1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992 Linus Torvalds
9 * #!-checking implemented by tytso.
12 * Demand-loading implemented 01.12.91 - no need to read anything but
13 * the header into memory. The inode of the executable is put into
14 * "current->executable", and page faults do the actual loading. Clean.
16 * Once more I can proudly say that linux stood up to being changed: it
17 * was less than 2 hours work to get demand-loading completely implemented.
19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
20 * current->executable is only used by the procfs. This allows a dispatch
21 * table to check for several different types of binary formats. We keep
22 * trying until we recognize the file or we run out of supported binary
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/oom.h>
62 #include <linux/compat.h>
63 #include <linux/vmalloc.h>
64 #include <linux/io_uring.h>
65 #include <linux/syscall_user_dispatch.h>
66 #include <linux/coredump.h>
67 #include <linux/time_namespace.h>
68 #include <linux/user_events.h>
70 #include <linux/uaccess.h>
71 #include <asm/mmu_context.h>
74 #include <trace/events/task.h>
77 #include <trace/events/sched.h>
79 static int bprm_creds_from_file(struct linux_binprm *bprm);
81 int suid_dumpable = 0;
83 static LIST_HEAD(formats);
84 static DEFINE_RWLOCK(binfmt_lock);
86 void __register_binfmt(struct linux_binfmt * fmt, int insert)
88 write_lock(&binfmt_lock);
89 insert ? list_add(&fmt->lh, &formats) :
90 list_add_tail(&fmt->lh, &formats);
91 write_unlock(&binfmt_lock);
94 EXPORT_SYMBOL(__register_binfmt);
96 void unregister_binfmt(struct linux_binfmt * fmt)
98 write_lock(&binfmt_lock);
100 write_unlock(&binfmt_lock);
103 EXPORT_SYMBOL(unregister_binfmt);
105 static inline void put_binfmt(struct linux_binfmt * fmt)
107 module_put(fmt->module);
110 bool path_noexec(const struct path *path)
112 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
113 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
118 * Note that a shared library must be both readable and executable due to
121 * Also note that we take the address to load from the file itself.
123 SYSCALL_DEFINE1(uselib, const char __user *, library)
125 struct linux_binfmt *fmt;
127 struct filename *tmp = getname(library);
128 int error = PTR_ERR(tmp);
129 static const struct open_flags uselib_flags = {
130 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
131 .acc_mode = MAY_READ | MAY_EXEC,
132 .intent = LOOKUP_OPEN,
133 .lookup_flags = LOOKUP_FOLLOW,
139 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
141 error = PTR_ERR(file);
146 * may_open() has already checked for this, so it should be
147 * impossible to trip now. But we need to be extra cautious
148 * and check again at the very end too.
151 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
152 path_noexec(&file->f_path)))
159 read_lock(&binfmt_lock);
160 list_for_each_entry(fmt, &formats, lh) {
161 if (!fmt->load_shlib)
163 if (!try_module_get(fmt->module))
165 read_unlock(&binfmt_lock);
166 error = fmt->load_shlib(file);
167 read_lock(&binfmt_lock);
169 if (error != -ENOEXEC)
172 read_unlock(&binfmt_lock);
178 #endif /* #ifdef CONFIG_USELIB */
182 * The nascent bprm->mm is not visible until exec_mmap() but it can
183 * use a lot of memory, account these pages in current->mm temporary
184 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
185 * change the counter back via acct_arg_size(0).
187 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
189 struct mm_struct *mm = current->mm;
190 long diff = (long)(pages - bprm->vma_pages);
195 bprm->vma_pages = pages;
196 add_mm_counter(mm, MM_ANONPAGES, diff);
199 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
203 struct vm_area_struct *vma = bprm->vma;
204 struct mm_struct *mm = bprm->mm;
208 * Avoid relying on expanding the stack down in GUP (which
209 * does not work for STACK_GROWSUP anyway), and just do it
210 * by hand ahead of time.
212 if (write && pos < vma->vm_start) {
214 ret = expand_downwards(vma, pos);
215 if (unlikely(ret < 0)) {
216 mmap_write_unlock(mm);
219 mmap_write_downgrade(mm);
224 * We are doing an exec(). 'current' is the process
225 * doing the exec and 'mm' is the new process's mm.
227 ret = get_user_pages_remote(mm, pos, 1,
228 write ? FOLL_WRITE : 0,
230 mmap_read_unlock(mm);
235 acct_arg_size(bprm, vma_pages(vma));
240 static void put_arg_page(struct page *page)
245 static void free_arg_pages(struct linux_binprm *bprm)
249 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
252 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
255 static int __bprm_mm_init(struct linux_binprm *bprm)
258 struct vm_area_struct *vma = NULL;
259 struct mm_struct *mm = bprm->mm;
261 bprm->vma = vma = vm_area_alloc(mm);
264 vma_set_anonymous(vma);
266 if (mmap_write_lock_killable(mm)) {
272 * Place the stack at the largest stack address the architecture
273 * supports. Later, we'll move this to an appropriate place. We don't
274 * use STACK_TOP because that can depend on attributes which aren't
277 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
278 vma->vm_end = STACK_TOP_MAX;
279 vma->vm_start = vma->vm_end - PAGE_SIZE;
280 vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP);
281 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
283 err = insert_vm_struct(mm, vma);
287 mm->stack_vm = mm->total_vm = 1;
288 mmap_write_unlock(mm);
289 bprm->p = vma->vm_end - sizeof(void *);
292 mmap_write_unlock(mm);
299 static bool valid_arg_len(struct linux_binprm *bprm, long len)
301 return len <= MAX_ARG_STRLEN;
306 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
310 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
315 page = bprm->page[pos / PAGE_SIZE];
316 if (!page && write) {
317 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
320 bprm->page[pos / PAGE_SIZE] = page;
326 static void put_arg_page(struct page *page)
330 static void free_arg_page(struct linux_binprm *bprm, int i)
333 __free_page(bprm->page[i]);
334 bprm->page[i] = NULL;
338 static void free_arg_pages(struct linux_binprm *bprm)
342 for (i = 0; i < MAX_ARG_PAGES; i++)
343 free_arg_page(bprm, i);
346 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
351 static int __bprm_mm_init(struct linux_binprm *bprm)
353 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
357 static bool valid_arg_len(struct linux_binprm *bprm, long len)
359 return len <= bprm->p;
362 #endif /* CONFIG_MMU */
365 * Create a new mm_struct and populate it with a temporary stack
366 * vm_area_struct. We don't have enough context at this point to set the stack
367 * flags, permissions, and offset, so we use temporary values. We'll update
368 * them later in setup_arg_pages().
370 static int bprm_mm_init(struct linux_binprm *bprm)
373 struct mm_struct *mm = NULL;
375 bprm->mm = mm = mm_alloc();
380 /* Save current stack limit for all calculations made during exec. */
381 task_lock(current->group_leader);
382 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
383 task_unlock(current->group_leader);
385 err = __bprm_mm_init(bprm);
400 struct user_arg_ptr {
405 const char __user *const __user *native;
407 const compat_uptr_t __user *compat;
412 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
414 const char __user *native;
417 if (unlikely(argv.is_compat)) {
418 compat_uptr_t compat;
420 if (get_user(compat, argv.ptr.compat + nr))
421 return ERR_PTR(-EFAULT);
423 return compat_ptr(compat);
427 if (get_user(native, argv.ptr.native + nr))
428 return ERR_PTR(-EFAULT);
434 * count() counts the number of strings in array ARGV.
436 static int count(struct user_arg_ptr argv, int max)
440 if (argv.ptr.native != NULL) {
442 const char __user *p = get_user_arg_ptr(argv, i);
454 if (fatal_signal_pending(current))
455 return -ERESTARTNOHAND;
462 static int count_strings_kernel(const char *const *argv)
469 for (i = 0; argv[i]; ++i) {
470 if (i >= MAX_ARG_STRINGS)
472 if (fatal_signal_pending(current))
473 return -ERESTARTNOHAND;
479 static int bprm_stack_limits(struct linux_binprm *bprm)
481 unsigned long limit, ptr_size;
484 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
485 * (whichever is smaller) for the argv+env strings.
487 * - the remaining binfmt code will not run out of stack space,
488 * - the program will have a reasonable amount of stack left
491 limit = _STK_LIM / 4 * 3;
492 limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
494 * We've historically supported up to 32 pages (ARG_MAX)
495 * of argument strings even with small stacks
497 limit = max_t(unsigned long, limit, ARG_MAX);
499 * We must account for the size of all the argv and envp pointers to
500 * the argv and envp strings, since they will also take up space in
501 * the stack. They aren't stored until much later when we can't
502 * signal to the parent that the child has run out of stack space.
503 * Instead, calculate it here so it's possible to fail gracefully.
505 * In the case of argc = 0, make sure there is space for adding a
506 * empty string (which will bump argc to 1), to ensure confused
507 * userspace programs don't start processing from argv[1], thinking
508 * argc can never be 0, to keep them from walking envp by accident.
509 * See do_execveat_common().
511 ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
512 if (limit <= ptr_size)
516 bprm->argmin = bprm->p - limit;
521 * 'copy_strings()' copies argument/environment strings from the old
522 * processes's memory to the new process's stack. The call to get_user_pages()
523 * ensures the destination page is created and not swapped out.
525 static int copy_strings(int argc, struct user_arg_ptr argv,
526 struct linux_binprm *bprm)
528 struct page *kmapped_page = NULL;
530 unsigned long kpos = 0;
534 const char __user *str;
539 str = get_user_arg_ptr(argv, argc);
543 len = strnlen_user(str, MAX_ARG_STRLEN);
548 if (!valid_arg_len(bprm, len))
551 /* We're going to work our way backwards. */
556 if (bprm->p < bprm->argmin)
561 int offset, bytes_to_copy;
563 if (fatal_signal_pending(current)) {
564 ret = -ERESTARTNOHAND;
569 offset = pos % PAGE_SIZE;
573 bytes_to_copy = offset;
574 if (bytes_to_copy > len)
577 offset -= bytes_to_copy;
578 pos -= bytes_to_copy;
579 str -= bytes_to_copy;
580 len -= bytes_to_copy;
582 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
585 page = get_arg_page(bprm, pos, 1);
592 flush_dcache_page(kmapped_page);
594 put_arg_page(kmapped_page);
597 kaddr = kmap_local_page(kmapped_page);
598 kpos = pos & PAGE_MASK;
599 flush_arg_page(bprm, kpos, kmapped_page);
601 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
610 flush_dcache_page(kmapped_page);
612 put_arg_page(kmapped_page);
618 * Copy and argument/environment string from the kernel to the processes stack.
620 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
622 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
623 unsigned long pos = bprm->p;
627 if (!valid_arg_len(bprm, len))
630 /* We're going to work our way backwards. */
633 if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
637 unsigned int bytes_to_copy = min_t(unsigned int, len,
638 min_not_zero(offset_in_page(pos), PAGE_SIZE));
641 pos -= bytes_to_copy;
642 arg -= bytes_to_copy;
643 len -= bytes_to_copy;
645 page = get_arg_page(bprm, pos, 1);
648 flush_arg_page(bprm, pos & PAGE_MASK, page);
649 memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
655 EXPORT_SYMBOL(copy_string_kernel);
657 static int copy_strings_kernel(int argc, const char *const *argv,
658 struct linux_binprm *bprm)
661 int ret = copy_string_kernel(argv[argc], bprm);
664 if (fatal_signal_pending(current))
665 return -ERESTARTNOHAND;
674 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
675 * the binfmt code determines where the new stack should reside, we shift it to
676 * its final location. The process proceeds as follows:
678 * 1) Use shift to calculate the new vma endpoints.
679 * 2) Extend vma to cover both the old and new ranges. This ensures the
680 * arguments passed to subsequent functions are consistent.
681 * 3) Move vma's page tables to the new range.
682 * 4) Free up any cleared pgd range.
683 * 5) Shrink the vma to cover only the new range.
685 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
687 struct mm_struct *mm = vma->vm_mm;
688 unsigned long old_start = vma->vm_start;
689 unsigned long old_end = vma->vm_end;
690 unsigned long length = old_end - old_start;
691 unsigned long new_start = old_start - shift;
692 unsigned long new_end = old_end - shift;
693 VMA_ITERATOR(vmi, mm, new_start);
694 struct vm_area_struct *next;
695 struct mmu_gather tlb;
697 BUG_ON(new_start > new_end);
700 * ensure there are no vmas between where we want to go
703 if (vma != vma_next(&vmi))
707 * cover the whole range: [new_start, old_end)
709 if (vma_expand(&vmi, vma, new_start, old_end, vma->vm_pgoff, NULL))
713 * move the page tables downwards, on failure we rely on
714 * process cleanup to remove whatever mess we made.
716 if (length != move_page_tables(vma, old_start,
717 vma, new_start, length, false))
721 tlb_gather_mmu(&tlb, mm);
722 next = vma_next(&vmi);
723 if (new_end > old_start) {
725 * when the old and new regions overlap clear from new_end.
727 free_pgd_range(&tlb, new_end, old_end, new_end,
728 next ? next->vm_start : USER_PGTABLES_CEILING);
731 * otherwise, clean from old_start; this is done to not touch
732 * the address space in [new_end, old_start) some architectures
733 * have constraints on va-space that make this illegal (IA64) -
734 * for the others its just a little faster.
736 free_pgd_range(&tlb, old_start, old_end, new_end,
737 next ? next->vm_start : USER_PGTABLES_CEILING);
739 tlb_finish_mmu(&tlb);
742 /* Shrink the vma to just the new range */
743 return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff);
747 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
748 * the stack is optionally relocated, and some extra space is added.
750 int setup_arg_pages(struct linux_binprm *bprm,
751 unsigned long stack_top,
752 int executable_stack)
755 unsigned long stack_shift;
756 struct mm_struct *mm = current->mm;
757 struct vm_area_struct *vma = bprm->vma;
758 struct vm_area_struct *prev = NULL;
759 unsigned long vm_flags;
760 unsigned long stack_base;
761 unsigned long stack_size;
762 unsigned long stack_expand;
763 unsigned long rlim_stack;
764 struct mmu_gather tlb;
765 struct vma_iterator vmi;
767 #ifdef CONFIG_STACK_GROWSUP
768 /* Limit stack size */
769 stack_base = bprm->rlim_stack.rlim_max;
771 stack_base = calc_max_stack_size(stack_base);
773 /* Add space for stack randomization. */
774 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
776 /* Make sure we didn't let the argument array grow too large. */
777 if (vma->vm_end - vma->vm_start > stack_base)
780 stack_base = PAGE_ALIGN(stack_top - stack_base);
782 stack_shift = vma->vm_start - stack_base;
783 mm->arg_start = bprm->p - stack_shift;
784 bprm->p = vma->vm_end - stack_shift;
786 stack_top = arch_align_stack(stack_top);
787 stack_top = PAGE_ALIGN(stack_top);
789 if (unlikely(stack_top < mmap_min_addr) ||
790 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
793 stack_shift = vma->vm_end - stack_top;
795 bprm->p -= stack_shift;
796 mm->arg_start = bprm->p;
800 bprm->loader -= stack_shift;
801 bprm->exec -= stack_shift;
803 if (mmap_write_lock_killable(mm))
806 vm_flags = VM_STACK_FLAGS;
809 * Adjust stack execute permissions; explicitly enable for
810 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
811 * (arch default) otherwise.
813 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
815 else if (executable_stack == EXSTACK_DISABLE_X)
816 vm_flags &= ~VM_EXEC;
817 vm_flags |= mm->def_flags;
818 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
820 vma_iter_init(&vmi, mm, vma->vm_start);
822 tlb_gather_mmu(&tlb, mm);
823 ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end,
825 tlb_finish_mmu(&tlb);
831 if (unlikely(vm_flags & VM_EXEC)) {
832 pr_warn_once("process '%pD4' started with executable stack\n",
836 /* Move stack pages down in memory. */
838 ret = shift_arg_pages(vma, stack_shift);
843 /* mprotect_fixup is overkill to remove the temporary stack flags */
844 vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP);
846 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
847 stack_size = vma->vm_end - vma->vm_start;
849 * Align this down to a page boundary as expand_stack
852 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
854 stack_expand = min(rlim_stack, stack_size + stack_expand);
856 #ifdef CONFIG_STACK_GROWSUP
857 stack_base = vma->vm_start + stack_expand;
859 stack_base = vma->vm_end - stack_expand;
861 current->mm->start_stack = bprm->p;
862 ret = expand_stack_locked(vma, stack_base);
867 mmap_write_unlock(mm);
870 EXPORT_SYMBOL(setup_arg_pages);
875 * Transfer the program arguments and environment from the holding pages
876 * onto the stack. The provided stack pointer is adjusted accordingly.
878 int transfer_args_to_stack(struct linux_binprm *bprm,
879 unsigned long *sp_location)
881 unsigned long index, stop, sp;
884 stop = bprm->p >> PAGE_SHIFT;
887 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
888 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
889 char *src = kmap_local_page(bprm->page[index]) + offset;
890 sp -= PAGE_SIZE - offset;
891 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
903 EXPORT_SYMBOL(transfer_args_to_stack);
905 #endif /* CONFIG_MMU */
907 static struct file *do_open_execat(int fd, struct filename *name, int flags)
911 struct open_flags open_exec_flags = {
912 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
913 .acc_mode = MAY_EXEC,
914 .intent = LOOKUP_OPEN,
915 .lookup_flags = LOOKUP_FOLLOW,
918 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
919 return ERR_PTR(-EINVAL);
920 if (flags & AT_SYMLINK_NOFOLLOW)
921 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
922 if (flags & AT_EMPTY_PATH)
923 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
925 file = do_filp_open(fd, name, &open_exec_flags);
930 * may_open() has already checked for this, so it should be
931 * impossible to trip now. But we need to be extra cautious
932 * and check again at the very end too.
935 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
936 path_noexec(&file->f_path)))
939 err = deny_write_access(file);
943 if (name->name[0] != '\0')
954 struct file *open_exec(const char *name)
956 struct filename *filename = getname_kernel(name);
957 struct file *f = ERR_CAST(filename);
959 if (!IS_ERR(filename)) {
960 f = do_open_execat(AT_FDCWD, filename, 0);
965 EXPORT_SYMBOL(open_exec);
967 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC)
968 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
970 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
972 flush_icache_user_range(addr, addr + len);
975 EXPORT_SYMBOL(read_code);
979 * Maps the mm_struct mm into the current task struct.
980 * On success, this function returns with exec_update_lock
983 static int exec_mmap(struct mm_struct *mm)
985 struct task_struct *tsk;
986 struct mm_struct *old_mm, *active_mm;
989 /* Notify parent that we're no longer interested in the old VM */
991 old_mm = current->mm;
992 exec_mm_release(tsk, old_mm);
996 ret = down_write_killable(&tsk->signal->exec_update_lock);
1002 * If there is a pending fatal signal perhaps a signal
1003 * whose default action is to create a coredump get
1004 * out and die instead of going through with the exec.
1006 ret = mmap_read_lock_killable(old_mm);
1008 up_write(&tsk->signal->exec_update_lock);
1014 membarrier_exec_mmap(mm);
1016 local_irq_disable();
1017 active_mm = tsk->active_mm;
1018 tsk->active_mm = mm;
1022 * This prevents preemption while active_mm is being loaded and
1023 * it and mm are being updated, which could cause problems for
1024 * lazy tlb mm refcounting when these are updated by context
1025 * switches. Not all architectures can handle irqs off over
1028 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1030 activate_mm(active_mm, mm);
1031 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1037 mmap_read_unlock(old_mm);
1038 BUG_ON(active_mm != old_mm);
1039 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1040 mm_update_next_owner(old_mm);
1044 mmdrop_lazy_tlb(active_mm);
1048 static int de_thread(struct task_struct *tsk)
1050 struct signal_struct *sig = tsk->signal;
1051 struct sighand_struct *oldsighand = tsk->sighand;
1052 spinlock_t *lock = &oldsighand->siglock;
1054 if (thread_group_empty(tsk))
1055 goto no_thread_group;
1058 * Kill all other threads in the thread group.
1060 spin_lock_irq(lock);
1061 if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1063 * Another group action in progress, just
1064 * return so that the signal is processed.
1066 spin_unlock_irq(lock);
1070 sig->group_exec_task = tsk;
1071 sig->notify_count = zap_other_threads(tsk);
1072 if (!thread_group_leader(tsk))
1073 sig->notify_count--;
1075 while (sig->notify_count) {
1076 __set_current_state(TASK_KILLABLE);
1077 spin_unlock_irq(lock);
1079 if (__fatal_signal_pending(tsk))
1081 spin_lock_irq(lock);
1083 spin_unlock_irq(lock);
1086 * At this point all other threads have exited, all we have to
1087 * do is to wait for the thread group leader to become inactive,
1088 * and to assume its PID:
1090 if (!thread_group_leader(tsk)) {
1091 struct task_struct *leader = tsk->group_leader;
1094 cgroup_threadgroup_change_begin(tsk);
1095 write_lock_irq(&tasklist_lock);
1097 * Do this under tasklist_lock to ensure that
1098 * exit_notify() can't miss ->group_exec_task
1100 sig->notify_count = -1;
1101 if (likely(leader->exit_state))
1103 __set_current_state(TASK_KILLABLE);
1104 write_unlock_irq(&tasklist_lock);
1105 cgroup_threadgroup_change_end(tsk);
1107 if (__fatal_signal_pending(tsk))
1112 * The only record we have of the real-time age of a
1113 * process, regardless of execs it's done, is start_time.
1114 * All the past CPU time is accumulated in signal_struct
1115 * from sister threads now dead. But in this non-leader
1116 * exec, nothing survives from the original leader thread,
1117 * whose birth marks the true age of this process now.
1118 * When we take on its identity by switching to its PID, we
1119 * also take its birthdate (always earlier than our own).
1121 tsk->start_time = leader->start_time;
1122 tsk->start_boottime = leader->start_boottime;
1124 BUG_ON(!same_thread_group(leader, tsk));
1126 * An exec() starts a new thread group with the
1127 * TGID of the previous thread group. Rehash the
1128 * two threads with a switched PID, and release
1129 * the former thread group leader:
1132 /* Become a process group leader with the old leader's pid.
1133 * The old leader becomes a thread of the this thread group.
1135 exchange_tids(tsk, leader);
1136 transfer_pid(leader, tsk, PIDTYPE_TGID);
1137 transfer_pid(leader, tsk, PIDTYPE_PGID);
1138 transfer_pid(leader, tsk, PIDTYPE_SID);
1140 list_replace_rcu(&leader->tasks, &tsk->tasks);
1141 list_replace_init(&leader->sibling, &tsk->sibling);
1143 tsk->group_leader = tsk;
1144 leader->group_leader = tsk;
1146 tsk->exit_signal = SIGCHLD;
1147 leader->exit_signal = -1;
1149 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1150 leader->exit_state = EXIT_DEAD;
1153 * We are going to release_task()->ptrace_unlink() silently,
1154 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1155 * the tracer won't block again waiting for this thread.
1157 if (unlikely(leader->ptrace))
1158 __wake_up_parent(leader, leader->parent);
1159 write_unlock_irq(&tasklist_lock);
1160 cgroup_threadgroup_change_end(tsk);
1162 release_task(leader);
1165 sig->group_exec_task = NULL;
1166 sig->notify_count = 0;
1169 /* we have changed execution domain */
1170 tsk->exit_signal = SIGCHLD;
1172 BUG_ON(!thread_group_leader(tsk));
1176 /* protects against exit_notify() and __exit_signal() */
1177 read_lock(&tasklist_lock);
1178 sig->group_exec_task = NULL;
1179 sig->notify_count = 0;
1180 read_unlock(&tasklist_lock);
1186 * This function makes sure the current process has its own signal table,
1187 * so that flush_signal_handlers can later reset the handlers without
1188 * disturbing other processes. (Other processes might share the signal
1189 * table via the CLONE_SIGHAND option to clone().)
1191 static int unshare_sighand(struct task_struct *me)
1193 struct sighand_struct *oldsighand = me->sighand;
1195 if (refcount_read(&oldsighand->count) != 1) {
1196 struct sighand_struct *newsighand;
1198 * This ->sighand is shared with the CLONE_SIGHAND
1199 * but not CLONE_THREAD task, switch to the new one.
1201 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1205 refcount_set(&newsighand->count, 1);
1207 write_lock_irq(&tasklist_lock);
1208 spin_lock(&oldsighand->siglock);
1209 memcpy(newsighand->action, oldsighand->action,
1210 sizeof(newsighand->action));
1211 rcu_assign_pointer(me->sighand, newsighand);
1212 spin_unlock(&oldsighand->siglock);
1213 write_unlock_irq(&tasklist_lock);
1215 __cleanup_sighand(oldsighand);
1220 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1223 /* Always NUL terminated and zero-padded */
1224 strscpy_pad(buf, tsk->comm, buf_size);
1228 EXPORT_SYMBOL_GPL(__get_task_comm);
1231 * These functions flushes out all traces of the currently running executable
1232 * so that a new one can be started
1235 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1238 trace_task_rename(tsk, buf);
1239 strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1241 perf_event_comm(tsk, exec);
1245 * Calling this is the point of no return. None of the failures will be
1246 * seen by userspace since either the process is already taking a fatal
1247 * signal (via de_thread() or coredump), or will have SEGV raised
1248 * (after exec_mmap()) by search_binary_handler (see below).
1250 int begin_new_exec(struct linux_binprm * bprm)
1252 struct task_struct *me = current;
1255 /* Once we are committed compute the creds */
1256 retval = bprm_creds_from_file(bprm);
1261 * Ensure all future errors are fatal.
1263 bprm->point_of_no_return = true;
1266 * Make this the only thread in the thread group.
1268 retval = de_thread(me);
1273 * Cancel any io_uring activity across execve
1275 io_uring_task_cancel();
1277 /* Ensure the files table is not shared. */
1278 retval = unshare_files();
1283 * Must be called _before_ exec_mmap() as bprm->mm is
1284 * not visible until then. This also enables the update
1287 retval = set_mm_exe_file(bprm->mm, bprm->file);
1291 /* If the binary is not readable then enforce mm->dumpable=0 */
1292 would_dump(bprm, bprm->file);
1293 if (bprm->have_execfd)
1294 would_dump(bprm, bprm->executable);
1297 * Release all of the old mmap stuff
1299 acct_arg_size(bprm, 0);
1300 retval = exec_mmap(bprm->mm);
1306 retval = exec_task_namespaces();
1310 #ifdef CONFIG_POSIX_TIMERS
1311 spin_lock_irq(&me->sighand->siglock);
1312 posix_cpu_timers_exit(me);
1313 spin_unlock_irq(&me->sighand->siglock);
1315 flush_itimer_signals();
1319 * Make the signal table private.
1321 retval = unshare_sighand(me);
1325 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1326 PF_NOFREEZE | PF_NO_SETAFFINITY);
1328 me->personality &= ~bprm->per_clear;
1330 clear_syscall_work_syscall_user_dispatch(me);
1333 * We have to apply CLOEXEC before we change whether the process is
1334 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1335 * trying to access the should-be-closed file descriptors of a process
1336 * undergoing exec(2).
1338 do_close_on_exec(me->files);
1340 if (bprm->secureexec) {
1341 /* Make sure parent cannot signal privileged process. */
1342 me->pdeath_signal = 0;
1345 * For secureexec, reset the stack limit to sane default to
1346 * avoid bad behavior from the prior rlimits. This has to
1347 * happen before arch_pick_mmap_layout(), which examines
1348 * RLIMIT_STACK, but after the point of no return to avoid
1349 * needing to clean up the change on failure.
1351 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1352 bprm->rlim_stack.rlim_cur = _STK_LIM;
1355 me->sas_ss_sp = me->sas_ss_size = 0;
1358 * Figure out dumpability. Note that this checking only of current
1359 * is wrong, but userspace depends on it. This should be testing
1360 * bprm->secureexec instead.
1362 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1363 !(uid_eq(current_euid(), current_uid()) &&
1364 gid_eq(current_egid(), current_gid())))
1365 set_dumpable(current->mm, suid_dumpable);
1367 set_dumpable(current->mm, SUID_DUMP_USER);
1370 __set_task_comm(me, kbasename(bprm->filename), true);
1372 /* An exec changes our domain. We are no longer part of the thread
1374 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1375 flush_signal_handlers(me, 0);
1377 retval = set_cred_ucounts(bprm->cred);
1382 * install the new credentials for this executable
1384 security_bprm_committing_creds(bprm);
1386 commit_creds(bprm->cred);
1390 * Disable monitoring for regular users
1391 * when executing setuid binaries. Must
1392 * wait until new credentials are committed
1393 * by commit_creds() above
1395 if (get_dumpable(me->mm) != SUID_DUMP_USER)
1396 perf_event_exit_task(me);
1398 * cred_guard_mutex must be held at least to this point to prevent
1399 * ptrace_attach() from altering our determination of the task's
1400 * credentials; any time after this it may be unlocked.
1402 security_bprm_committed_creds(bprm);
1404 /* Pass the opened binary to the interpreter. */
1405 if (bprm->have_execfd) {
1406 retval = get_unused_fd_flags(0);
1409 fd_install(retval, bprm->executable);
1410 bprm->executable = NULL;
1411 bprm->execfd = retval;
1416 up_write(&me->signal->exec_update_lock);
1420 EXPORT_SYMBOL(begin_new_exec);
1422 void would_dump(struct linux_binprm *bprm, struct file *file)
1424 struct inode *inode = file_inode(file);
1425 struct mnt_idmap *idmap = file_mnt_idmap(file);
1426 if (inode_permission(idmap, inode, MAY_READ) < 0) {
1427 struct user_namespace *old, *user_ns;
1428 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1430 /* Ensure mm->user_ns contains the executable */
1431 user_ns = old = bprm->mm->user_ns;
1432 while ((user_ns != &init_user_ns) &&
1433 !privileged_wrt_inode_uidgid(user_ns, idmap, inode))
1434 user_ns = user_ns->parent;
1436 if (old != user_ns) {
1437 bprm->mm->user_ns = get_user_ns(user_ns);
1442 EXPORT_SYMBOL(would_dump);
1444 void setup_new_exec(struct linux_binprm * bprm)
1446 /* Setup things that can depend upon the personality */
1447 struct task_struct *me = current;
1449 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1451 arch_setup_new_exec();
1453 /* Set the new mm task size. We have to do that late because it may
1454 * depend on TIF_32BIT which is only updated in flush_thread() on
1455 * some architectures like powerpc
1457 me->mm->task_size = TASK_SIZE;
1458 up_write(&me->signal->exec_update_lock);
1459 mutex_unlock(&me->signal->cred_guard_mutex);
1461 EXPORT_SYMBOL(setup_new_exec);
1463 /* Runs immediately before start_thread() takes over. */
1464 void finalize_exec(struct linux_binprm *bprm)
1466 /* Store any stack rlimit changes before starting thread. */
1467 task_lock(current->group_leader);
1468 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1469 task_unlock(current->group_leader);
1471 EXPORT_SYMBOL(finalize_exec);
1474 * Prepare credentials and lock ->cred_guard_mutex.
1475 * setup_new_exec() commits the new creds and drops the lock.
1476 * Or, if exec fails before, free_bprm() should release ->cred
1479 static int prepare_bprm_creds(struct linux_binprm *bprm)
1481 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex))
1482 return -ERESTARTNOINTR;
1484 bprm->cred = prepare_exec_creds();
1485 if (likely(bprm->cred))
1488 mutex_unlock(¤t->signal->cred_guard_mutex);
1492 static void free_bprm(struct linux_binprm *bprm)
1495 acct_arg_size(bprm, 0);
1498 free_arg_pages(bprm);
1500 mutex_unlock(¤t->signal->cred_guard_mutex);
1501 abort_creds(bprm->cred);
1504 allow_write_access(bprm->file);
1507 if (bprm->executable)
1508 fput(bprm->executable);
1509 /* If a binfmt changed the interp, free it. */
1510 if (bprm->interp != bprm->filename)
1511 kfree(bprm->interp);
1512 kfree(bprm->fdpath);
1516 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1518 struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1519 int retval = -ENOMEM;
1523 if (fd == AT_FDCWD || filename->name[0] == '/') {
1524 bprm->filename = filename->name;
1526 if (filename->name[0] == '\0')
1527 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1529 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1530 fd, filename->name);
1534 bprm->filename = bprm->fdpath;
1536 bprm->interp = bprm->filename;
1538 retval = bprm_mm_init(bprm);
1546 return ERR_PTR(retval);
1549 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1551 /* If a binfmt changed the interp, free it first. */
1552 if (bprm->interp != bprm->filename)
1553 kfree(bprm->interp);
1554 bprm->interp = kstrdup(interp, GFP_KERNEL);
1559 EXPORT_SYMBOL(bprm_change_interp);
1562 * determine how safe it is to execute the proposed program
1563 * - the caller must hold ->cred_guard_mutex to protect against
1564 * PTRACE_ATTACH or seccomp thread-sync
1566 static void check_unsafe_exec(struct linux_binprm *bprm)
1568 struct task_struct *p = current, *t;
1572 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1575 * This isn't strictly necessary, but it makes it harder for LSMs to
1578 if (task_no_new_privs(current))
1579 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1582 * If another task is sharing our fs, we cannot safely
1583 * suid exec because the differently privileged task
1584 * will be able to manipulate the current directory, etc.
1585 * It would be nice to force an unshare instead...
1589 spin_lock(&p->fs->lock);
1591 while_each_thread(p, t) {
1597 if (p->fs->users > n_fs)
1598 bprm->unsafe |= LSM_UNSAFE_SHARE;
1601 spin_unlock(&p->fs->lock);
1604 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1606 /* Handle suid and sgid on files */
1607 struct mnt_idmap *idmap;
1608 struct inode *inode = file_inode(file);
1613 if (!mnt_may_suid(file->f_path.mnt))
1616 if (task_no_new_privs(current))
1619 mode = READ_ONCE(inode->i_mode);
1620 if (!(mode & (S_ISUID|S_ISGID)))
1623 idmap = file_mnt_idmap(file);
1625 /* Be careful if suid/sgid is set */
1628 /* reload atomically mode/uid/gid now that lock held */
1629 mode = inode->i_mode;
1630 vfsuid = i_uid_into_vfsuid(idmap, inode);
1631 vfsgid = i_gid_into_vfsgid(idmap, inode);
1632 inode_unlock(inode);
1634 /* We ignore suid/sgid if there are no mappings for them in the ns */
1635 if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) ||
1636 !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid))
1639 if (mode & S_ISUID) {
1640 bprm->per_clear |= PER_CLEAR_ON_SETID;
1641 bprm->cred->euid = vfsuid_into_kuid(vfsuid);
1644 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1645 bprm->per_clear |= PER_CLEAR_ON_SETID;
1646 bprm->cred->egid = vfsgid_into_kgid(vfsgid);
1651 * Compute brpm->cred based upon the final binary.
1653 static int bprm_creds_from_file(struct linux_binprm *bprm)
1655 /* Compute creds based on which file? */
1656 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1658 bprm_fill_uid(bprm, file);
1659 return security_bprm_creds_from_file(bprm, file);
1663 * Fill the binprm structure from the inode.
1664 * Read the first BINPRM_BUF_SIZE bytes
1666 * This may be called multiple times for binary chains (scripts for example).
1668 static int prepare_binprm(struct linux_binprm *bprm)
1672 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1673 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1677 * Arguments are '\0' separated strings found at the location bprm->p
1678 * points to; chop off the first by relocating brpm->p to right after
1679 * the first '\0' encountered.
1681 int remove_arg_zero(struct linux_binprm *bprm)
1684 unsigned long offset;
1692 offset = bprm->p & ~PAGE_MASK;
1693 page = get_arg_page(bprm, bprm->p, 0);
1698 kaddr = kmap_local_page(page);
1700 for (; offset < PAGE_SIZE && kaddr[offset];
1701 offset++, bprm->p++)
1704 kunmap_local(kaddr);
1706 } while (offset == PAGE_SIZE);
1715 EXPORT_SYMBOL(remove_arg_zero);
1717 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1719 * cycle the list of binary formats handler, until one recognizes the image
1721 static int search_binary_handler(struct linux_binprm *bprm)
1723 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1724 struct linux_binfmt *fmt;
1727 retval = prepare_binprm(bprm);
1731 retval = security_bprm_check(bprm);
1737 read_lock(&binfmt_lock);
1738 list_for_each_entry(fmt, &formats, lh) {
1739 if (!try_module_get(fmt->module))
1741 read_unlock(&binfmt_lock);
1743 retval = fmt->load_binary(bprm);
1745 read_lock(&binfmt_lock);
1747 if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1748 read_unlock(&binfmt_lock);
1752 read_unlock(&binfmt_lock);
1755 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1756 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1758 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1767 /* binfmt handlers will call back into begin_new_exec() on success. */
1768 static int exec_binprm(struct linux_binprm *bprm)
1770 pid_t old_pid, old_vpid;
1773 /* Need to fetch pid before load_binary changes it */
1774 old_pid = current->pid;
1776 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1779 /* This allows 4 levels of binfmt rewrites before failing hard. */
1780 for (depth = 0;; depth++) {
1785 ret = search_binary_handler(bprm);
1788 if (!bprm->interpreter)
1792 bprm->file = bprm->interpreter;
1793 bprm->interpreter = NULL;
1795 allow_write_access(exec);
1796 if (unlikely(bprm->have_execfd)) {
1797 if (bprm->executable) {
1801 bprm->executable = exec;
1807 trace_sched_process_exec(current, old_pid, bprm);
1808 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1809 proc_exec_connector(current);
1814 * sys_execve() executes a new program.
1816 static int bprm_execve(struct linux_binprm *bprm,
1817 int fd, struct filename *filename, int flags)
1822 retval = prepare_bprm_creds(bprm);
1827 * Check for unsafe execution states before exec_binprm(), which
1828 * will call back into begin_new_exec(), into bprm_creds_from_file(),
1829 * where setuid-ness is evaluated.
1831 check_unsafe_exec(bprm);
1832 current->in_execve = 1;
1833 sched_mm_cid_before_execve(current);
1835 file = do_open_execat(fd, filename, flags);
1836 retval = PTR_ERR(file);
1844 * Record that a name derived from an O_CLOEXEC fd will be
1845 * inaccessible after exec. This allows the code in exec to
1846 * choose to fail when the executable is not mmaped into the
1847 * interpreter and an open file descriptor is not passed to
1848 * the interpreter. This makes for a better user experience
1849 * than having the interpreter start and then immediately fail
1850 * when it finds the executable is inaccessible.
1852 if (bprm->fdpath && get_close_on_exec(fd))
1853 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1855 /* Set the unchanging part of bprm->cred */
1856 retval = security_bprm_creds_for_exec(bprm);
1860 retval = exec_binprm(bprm);
1864 sched_mm_cid_after_execve(current);
1865 /* execve succeeded */
1866 current->fs->in_exec = 0;
1867 current->in_execve = 0;
1868 rseq_execve(current);
1869 user_events_execve(current);
1870 acct_update_integrals(current);
1871 task_numa_free(current, false);
1876 * If past the point of no return ensure the code never
1877 * returns to the userspace process. Use an existing fatal
1878 * signal if present otherwise terminate the process with
1881 if (bprm->point_of_no_return && !fatal_signal_pending(current))
1882 force_fatal_sig(SIGSEGV);
1885 sched_mm_cid_after_execve(current);
1886 current->fs->in_exec = 0;
1887 current->in_execve = 0;
1892 static int do_execveat_common(int fd, struct filename *filename,
1893 struct user_arg_ptr argv,
1894 struct user_arg_ptr envp,
1897 struct linux_binprm *bprm;
1900 if (IS_ERR(filename))
1901 return PTR_ERR(filename);
1904 * We move the actual failure in case of RLIMIT_NPROC excess from
1905 * set*uid() to execve() because too many poorly written programs
1906 * don't check setuid() return code. Here we additionally recheck
1907 * whether NPROC limit is still exceeded.
1909 if ((current->flags & PF_NPROC_EXCEEDED) &&
1910 is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1915 /* We're below the limit (still or again), so we don't want to make
1916 * further execve() calls fail. */
1917 current->flags &= ~PF_NPROC_EXCEEDED;
1919 bprm = alloc_bprm(fd, filename);
1921 retval = PTR_ERR(bprm);
1925 retval = count(argv, MAX_ARG_STRINGS);
1927 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1928 current->comm, bprm->filename);
1931 bprm->argc = retval;
1933 retval = count(envp, MAX_ARG_STRINGS);
1936 bprm->envc = retval;
1938 retval = bprm_stack_limits(bprm);
1942 retval = copy_string_kernel(bprm->filename, bprm);
1945 bprm->exec = bprm->p;
1947 retval = copy_strings(bprm->envc, envp, bprm);
1951 retval = copy_strings(bprm->argc, argv, bprm);
1956 * When argv is empty, add an empty string ("") as argv[0] to
1957 * ensure confused userspace programs that start processing
1958 * from argv[1] won't end up walking envp. See also
1959 * bprm_stack_limits().
1961 if (bprm->argc == 0) {
1962 retval = copy_string_kernel("", bprm);
1968 retval = bprm_execve(bprm, fd, filename, flags);
1977 int kernel_execve(const char *kernel_filename,
1978 const char *const *argv, const char *const *envp)
1980 struct filename *filename;
1981 struct linux_binprm *bprm;
1985 /* It is non-sense for kernel threads to call execve */
1986 if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
1989 filename = getname_kernel(kernel_filename);
1990 if (IS_ERR(filename))
1991 return PTR_ERR(filename);
1993 bprm = alloc_bprm(fd, filename);
1995 retval = PTR_ERR(bprm);
1999 retval = count_strings_kernel(argv);
2000 if (WARN_ON_ONCE(retval == 0))
2004 bprm->argc = retval;
2006 retval = count_strings_kernel(envp);
2009 bprm->envc = retval;
2011 retval = bprm_stack_limits(bprm);
2015 retval = copy_string_kernel(bprm->filename, bprm);
2018 bprm->exec = bprm->p;
2020 retval = copy_strings_kernel(bprm->envc, envp, bprm);
2024 retval = copy_strings_kernel(bprm->argc, argv, bprm);
2028 retval = bprm_execve(bprm, fd, filename, 0);
2036 static int do_execve(struct filename *filename,
2037 const char __user *const __user *__argv,
2038 const char __user *const __user *__envp)
2040 struct user_arg_ptr argv = { .ptr.native = __argv };
2041 struct user_arg_ptr envp = { .ptr.native = __envp };
2042 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2045 static int do_execveat(int fd, struct filename *filename,
2046 const char __user *const __user *__argv,
2047 const char __user *const __user *__envp,
2050 struct user_arg_ptr argv = { .ptr.native = __argv };
2051 struct user_arg_ptr envp = { .ptr.native = __envp };
2053 return do_execveat_common(fd, filename, argv, envp, flags);
2056 #ifdef CONFIG_COMPAT
2057 static int compat_do_execve(struct filename *filename,
2058 const compat_uptr_t __user *__argv,
2059 const compat_uptr_t __user *__envp)
2061 struct user_arg_ptr argv = {
2063 .ptr.compat = __argv,
2065 struct user_arg_ptr envp = {
2067 .ptr.compat = __envp,
2069 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2072 static int compat_do_execveat(int fd, struct filename *filename,
2073 const compat_uptr_t __user *__argv,
2074 const compat_uptr_t __user *__envp,
2077 struct user_arg_ptr argv = {
2079 .ptr.compat = __argv,
2081 struct user_arg_ptr envp = {
2083 .ptr.compat = __envp,
2085 return do_execveat_common(fd, filename, argv, envp, flags);
2089 void set_binfmt(struct linux_binfmt *new)
2091 struct mm_struct *mm = current->mm;
2094 module_put(mm->binfmt->module);
2098 __module_get(new->module);
2100 EXPORT_SYMBOL(set_binfmt);
2103 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2105 void set_dumpable(struct mm_struct *mm, int value)
2107 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2110 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2113 SYSCALL_DEFINE3(execve,
2114 const char __user *, filename,
2115 const char __user *const __user *, argv,
2116 const char __user *const __user *, envp)
2118 return do_execve(getname(filename), argv, envp);
2121 SYSCALL_DEFINE5(execveat,
2122 int, fd, const char __user *, filename,
2123 const char __user *const __user *, argv,
2124 const char __user *const __user *, envp,
2127 return do_execveat(fd,
2128 getname_uflags(filename, flags),
2132 #ifdef CONFIG_COMPAT
2133 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2134 const compat_uptr_t __user *, argv,
2135 const compat_uptr_t __user *, envp)
2137 return compat_do_execve(getname(filename), argv, envp);
2140 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2141 const char __user *, filename,
2142 const compat_uptr_t __user *, argv,
2143 const compat_uptr_t __user *, envp,
2146 return compat_do_execveat(fd,
2147 getname_uflags(filename, flags),
2152 #ifdef CONFIG_SYSCTL
2154 static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write,
2155 void *buffer, size_t *lenp, loff_t *ppos)
2157 int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2160 validate_coredump_safety();
2164 static struct ctl_table fs_exec_sysctls[] = {
2166 .procname = "suid_dumpable",
2167 .data = &suid_dumpable,
2168 .maxlen = sizeof(int),
2170 .proc_handler = proc_dointvec_minmax_coredump,
2171 .extra1 = SYSCTL_ZERO,
2172 .extra2 = SYSCTL_TWO,
2177 static int __init init_fs_exec_sysctls(void)
2179 register_sysctl_init("fs", fs_exec_sysctls);
2183 fs_initcall(init_fs_exec_sysctls);
2184 #endif /* CONFIG_SYSCTL */