3 * Boaz Harrosh <bharrosh@panasas.com>
5 * This file is part of the objects raid engine (ore).
7 * It is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as published
9 * by the Free Software Foundation.
11 * You should have received a copy of the GNU General Public License
12 * along with "ore". If not, write to the Free Software Foundation, Inc:
13 * "Free Software Foundation <info@fsf.org>"
16 #include <linux/gfp.h>
17 #include <linux/async_tx.h>
22 #define ORE_DBGMSG2 ORE_DBGMSG
24 struct page *_raid_page_alloc(void)
26 return alloc_page(GFP_KERNEL);
29 void _raid_page_free(struct page *p)
34 /* This struct is forward declare in ore_io_state, but is private to here.
35 * It is put on ios->sp2d for RAID5/6 writes only. See _gen_xor_unit.
37 * __stripe_pages_2d is a 2d array of pages, and it is also a corner turn.
38 * Ascending page index access is sp2d(p-minor, c-major). But storage is
39 * sp2d[p-minor][c-major], so it can be properlly presented to the async-xor
42 struct __stripe_pages_2d {
43 /* Cache some hot path repeated calculations */
46 unsigned pages_in_unit;
50 /* Array size is pages_in_unit (layout->stripe_unit / PAGE_SIZE) */
51 struct __1_page_stripe {
54 struct async_submit_ctl submit;
55 struct dma_async_tx_descriptor *tx;
57 /* The size of this array is data_devs + parity */
59 struct page **scribble;
60 /* bool array, size of this array is data_devs */
65 /* This can get bigger then a page. So support multiple page allocations
66 * _sp2d_free should be called even if _sp2d_alloc fails (by returning
69 static int _sp2d_alloc(unsigned pages_in_unit, unsigned group_width,
70 unsigned parity, struct __stripe_pages_2d **psp2d)
72 struct __stripe_pages_2d *sp2d;
73 unsigned data_devs = group_width - parity;
74 struct _alloc_all_bytes {
75 struct __alloc_stripe_pages_2d {
76 struct __stripe_pages_2d sp2d;
77 struct __1_page_stripe _1p_stripes[pages_in_unit];
79 struct __alloc_1p_arrays {
80 struct page *pages[group_width];
81 struct page *scribble[group_width];
82 char page_is_read[data_devs];
83 } __a1pa[pages_in_unit];
85 struct __alloc_1p_arrays *__a1pa;
86 struct __alloc_1p_arrays *__a1pa_end;
87 const unsigned sizeof__a1pa = sizeof(_aab->__a1pa[0]);
88 unsigned num_a1pa, alloc_size, i;
90 /* FIXME: check these numbers in ore_verify_layout */
91 BUG_ON(sizeof(_aab->__asp2d) > PAGE_SIZE);
92 BUG_ON(sizeof__a1pa > PAGE_SIZE);
94 if (sizeof(*_aab) > PAGE_SIZE) {
95 num_a1pa = (PAGE_SIZE - sizeof(_aab->__asp2d)) / sizeof__a1pa;
96 alloc_size = sizeof(_aab->__asp2d) + sizeof__a1pa * num_a1pa;
98 num_a1pa = pages_in_unit;
99 alloc_size = sizeof(*_aab);
102 _aab = kzalloc(alloc_size, GFP_KERNEL);
103 if (unlikely(!_aab)) {
104 ORE_DBGMSG("!! Failed to alloc sp2d size=%d\n", alloc_size);
108 sp2d = &_aab->__asp2d.sp2d;
109 *psp2d = sp2d; /* From here Just call _sp2d_free */
111 __a1pa = _aab->__a1pa;
112 __a1pa_end = __a1pa + num_a1pa;
114 for (i = 0; i < pages_in_unit; ++i) {
115 if (unlikely(__a1pa >= __a1pa_end)) {
116 num_a1pa = min_t(unsigned, PAGE_SIZE / sizeof__a1pa,
119 __a1pa = kzalloc(num_a1pa * sizeof__a1pa, GFP_KERNEL);
120 if (unlikely(!__a1pa)) {
121 ORE_DBGMSG("!! Failed to _alloc_1p_arrays=%d\n",
125 __a1pa_end = __a1pa + num_a1pa;
126 /* First *pages is marked for kfree of the buffer */
127 sp2d->_1p_stripes[i].alloc = true;
130 sp2d->_1p_stripes[i].pages = __a1pa->pages;
131 sp2d->_1p_stripes[i].scribble = __a1pa->scribble ;
132 sp2d->_1p_stripes[i].page_is_read = __a1pa->page_is_read;
136 sp2d->parity = parity;
137 sp2d->data_devs = data_devs;
138 sp2d->pages_in_unit = pages_in_unit;
142 static void _sp2d_reset(struct __stripe_pages_2d *sp2d,
143 const struct _ore_r4w_op *r4w, void *priv)
145 unsigned data_devs = sp2d->data_devs;
146 unsigned group_width = data_devs + sp2d->parity;
152 for (p = 0; p < sp2d->pages_in_unit; p++) {
153 struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
155 if (_1ps->write_count < group_width) {
158 for (c = 0; c < data_devs; c++)
159 if (_1ps->page_is_read[c]) {
160 struct page *page = _1ps->pages[c];
162 r4w->put_page(priv, page);
163 _1ps->page_is_read[c] = false;
167 memset(_1ps->pages, 0, group_width * sizeof(*_1ps->pages));
168 _1ps->write_count = 0;
172 sp2d->needed = false;
175 static void _sp2d_free(struct __stripe_pages_2d *sp2d)
182 for (i = 0; i < sp2d->pages_in_unit; ++i) {
183 if (sp2d->_1p_stripes[i].alloc)
184 kfree(sp2d->_1p_stripes[i].pages);
190 static unsigned _sp2d_min_pg(struct __stripe_pages_2d *sp2d)
194 for (p = 0; p < sp2d->pages_in_unit; p++) {
195 struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
197 if (_1ps->write_count)
204 static unsigned _sp2d_max_pg(struct __stripe_pages_2d *sp2d)
208 for (p = sp2d->pages_in_unit - 1; p >= 0; --p) {
209 struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
211 if (_1ps->write_count)
218 static void _gen_xor_unit(struct __stripe_pages_2d *sp2d)
221 for (p = 0; p < sp2d->pages_in_unit; p++) {
222 struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
224 if (!_1ps->write_count)
227 init_async_submit(&_1ps->submit,
228 ASYNC_TX_XOR_ZERO_DST | ASYNC_TX_ACK,
231 (addr_conv_t *)_1ps->scribble);
234 _1ps->tx = async_xor(_1ps->pages[sp2d->data_devs], _1ps->pages,
235 0, sp2d->data_devs, PAGE_SIZE,
239 for (p = 0; p < sp2d->pages_in_unit; p++) {
240 struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
241 /* NOTE: We wait for HW synchronously (I don't have such HW
242 * to test with.) Is parallelism needed with today's multi
245 async_tx_issue_pending(_1ps->tx);
249 void _ore_add_stripe_page(struct __stripe_pages_2d *sp2d,
250 struct ore_striping_info *si, struct page *page)
252 struct __1_page_stripe *_1ps;
256 _1ps = &sp2d->_1p_stripes[si->cur_pg];
257 _1ps->pages[si->cur_comp] = page;
260 si->cur_pg = (si->cur_pg + 1) % sp2d->pages_in_unit;
261 /* si->cur_comp is advanced outside at main loop */
264 void _ore_add_sg_seg(struct ore_per_dev_state *per_dev, unsigned cur_len,
267 struct osd_sg_entry *sge;
269 ORE_DBGMSG("dev=%d cur_len=0x%x not_last=%d cur_sg=%d "
270 "offset=0x%llx length=0x%x last_sgs_total=0x%x\n",
271 per_dev->dev, cur_len, not_last, per_dev->cur_sg,
272 _LLU(per_dev->offset), per_dev->length,
273 per_dev->last_sgs_total);
275 if (!per_dev->cur_sg) {
276 sge = per_dev->sglist;
278 /* First time we prepare two entries */
279 if (per_dev->length) {
281 sge->offset = per_dev->offset;
282 sge->len = per_dev->length;
284 /* Here the parity is the first unit of this object.
285 * This happens every time we reach a parity device on
286 * the same stripe as the per_dev->offset. We need to
287 * just skip this unit.
289 per_dev->offset += cur_len;
293 /* finalize the last one */
294 sge = &per_dev->sglist[per_dev->cur_sg - 1];
295 sge->len = per_dev->length - per_dev->last_sgs_total;
299 /* Partly prepare the next one */
300 struct osd_sg_entry *next_sge = sge + 1;
303 next_sge->offset = sge->offset + sge->len + cur_len;
304 /* Save cur len so we know how mutch was added next time */
305 per_dev->last_sgs_total = per_dev->length;
307 } else if (!sge->len) {
308 /* Optimize for when the last unit is a parity */
313 static int _alloc_read_4_write(struct ore_io_state *ios)
315 struct ore_layout *layout = ios->layout;
317 /* We want to only read those pages not in cache so worst case
318 * is a stripe populated with every other page
320 unsigned sgs_per_dev = ios->sp2d->pages_in_unit + 2;
322 ret = _ore_get_io_state(layout, ios->oc,
323 layout->group_width * layout->mirrors_p1,
324 sgs_per_dev, 0, &ios->ios_read_4_write);
328 /* @si contains info of the to-be-inserted page. Update of @si should be
329 * maintained by caller. Specificaly si->dev, si->obj_offset, ...
331 static int _add_to_r4w(struct ore_io_state *ios, struct ore_striping_info *si,
332 struct page *page, unsigned pg_len)
334 struct request_queue *q;
335 struct ore_per_dev_state *per_dev;
336 struct ore_io_state *read_ios;
337 unsigned first_dev = si->dev - (si->dev %
338 (ios->layout->group_width * ios->layout->mirrors_p1));
339 unsigned comp = si->dev - first_dev;
342 if (!ios->ios_read_4_write) {
343 int ret = _alloc_read_4_write(ios);
349 read_ios = ios->ios_read_4_write;
350 read_ios->numdevs = ios->layout->group_width * ios->layout->mirrors_p1;
352 per_dev = &read_ios->per_dev[comp];
353 if (!per_dev->length) {
354 per_dev->bio = bio_kmalloc(GFP_KERNEL,
355 ios->sp2d->pages_in_unit);
356 if (unlikely(!per_dev->bio)) {
357 ORE_DBGMSG("Failed to allocate BIO size=%u\n",
358 ios->sp2d->pages_in_unit);
361 per_dev->offset = si->obj_offset;
362 per_dev->dev = si->dev;
363 } else if (si->obj_offset != (per_dev->offset + per_dev->length)) {
364 u64 gap = si->obj_offset - (per_dev->offset + per_dev->length);
366 _ore_add_sg_seg(per_dev, gap, true);
368 q = osd_request_queue(ore_comp_dev(read_ios->oc, per_dev->dev));
369 added_len = bio_add_pc_page(q, per_dev->bio, page, pg_len,
370 si->obj_offset % PAGE_SIZE);
371 if (unlikely(added_len != pg_len)) {
372 ORE_DBGMSG("Failed to bio_add_pc_page bi_vcnt=%d\n",
373 per_dev->bio->bi_vcnt);
377 per_dev->length += pg_len;
381 /* read the beginning of an unaligned first page */
382 static int _add_to_r4w_first_page(struct ore_io_state *ios, struct page *page)
384 struct ore_striping_info si;
387 ore_calc_stripe_info(ios->layout, ios->offset, 0, &si);
389 pg_len = si.obj_offset % PAGE_SIZE;
390 si.obj_offset -= pg_len;
392 ORE_DBGMSG("offset=0x%llx len=0x%x index=0x%lx dev=%x\n",
393 _LLU(si.obj_offset), pg_len, page->index, si.dev);
395 return _add_to_r4w(ios, &si, page, pg_len);
398 /* read the end of an incomplete last page */
399 static int _add_to_r4w_last_page(struct ore_io_state *ios, u64 *offset)
401 struct ore_striping_info si;
403 unsigned pg_len, p, c;
405 ore_calc_stripe_info(ios->layout, *offset, 0, &si);
407 p = si.unit_off / PAGE_SIZE;
408 c = _dev_order(ios->layout->group_width * ios->layout->mirrors_p1,
409 ios->layout->mirrors_p1, si.par_dev, si.dev);
410 page = ios->sp2d->_1p_stripes[p].pages[c];
412 pg_len = PAGE_SIZE - (si.unit_off % PAGE_SIZE);
415 ORE_DBGMSG("p=%d, c=%d next-offset=0x%llx len=0x%x dev=%x par_dev=%d\n",
416 p, c, _LLU(*offset), pg_len, si.dev, si.par_dev);
420 return _add_to_r4w(ios, &si, page, pg_len);
423 static void _mark_read4write_pages_uptodate(struct ore_io_state *ios, int ret)
428 /* loop on all devices all pages */
429 for (d = 0; d < ios->numdevs; d++) {
430 struct bio *bio = ios->per_dev[d].bio;
435 __bio_for_each_segment(bv, bio, i, 0) {
436 struct page *page = bv->bv_page;
438 SetPageUptodate(page);
440 ClearPageError(page);
445 /* read_4_write is hacked to read the start of the first stripe and/or
446 * the end of the last stripe. If needed, with an sg-gap at each device/page.
447 * It is assumed to be called after the to_be_written pages of the first stripe
448 * are populating ios->sp2d[][]
450 * NOTE: We call ios->r4w->lock_fn for all pages needed for parity calculations
451 * These pages are held at sp2d[p].pages[c] but with
452 * sp2d[p].page_is_read[c] = true. At _sp2d_reset these pages are
453 * ios->r4w->lock_fn(). The ios->r4w->lock_fn might signal that the page is
454 * @uptodate=true, so we don't need to read it, only unlock, after IO.
456 * TODO: The read_4_write should calc a need_to_read_pages_count, if bigger then
457 * to-be-written count, we should consider the xor-in-place mode.
458 * need_to_read_pages_count is the actual number of pages not present in cache.
459 * maybe "devs_in_group - ios->sp2d[p].write_count" is a good enough
460 * approximation? In this mode the read pages are put in the empty places of
461 * ios->sp2d[p][*], xor is calculated the same way. These pages are
462 * allocated/freed and don't go through cache
464 static int _read_4_write(struct ore_io_state *ios)
466 struct ore_io_state *ios_read;
467 struct ore_striping_info read_si;
468 struct __stripe_pages_2d *sp2d = ios->sp2d;
469 u64 offset = ios->si.first_stripe_start;
471 unsigned bytes_in_stripe = ios->si.bytes_in_stripe;
472 unsigned i, c, p, min_p = sp2d->pages_in_unit, max_p = -1;
475 if (offset == ios->offset) /* Go to start collect $200 */
476 goto read_last_stripe;
478 min_p = _sp2d_min_pg(sp2d);
479 max_p = _sp2d_max_pg(sp2d);
482 ore_calc_stripe_info(ios->layout, offset, 0, &read_si);
483 read_si.obj_offset += min_p * PAGE_SIZE;
484 offset += min_p * PAGE_SIZE;
485 for (p = min_p; p <= max_p; p++) {
486 struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
487 struct page **pp = &_1ps->pages[c];
491 if (ios->offset % PAGE_SIZE)
492 /* Read the remainder of the page */
493 _add_to_r4w_first_page(ios, *pp);
494 /* to-be-written pages start here */
495 goto read_last_stripe;
498 *pp = ios->r4w->get_page(ios->private, offset,
504 _add_to_r4w(ios, &read_si, *pp, PAGE_SIZE);
506 /* Mark read-pages to be cache_released */
507 _1ps->page_is_read[c] = true;
508 read_si.obj_offset += PAGE_SIZE;
511 offset += (sp2d->pages_in_unit - p) * PAGE_SIZE;
515 offset = ios->offset + ios->length;
516 if (offset % PAGE_SIZE)
517 _add_to_r4w_last_page(ios, &offset);
518 /* offset will be aligned to next page */
520 last_stripe_end = div_u64(offset + bytes_in_stripe - 1, bytes_in_stripe)
522 if (offset == last_stripe_end) /* Optimize for the aligned case */
525 ore_calc_stripe_info(ios->layout, offset, 0, &read_si);
526 p = read_si.unit_off / PAGE_SIZE;
527 c = _dev_order(ios->layout->group_width * ios->layout->mirrors_p1,
528 ios->layout->mirrors_p1, read_si.par_dev, read_si.dev);
530 BUG_ON(ios->si.first_stripe_start + bytes_in_stripe != last_stripe_end);
531 /* unaligned IO must be within a single stripe */
533 if (min_p == sp2d->pages_in_unit) {
534 /* Didn't do it yet */
535 min_p = _sp2d_min_pg(sp2d);
536 max_p = _sp2d_max_pg(sp2d);
539 while (offset < last_stripe_end) {
540 struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
542 if ((min_p <= p) && (p <= max_p)) {
546 BUG_ON(_1ps->pages[c]);
547 page = ios->r4w->get_page(ios->private, offset,
552 _1ps->pages[c] = page;
553 /* Mark read-pages to be cache_released */
554 _1ps->page_is_read[c] = true;
556 _add_to_r4w(ios, &read_si, page, PAGE_SIZE);
560 if (p == (sp2d->pages_in_unit - 1)) {
563 ore_calc_stripe_info(ios->layout, offset, 0, &read_si);
565 read_si.obj_offset += PAGE_SIZE;
571 ios_read = ios->ios_read_4_write;
575 /* FIXME: Ugly to signal _sbi_read_mirror that we have bio(s). Change
576 * to check for per_dev->bio
578 ios_read->pages = ios->pages;
580 /* Now read these devices */
581 for (i = 0; i < ios_read->numdevs; i += ios_read->layout->mirrors_p1) {
582 ret = _ore_read_mirror(ios_read, i);
587 ret = ore_io_execute(ios_read); /* Synchronus execution */
589 ORE_DBGMSG("!! ore_io_execute => %d\n", ret);
593 _mark_read4write_pages_uptodate(ios_read, ret);
597 /* In writes @cur_len means length left. .i.e cur_len==0 is the last parity U */
598 int _ore_add_parity_unit(struct ore_io_state *ios,
599 struct ore_striping_info *si,
600 struct ore_per_dev_state *per_dev,
604 if (per_dev->cur_sg >= ios->sgs_per_dev) {
605 ORE_DBGMSG("cur_sg(%d) >= sgs_per_dev(%d)\n" ,
606 per_dev->cur_sg, ios->sgs_per_dev);
609 _ore_add_sg_seg(per_dev, cur_len, true);
611 struct __stripe_pages_2d *sp2d = ios->sp2d;
612 struct page **pages = ios->parity_pages + ios->cur_par_page;
614 unsigned array_start = 0;
618 si->cur_pg = _sp2d_min_pg(sp2d);
619 num_pages = _sp2d_max_pg(sp2d) + 1 - si->cur_pg;
621 if (!cur_len) /* If last stripe operate on parity comp */
622 si->cur_comp = sp2d->data_devs;
624 if (!per_dev->length) {
625 per_dev->offset += si->cur_pg * PAGE_SIZE;
626 /* If first stripe, Read in all read4write pages
627 * (if needed) before we calculate the first parity.
632 for (i = 0; i < num_pages; i++) {
633 pages[i] = _raid_page_alloc();
634 if (unlikely(!pages[i]))
637 ++(ios->cur_par_page);
640 BUG_ON(si->cur_comp != sp2d->data_devs);
641 BUG_ON(si->cur_pg + num_pages > sp2d->pages_in_unit);
643 ret = _ore_add_stripe_unit(ios, &array_start, 0, pages,
644 per_dev, num_pages * PAGE_SIZE);
648 /* TODO: raid6 if (last_parity_dev) */
650 _sp2d_reset(sp2d, ios->r4w, ios->private);
655 int _ore_post_alloc_raid_stuff(struct ore_io_state *ios)
657 struct ore_layout *layout = ios->layout;
659 if (ios->parity_pages) {
660 unsigned pages_in_unit = layout->stripe_unit / PAGE_SIZE;
661 unsigned stripe_size = ios->si.bytes_in_stripe;
662 u64 last_stripe, first_stripe;
664 if (_sp2d_alloc(pages_in_unit, layout->group_width,
665 layout->parity, &ios->sp2d)) {
669 /* Round io down to last full strip */
670 first_stripe = div_u64(ios->offset, stripe_size);
671 last_stripe = div_u64(ios->offset + ios->length, stripe_size);
673 /* If an IO spans more then a single stripe it must end at
674 * a stripe boundary. The reminder at the end is pushed into the
677 if (last_stripe != first_stripe) {
678 ios->length = last_stripe * stripe_size - ios->offset;
680 BUG_ON(!ios->length);
681 ios->nr_pages = (ios->length + PAGE_SIZE - 1) /
683 ios->si.length = ios->length; /*make it consistent */
689 void _ore_free_raid_stuff(struct ore_io_state *ios)
691 if (ios->sp2d) { /* writing and raid */
694 for (i = 0; i < ios->cur_par_page; i++) {
695 struct page *page = ios->parity_pages[i];
698 _raid_page_free(page);
700 if (ios->extra_part_alloc)
701 kfree(ios->parity_pages);
702 /* If IO returned an error pages might need unlocking */
703 _sp2d_reset(ios->sp2d, ios->r4w, ios->private);
704 _sp2d_free(ios->sp2d);
706 /* Will only be set if raid reading && sglist is big */
707 if (ios->extra_part_alloc)
708 kfree(ios->per_dev[0].sglist);
710 if (ios->ios_read_4_write)
711 ore_put_io_state(ios->ios_read_4_write);