1 // SPDX-License-Identifier: GPL-2.0
3 * linux/fs/ext2/inode.c
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
12 * linux/fs/minix/inode.c
14 * Copyright (C) 1991, 1992 Linus Torvalds
16 * Goal-directed block allocation by Stephen Tweedie
17 * (sct@dcs.ed.ac.uk), 1993, 1998
18 * Big-endian to little-endian byte-swapping/bitmaps by
19 * David S. Miller (davem@caip.rutgers.edu), 1995
20 * 64-bit file support on 64-bit platforms by Jakub Jelinek
21 * (jj@sunsite.ms.mff.cuni.cz)
23 * Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
26 #include <linux/time.h>
27 #include <linux/highuid.h>
28 #include <linux/pagemap.h>
29 #include <linux/dax.h>
30 #include <linux/blkdev.h>
31 #include <linux/quotaops.h>
32 #include <linux/writeback.h>
33 #include <linux/buffer_head.h>
34 #include <linux/mpage.h>
35 #include <linux/fiemap.h>
36 #include <linux/iomap.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/dax.h>
44 static int __ext2_write_inode(struct inode *inode, int do_sync);
47 * Test whether an inode is a fast symlink.
49 static inline int ext2_inode_is_fast_symlink(struct inode *inode)
51 int ea_blocks = EXT2_I(inode)->i_file_acl ?
52 (inode->i_sb->s_blocksize >> 9) : 0;
54 return (S_ISLNK(inode->i_mode) &&
55 inode->i_blocks - ea_blocks == 0);
58 static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
60 static void ext2_write_failed(struct address_space *mapping, loff_t to)
62 struct inode *inode = mapping->host;
64 if (to > inode->i_size) {
65 truncate_pagecache(inode, inode->i_size);
66 ext2_truncate_blocks(inode, inode->i_size);
71 * Called at the last iput() if i_nlink is zero.
73 void ext2_evict_inode(struct inode * inode)
75 struct ext2_block_alloc_info *rsv;
78 if (!inode->i_nlink && !is_bad_inode(inode)) {
80 dquot_initialize(inode);
85 truncate_inode_pages_final(&inode->i_data);
88 sb_start_intwrite(inode->i_sb);
90 EXT2_I(inode)->i_dtime = ktime_get_real_seconds();
91 mark_inode_dirty(inode);
92 __ext2_write_inode(inode, inode_needs_sync(inode));
96 ext2_truncate_blocks(inode, 0);
97 ext2_xattr_delete_inode(inode);
100 invalidate_inode_buffers(inode);
103 ext2_discard_reservation(inode);
104 rsv = EXT2_I(inode)->i_block_alloc_info;
105 EXT2_I(inode)->i_block_alloc_info = NULL;
110 ext2_free_inode(inode);
111 sb_end_intwrite(inode->i_sb);
118 struct buffer_head *bh;
121 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
123 p->key = *(p->p = v);
127 static inline int verify_chain(Indirect *from, Indirect *to)
129 while (from <= to && from->key == *from->p)
135 * ext2_block_to_path - parse the block number into array of offsets
136 * @inode: inode in question (we are only interested in its superblock)
137 * @i_block: block number to be parsed
138 * @offsets: array to store the offsets in
139 * @boundary: set this non-zero if the referred-to block is likely to be
140 * followed (on disk) by an indirect block.
141 * To store the locations of file's data ext2 uses a data structure common
142 * for UNIX filesystems - tree of pointers anchored in the inode, with
143 * data blocks at leaves and indirect blocks in intermediate nodes.
144 * This function translates the block number into path in that tree -
145 * return value is the path length and @offsets[n] is the offset of
146 * pointer to (n+1)th node in the nth one. If @block is out of range
147 * (negative or too large) warning is printed and zero returned.
149 * Note: function doesn't find node addresses, so no IO is needed. All
150 * we need to know is the capacity of indirect blocks (taken from the
155 * Portability note: the last comparison (check that we fit into triple
156 * indirect block) is spelled differently, because otherwise on an
157 * architecture with 32-bit longs and 8Kb pages we might get into trouble
158 * if our filesystem had 8Kb blocks. We might use long long, but that would
159 * kill us on x86. Oh, well, at least the sign propagation does not matter -
160 * i_block would have to be negative in the very beginning, so we would not
164 static int ext2_block_to_path(struct inode *inode,
165 long i_block, int offsets[4], int *boundary)
167 int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
168 int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
169 const long direct_blocks = EXT2_NDIR_BLOCKS,
170 indirect_blocks = ptrs,
171 double_blocks = (1 << (ptrs_bits * 2));
176 ext2_msg(inode->i_sb, KERN_WARNING,
177 "warning: %s: block < 0", __func__);
178 } else if (i_block < direct_blocks) {
179 offsets[n++] = i_block;
180 final = direct_blocks;
181 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
182 offsets[n++] = EXT2_IND_BLOCK;
183 offsets[n++] = i_block;
185 } else if ((i_block -= indirect_blocks) < double_blocks) {
186 offsets[n++] = EXT2_DIND_BLOCK;
187 offsets[n++] = i_block >> ptrs_bits;
188 offsets[n++] = i_block & (ptrs - 1);
190 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
191 offsets[n++] = EXT2_TIND_BLOCK;
192 offsets[n++] = i_block >> (ptrs_bits * 2);
193 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
194 offsets[n++] = i_block & (ptrs - 1);
197 ext2_msg(inode->i_sb, KERN_WARNING,
198 "warning: %s: block is too big", __func__);
201 *boundary = final - 1 - (i_block & (ptrs - 1));
207 * ext2_get_branch - read the chain of indirect blocks leading to data
208 * @inode: inode in question
209 * @depth: depth of the chain (1 - direct pointer, etc.)
210 * @offsets: offsets of pointers in inode/indirect blocks
211 * @chain: place to store the result
212 * @err: here we store the error value
214 * Function fills the array of triples <key, p, bh> and returns %NULL
215 * if everything went OK or the pointer to the last filled triple
216 * (incomplete one) otherwise. Upon the return chain[i].key contains
217 * the number of (i+1)-th block in the chain (as it is stored in memory,
218 * i.e. little-endian 32-bit), chain[i].p contains the address of that
219 * number (it points into struct inode for i==0 and into the bh->b_data
220 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
221 * block for i>0 and NULL for i==0. In other words, it holds the block
222 * numbers of the chain, addresses they were taken from (and where we can
223 * verify that chain did not change) and buffer_heads hosting these
226 * Function stops when it stumbles upon zero pointer (absent block)
227 * (pointer to last triple returned, *@err == 0)
228 * or when it gets an IO error reading an indirect block
229 * (ditto, *@err == -EIO)
230 * or when it notices that chain had been changed while it was reading
231 * (ditto, *@err == -EAGAIN)
232 * or when it reads all @depth-1 indirect blocks successfully and finds
233 * the whole chain, all way to the data (returns %NULL, *err == 0).
235 static Indirect *ext2_get_branch(struct inode *inode,
241 struct super_block *sb = inode->i_sb;
243 struct buffer_head *bh;
246 /* i_data is not going away, no lock needed */
247 add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
251 bh = sb_bread(sb, le32_to_cpu(p->key));
254 read_lock(&EXT2_I(inode)->i_meta_lock);
255 if (!verify_chain(chain, p))
257 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
258 read_unlock(&EXT2_I(inode)->i_meta_lock);
265 read_unlock(&EXT2_I(inode)->i_meta_lock);
276 * ext2_find_near - find a place for allocation with sufficient locality
278 * @ind: descriptor of indirect block.
280 * This function returns the preferred place for block allocation.
281 * It is used when heuristic for sequential allocation fails.
283 * + if there is a block to the left of our position - allocate near it.
284 * + if pointer will live in indirect block - allocate near that block.
285 * + if pointer will live in inode - allocate in the same cylinder group.
287 * In the latter case we colour the starting block by the callers PID to
288 * prevent it from clashing with concurrent allocations for a different inode
289 * in the same block group. The PID is used here so that functionally related
290 * files will be close-by on-disk.
292 * Caller must make sure that @ind is valid and will stay that way.
295 static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
297 struct ext2_inode_info *ei = EXT2_I(inode);
298 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
300 ext2_fsblk_t bg_start;
303 /* Try to find previous block */
304 for (p = ind->p - 1; p >= start; p--)
306 return le32_to_cpu(*p);
308 /* No such thing, so let's try location of indirect block */
310 return ind->bh->b_blocknr;
313 * It is going to be referred from inode itself? OK, just put it into
314 * the same cylinder group then.
316 bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
317 colour = (current->pid % 16) *
318 (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
319 return bg_start + colour;
323 * ext2_find_goal - find a preferred place for allocation.
325 * @block: block we want
326 * @partial: pointer to the last triple within a chain
328 * Returns preferred place for a block (the goal).
331 static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
334 struct ext2_block_alloc_info *block_i;
336 block_i = EXT2_I(inode)->i_block_alloc_info;
339 * try the heuristic for sequential allocation,
340 * failing that at least try to get decent locality.
342 if (block_i && (block == block_i->last_alloc_logical_block + 1)
343 && (block_i->last_alloc_physical_block != 0)) {
344 return block_i->last_alloc_physical_block + 1;
347 return ext2_find_near(inode, partial);
351 * ext2_blks_to_allocate: Look up the block map and count the number
352 * of direct blocks need to be allocated for the given branch.
354 * @branch: chain of indirect blocks
355 * @k: number of blocks need for indirect blocks
356 * @blks: number of data blocks to be mapped.
357 * @blocks_to_boundary: the offset in the indirect block
359 * return the number of direct blocks to allocate.
362 ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
363 int blocks_to_boundary)
365 unsigned long count = 0;
368 * Simple case, [t,d]Indirect block(s) has not allocated yet
369 * then it's clear blocks on that path have not allocated
372 /* right now don't hanel cross boundary allocation */
373 if (blks < blocks_to_boundary + 1)
376 count += blocks_to_boundary + 1;
381 while (count < blks && count <= blocks_to_boundary
382 && le32_to_cpu(*(branch[0].p + count)) == 0) {
389 * ext2_alloc_blocks: multiple allocate blocks needed for a branch
390 * @indirect_blks: the number of blocks need to allocate for indirect
392 * @blks: the number of blocks need to allocate for direct blocks
393 * @new_blocks: on return it will store the new block numbers for
394 * the indirect blocks(if needed) and the first direct block,
396 static int ext2_alloc_blocks(struct inode *inode,
397 ext2_fsblk_t goal, int indirect_blks, int blks,
398 ext2_fsblk_t new_blocks[4], int *err)
401 unsigned long count = 0;
403 ext2_fsblk_t current_block = 0;
407 * Here we try to allocate the requested multiple blocks at once,
408 * on a best-effort basis.
409 * To build a branch, we should allocate blocks for
410 * the indirect blocks(if not allocated yet), and at least
411 * the first direct block of this branch. That's the
412 * minimum number of blocks need to allocate(required)
414 target = blks + indirect_blks;
418 /* allocating blocks for indirect blocks and direct blocks */
419 current_block = ext2_new_blocks(inode,goal,&count,err);
424 /* allocate blocks for indirect blocks */
425 while (index < indirect_blks && count) {
426 new_blocks[index++] = current_block++;
434 /* save the new block number for the first direct block */
435 new_blocks[index] = current_block;
437 /* total number of blocks allocated for direct blocks */
442 for (i = 0; i <index; i++)
443 ext2_free_blocks(inode, new_blocks[i], 1);
445 mark_inode_dirty(inode);
450 * ext2_alloc_branch - allocate and set up a chain of blocks.
452 * @indirect_blks: depth of the chain (number of blocks to allocate)
453 * @blks: number of allocated direct blocks
454 * @goal: preferred place for allocation
455 * @offsets: offsets (in the blocks) to store the pointers to next.
456 * @branch: place to store the chain in.
458 * This function allocates @num blocks, zeroes out all but the last one,
459 * links them into chain and (if we are synchronous) writes them to disk.
460 * In other words, it prepares a branch that can be spliced onto the
461 * inode. It stores the information about that chain in the branch[], in
462 * the same format as ext2_get_branch() would do. We are calling it after
463 * we had read the existing part of chain and partial points to the last
464 * triple of that (one with zero ->key). Upon the exit we have the same
465 * picture as after the successful ext2_get_block(), except that in one
466 * place chain is disconnected - *branch->p is still zero (we did not
467 * set the last link), but branch->key contains the number that should
468 * be placed into *branch->p to fill that gap.
470 * If allocation fails we free all blocks we've allocated (and forget
471 * their buffer_heads) and return the error value the from failed
472 * ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
473 * as described above and return 0.
476 static int ext2_alloc_branch(struct inode *inode,
477 int indirect_blks, int *blks, ext2_fsblk_t goal,
478 int *offsets, Indirect *branch)
480 int blocksize = inode->i_sb->s_blocksize;
483 struct buffer_head *bh;
485 ext2_fsblk_t new_blocks[4];
486 ext2_fsblk_t current_block;
488 num = ext2_alloc_blocks(inode, goal, indirect_blks,
489 *blks, new_blocks, &err);
493 branch[0].key = cpu_to_le32(new_blocks[0]);
495 * metadata blocks and data blocks are allocated.
497 for (n = 1; n <= indirect_blks; n++) {
499 * Get buffer_head for parent block, zero it out
500 * and set the pointer to new one, then send
503 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
510 memset(bh->b_data, 0, blocksize);
511 branch[n].p = (__le32 *) bh->b_data + offsets[n];
512 branch[n].key = cpu_to_le32(new_blocks[n]);
513 *branch[n].p = branch[n].key;
514 if ( n == indirect_blks) {
515 current_block = new_blocks[n];
517 * End of chain, update the last new metablock of
518 * the chain to point to the new allocated
519 * data blocks numbers
521 for (i=1; i < num; i++)
522 *(branch[n].p + i) = cpu_to_le32(++current_block);
524 set_buffer_uptodate(bh);
526 mark_buffer_dirty_inode(bh, inode);
527 /* We used to sync bh here if IS_SYNC(inode).
528 * But we now rely upon generic_write_sync()
529 * and b_inode_buffers. But not for directories.
531 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
532 sync_dirty_buffer(bh);
538 for (i = 1; i < n; i++)
539 bforget(branch[i].bh);
540 for (i = 0; i < indirect_blks; i++)
541 ext2_free_blocks(inode, new_blocks[i], 1);
542 ext2_free_blocks(inode, new_blocks[i], num);
547 * ext2_splice_branch - splice the allocated branch onto inode.
549 * @block: (logical) number of block we are adding
550 * @where: location of missing link
551 * @num: number of indirect blocks we are adding
552 * @blks: number of direct blocks we are adding
554 * This function fills the missing link and does all housekeeping needed in
555 * inode (->i_blocks, etc.). In case of success we end up with the full
556 * chain to new block and return 0.
558 static void ext2_splice_branch(struct inode *inode,
559 long block, Indirect *where, int num, int blks)
562 struct ext2_block_alloc_info *block_i;
563 ext2_fsblk_t current_block;
565 block_i = EXT2_I(inode)->i_block_alloc_info;
567 /* XXX LOCKING probably should have i_meta_lock ?*/
570 *where->p = where->key;
573 * Update the host buffer_head or inode to point to more just allocated
574 * direct blocks blocks
576 if (num == 0 && blks > 1) {
577 current_block = le32_to_cpu(where->key) + 1;
578 for (i = 1; i < blks; i++)
579 *(where->p + i ) = cpu_to_le32(current_block++);
583 * update the most recently allocated logical & physical block
584 * in i_block_alloc_info, to assist find the proper goal block for next
588 block_i->last_alloc_logical_block = block + blks - 1;
589 block_i->last_alloc_physical_block =
590 le32_to_cpu(where[num].key) + blks - 1;
593 /* We are done with atomic stuff, now do the rest of housekeeping */
595 /* had we spliced it onto indirect block? */
597 mark_buffer_dirty_inode(where->bh, inode);
599 inode->i_ctime = current_time(inode);
600 mark_inode_dirty(inode);
604 * Allocation strategy is simple: if we have to allocate something, we will
605 * have to go the whole way to leaf. So let's do it before attaching anything
606 * to tree, set linkage between the newborn blocks, write them if sync is
607 * required, recheck the path, free and repeat if check fails, otherwise
608 * set the last missing link (that will protect us from any truncate-generated
609 * removals - all blocks on the path are immune now) and possibly force the
610 * write on the parent block.
611 * That has a nice additional property: no special recovery from the failed
612 * allocations is needed - we simply release blocks and do not touch anything
613 * reachable from inode.
615 * `handle' can be NULL if create == 0.
617 * return > 0, # of blocks mapped or allocated.
618 * return = 0, if plain lookup failed.
619 * return < 0, error case.
621 static int ext2_get_blocks(struct inode *inode,
622 sector_t iblock, unsigned long maxblocks,
623 u32 *bno, bool *new, bool *boundary,
632 int blocks_to_boundary = 0;
634 struct ext2_inode_info *ei = EXT2_I(inode);
636 ext2_fsblk_t first_block = 0;
638 BUG_ON(maxblocks == 0);
640 depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
645 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
646 /* Simplest case - block found, no allocation needed */
648 first_block = le32_to_cpu(chain[depth - 1].key);
651 while (count < maxblocks && count <= blocks_to_boundary) {
654 if (!verify_chain(chain, chain + depth - 1)) {
656 * Indirect block might be removed by
657 * truncate while we were reading it.
658 * Handling of that case: forget what we've
659 * got now, go to reread.
663 partial = chain + depth - 1;
666 blk = le32_to_cpu(*(chain[depth-1].p + count));
667 if (blk == first_block + count)
676 /* Next simple case - plain lookup or failed read of indirect block */
677 if (!create || err == -EIO)
680 mutex_lock(&ei->truncate_mutex);
682 * If the indirect block is missing while we are reading
683 * the chain(ext2_get_branch() returns -EAGAIN err), or
684 * if the chain has been changed after we grab the semaphore,
685 * (either because another process truncated this branch, or
686 * another get_block allocated this branch) re-grab the chain to see if
687 * the request block has been allocated or not.
689 * Since we already block the truncate/other get_block
690 * at this point, we will have the current copy of the chain when we
691 * splice the branch into the tree.
693 if (err == -EAGAIN || !verify_chain(chain, partial)) {
694 while (partial > chain) {
698 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
701 mutex_unlock(&ei->truncate_mutex);
706 mutex_unlock(&ei->truncate_mutex);
712 * Okay, we need to do block allocation. Lazily initialize the block
713 * allocation info here if necessary
715 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
716 ext2_init_block_alloc_info(inode);
718 goal = ext2_find_goal(inode, iblock, partial);
720 /* the number of blocks need to allocate for [d,t]indirect blocks */
721 indirect_blks = (chain + depth) - partial - 1;
723 * Next look up the indirect map to count the total number of
724 * direct blocks to allocate for this branch.
726 count = ext2_blks_to_allocate(partial, indirect_blks,
727 maxblocks, blocks_to_boundary);
729 * XXX ???? Block out ext2_truncate while we alter the tree
731 err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
732 offsets + (partial - chain), partial);
735 mutex_unlock(&ei->truncate_mutex);
741 * We must unmap blocks before zeroing so that writeback cannot
742 * overwrite zeros with stale data from block device page cache.
744 clean_bdev_aliases(inode->i_sb->s_bdev,
745 le32_to_cpu(chain[depth-1].key),
748 * block must be initialised before we put it in the tree
749 * so that it's not found by another thread before it's
752 err = sb_issue_zeroout(inode->i_sb,
753 le32_to_cpu(chain[depth-1].key), count,
756 mutex_unlock(&ei->truncate_mutex);
762 ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
763 mutex_unlock(&ei->truncate_mutex);
765 if (count > blocks_to_boundary)
768 /* Clean up and exit */
769 partial = chain + depth - 1; /* the whole chain */
771 while (partial > chain) {
776 *bno = le32_to_cpu(chain[depth-1].key);
780 int ext2_get_block(struct inode *inode, sector_t iblock,
781 struct buffer_head *bh_result, int create)
783 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
784 bool new = false, boundary = false;
788 ret = ext2_get_blocks(inode, iblock, max_blocks, &bno, &new, &boundary,
793 map_bh(bh_result, inode->i_sb, bno);
794 bh_result->b_size = (ret << inode->i_blkbits);
796 set_buffer_new(bh_result);
798 set_buffer_boundary(bh_result);
803 static int ext2_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
804 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
806 unsigned int blkbits = inode->i_blkbits;
807 unsigned long first_block = offset >> blkbits;
808 unsigned long max_blocks = (length + (1 << blkbits) - 1) >> blkbits;
809 struct ext2_sb_info *sbi = EXT2_SB(inode->i_sb);
810 bool new = false, boundary = false;
814 ret = ext2_get_blocks(inode, first_block, max_blocks,
815 &bno, &new, &boundary, flags & IOMAP_WRITE);
820 iomap->offset = (u64)first_block << blkbits;
821 if (flags & IOMAP_DAX)
822 iomap->dax_dev = sbi->s_daxdev;
824 iomap->bdev = inode->i_sb->s_bdev;
827 iomap->type = IOMAP_HOLE;
828 iomap->addr = IOMAP_NULL_ADDR;
829 iomap->length = 1 << blkbits;
831 iomap->type = IOMAP_MAPPED;
832 iomap->addr = (u64)bno << blkbits;
833 if (flags & IOMAP_DAX)
834 iomap->addr += sbi->s_dax_part_off;
835 iomap->length = (u64)ret << blkbits;
836 iomap->flags |= IOMAP_F_MERGED;
840 iomap->flags |= IOMAP_F_NEW;
845 ext2_iomap_end(struct inode *inode, loff_t offset, loff_t length,
846 ssize_t written, unsigned flags, struct iomap *iomap)
848 if (iomap->type == IOMAP_MAPPED &&
850 (flags & IOMAP_WRITE))
851 ext2_write_failed(inode->i_mapping, offset + length);
855 const struct iomap_ops ext2_iomap_ops = {
856 .iomap_begin = ext2_iomap_begin,
857 .iomap_end = ext2_iomap_end,
860 int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
866 len = min_t(u64, len, i_size_read(inode));
867 ret = iomap_fiemap(inode, fieinfo, start, len, &ext2_iomap_ops);
873 static int ext2_writepage(struct page *page, struct writeback_control *wbc)
875 return block_write_full_page(page, ext2_get_block, wbc);
878 static int ext2_readpage(struct file *file, struct page *page)
880 return mpage_readpage(page, ext2_get_block);
883 static void ext2_readahead(struct readahead_control *rac)
885 mpage_readahead(rac, ext2_get_block);
889 ext2_write_begin(struct file *file, struct address_space *mapping,
890 loff_t pos, unsigned len, unsigned flags,
891 struct page **pagep, void **fsdata)
895 ret = block_write_begin(mapping, pos, len, flags, pagep,
898 ext2_write_failed(mapping, pos + len);
902 static int ext2_write_end(struct file *file, struct address_space *mapping,
903 loff_t pos, unsigned len, unsigned copied,
904 struct page *page, void *fsdata)
908 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
910 ext2_write_failed(mapping, pos + len);
915 ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
916 loff_t pos, unsigned len, unsigned flags,
917 struct page **pagep, void **fsdata)
921 ret = nobh_write_begin(mapping, pos, len, flags, pagep, fsdata,
924 ext2_write_failed(mapping, pos + len);
928 static int ext2_nobh_writepage(struct page *page,
929 struct writeback_control *wbc)
931 return nobh_writepage(page, ext2_get_block, wbc);
934 static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
936 return generic_block_bmap(mapping,block,ext2_get_block);
940 ext2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
942 struct file *file = iocb->ki_filp;
943 struct address_space *mapping = file->f_mapping;
944 struct inode *inode = mapping->host;
945 size_t count = iov_iter_count(iter);
946 loff_t offset = iocb->ki_pos;
949 ret = blockdev_direct_IO(iocb, inode, iter, ext2_get_block);
950 if (ret < 0 && iov_iter_rw(iter) == WRITE)
951 ext2_write_failed(mapping, offset + count);
956 ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
958 return mpage_writepages(mapping, wbc, ext2_get_block);
962 ext2_dax_writepages(struct address_space *mapping, struct writeback_control *wbc)
964 struct ext2_sb_info *sbi = EXT2_SB(mapping->host->i_sb);
966 return dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
969 const struct address_space_operations ext2_aops = {
970 .dirty_folio = block_dirty_folio,
971 .invalidate_folio = block_invalidate_folio,
972 .readpage = ext2_readpage,
973 .readahead = ext2_readahead,
974 .writepage = ext2_writepage,
975 .write_begin = ext2_write_begin,
976 .write_end = ext2_write_end,
978 .direct_IO = ext2_direct_IO,
979 .writepages = ext2_writepages,
980 .migratepage = buffer_migrate_page,
981 .is_partially_uptodate = block_is_partially_uptodate,
982 .error_remove_page = generic_error_remove_page,
985 const struct address_space_operations ext2_nobh_aops = {
986 .dirty_folio = block_dirty_folio,
987 .invalidate_folio = block_invalidate_folio,
988 .readpage = ext2_readpage,
989 .readahead = ext2_readahead,
990 .writepage = ext2_nobh_writepage,
991 .write_begin = ext2_nobh_write_begin,
992 .write_end = nobh_write_end,
994 .direct_IO = ext2_direct_IO,
995 .writepages = ext2_writepages,
996 .migratepage = buffer_migrate_page,
997 .error_remove_page = generic_error_remove_page,
1000 static const struct address_space_operations ext2_dax_aops = {
1001 .writepages = ext2_dax_writepages,
1002 .direct_IO = noop_direct_IO,
1003 .dirty_folio = noop_dirty_folio,
1007 * Probably it should be a library function... search for first non-zero word
1008 * or memcmp with zero_page, whatever is better for particular architecture.
1011 static inline int all_zeroes(__le32 *p, __le32 *q)
1020 * ext2_find_shared - find the indirect blocks for partial truncation.
1021 * @inode: inode in question
1022 * @depth: depth of the affected branch
1023 * @offsets: offsets of pointers in that branch (see ext2_block_to_path)
1024 * @chain: place to store the pointers to partial indirect blocks
1025 * @top: place to the (detached) top of branch
1027 * This is a helper function used by ext2_truncate().
1029 * When we do truncate() we may have to clean the ends of several indirect
1030 * blocks but leave the blocks themselves alive. Block is partially
1031 * truncated if some data below the new i_size is referred from it (and
1032 * it is on the path to the first completely truncated data block, indeed).
1033 * We have to free the top of that path along with everything to the right
1034 * of the path. Since no allocation past the truncation point is possible
1035 * until ext2_truncate() finishes, we may safely do the latter, but top
1036 * of branch may require special attention - pageout below the truncation
1037 * point might try to populate it.
1039 * We atomically detach the top of branch from the tree, store the block
1040 * number of its root in *@top, pointers to buffer_heads of partially
1041 * truncated blocks - in @chain[].bh and pointers to their last elements
1042 * that should not be removed - in @chain[].p. Return value is the pointer
1043 * to last filled element of @chain.
1045 * The work left to caller to do the actual freeing of subtrees:
1046 * a) free the subtree starting from *@top
1047 * b) free the subtrees whose roots are stored in
1048 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1049 * c) free the subtrees growing from the inode past the @chain[0].p
1050 * (no partially truncated stuff there).
1053 static Indirect *ext2_find_shared(struct inode *inode,
1059 Indirect *partial, *p;
1063 for (k = depth; k > 1 && !offsets[k-1]; k--)
1065 partial = ext2_get_branch(inode, k, offsets, chain, &err);
1067 partial = chain + k-1;
1069 * If the branch acquired continuation since we've looked at it -
1070 * fine, it should all survive and (new) top doesn't belong to us.
1072 write_lock(&EXT2_I(inode)->i_meta_lock);
1073 if (!partial->key && *partial->p) {
1074 write_unlock(&EXT2_I(inode)->i_meta_lock);
1077 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1080 * OK, we've found the last block that must survive. The rest of our
1081 * branch should be detached before unlocking. However, if that rest
1082 * of branch is all ours and does not grow immediately from the inode
1083 * it's easier to cheat and just decrement partial->p.
1085 if (p == chain + k - 1 && p > chain) {
1091 write_unlock(&EXT2_I(inode)->i_meta_lock);
1095 brelse(partial->bh);
1103 * ext2_free_data - free a list of data blocks
1104 * @inode: inode we are dealing with
1105 * @p: array of block numbers
1106 * @q: points immediately past the end of array
1108 * We are freeing all blocks referred from that array (numbers are
1109 * stored as little-endian 32-bit) and updating @inode->i_blocks
1112 static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
1114 unsigned long block_to_free = 0, count = 0;
1117 for ( ; p < q ; p++) {
1118 nr = le32_to_cpu(*p);
1121 /* accumulate blocks to free if they're contiguous */
1124 else if (block_to_free == nr - count)
1127 ext2_free_blocks (inode, block_to_free, count);
1128 mark_inode_dirty(inode);
1136 ext2_free_blocks (inode, block_to_free, count);
1137 mark_inode_dirty(inode);
1142 * ext2_free_branches - free an array of branches
1143 * @inode: inode we are dealing with
1144 * @p: array of block numbers
1145 * @q: pointer immediately past the end of array
1146 * @depth: depth of the branches to free
1148 * We are freeing all blocks referred from these branches (numbers are
1149 * stored as little-endian 32-bit) and updating @inode->i_blocks
1152 static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
1154 struct buffer_head * bh;
1158 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1159 for ( ; p < q ; p++) {
1160 nr = le32_to_cpu(*p);
1164 bh = sb_bread(inode->i_sb, nr);
1166 * A read failure? Report error and clear slot
1170 ext2_error(inode->i_sb, "ext2_free_branches",
1171 "Read failure, inode=%ld, block=%ld",
1175 ext2_free_branches(inode,
1176 (__le32*)bh->b_data,
1177 (__le32*)bh->b_data + addr_per_block,
1180 ext2_free_blocks(inode, nr, 1);
1181 mark_inode_dirty(inode);
1184 ext2_free_data(inode, p, q);
1187 /* mapping->invalidate_lock must be held when calling this function */
1188 static void __ext2_truncate_blocks(struct inode *inode, loff_t offset)
1190 __le32 *i_data = EXT2_I(inode)->i_data;
1191 struct ext2_inode_info *ei = EXT2_I(inode);
1192 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1200 blocksize = inode->i_sb->s_blocksize;
1201 iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1203 #ifdef CONFIG_FS_DAX
1204 WARN_ON(!rwsem_is_locked(&inode->i_mapping->invalidate_lock));
1207 n = ext2_block_to_path(inode, iblock, offsets, NULL);
1212 * From here we block out all ext2_get_block() callers who want to
1213 * modify the block allocation tree.
1215 mutex_lock(&ei->truncate_mutex);
1218 ext2_free_data(inode, i_data+offsets[0],
1219 i_data + EXT2_NDIR_BLOCKS);
1223 partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1224 /* Kill the top of shared branch (already detached) */
1226 if (partial == chain)
1227 mark_inode_dirty(inode);
1229 mark_buffer_dirty_inode(partial->bh, inode);
1230 ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1232 /* Clear the ends of indirect blocks on the shared branch */
1233 while (partial > chain) {
1234 ext2_free_branches(inode,
1236 (__le32*)partial->bh->b_data+addr_per_block,
1237 (chain+n-1) - partial);
1238 mark_buffer_dirty_inode(partial->bh, inode);
1239 brelse (partial->bh);
1243 /* Kill the remaining (whole) subtrees */
1244 switch (offsets[0]) {
1246 nr = i_data[EXT2_IND_BLOCK];
1248 i_data[EXT2_IND_BLOCK] = 0;
1249 mark_inode_dirty(inode);
1250 ext2_free_branches(inode, &nr, &nr+1, 1);
1253 case EXT2_IND_BLOCK:
1254 nr = i_data[EXT2_DIND_BLOCK];
1256 i_data[EXT2_DIND_BLOCK] = 0;
1257 mark_inode_dirty(inode);
1258 ext2_free_branches(inode, &nr, &nr+1, 2);
1261 case EXT2_DIND_BLOCK:
1262 nr = i_data[EXT2_TIND_BLOCK];
1264 i_data[EXT2_TIND_BLOCK] = 0;
1265 mark_inode_dirty(inode);
1266 ext2_free_branches(inode, &nr, &nr+1, 3);
1269 case EXT2_TIND_BLOCK:
1273 ext2_discard_reservation(inode);
1275 mutex_unlock(&ei->truncate_mutex);
1278 static void ext2_truncate_blocks(struct inode *inode, loff_t offset)
1280 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1281 S_ISLNK(inode->i_mode)))
1283 if (ext2_inode_is_fast_symlink(inode))
1286 filemap_invalidate_lock(inode->i_mapping);
1287 __ext2_truncate_blocks(inode, offset);
1288 filemap_invalidate_unlock(inode->i_mapping);
1291 static int ext2_setsize(struct inode *inode, loff_t newsize)
1295 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1296 S_ISLNK(inode->i_mode)))
1298 if (ext2_inode_is_fast_symlink(inode))
1300 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1303 inode_dio_wait(inode);
1305 if (IS_DAX(inode)) {
1306 error = dax_zero_range(inode, newsize,
1307 PAGE_ALIGN(newsize) - newsize, NULL,
1309 } else if (test_opt(inode->i_sb, NOBH))
1310 error = nobh_truncate_page(inode->i_mapping,
1311 newsize, ext2_get_block);
1313 error = block_truncate_page(inode->i_mapping,
1314 newsize, ext2_get_block);
1318 filemap_invalidate_lock(inode->i_mapping);
1319 truncate_setsize(inode, newsize);
1320 __ext2_truncate_blocks(inode, newsize);
1321 filemap_invalidate_unlock(inode->i_mapping);
1323 inode->i_mtime = inode->i_ctime = current_time(inode);
1324 if (inode_needs_sync(inode)) {
1325 sync_mapping_buffers(inode->i_mapping);
1326 sync_inode_metadata(inode, 1);
1328 mark_inode_dirty(inode);
1334 static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1335 struct buffer_head **p)
1337 struct buffer_head * bh;
1338 unsigned long block_group;
1339 unsigned long block;
1340 unsigned long offset;
1341 struct ext2_group_desc * gdp;
1344 if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1345 ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1348 block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1349 gdp = ext2_get_group_desc(sb, block_group, NULL);
1353 * Figure out the offset within the block group inode table
1355 offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1356 block = le32_to_cpu(gdp->bg_inode_table) +
1357 (offset >> EXT2_BLOCK_SIZE_BITS(sb));
1358 if (!(bh = sb_bread(sb, block)))
1362 offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1363 return (struct ext2_inode *) (bh->b_data + offset);
1366 ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1367 (unsigned long) ino);
1368 return ERR_PTR(-EINVAL);
1370 ext2_error(sb, "ext2_get_inode",
1371 "unable to read inode block - inode=%lu, block=%lu",
1372 (unsigned long) ino, block);
1374 return ERR_PTR(-EIO);
1377 void ext2_set_inode_flags(struct inode *inode)
1379 unsigned int flags = EXT2_I(inode)->i_flags;
1381 inode->i_flags &= ~(S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME |
1383 if (flags & EXT2_SYNC_FL)
1384 inode->i_flags |= S_SYNC;
1385 if (flags & EXT2_APPEND_FL)
1386 inode->i_flags |= S_APPEND;
1387 if (flags & EXT2_IMMUTABLE_FL)
1388 inode->i_flags |= S_IMMUTABLE;
1389 if (flags & EXT2_NOATIME_FL)
1390 inode->i_flags |= S_NOATIME;
1391 if (flags & EXT2_DIRSYNC_FL)
1392 inode->i_flags |= S_DIRSYNC;
1393 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
1394 inode->i_flags |= S_DAX;
1397 void ext2_set_file_ops(struct inode *inode)
1399 inode->i_op = &ext2_file_inode_operations;
1400 inode->i_fop = &ext2_file_operations;
1402 inode->i_mapping->a_ops = &ext2_dax_aops;
1403 else if (test_opt(inode->i_sb, NOBH))
1404 inode->i_mapping->a_ops = &ext2_nobh_aops;
1406 inode->i_mapping->a_ops = &ext2_aops;
1409 struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1411 struct ext2_inode_info *ei;
1412 struct buffer_head * bh = NULL;
1413 struct ext2_inode *raw_inode;
1414 struct inode *inode;
1420 inode = iget_locked(sb, ino);
1422 return ERR_PTR(-ENOMEM);
1423 if (!(inode->i_state & I_NEW))
1427 ei->i_block_alloc_info = NULL;
1429 raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1430 if (IS_ERR(raw_inode)) {
1431 ret = PTR_ERR(raw_inode);
1435 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1436 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1437 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1438 if (!(test_opt (inode->i_sb, NO_UID32))) {
1439 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1440 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1442 i_uid_write(inode, i_uid);
1443 i_gid_write(inode, i_gid);
1444 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
1445 inode->i_size = le32_to_cpu(raw_inode->i_size);
1446 inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1447 inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1448 inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1449 inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1450 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1451 /* We now have enough fields to check if the inode was active or not.
1452 * This is needed because nfsd might try to access dead inodes
1453 * the test is that same one that e2fsck uses
1454 * NeilBrown 1999oct15
1456 if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1457 /* this inode is deleted */
1461 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1462 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1463 ext2_set_inode_flags(inode);
1464 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1465 ei->i_frag_no = raw_inode->i_frag;
1466 ei->i_frag_size = raw_inode->i_fsize;
1467 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1470 if (ei->i_file_acl &&
1471 !ext2_data_block_valid(EXT2_SB(sb), ei->i_file_acl, 1)) {
1472 ext2_error(sb, "ext2_iget", "bad extended attribute block %u",
1474 ret = -EFSCORRUPTED;
1478 if (S_ISREG(inode->i_mode))
1479 inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1481 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1482 if (i_size_read(inode) < 0) {
1483 ret = -EFSCORRUPTED;
1487 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1489 ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1490 ei->i_dir_start_lookup = 0;
1493 * NOTE! The in-memory inode i_data array is in little-endian order
1494 * even on big-endian machines: we do NOT byteswap the block numbers!
1496 for (n = 0; n < EXT2_N_BLOCKS; n++)
1497 ei->i_data[n] = raw_inode->i_block[n];
1499 if (S_ISREG(inode->i_mode)) {
1500 ext2_set_file_ops(inode);
1501 } else if (S_ISDIR(inode->i_mode)) {
1502 inode->i_op = &ext2_dir_inode_operations;
1503 inode->i_fop = &ext2_dir_operations;
1504 if (test_opt(inode->i_sb, NOBH))
1505 inode->i_mapping->a_ops = &ext2_nobh_aops;
1507 inode->i_mapping->a_ops = &ext2_aops;
1508 } else if (S_ISLNK(inode->i_mode)) {
1509 if (ext2_inode_is_fast_symlink(inode)) {
1510 inode->i_link = (char *)ei->i_data;
1511 inode->i_op = &ext2_fast_symlink_inode_operations;
1512 nd_terminate_link(ei->i_data, inode->i_size,
1513 sizeof(ei->i_data) - 1);
1515 inode->i_op = &ext2_symlink_inode_operations;
1516 inode_nohighmem(inode);
1517 if (test_opt(inode->i_sb, NOBH))
1518 inode->i_mapping->a_ops = &ext2_nobh_aops;
1520 inode->i_mapping->a_ops = &ext2_aops;
1523 inode->i_op = &ext2_special_inode_operations;
1524 if (raw_inode->i_block[0])
1525 init_special_inode(inode, inode->i_mode,
1526 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1528 init_special_inode(inode, inode->i_mode,
1529 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1532 unlock_new_inode(inode);
1538 return ERR_PTR(ret);
1541 static int __ext2_write_inode(struct inode *inode, int do_sync)
1543 struct ext2_inode_info *ei = EXT2_I(inode);
1544 struct super_block *sb = inode->i_sb;
1545 ino_t ino = inode->i_ino;
1546 uid_t uid = i_uid_read(inode);
1547 gid_t gid = i_gid_read(inode);
1548 struct buffer_head * bh;
1549 struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1553 if (IS_ERR(raw_inode))
1556 /* For fields not not tracking in the in-memory inode,
1557 * initialise them to zero for new inodes. */
1558 if (ei->i_state & EXT2_STATE_NEW)
1559 memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1561 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1562 if (!(test_opt(sb, NO_UID32))) {
1563 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1564 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1566 * Fix up interoperability with old kernels. Otherwise, old inodes get
1567 * re-used with the upper 16 bits of the uid/gid intact
1570 raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1571 raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1573 raw_inode->i_uid_high = 0;
1574 raw_inode->i_gid_high = 0;
1577 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1578 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1579 raw_inode->i_uid_high = 0;
1580 raw_inode->i_gid_high = 0;
1582 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1583 raw_inode->i_size = cpu_to_le32(inode->i_size);
1584 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1585 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1586 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1588 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1589 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1590 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1591 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1592 raw_inode->i_frag = ei->i_frag_no;
1593 raw_inode->i_fsize = ei->i_frag_size;
1594 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1595 if (!S_ISREG(inode->i_mode))
1596 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1598 raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1599 if (inode->i_size > 0x7fffffffULL) {
1600 if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1601 EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1602 EXT2_SB(sb)->s_es->s_rev_level ==
1603 cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1604 /* If this is the first large file
1605 * created, add a flag to the superblock.
1607 spin_lock(&EXT2_SB(sb)->s_lock);
1608 ext2_update_dynamic_rev(sb);
1609 EXT2_SET_RO_COMPAT_FEATURE(sb,
1610 EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1611 spin_unlock(&EXT2_SB(sb)->s_lock);
1612 ext2_sync_super(sb, EXT2_SB(sb)->s_es, 1);
1617 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1618 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1619 if (old_valid_dev(inode->i_rdev)) {
1620 raw_inode->i_block[0] =
1621 cpu_to_le32(old_encode_dev(inode->i_rdev));
1622 raw_inode->i_block[1] = 0;
1624 raw_inode->i_block[0] = 0;
1625 raw_inode->i_block[1] =
1626 cpu_to_le32(new_encode_dev(inode->i_rdev));
1627 raw_inode->i_block[2] = 0;
1629 } else for (n = 0; n < EXT2_N_BLOCKS; n++)
1630 raw_inode->i_block[n] = ei->i_data[n];
1631 mark_buffer_dirty(bh);
1633 sync_dirty_buffer(bh);
1634 if (buffer_req(bh) && !buffer_uptodate(bh)) {
1635 printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1636 sb->s_id, (unsigned long) ino);
1640 ei->i_state &= ~EXT2_STATE_NEW;
1645 int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1647 return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1650 int ext2_getattr(struct user_namespace *mnt_userns, const struct path *path,
1651 struct kstat *stat, u32 request_mask, unsigned int query_flags)
1653 struct inode *inode = d_inode(path->dentry);
1654 struct ext2_inode_info *ei = EXT2_I(inode);
1657 flags = ei->i_flags & EXT2_FL_USER_VISIBLE;
1658 if (flags & EXT2_APPEND_FL)
1659 stat->attributes |= STATX_ATTR_APPEND;
1660 if (flags & EXT2_COMPR_FL)
1661 stat->attributes |= STATX_ATTR_COMPRESSED;
1662 if (flags & EXT2_IMMUTABLE_FL)
1663 stat->attributes |= STATX_ATTR_IMMUTABLE;
1664 if (flags & EXT2_NODUMP_FL)
1665 stat->attributes |= STATX_ATTR_NODUMP;
1666 stat->attributes_mask |= (STATX_ATTR_APPEND |
1667 STATX_ATTR_COMPRESSED |
1668 STATX_ATTR_ENCRYPTED |
1669 STATX_ATTR_IMMUTABLE |
1672 generic_fillattr(&init_user_ns, inode, stat);
1676 int ext2_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
1677 struct iattr *iattr)
1679 struct inode *inode = d_inode(dentry);
1682 error = setattr_prepare(&init_user_ns, dentry, iattr);
1686 if (is_quota_modification(inode, iattr)) {
1687 error = dquot_initialize(inode);
1691 if ((iattr->ia_valid & ATTR_UID && !uid_eq(iattr->ia_uid, inode->i_uid)) ||
1692 (iattr->ia_valid & ATTR_GID && !gid_eq(iattr->ia_gid, inode->i_gid))) {
1693 error = dquot_transfer(inode, iattr);
1697 if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) {
1698 error = ext2_setsize(inode, iattr->ia_size);
1702 setattr_copy(&init_user_ns, inode, iattr);
1703 if (iattr->ia_valid & ATTR_MODE)
1704 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1705 mark_inode_dirty(inode);