 mutex_unlock(&ei->truncate_mutex);
764 if (count > blocks_to_boundary)
767 /* Clean up and exit */
768 partial = chain + depth - 1; /* the whole chain */
770 while (partial > chain) {
775 *bno = le32_to_cpu(chain[depth-1].key);
779 int ext2_get_block(struct inode *inode, sector_t iblock,
780 struct buffer_head *bh_result, int create)
782 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
783 bool new = false, boundary = false;
787 ret = ext2_get_blocks(inode, iblock, max_blocks, &bno, &new, &boundary,
792 map_bh(bh_result, inode->i_sb, bno);
793 bh_result->b_size = (ret << inode->i_blkbits);
795 set_buffer_new(bh_result);
797 set_buffer_boundary(bh_result);
802 static int ext2_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
803 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
805 unsigned int blkbits = inode->i_blkbits;
806 unsigned long first_block = offset >> blkbits;
807 unsigned long max_blocks = (length + (1 << blkbits) - 1) >> blkbits;
808 struct ext2_sb_info *sbi = EXT2_SB(inode->i_sb);
809 bool new = false, boundary = false;
812 bool create = flags & IOMAP_WRITE;
815 * For writes that could fill holes inside i_size on a
816 * DIO_SKIP_HOLES filesystem we forbid block creations: only
817 * overwrites are permitted.
819 if ((flags & IOMAP_DIRECT) &&
820 (first_block << blkbits) < i_size_read(inode))
824 * Writes that span EOF might trigger an IO size update on completion,
825 * so consider them to be dirty for the purposes of O_DSYNC even if
826 * there is no other metadata changes pending or have been made here.
828 if ((flags & IOMAP_WRITE) && offset + length > i_size_read(inode))
829 iomap->flags |= IOMAP_F_DIRTY;
831 ret = ext2_get_blocks(inode, first_block, max_blocks,
832 &bno, &new, &boundary, create);
837 iomap->offset = (u64)first_block << blkbits;
838 if (flags & IOMAP_DAX)
839 iomap->dax_dev = sbi->s_daxdev;
841 iomap->bdev = inode->i_sb->s_bdev;
845 * Switch to buffered-io for writing to holes in a non-extent
846 * based filesystem to avoid stale data exposure problem.
848 if (!create && (flags & IOMAP_WRITE) && (flags & IOMAP_DIRECT))
850 iomap->type = IOMAP_HOLE;
851 iomap->addr = IOMAP_NULL_ADDR;
852 iomap->length = 1 << blkbits;
854 iomap->type = IOMAP_MAPPED;
855 iomap->addr = (u64)bno << blkbits;
856 if (flags & IOMAP_DAX)
857 iomap->addr += sbi->s_dax_part_off;
858 iomap->length = (u64)ret << blkbits;
859 iomap->flags |= IOMAP_F_MERGED;
863 iomap->flags |= IOMAP_F_NEW;
868 ext2_iomap_end(struct inode *inode, loff_t offset, loff_t length,
869 ssize_t written, unsigned flags, struct iomap *iomap)
872 * Switch to buffered-io in case of any error.
873 * Blocks allocated can be used by the buffered-io path.
875 if ((flags & IOMAP_DIRECT) && (flags & IOMAP_WRITE) && written == 0)
878 if (iomap->type == IOMAP_MAPPED &&
880 (flags & IOMAP_WRITE))
881 ext2_write_failed(inode->i_mapping, offset + length);
885 const struct iomap_ops ext2_iomap_ops = {
886 .iomap_begin = ext2_iomap_begin,
887 .iomap_end = ext2_iomap_end,
890 int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
896 len = min_t(u64, len, i_size_read(inode));
897 ret = iomap_fiemap(inode, fieinfo, start, len, &ext2_iomap_ops);
903 static int ext2_read_folio(struct file *file, struct folio *folio)
905 return mpage_read_folio(folio, ext2_get_block);
908 static void ext2_readahead(struct readahead_control *rac)
910 mpage_readahead(rac, ext2_get_block);
914 ext2_write_begin(struct file *file, struct address_space *mapping,
915 loff_t pos, unsigned len, struct page **pagep, void **fsdata)
919 ret = block_write_begin(mapping, pos, len, pagep, ext2_get_block);
921 ext2_write_failed(mapping, pos + len);
925 static int ext2_write_end(struct file *file, struct address_space *mapping,
926 loff_t pos, unsigned len, unsigned copied,
927 struct page *page, void *fsdata)
931 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
933 ext2_write_failed(mapping, pos + len);
937 static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
939 return generic_block_bmap(mapping,block,ext2_get_block);
943 ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
945 return mpage_writepages(mapping, wbc, ext2_get_block);
949 ext2_dax_writepages(struct address_space *mapping, struct writeback_control *wbc)
951 struct ext2_sb_info *sbi = EXT2_SB(mapping->host->i_sb);
953 return dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
956 const struct address_space_operations ext2_aops = {
957 .dirty_folio = block_dirty_folio,
958 .invalidate_folio = block_invalidate_folio,
959 .read_folio = ext2_read_folio,
960 .readahead = ext2_readahead,
961 .write_begin = ext2_write_begin,
962 .write_end = ext2_write_end,
964 .direct_IO = noop_direct_IO,
965 .writepages = ext2_writepages,
966 .migrate_folio = buffer_migrate_folio,
967 .is_partially_uptodate = block_is_partially_uptodate,
968 .error_remove_page = generic_error_remove_page,
971 static const struct address_space_operations ext2_dax_aops = {
972 .writepages = ext2_dax_writepages,
973 .direct_IO = noop_direct_IO,
974 .dirty_folio = noop_dirty_folio,
978 * Probably it should be a library function... search for first non-zero word
979 * or memcmp with zero_page, whatever is better for particular architecture.
982 static inline int all_zeroes(__le32 *p, __le32 *q)
991 * ext2_find_shared - find the indirect blocks for partial truncation.
992 * @inode: inode in question
993 * @depth: depth of the affected branch
994 * @offsets: offsets of pointers in that branch (see ext2_block_to_path)
995 * @chain: place to store the pointers to partial indirect blocks
996 * @top: place to the (detached) top of branch
998 * This is a helper function used by ext2_truncate().
1000 * When we do truncate() we may have to clean the ends of several indirect
1001 * blocks but leave the blocks themselves alive. Block is partially
1002 * truncated if some data below the new i_size is referred from it (and
1003 * it is on the path to the first completely truncated data block, indeed).
1004 * We have to free the top of that path along with everything to the right
1005 * of the path. Since no allocation past the truncation point is possible
1006 * until ext2_truncate() finishes, we may safely do the latter, but top
1007 * of branch may require special attention - pageout below the truncation
1008 * point might try to populate it.
1010 * We atomically detach the top of branch from the tree, store the block
1011 * number of its root in *@top, pointers to buffer_heads of partially
1012 * truncated blocks - in @chain[].bh and pointers to their last elements
1013 * that should not be removed - in @chain[].p. Return value is the pointer
1014 * to last filled element of @chain.
1016 * The work left to caller to do the actual freeing of subtrees:
1017 * a) free the subtree starting from *@top
1018 * b) free the subtrees whose roots are stored in
1019 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1020 * c) free the subtrees growing from the inode past the @chain[0].p
1021 * (no partially truncated stuff there).
1024 static Indirect *ext2_find_shared(struct inode *inode,
1030 Indirect *partial, *p;
1034 for (k = depth; k > 1 && !offsets[k-1]; k--)
1036 partial = ext2_get_branch(inode, k, offsets, chain, &err);
1038 partial = chain + k-1;
1040 * If the branch acquired continuation since we've looked at it -
1041 * fine, it should all survive and (new) top doesn't belong to us.
1043 write_lock(&EXT2_I(inode)->i_meta_lock);
1044 if (!partial->key && *partial->p) {
1045 write_unlock(&EXT2_I(inode)->i_meta_lock);
1048 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1051 * OK, we've found the last block that must survive. The rest of our
1052 * branch should be detached before unlocking. However, if that rest
1053 * of branch is all ours and does not grow immediately from the inode
1054 * it's easier to cheat and just decrement partial->p.
1056 if (p == chain + k - 1 && p > chain) {
1062 write_unlock(&EXT2_I(inode)->i_meta_lock);
1066 brelse(partial->bh);
1074 * ext2_free_data - free a list of data blocks
1075 * @inode: inode we are dealing with
1076 * @p: array of block numbers
1077 * @q: points immediately past the end of array
1079 * We are freeing all blocks referred from that array (numbers are
1080 * stored as little-endian 32-bit) and updating @inode->i_blocks
1083 static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
1085 unsigned long block_to_free = 0, count = 0;
1088 for ( ; p < q ; p++) {
1089 nr = le32_to_cpu(*p);
1092 /* accumulate blocks to free if they're contiguous */
1095 else if (block_to_free == nr - count)
1098 ext2_free_blocks (inode, block_to_free, count);
1099 mark_inode_dirty(inode);
1107 ext2_free_blocks (inode, block_to_free, count);
1108 mark_inode_dirty(inode);
1113 * ext2_free_branches - free an array of branches
1114 * @inode: inode we are dealing with
1115 * @p: array of block numbers
1116 * @q: pointer immediately past the end of array
1117 * @depth: depth of the branches to free
1119 * We are freeing all blocks referred from these branches (numbers are
1120 * stored as little-endian 32-bit) and updating @inode->i_blocks
1123 static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
1125 struct buffer_head * bh;
1129 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1130 for ( ; p < q ; p++) {
1131 nr = le32_to_cpu(*p);
1135 bh = sb_bread(inode->i_sb, nr);
1137 * A read failure? Report error and clear slot
1141 ext2_error(inode->i_sb, "ext2_free_branches",
1142 "Read failure, inode=%ld, block=%ld",
1146 ext2_free_branches(inode,
1147 (__le32*)bh->b_data,
1148 (__le32*)bh->b_data + addr_per_block,
1151 ext2_free_blocks(inode, nr, 1);
1152 mark_inode_dirty(inode);
1155 ext2_free_data(inode, p, q);
1158 /* mapping->invalidate_lock must be held when calling this function */
1159 static void __ext2_truncate_blocks(struct inode *inode, loff_t offset)
1161 __le32 *i_data = EXT2_I(inode)->i_data;
1162 struct ext2_inode_info *ei = EXT2_I(inode);
1163 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1171 blocksize = inode->i_sb->s_blocksize;
1172 iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1174 #ifdef CONFIG_FS_DAX
1175 WARN_ON(!rwsem_is_locked(&inode->i_mapping->invalidate_lock));
1178 n = ext2_block_to_path(inode, iblock, offsets, NULL);
1183 * From here we block out all ext2_get_block() callers who want to
1184 * modify the block allocation tree.
1186 mutex_lock(&ei->truncate_mutex);
1189 ext2_free_data(inode, i_data+offsets[0],
1190 i_data + EXT2_NDIR_BLOCKS);
1194 partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1195 /* Kill the top of shared branch (already detached) */
1197 if (partial == chain)
1198 mark_inode_dirty(inode);
1200 mark_buffer_dirty_inode(partial->bh, inode);
1201 ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1203 /* Clear the ends of indirect blocks on the shared branch */
1204 while (partial > chain) {
1205 ext2_free_branches(inode,
1207 (__le32*)partial->bh->b_data+addr_per_block,
1208 (chain+n-1) - partial);
1209 mark_buffer_dirty_inode(partial->bh, inode);
1210 brelse (partial->bh);
1214 /* Kill the remaining (whole) subtrees */
1215 switch (offsets[0]) {
1217 nr = i_data[EXT2_IND_BLOCK];
1219 i_data[EXT2_IND_BLOCK] = 0;
1220 mark_inode_dirty(inode);
1221 ext2_free_branches(inode, &nr, &nr+1, 1);
1224 case EXT2_IND_BLOCK:
1225 nr = i_data[EXT2_DIND_BLOCK];
1227 i_data[EXT2_DIND_BLOCK] = 0;
1228 mark_inode_dirty(inode);
1229 ext2_free_branches(inode, &nr, &nr+1, 2);
1232 case EXT2_DIND_BLOCK:
1233 nr = i_data[EXT2_TIND_BLOCK];
1235 i_data[EXT2_TIND_BLOCK] = 0;
1236 mark_inode_dirty(inode);
1237 ext2_free_branches(inode, &nr, &nr+1, 3);
1240 case EXT2_TIND_BLOCK:
1244 ext2_discard_reservation(inode);
1246 mutex_unlock(&ei->truncate_mutex);
1249 static void ext2_truncate_blocks(struct inode *inode, loff_t offset)
1251 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1252 S_ISLNK(inode->i_mode)))
1254 if (ext2_inode_is_fast_symlink(inode))
1257 filemap_invalidate_lock(inode->i_mapping);
1258 __ext2_truncate_blocks(inode, offset);
1259 filemap_invalidate_unlock(inode->i_mapping);
1262 static int ext2_setsize(struct inode *inode, loff_t newsize)
1266 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1267 S_ISLNK(inode->i_mode)))
1269 if (ext2_inode_is_fast_symlink(inode))
1271 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1274 inode_dio_wait(inode);
1277 error = dax_truncate_page(inode, newsize, NULL,
1280 error = block_truncate_page(inode->i_mapping,
1281 newsize, ext2_get_block);
1285 filemap_invalidate_lock(inode->i_mapping);
1286 truncate_setsize(inode, newsize);
1287 __ext2_truncate_blocks(inode, newsize);
1288 filemap_invalidate_unlock(inode->i_mapping);
1290 inode->i_mtime = inode->i_ctime = current_time(inode);
1291 if (inode_needs_sync(inode)) {
1292 sync_mapping_buffers(inode->i_mapping);
1293 sync_inode_metadata(inode, 1);
1295 mark_inode_dirty(inode);
1301 static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1302 struct buffer_head **p)
1304 struct buffer_head * bh;
1305 unsigned long block_group;
1306 unsigned long block;
1307 unsigned long offset;
1308 struct ext2_group_desc * gdp;
1311 if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1312 ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1315 block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1316 gdp = ext2_get_group_desc(sb, block_group, NULL);
1320 * Figure out the offset within the block group inode table
1322 offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1323 block = le32_to_cpu(gdp->bg_inode_table) +
1324 (offset >> EXT2_BLOCK_SIZE_BITS(sb));
1325 if (!(bh = sb_bread(sb, block)))
1329 offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1330 return (struct ext2_inode *) (bh->b_data + offset);
1333 ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1334 (unsigned long) ino);
1335 return ERR_PTR(-EINVAL);
1337 ext2_error(sb, "ext2_get_inode",
1338 "unable to read inode block - inode=%lu, block=%lu",
1339 (unsigned long) ino, block);
1341 return ERR_PTR(-EIO);
1344 void ext2_set_inode_flags(struct inode *inode)
1346 unsigned int flags = EXT2_I(inode)->i_flags;
1348 inode->i_flags &= ~(S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME |
1350 if (flags & EXT2_SYNC_FL)
1351 inode->i_flags |= S_SYNC;
1352 if (flags & EXT2_APPEND_FL)
1353 inode->i_flags |= S_APPEND;
1354 if (flags & EXT2_IMMUTABLE_FL)
1355 inode->i_flags |= S_IMMUTABLE;
1356 if (flags & EXT2_NOATIME_FL)
1357 inode->i_flags |= S_NOATIME;
1358 if (flags & EXT2_DIRSYNC_FL)
1359 inode->i_flags |= S_DIRSYNC;
1360 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
1361 inode->i_flags |= S_DAX;
1364 void ext2_set_file_ops(struct inode *inode)
1366 inode->i_op = &ext2_file_inode_operations;
1367 inode->i_fop = &ext2_file_operations;
1369 inode->i_mapping->a_ops = &ext2_dax_aops;
1371 inode->i_mapping->a_ops = &ext2_aops;
1374 struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1376 struct ext2_inode_info *ei;
1377 struct buffer_head * bh = NULL;
1378 struct ext2_inode *raw_inode;
1379 struct inode *inode;
1385 inode = iget_locked(sb, ino);
1387 return ERR_PTR(-ENOMEM);
1388 if (!(inode->i_state & I_NEW))
1392 ei->i_block_alloc_info = NULL;
1394 raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1395 if (IS_ERR(raw_inode)) {
1396 ret = PTR_ERR(raw_inode);
1400 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1401 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1402 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1403 if (!(test_opt (inode->i_sb, NO_UID32))) {
1404 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1405 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1407 i_uid_write(inode, i_uid);
1408 i_gid_write(inode, i_gid);
1409 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
1410 inode->i_size = le32_to_cpu(raw_inode->i_size);
1411 inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1412 inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1413 inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1414 inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1415 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1416 /* We now have enough fields to check if the inode was active or not.
1417 * This is needed because nfsd might try to access dead inodes
1418 * the test is that same one that e2fsck uses
1419 * NeilBrown 1999oct15
1421 if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1422 /* this inode is deleted */
1426 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1427 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1428 ext2_set_inode_flags(inode);
1429 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1430 ei->i_frag_no = raw_inode->i_frag;
1431 ei->i_frag_size = raw_inode->i_fsize;
1432 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1435 if (ei->i_file_acl &&
1436 !ext2_data_block_valid(EXT2_SB(sb), ei->i_file_acl, 1)) {
1437 ext2_error(sb, "ext2_iget", "bad extended attribute block %u",
1439 ret = -EFSCORRUPTED;
1443 if (S_ISREG(inode->i_mode))
1444 inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1446 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1447 if (i_size_read(inode) < 0) {
1448 ret = -EFSCORRUPTED;
1452 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1454 ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1455 ei->i_dir_start_lookup = 0;
1458 * NOTE! The in-memory inode i_data array is in little-endian order
1459 * even on big-endian machines: we do NOT byteswap the block numbers!
1461 for (n = 0; n < EXT2_N_BLOCKS; n++)
1462 ei->i_data[n] = raw_inode->i_block[n];
1464 if (S_ISREG(inode->i_mode)) {
1465 ext2_set_file_ops(inode);
1466 } else if (S_ISDIR(inode->i_mode)) {
1467 inode->i_op = &ext2_dir_inode_operations;
1468 inode->i_fop = &ext2_dir_operations;
1469 inode->i_mapping->a_ops = &ext2_aops;
1470 } else if (S_ISLNK(inode->i_mode)) {
1471 if (ext2_inode_is_fast_symlink(inode)) {
1472 inode->i_link = (char *)ei->i_data;
1473 inode->i_op = &ext2_fast_symlink_inode_operations;
1474 nd_terminate_link(ei->i_data, inode->i_size,
1475 sizeof(ei->i_data) - 1);
1477 inode->i_op = &ext2_symlink_inode_operations;
1478 inode_nohighmem(inode);
1479 inode->i_mapping->a_ops = &ext2_aops;
1482 inode->i_op = &ext2_special_inode_operations;
1483 if (raw_inode->i_block[0])
1484 init_special_inode(inode, inode->i_mode,
1485 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1487 init_special_inode(inode, inode->i_mode,
1488 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1491 unlock_new_inode(inode);
1497 return ERR_PTR(ret);
1500 static int __ext2_write_inode(struct inode *inode, int do_sync)
1502 struct ext2_inode_info *ei = EXT2_I(inode);
1503 struct super_block *sb = inode->i_sb;
1504 ino_t ino = inode->i_ino;
1505 uid_t uid = i_uid_read(inode);
1506 gid_t gid = i_gid_read(inode);
1507 struct buffer_head * bh;
1508 struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1512 if (IS_ERR(raw_inode))
1515 /* For fields not tracking in the in-memory inode,
1516 * initialise them to zero for new inodes. */
1517 if (ei->i_state & EXT2_STATE_NEW)
1518 memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1520 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1521 if (!(test_opt(sb, NO_UID32))) {
1522 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1523 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1525 * Fix up interoperability with old kernels. Otherwise, old inodes get
1526 * re-used with the upper 16 bits of the uid/gid intact
1529 raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1530 raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1532 raw_inode->i_uid_high = 0;
1533 raw_inode->i_gid_high = 0;
1536 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1537 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1538 raw_inode->i_uid_high = 0;
1539 raw_inode->i_gid_high = 0;
1541 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1542 raw_inode->i_size = cpu_to_le32(inode->i_size);
1543 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1544 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1545 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1547 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1548 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1549 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1550 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1551 raw_inode->i_frag = ei->i_frag_no;
1552 raw_inode->i_fsize = ei->i_frag_size;
1553 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1554 if (!S_ISREG(inode->i_mode))
1555 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1557 raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1558 if (inode->i_size > 0x7fffffffULL) {
1559 if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1560 EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1561 EXT2_SB(sb)->s_es->s_rev_level ==
1562 cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1563 /* If this is the first large file
1564 * created, add a flag to the superblock.
1566 spin_lock(&EXT2_SB(sb)->s_lock);
1567 ext2_update_dynamic_rev(sb);
1568 EXT2_SET_RO_COMPAT_FEATURE(sb,
1569 EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1570 spin_unlock(&EXT2_SB(sb)->s_lock);
1571 ext2_sync_super(sb, EXT2_SB(sb)->s_es, 1);
1576 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1577 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1578 if (old_valid_dev(inode->i_rdev)) {
1579 raw_inode->i_block[0] =
1580 cpu_to_le32(old_encode_dev(inode->i_rdev));
1581 raw_inode->i_block[1] = 0;
1583 raw_inode->i_block[0] = 0;
1584 raw_inode->i_block[1] =
1585 cpu_to_le32(new_encode_dev(inode->i_rdev));
1586 raw_inode->i_block[2] = 0;
1588 } else for (n = 0; n < EXT2_N_BLOCKS; n++)
1589 raw_inode->i_block[n] = ei->i_data[n];
1590 mark_buffer_dirty(bh);
1592 sync_dirty_buffer(bh);
1593 if (buffer_req(bh) && !buffer_uptodate(bh)) {
1594 printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1595 sb->s_id, (unsigned long) ino);
1599 ei->i_state &= ~EXT2_STATE_NEW;
1604 int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1606 return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1609 int ext2_getattr(struct mnt_idmap *idmap, const struct path *path,
1610 struct kstat *stat, u32 request_mask, unsigned int query_flags)
1612 struct inode *inode = d_inode(path->dentry);
1613 struct ext2_inode_info *ei = EXT2_I(inode);
1616 flags = ei->i_flags & EXT2_FL_USER_VISIBLE;
1617 if (flags & EXT2_APPEND_FL)
1618 stat->attributes |= STATX_ATTR_APPEND;
1619 if (flags & EXT2_COMPR_FL)
1620 stat->attributes |= STATX_ATTR_COMPRESSED;
1621 if (flags & EXT2_IMMUTABLE_FL)
1622 stat->attributes |= STATX_ATTR_IMMUTABLE;
1623 if (flags & EXT2_NODUMP_FL)
1624 stat->attributes |= STATX_ATTR_NODUMP;
1625 stat->attributes_mask |= (STATX_ATTR_APPEND |
1626 STATX_ATTR_COMPRESSED |
1627 STATX_ATTR_ENCRYPTED |
1628 STATX_ATTR_IMMUTABLE |
1631 generic_fillattr(&nop_mnt_idmap, inode, stat);
1635 int ext2_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
1636 struct iattr *iattr)
1638 struct inode *inode = d_inode(dentry);
1641 error = setattr_prepare(&nop_mnt_idmap, dentry, iattr);
1645 if (is_quota_modification(&nop_mnt_idmap, inode, iattr)) {
1646 error = dquot_initialize(inode);
1650 if (i_uid_needs_update(&nop_mnt_idmap, iattr, inode) ||
1651 i_gid_needs_update(&nop_mnt_idmap, iattr, inode)) {
1652 error = dquot_transfer(&nop_mnt_idmap, inode, iattr);
1656 if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) {
1657 error = ext2_setsize(inode, iattr->ia_size);
1661 setattr_copy(&nop_mnt_idmap, inode, iattr);
1662 if (iattr->ia_valid & ATTR_MODE)
1663 error = posix_acl_chmod(&nop_mnt_idmap, dentry, inode->i_mode);
1664 mark_inode_dirty(inode);