Merge tag 'irqchip-mvebu-fixes-3.14' of git://git.infradead.org/linux-mvebu into...
[profile/ivi/kernel-x86-ivi.git] / fs / exec.c
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats. 
23  */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/security.h>
47 #include <linux/syscalls.h>
48 #include <linux/tsacct_kern.h>
49 #include <linux/cn_proc.h>
50 #include <linux/audit.h>
51 #include <linux/tracehook.h>
52 #include <linux/kmod.h>
53 #include <linux/fsnotify.h>
54 #include <linux/fs_struct.h>
55 #include <linux/pipe_fs_i.h>
56 #include <linux/oom.h>
57 #include <linux/compat.h>
58
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/tlb.h>
62
63 #include <trace/events/task.h>
64 #include "internal.h"
65
66 #include <trace/events/sched.h>
67
68 int suid_dumpable = 0;
69
70 static LIST_HEAD(formats);
71 static DEFINE_RWLOCK(binfmt_lock);
72
73 void __register_binfmt(struct linux_binfmt * fmt, int insert)
74 {
75         BUG_ON(!fmt);
76         if (WARN_ON(!fmt->load_binary))
77                 return;
78         write_lock(&binfmt_lock);
79         insert ? list_add(&fmt->lh, &formats) :
80                  list_add_tail(&fmt->lh, &formats);
81         write_unlock(&binfmt_lock);
82 }
83
84 EXPORT_SYMBOL(__register_binfmt);
85
86 void unregister_binfmt(struct linux_binfmt * fmt)
87 {
88         write_lock(&binfmt_lock);
89         list_del(&fmt->lh);
90         write_unlock(&binfmt_lock);
91 }
92
93 EXPORT_SYMBOL(unregister_binfmt);
94
95 static inline void put_binfmt(struct linux_binfmt * fmt)
96 {
97         module_put(fmt->module);
98 }
99
100 /*
101  * Note that a shared library must be both readable and executable due to
102  * security reasons.
103  *
104  * Also note that we take the address to load from from the file itself.
105  */
106 SYSCALL_DEFINE1(uselib, const char __user *, library)
107 {
108         struct linux_binfmt *fmt;
109         struct file *file;
110         struct filename *tmp = getname(library);
111         int error = PTR_ERR(tmp);
112         static const struct open_flags uselib_flags = {
113                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
114                 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
115                 .intent = LOOKUP_OPEN,
116                 .lookup_flags = LOOKUP_FOLLOW,
117         };
118
119         if (IS_ERR(tmp))
120                 goto out;
121
122         file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
123         putname(tmp);
124         error = PTR_ERR(file);
125         if (IS_ERR(file))
126                 goto out;
127
128         error = -EINVAL;
129         if (!S_ISREG(file_inode(file)->i_mode))
130                 goto exit;
131
132         error = -EACCES;
133         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
134                 goto exit;
135
136         fsnotify_open(file);
137
138         error = -ENOEXEC;
139
140         read_lock(&binfmt_lock);
141         list_for_each_entry(fmt, &formats, lh) {
142                 if (!fmt->load_shlib)
143                         continue;
144                 if (!try_module_get(fmt->module))
145                         continue;
146                 read_unlock(&binfmt_lock);
147                 error = fmt->load_shlib(file);
148                 read_lock(&binfmt_lock);
149                 put_binfmt(fmt);
150                 if (error != -ENOEXEC)
151                         break;
152         }
153         read_unlock(&binfmt_lock);
154 exit:
155         fput(file);
156 out:
157         return error;
158 }
159
160 #ifdef CONFIG_MMU
161 /*
162  * The nascent bprm->mm is not visible until exec_mmap() but it can
163  * use a lot of memory, account these pages in current->mm temporary
164  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
165  * change the counter back via acct_arg_size(0).
166  */
167 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
168 {
169         struct mm_struct *mm = current->mm;
170         long diff = (long)(pages - bprm->vma_pages);
171
172         if (!mm || !diff)
173                 return;
174
175         bprm->vma_pages = pages;
176         add_mm_counter(mm, MM_ANONPAGES, diff);
177 }
178
179 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
180                 int write)
181 {
182         struct page *page;
183         int ret;
184
185 #ifdef CONFIG_STACK_GROWSUP
186         if (write) {
187                 ret = expand_downwards(bprm->vma, pos);
188                 if (ret < 0)
189                         return NULL;
190         }
191 #endif
192         ret = get_user_pages(current, bprm->mm, pos,
193                         1, write, 1, &page, NULL);
194         if (ret <= 0)
195                 return NULL;
196
197         if (write) {
198                 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
199                 struct rlimit *rlim;
200
201                 acct_arg_size(bprm, size / PAGE_SIZE);
202
203                 /*
204                  * We've historically supported up to 32 pages (ARG_MAX)
205                  * of argument strings even with small stacks
206                  */
207                 if (size <= ARG_MAX)
208                         return page;
209
210                 /*
211                  * Limit to 1/4-th the stack size for the argv+env strings.
212                  * This ensures that:
213                  *  - the remaining binfmt code will not run out of stack space,
214                  *  - the program will have a reasonable amount of stack left
215                  *    to work from.
216                  */
217                 rlim = current->signal->rlim;
218                 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
219                         put_page(page);
220                         return NULL;
221                 }
222         }
223
224         return page;
225 }
226
227 static void put_arg_page(struct page *page)
228 {
229         put_page(page);
230 }
231
232 static void free_arg_page(struct linux_binprm *bprm, int i)
233 {
234 }
235
236 static void free_arg_pages(struct linux_binprm *bprm)
237 {
238 }
239
240 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
241                 struct page *page)
242 {
243         flush_cache_page(bprm->vma, pos, page_to_pfn(page));
244 }
245
246 static int __bprm_mm_init(struct linux_binprm *bprm)
247 {
248         int err;
249         struct vm_area_struct *vma = NULL;
250         struct mm_struct *mm = bprm->mm;
251
252         bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
253         if (!vma)
254                 return -ENOMEM;
255
256         down_write(&mm->mmap_sem);
257         vma->vm_mm = mm;
258
259         /*
260          * Place the stack at the largest stack address the architecture
261          * supports. Later, we'll move this to an appropriate place. We don't
262          * use STACK_TOP because that can depend on attributes which aren't
263          * configured yet.
264          */
265         BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
266         vma->vm_end = STACK_TOP_MAX;
267         vma->vm_start = vma->vm_end - PAGE_SIZE;
268         vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
269         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
270         INIT_LIST_HEAD(&vma->anon_vma_chain);
271
272         err = insert_vm_struct(mm, vma);
273         if (err)
274                 goto err;
275
276         mm->stack_vm = mm->total_vm = 1;
277         up_write(&mm->mmap_sem);
278         bprm->p = vma->vm_end - sizeof(void *);
279         return 0;
280 err:
281         up_write(&mm->mmap_sem);
282         bprm->vma = NULL;
283         kmem_cache_free(vm_area_cachep, vma);
284         return err;
285 }
286
287 static bool valid_arg_len(struct linux_binprm *bprm, long len)
288 {
289         return len <= MAX_ARG_STRLEN;
290 }
291
292 #else
293
294 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
295 {
296 }
297
298 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
299                 int write)
300 {
301         struct page *page;
302
303         page = bprm->page[pos / PAGE_SIZE];
304         if (!page && write) {
305                 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
306                 if (!page)
307                         return NULL;
308                 bprm->page[pos / PAGE_SIZE] = page;
309         }
310
311         return page;
312 }
313
314 static void put_arg_page(struct page *page)
315 {
316 }
317
318 static void free_arg_page(struct linux_binprm *bprm, int i)
319 {
320         if (bprm->page[i]) {
321                 __free_page(bprm->page[i]);
322                 bprm->page[i] = NULL;
323         }
324 }
325
326 static void free_arg_pages(struct linux_binprm *bprm)
327 {
328         int i;
329
330         for (i = 0; i < MAX_ARG_PAGES; i++)
331                 free_arg_page(bprm, i);
332 }
333
334 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
335                 struct page *page)
336 {
337 }
338
339 static int __bprm_mm_init(struct linux_binprm *bprm)
340 {
341         bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
342         return 0;
343 }
344
345 static bool valid_arg_len(struct linux_binprm *bprm, long len)
346 {
347         return len <= bprm->p;
348 }
349
350 #endif /* CONFIG_MMU */
351
352 /*
353  * Create a new mm_struct and populate it with a temporary stack
354  * vm_area_struct.  We don't have enough context at this point to set the stack
355  * flags, permissions, and offset, so we use temporary values.  We'll update
356  * them later in setup_arg_pages().
357  */
358 static int bprm_mm_init(struct linux_binprm *bprm)
359 {
360         int err;
361         struct mm_struct *mm = NULL;
362
363         bprm->mm = mm = mm_alloc();
364         err = -ENOMEM;
365         if (!mm)
366                 goto err;
367
368         err = init_new_context(current, mm);
369         if (err)
370                 goto err;
371
372         err = __bprm_mm_init(bprm);
373         if (err)
374                 goto err;
375
376         return 0;
377
378 err:
379         if (mm) {
380                 bprm->mm = NULL;
381                 mmdrop(mm);
382         }
383
384         return err;
385 }
386
387 struct user_arg_ptr {
388 #ifdef CONFIG_COMPAT
389         bool is_compat;
390 #endif
391         union {
392                 const char __user *const __user *native;
393 #ifdef CONFIG_COMPAT
394                 const compat_uptr_t __user *compat;
395 #endif
396         } ptr;
397 };
398
399 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
400 {
401         const char __user *native;
402
403 #ifdef CONFIG_COMPAT
404         if (unlikely(argv.is_compat)) {
405                 compat_uptr_t compat;
406
407                 if (get_user(compat, argv.ptr.compat + nr))
408                         return ERR_PTR(-EFAULT);
409
410                 return compat_ptr(compat);
411         }
412 #endif
413
414         if (get_user(native, argv.ptr.native + nr))
415                 return ERR_PTR(-EFAULT);
416
417         return native;
418 }
419
420 /*
421  * count() counts the number of strings in array ARGV.
422  */
423 static int count(struct user_arg_ptr argv, int max)
424 {
425         int i = 0;
426
427         if (argv.ptr.native != NULL) {
428                 for (;;) {
429                         const char __user *p = get_user_arg_ptr(argv, i);
430
431                         if (!p)
432                                 break;
433
434                         if (IS_ERR(p))
435                                 return -EFAULT;
436
437                         if (i >= max)
438                                 return -E2BIG;
439                         ++i;
440
441                         if (fatal_signal_pending(current))
442                                 return -ERESTARTNOHAND;
443                         cond_resched();
444                 }
445         }
446         return i;
447 }
448
449 /*
450  * 'copy_strings()' copies argument/environment strings from the old
451  * processes's memory to the new process's stack.  The call to get_user_pages()
452  * ensures the destination page is created and not swapped out.
453  */
454 static int copy_strings(int argc, struct user_arg_ptr argv,
455                         struct linux_binprm *bprm)
456 {
457         struct page *kmapped_page = NULL;
458         char *kaddr = NULL;
459         unsigned long kpos = 0;
460         int ret;
461
462         while (argc-- > 0) {
463                 const char __user *str;
464                 int len;
465                 unsigned long pos;
466
467                 ret = -EFAULT;
468                 str = get_user_arg_ptr(argv, argc);
469                 if (IS_ERR(str))
470                         goto out;
471
472                 len = strnlen_user(str, MAX_ARG_STRLEN);
473                 if (!len)
474                         goto out;
475
476                 ret = -E2BIG;
477                 if (!valid_arg_len(bprm, len))
478                         goto out;
479
480                 /* We're going to work our way backwords. */
481                 pos = bprm->p;
482                 str += len;
483                 bprm->p -= len;
484
485                 while (len > 0) {
486                         int offset, bytes_to_copy;
487
488                         if (fatal_signal_pending(current)) {
489                                 ret = -ERESTARTNOHAND;
490                                 goto out;
491                         }
492                         cond_resched();
493
494                         offset = pos % PAGE_SIZE;
495                         if (offset == 0)
496                                 offset = PAGE_SIZE;
497
498                         bytes_to_copy = offset;
499                         if (bytes_to_copy > len)
500                                 bytes_to_copy = len;
501
502                         offset -= bytes_to_copy;
503                         pos -= bytes_to_copy;
504                         str -= bytes_to_copy;
505                         len -= bytes_to_copy;
506
507                         if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
508                                 struct page *page;
509
510                                 page = get_arg_page(bprm, pos, 1);
511                                 if (!page) {
512                                         ret = -E2BIG;
513                                         goto out;
514                                 }
515
516                                 if (kmapped_page) {
517                                         flush_kernel_dcache_page(kmapped_page);
518                                         kunmap(kmapped_page);
519                                         put_arg_page(kmapped_page);
520                                 }
521                                 kmapped_page = page;
522                                 kaddr = kmap(kmapped_page);
523                                 kpos = pos & PAGE_MASK;
524                                 flush_arg_page(bprm, kpos, kmapped_page);
525                         }
526                         if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
527                                 ret = -EFAULT;
528                                 goto out;
529                         }
530                 }
531         }
532         ret = 0;
533 out:
534         if (kmapped_page) {
535                 flush_kernel_dcache_page(kmapped_page);
536                 kunmap(kmapped_page);
537                 put_arg_page(kmapped_page);
538         }
539         return ret;
540 }
541
542 /*
543  * Like copy_strings, but get argv and its values from kernel memory.
544  */
545 int copy_strings_kernel(int argc, const char *const *__argv,
546                         struct linux_binprm *bprm)
547 {
548         int r;
549         mm_segment_t oldfs = get_fs();
550         struct user_arg_ptr argv = {
551                 .ptr.native = (const char __user *const  __user *)__argv,
552         };
553
554         set_fs(KERNEL_DS);
555         r = copy_strings(argc, argv, bprm);
556         set_fs(oldfs);
557
558         return r;
559 }
560 EXPORT_SYMBOL(copy_strings_kernel);
561
562 #ifdef CONFIG_MMU
563
564 /*
565  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
566  * the binfmt code determines where the new stack should reside, we shift it to
567  * its final location.  The process proceeds as follows:
568  *
569  * 1) Use shift to calculate the new vma endpoints.
570  * 2) Extend vma to cover both the old and new ranges.  This ensures the
571  *    arguments passed to subsequent functions are consistent.
572  * 3) Move vma's page tables to the new range.
573  * 4) Free up any cleared pgd range.
574  * 5) Shrink the vma to cover only the new range.
575  */
576 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
577 {
578         struct mm_struct *mm = vma->vm_mm;
579         unsigned long old_start = vma->vm_start;
580         unsigned long old_end = vma->vm_end;
581         unsigned long length = old_end - old_start;
582         unsigned long new_start = old_start - shift;
583         unsigned long new_end = old_end - shift;
584         struct mmu_gather tlb;
585
586         BUG_ON(new_start > new_end);
587
588         /*
589          * ensure there are no vmas between where we want to go
590          * and where we are
591          */
592         if (vma != find_vma(mm, new_start))
593                 return -EFAULT;
594
595         /*
596          * cover the whole range: [new_start, old_end)
597          */
598         if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
599                 return -ENOMEM;
600
601         /*
602          * move the page tables downwards, on failure we rely on
603          * process cleanup to remove whatever mess we made.
604          */
605         if (length != move_page_tables(vma, old_start,
606                                        vma, new_start, length, false))
607                 return -ENOMEM;
608
609         lru_add_drain();
610         tlb_gather_mmu(&tlb, mm, old_start, old_end);
611         if (new_end > old_start) {
612                 /*
613                  * when the old and new regions overlap clear from new_end.
614                  */
615                 free_pgd_range(&tlb, new_end, old_end, new_end,
616                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
617         } else {
618                 /*
619                  * otherwise, clean from old_start; this is done to not touch
620                  * the address space in [new_end, old_start) some architectures
621                  * have constraints on va-space that make this illegal (IA64) -
622                  * for the others its just a little faster.
623                  */
624                 free_pgd_range(&tlb, old_start, old_end, new_end,
625                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
626         }
627         tlb_finish_mmu(&tlb, old_start, old_end);
628
629         /*
630          * Shrink the vma to just the new range.  Always succeeds.
631          */
632         vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
633
634         return 0;
635 }
636
637 /*
638  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
639  * the stack is optionally relocated, and some extra space is added.
640  */
641 int setup_arg_pages(struct linux_binprm *bprm,
642                     unsigned long stack_top,
643                     int executable_stack)
644 {
645         unsigned long ret;
646         unsigned long stack_shift;
647         struct mm_struct *mm = current->mm;
648         struct vm_area_struct *vma = bprm->vma;
649         struct vm_area_struct *prev = NULL;
650         unsigned long vm_flags;
651         unsigned long stack_base;
652         unsigned long stack_size;
653         unsigned long stack_expand;
654         unsigned long rlim_stack;
655
656 #ifdef CONFIG_STACK_GROWSUP
657         /* Limit stack size to 1GB */
658         stack_base = rlimit_max(RLIMIT_STACK);
659         if (stack_base > (1 << 30))
660                 stack_base = 1 << 30;
661
662         /* Make sure we didn't let the argument array grow too large. */
663         if (vma->vm_end - vma->vm_start > stack_base)
664                 return -ENOMEM;
665
666         stack_base = PAGE_ALIGN(stack_top - stack_base);
667
668         stack_shift = vma->vm_start - stack_base;
669         mm->arg_start = bprm->p - stack_shift;
670         bprm->p = vma->vm_end - stack_shift;
671 #else
672         stack_top = arch_align_stack(stack_top);
673         stack_top = PAGE_ALIGN(stack_top);
674
675         if (unlikely(stack_top < mmap_min_addr) ||
676             unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
677                 return -ENOMEM;
678
679         stack_shift = vma->vm_end - stack_top;
680
681         bprm->p -= stack_shift;
682         mm->arg_start = bprm->p;
683 #endif
684
685         if (bprm->loader)
686                 bprm->loader -= stack_shift;
687         bprm->exec -= stack_shift;
688
689         down_write(&mm->mmap_sem);
690         vm_flags = VM_STACK_FLAGS;
691
692         /*
693          * Adjust stack execute permissions; explicitly enable for
694          * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
695          * (arch default) otherwise.
696          */
697         if (unlikely(executable_stack == EXSTACK_ENABLE_X))
698                 vm_flags |= VM_EXEC;
699         else if (executable_stack == EXSTACK_DISABLE_X)
700                 vm_flags &= ~VM_EXEC;
701         vm_flags |= mm->def_flags;
702         vm_flags |= VM_STACK_INCOMPLETE_SETUP;
703
704         ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
705                         vm_flags);
706         if (ret)
707                 goto out_unlock;
708         BUG_ON(prev != vma);
709
710         /* Move stack pages down in memory. */
711         if (stack_shift) {
712                 ret = shift_arg_pages(vma, stack_shift);
713                 if (ret)
714                         goto out_unlock;
715         }
716
717         /* mprotect_fixup is overkill to remove the temporary stack flags */
718         vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
719
720         stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
721         stack_size = vma->vm_end - vma->vm_start;
722         /*
723          * Align this down to a page boundary as expand_stack
724          * will align it up.
725          */
726         rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
727 #ifdef CONFIG_STACK_GROWSUP
728         if (stack_size + stack_expand > rlim_stack)
729                 stack_base = vma->vm_start + rlim_stack;
730         else
731                 stack_base = vma->vm_end + stack_expand;
732 #else
733         if (stack_size + stack_expand > rlim_stack)
734                 stack_base = vma->vm_end - rlim_stack;
735         else
736                 stack_base = vma->vm_start - stack_expand;
737 #endif
738         current->mm->start_stack = bprm->p;
739         ret = expand_stack(vma, stack_base);
740         if (ret)
741                 ret = -EFAULT;
742
743 out_unlock:
744         up_write(&mm->mmap_sem);
745         return ret;
746 }
747 EXPORT_SYMBOL(setup_arg_pages);
748
749 #endif /* CONFIG_MMU */
750
751 static struct file *do_open_exec(struct filename *name)
752 {
753         struct file *file;
754         int err;
755         static const struct open_flags open_exec_flags = {
756                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
757                 .acc_mode = MAY_EXEC | MAY_OPEN,
758                 .intent = LOOKUP_OPEN,
759                 .lookup_flags = LOOKUP_FOLLOW,
760         };
761
762         file = do_filp_open(AT_FDCWD, name, &open_exec_flags);
763         if (IS_ERR(file))
764                 goto out;
765
766         err = -EACCES;
767         if (!S_ISREG(file_inode(file)->i_mode))
768                 goto exit;
769
770         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
771                 goto exit;
772
773         fsnotify_open(file);
774
775         err = deny_write_access(file);
776         if (err)
777                 goto exit;
778
779 out:
780         return file;
781
782 exit:
783         fput(file);
784         return ERR_PTR(err);
785 }
786
787 struct file *open_exec(const char *name)
788 {
789         struct filename tmp = { .name = name };
790         return do_open_exec(&tmp);
791 }
792 EXPORT_SYMBOL(open_exec);
793
794 int kernel_read(struct file *file, loff_t offset,
795                 char *addr, unsigned long count)
796 {
797         mm_segment_t old_fs;
798         loff_t pos = offset;
799         int result;
800
801         old_fs = get_fs();
802         set_fs(get_ds());
803         /* The cast to a user pointer is valid due to the set_fs() */
804         result = vfs_read(file, (void __user *)addr, count, &pos);
805         set_fs(old_fs);
806         return result;
807 }
808
809 EXPORT_SYMBOL(kernel_read);
810
811 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
812 {
813         ssize_t res = file->f_op->read(file, (void __user *)addr, len, &pos);
814         if (res > 0)
815                 flush_icache_range(addr, addr + len);
816         return res;
817 }
818 EXPORT_SYMBOL(read_code);
819
820 static int exec_mmap(struct mm_struct *mm)
821 {
822         struct task_struct *tsk;
823         struct mm_struct * old_mm, *active_mm;
824
825         /* Notify parent that we're no longer interested in the old VM */
826         tsk = current;
827         old_mm = current->mm;
828         mm_release(tsk, old_mm);
829
830         if (old_mm) {
831                 sync_mm_rss(old_mm);
832                 /*
833                  * Make sure that if there is a core dump in progress
834                  * for the old mm, we get out and die instead of going
835                  * through with the exec.  We must hold mmap_sem around
836                  * checking core_state and changing tsk->mm.
837                  */
838                 down_read(&old_mm->mmap_sem);
839                 if (unlikely(old_mm->core_state)) {
840                         up_read(&old_mm->mmap_sem);
841                         return -EINTR;
842                 }
843         }
844         task_lock(tsk);
845         active_mm = tsk->active_mm;
846         tsk->mm = mm;
847         tsk->active_mm = mm;
848         activate_mm(active_mm, mm);
849         task_unlock(tsk);
850         if (old_mm) {
851                 up_read(&old_mm->mmap_sem);
852                 BUG_ON(active_mm != old_mm);
853                 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
854                 mm_update_next_owner(old_mm);
855                 mmput(old_mm);
856                 return 0;
857         }
858         mmdrop(active_mm);
859         return 0;
860 }
861
862 /*
863  * This function makes sure the current process has its own signal table,
864  * so that flush_signal_handlers can later reset the handlers without
865  * disturbing other processes.  (Other processes might share the signal
866  * table via the CLONE_SIGHAND option to clone().)
867  */
868 static int de_thread(struct task_struct *tsk)
869 {
870         struct signal_struct *sig = tsk->signal;
871         struct sighand_struct *oldsighand = tsk->sighand;
872         spinlock_t *lock = &oldsighand->siglock;
873
874         if (thread_group_empty(tsk))
875                 goto no_thread_group;
876
877         /*
878          * Kill all other threads in the thread group.
879          */
880         spin_lock_irq(lock);
881         if (signal_group_exit(sig)) {
882                 /*
883                  * Another group action in progress, just
884                  * return so that the signal is processed.
885                  */
886                 spin_unlock_irq(lock);
887                 return -EAGAIN;
888         }
889
890         sig->group_exit_task = tsk;
891         sig->notify_count = zap_other_threads(tsk);
892         if (!thread_group_leader(tsk))
893                 sig->notify_count--;
894
895         while (sig->notify_count) {
896                 __set_current_state(TASK_KILLABLE);
897                 spin_unlock_irq(lock);
898                 schedule();
899                 if (unlikely(__fatal_signal_pending(tsk)))
900                         goto killed;
901                 spin_lock_irq(lock);
902         }
903         spin_unlock_irq(lock);
904
905         /*
906          * At this point all other threads have exited, all we have to
907          * do is to wait for the thread group leader to become inactive,
908          * and to assume its PID:
909          */
910         if (!thread_group_leader(tsk)) {
911                 struct task_struct *leader = tsk->group_leader;
912
913                 sig->notify_count = -1; /* for exit_notify() */
914                 for (;;) {
915                         threadgroup_change_begin(tsk);
916                         write_lock_irq(&tasklist_lock);
917                         if (likely(leader->exit_state))
918                                 break;
919                         __set_current_state(TASK_KILLABLE);
920                         write_unlock_irq(&tasklist_lock);
921                         threadgroup_change_end(tsk);
922                         schedule();
923                         if (unlikely(__fatal_signal_pending(tsk)))
924                                 goto killed;
925                 }
926
927                 /*
928                  * The only record we have of the real-time age of a
929                  * process, regardless of execs it's done, is start_time.
930                  * All the past CPU time is accumulated in signal_struct
931                  * from sister threads now dead.  But in this non-leader
932                  * exec, nothing survives from the original leader thread,
933                  * whose birth marks the true age of this process now.
934                  * When we take on its identity by switching to its PID, we
935                  * also take its birthdate (always earlier than our own).
936                  */
937                 tsk->start_time = leader->start_time;
938                 tsk->real_start_time = leader->real_start_time;
939
940                 BUG_ON(!same_thread_group(leader, tsk));
941                 BUG_ON(has_group_leader_pid(tsk));
942                 /*
943                  * An exec() starts a new thread group with the
944                  * TGID of the previous thread group. Rehash the
945                  * two threads with a switched PID, and release
946                  * the former thread group leader:
947                  */
948
949                 /* Become a process group leader with the old leader's pid.
950                  * The old leader becomes a thread of the this thread group.
951                  * Note: The old leader also uses this pid until release_task
952                  *       is called.  Odd but simple and correct.
953                  */
954                 tsk->pid = leader->pid;
955                 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
956                 transfer_pid(leader, tsk, PIDTYPE_PGID);
957                 transfer_pid(leader, tsk, PIDTYPE_SID);
958
959                 list_replace_rcu(&leader->tasks, &tsk->tasks);
960                 list_replace_init(&leader->sibling, &tsk->sibling);
961
962                 tsk->group_leader = tsk;
963                 leader->group_leader = tsk;
964
965                 tsk->exit_signal = SIGCHLD;
966                 leader->exit_signal = -1;
967
968                 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
969                 leader->exit_state = EXIT_DEAD;
970
971                 /*
972                  * We are going to release_task()->ptrace_unlink() silently,
973                  * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
974                  * the tracer wont't block again waiting for this thread.
975                  */
976                 if (unlikely(leader->ptrace))
977                         __wake_up_parent(leader, leader->parent);
978                 write_unlock_irq(&tasklist_lock);
979                 threadgroup_change_end(tsk);
980
981                 release_task(leader);
982         }
983
984         sig->group_exit_task = NULL;
985         sig->notify_count = 0;
986
987 no_thread_group:
988         /* we have changed execution domain */
989         tsk->exit_signal = SIGCHLD;
990
991         exit_itimers(sig);
992         flush_itimer_signals();
993
994         if (atomic_read(&oldsighand->count) != 1) {
995                 struct sighand_struct *newsighand;
996                 /*
997                  * This ->sighand is shared with the CLONE_SIGHAND
998                  * but not CLONE_THREAD task, switch to the new one.
999                  */
1000                 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1001                 if (!newsighand)
1002                         return -ENOMEM;
1003
1004                 atomic_set(&newsighand->count, 1);
1005                 memcpy(newsighand->action, oldsighand->action,
1006                        sizeof(newsighand->action));
1007
1008                 write_lock_irq(&tasklist_lock);
1009                 spin_lock(&oldsighand->siglock);
1010                 rcu_assign_pointer(tsk->sighand, newsighand);
1011                 spin_unlock(&oldsighand->siglock);
1012                 write_unlock_irq(&tasklist_lock);
1013
1014                 __cleanup_sighand(oldsighand);
1015         }
1016
1017         BUG_ON(!thread_group_leader(tsk));
1018         return 0;
1019
1020 killed:
1021         /* protects against exit_notify() and __exit_signal() */
1022         read_lock(&tasklist_lock);
1023         sig->group_exit_task = NULL;
1024         sig->notify_count = 0;
1025         read_unlock(&tasklist_lock);
1026         return -EAGAIN;
1027 }
1028
1029 char *get_task_comm(char *buf, struct task_struct *tsk)
1030 {
1031         /* buf must be at least sizeof(tsk->comm) in size */
1032         task_lock(tsk);
1033         strncpy(buf, tsk->comm, sizeof(tsk->comm));
1034         task_unlock(tsk);
1035         return buf;
1036 }
1037 EXPORT_SYMBOL_GPL(get_task_comm);
1038
1039 /*
1040  * These functions flushes out all traces of the currently running executable
1041  * so that a new one can be started
1042  */
1043
1044 void set_task_comm(struct task_struct *tsk, char *buf)
1045 {
1046         task_lock(tsk);
1047         trace_task_rename(tsk, buf);
1048         strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1049         task_unlock(tsk);
1050         perf_event_comm(tsk);
1051 }
1052
1053 static void filename_to_taskname(char *tcomm, const char *fn, unsigned int len)
1054 {
1055         int i, ch;
1056
1057         /* Copies the binary name from after last slash */
1058         for (i = 0; (ch = *(fn++)) != '\0';) {
1059                 if (ch == '/')
1060                         i = 0; /* overwrite what we wrote */
1061                 else
1062                         if (i < len - 1)
1063                                 tcomm[i++] = ch;
1064         }
1065         tcomm[i] = '\0';
1066 }
1067
1068 int flush_old_exec(struct linux_binprm * bprm)
1069 {
1070         int retval;
1071
1072         /*
1073          * Make sure we have a private signal table and that
1074          * we are unassociated from the previous thread group.
1075          */
1076         retval = de_thread(current);
1077         if (retval)
1078                 goto out;
1079
1080         set_mm_exe_file(bprm->mm, bprm->file);
1081
1082         filename_to_taskname(bprm->tcomm, bprm->filename, sizeof(bprm->tcomm));
1083         /*
1084          * Release all of the old mmap stuff
1085          */
1086         acct_arg_size(bprm, 0);
1087         retval = exec_mmap(bprm->mm);
1088         if (retval)
1089                 goto out;
1090
1091         bprm->mm = NULL;                /* We're using it now */
1092
1093         set_fs(USER_DS);
1094         current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1095                                         PF_NOFREEZE | PF_NO_SETAFFINITY);
1096         flush_thread();
1097         current->personality &= ~bprm->per_clear;
1098
1099         return 0;
1100
1101 out:
1102         return retval;
1103 }
1104 EXPORT_SYMBOL(flush_old_exec);
1105
1106 void would_dump(struct linux_binprm *bprm, struct file *file)
1107 {
1108         if (inode_permission(file_inode(file), MAY_READ) < 0)
1109                 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1110 }
1111 EXPORT_SYMBOL(would_dump);
1112
1113 void setup_new_exec(struct linux_binprm * bprm)
1114 {
1115         arch_pick_mmap_layout(current->mm);
1116
1117         /* This is the point of no return */
1118         current->sas_ss_sp = current->sas_ss_size = 0;
1119
1120         if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1121                 set_dumpable(current->mm, SUID_DUMP_USER);
1122         else
1123                 set_dumpable(current->mm, suid_dumpable);
1124
1125         set_task_comm(current, bprm->tcomm);
1126
1127         /* Set the new mm task size. We have to do that late because it may
1128          * depend on TIF_32BIT which is only updated in flush_thread() on
1129          * some architectures like powerpc
1130          */
1131         current->mm->task_size = TASK_SIZE;
1132
1133         /* install the new credentials */
1134         if (!uid_eq(bprm->cred->uid, current_euid()) ||
1135             !gid_eq(bprm->cred->gid, current_egid())) {
1136                 current->pdeath_signal = 0;
1137         } else {
1138                 would_dump(bprm, bprm->file);
1139                 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1140                         set_dumpable(current->mm, suid_dumpable);
1141         }
1142
1143         /* An exec changes our domain. We are no longer part of the thread
1144            group */
1145         current->self_exec_id++;
1146         flush_signal_handlers(current, 0);
1147         do_close_on_exec(current->files);
1148 }
1149 EXPORT_SYMBOL(setup_new_exec);
1150
1151 /*
1152  * Prepare credentials and lock ->cred_guard_mutex.
1153  * install_exec_creds() commits the new creds and drops the lock.
1154  * Or, if exec fails before, free_bprm() should release ->cred and
1155  * and unlock.
1156  */
1157 int prepare_bprm_creds(struct linux_binprm *bprm)
1158 {
1159         if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1160                 return -ERESTARTNOINTR;
1161
1162         bprm->cred = prepare_exec_creds();
1163         if (likely(bprm->cred))
1164                 return 0;
1165
1166         mutex_unlock(&current->signal->cred_guard_mutex);
1167         return -ENOMEM;
1168 }
1169
1170 static void free_bprm(struct linux_binprm *bprm)
1171 {
1172         free_arg_pages(bprm);
1173         if (bprm->cred) {
1174                 mutex_unlock(&current->signal->cred_guard_mutex);
1175                 abort_creds(bprm->cred);
1176         }
1177         if (bprm->file) {
1178                 allow_write_access(bprm->file);
1179                 fput(bprm->file);
1180         }
1181         /* If a binfmt changed the interp, free it. */
1182         if (bprm->interp != bprm->filename)
1183                 kfree(bprm->interp);
1184         kfree(bprm);
1185 }
1186
1187 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1188 {
1189         /* If a binfmt changed the interp, free it first. */
1190         if (bprm->interp != bprm->filename)
1191                 kfree(bprm->interp);
1192         bprm->interp = kstrdup(interp, GFP_KERNEL);
1193         if (!bprm->interp)
1194                 return -ENOMEM;
1195         return 0;
1196 }
1197 EXPORT_SYMBOL(bprm_change_interp);
1198
1199 /*
1200  * install the new credentials for this executable
1201  */
1202 void install_exec_creds(struct linux_binprm *bprm)
1203 {
1204         security_bprm_committing_creds(bprm);
1205
1206         commit_creds(bprm->cred);
1207         bprm->cred = NULL;
1208
1209         /*
1210          * Disable monitoring for regular users
1211          * when executing setuid binaries. Must
1212          * wait until new credentials are committed
1213          * by commit_creds() above
1214          */
1215         if (get_dumpable(current->mm) != SUID_DUMP_USER)
1216                 perf_event_exit_task(current);
1217         /*
1218          * cred_guard_mutex must be held at least to this point to prevent
1219          * ptrace_attach() from altering our determination of the task's
1220          * credentials; any time after this it may be unlocked.
1221          */
1222         security_bprm_committed_creds(bprm);
1223         mutex_unlock(&current->signal->cred_guard_mutex);
1224 }
1225 EXPORT_SYMBOL(install_exec_creds);
1226
1227 /*
1228  * determine how safe it is to execute the proposed program
1229  * - the caller must hold ->cred_guard_mutex to protect against
1230  *   PTRACE_ATTACH
1231  */
1232 static void check_unsafe_exec(struct linux_binprm *bprm)
1233 {
1234         struct task_struct *p = current, *t;
1235         unsigned n_fs;
1236
1237         if (p->ptrace) {
1238                 if (p->ptrace & PT_PTRACE_CAP)
1239                         bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1240                 else
1241                         bprm->unsafe |= LSM_UNSAFE_PTRACE;
1242         }
1243
1244         /*
1245          * This isn't strictly necessary, but it makes it harder for LSMs to
1246          * mess up.
1247          */
1248         if (current->no_new_privs)
1249                 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1250
1251         t = p;
1252         n_fs = 1;
1253         spin_lock(&p->fs->lock);
1254         rcu_read_lock();
1255         while_each_thread(p, t) {
1256                 if (t->fs == p->fs)
1257                         n_fs++;
1258         }
1259         rcu_read_unlock();
1260
1261         if (p->fs->users > n_fs)
1262                 bprm->unsafe |= LSM_UNSAFE_SHARE;
1263         else
1264                 p->fs->in_exec = 1;
1265         spin_unlock(&p->fs->lock);
1266 }
1267
1268 /*
1269  * Fill the binprm structure from the inode.
1270  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1271  *
1272  * This may be called multiple times for binary chains (scripts for example).
1273  */
1274 int prepare_binprm(struct linux_binprm *bprm)
1275 {
1276         struct inode *inode = file_inode(bprm->file);
1277         umode_t mode = inode->i_mode;
1278         int retval;
1279
1280
1281         /* clear any previous set[ug]id data from a previous binary */
1282         bprm->cred->euid = current_euid();
1283         bprm->cred->egid = current_egid();
1284
1285         if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) &&
1286             !current->no_new_privs &&
1287             kuid_has_mapping(bprm->cred->user_ns, inode->i_uid) &&
1288             kgid_has_mapping(bprm->cred->user_ns, inode->i_gid)) {
1289                 /* Set-uid? */
1290                 if (mode & S_ISUID) {
1291                         bprm->per_clear |= PER_CLEAR_ON_SETID;
1292                         bprm->cred->euid = inode->i_uid;
1293                 }
1294
1295                 /* Set-gid? */
1296                 /*
1297                  * If setgid is set but no group execute bit then this
1298                  * is a candidate for mandatory locking, not a setgid
1299                  * executable.
1300                  */
1301                 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1302                         bprm->per_clear |= PER_CLEAR_ON_SETID;
1303                         bprm->cred->egid = inode->i_gid;
1304                 }
1305         }
1306
1307         /* fill in binprm security blob */
1308         retval = security_bprm_set_creds(bprm);
1309         if (retval)
1310                 return retval;
1311         bprm->cred_prepared = 1;
1312
1313         memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1314         return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1315 }
1316
1317 EXPORT_SYMBOL(prepare_binprm);
1318
1319 /*
1320  * Arguments are '\0' separated strings found at the location bprm->p
1321  * points to; chop off the first by relocating brpm->p to right after
1322  * the first '\0' encountered.
1323  */
1324 int remove_arg_zero(struct linux_binprm *bprm)
1325 {
1326         int ret = 0;
1327         unsigned long offset;
1328         char *kaddr;
1329         struct page *page;
1330
1331         if (!bprm->argc)
1332                 return 0;
1333
1334         do {
1335                 offset = bprm->p & ~PAGE_MASK;
1336                 page = get_arg_page(bprm, bprm->p, 0);
1337                 if (!page) {
1338                         ret = -EFAULT;
1339                         goto out;
1340                 }
1341                 kaddr = kmap_atomic(page);
1342
1343                 for (; offset < PAGE_SIZE && kaddr[offset];
1344                                 offset++, bprm->p++)
1345                         ;
1346
1347                 kunmap_atomic(kaddr);
1348                 put_arg_page(page);
1349
1350                 if (offset == PAGE_SIZE)
1351                         free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1352         } while (offset == PAGE_SIZE);
1353
1354         bprm->p++;
1355         bprm->argc--;
1356         ret = 0;
1357
1358 out:
1359         return ret;
1360 }
1361 EXPORT_SYMBOL(remove_arg_zero);
1362
1363 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1364 /*
1365  * cycle the list of binary formats handler, until one recognizes the image
1366  */
1367 int search_binary_handler(struct linux_binprm *bprm)
1368 {
1369         bool need_retry = IS_ENABLED(CONFIG_MODULES);
1370         struct linux_binfmt *fmt;
1371         int retval;
1372
1373         /* This allows 4 levels of binfmt rewrites before failing hard. */
1374         if (bprm->recursion_depth > 5)
1375                 return -ELOOP;
1376
1377         retval = security_bprm_check(bprm);
1378         if (retval)
1379                 return retval;
1380
1381         retval = -ENOENT;
1382  retry:
1383         read_lock(&binfmt_lock);
1384         list_for_each_entry(fmt, &formats, lh) {
1385                 if (!try_module_get(fmt->module))
1386                         continue;
1387                 read_unlock(&binfmt_lock);
1388                 bprm->recursion_depth++;
1389                 retval = fmt->load_binary(bprm);
1390                 bprm->recursion_depth--;
1391                 if (retval >= 0 || retval != -ENOEXEC ||
1392                     bprm->mm == NULL || bprm->file == NULL) {
1393                         put_binfmt(fmt);
1394                         return retval;
1395                 }
1396                 read_lock(&binfmt_lock);
1397                 put_binfmt(fmt);
1398         }
1399         read_unlock(&binfmt_lock);
1400
1401         if (need_retry && retval == -ENOEXEC) {
1402                 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1403                     printable(bprm->buf[2]) && printable(bprm->buf[3]))
1404                         return retval;
1405                 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1406                         return retval;
1407                 need_retry = false;
1408                 goto retry;
1409         }
1410
1411         return retval;
1412 }
1413 EXPORT_SYMBOL(search_binary_handler);
1414
1415 static int exec_binprm(struct linux_binprm *bprm)
1416 {
1417         pid_t old_pid, old_vpid;
1418         int ret;
1419
1420         /* Need to fetch pid before load_binary changes it */
1421         old_pid = current->pid;
1422         rcu_read_lock();
1423         old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1424         rcu_read_unlock();
1425
1426         ret = search_binary_handler(bprm);
1427         if (ret >= 0) {
1428                 audit_bprm(bprm);
1429                 trace_sched_process_exec(current, old_pid, bprm);
1430                 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1431                 proc_exec_connector(current);
1432         }
1433
1434         return ret;
1435 }
1436
1437 /*
1438  * sys_execve() executes a new program.
1439  */
1440 static int do_execve_common(struct filename *filename,
1441                                 struct user_arg_ptr argv,
1442                                 struct user_arg_ptr envp)
1443 {
1444         struct linux_binprm *bprm;
1445         struct file *file;
1446         struct files_struct *displaced;
1447         int retval;
1448
1449         if (IS_ERR(filename))
1450                 return PTR_ERR(filename);
1451
1452         /*
1453          * We move the actual failure in case of RLIMIT_NPROC excess from
1454          * set*uid() to execve() because too many poorly written programs
1455          * don't check setuid() return code.  Here we additionally recheck
1456          * whether NPROC limit is still exceeded.
1457          */
1458         if ((current->flags & PF_NPROC_EXCEEDED) &&
1459             atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1460                 retval = -EAGAIN;
1461                 goto out_ret;
1462         }
1463
1464         /* We're below the limit (still or again), so we don't want to make
1465          * further execve() calls fail. */
1466         current->flags &= ~PF_NPROC_EXCEEDED;
1467
1468         retval = unshare_files(&displaced);
1469         if (retval)
1470                 goto out_ret;
1471
1472         retval = -ENOMEM;
1473         bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1474         if (!bprm)
1475                 goto out_files;
1476
1477         retval = prepare_bprm_creds(bprm);
1478         if (retval)
1479                 goto out_free;
1480
1481         check_unsafe_exec(bprm);
1482         current->in_execve = 1;
1483
1484         file = do_open_exec(filename);
1485         retval = PTR_ERR(file);
1486         if (IS_ERR(file))
1487                 goto out_unmark;
1488
1489         sched_exec();
1490
1491         bprm->file = file;
1492         bprm->filename = bprm->interp = filename->name;
1493
1494         retval = bprm_mm_init(bprm);
1495         if (retval)
1496                 goto out_unmark;
1497
1498         bprm->argc = count(argv, MAX_ARG_STRINGS);
1499         if ((retval = bprm->argc) < 0)
1500                 goto out;
1501
1502         bprm->envc = count(envp, MAX_ARG_STRINGS);
1503         if ((retval = bprm->envc) < 0)
1504                 goto out;
1505
1506         retval = prepare_binprm(bprm);
1507         if (retval < 0)
1508                 goto out;
1509
1510         retval = copy_strings_kernel(1, &bprm->filename, bprm);
1511         if (retval < 0)
1512                 goto out;
1513
1514         bprm->exec = bprm->p;
1515         retval = copy_strings(bprm->envc, envp, bprm);
1516         if (retval < 0)
1517                 goto out;
1518
1519         retval = copy_strings(bprm->argc, argv, bprm);
1520         if (retval < 0)
1521                 goto out;
1522
1523         retval = exec_binprm(bprm);
1524         if (retval < 0)
1525                 goto out;
1526
1527         /* execve succeeded */
1528         current->fs->in_exec = 0;
1529         current->in_execve = 0;
1530         acct_update_integrals(current);
1531         task_numa_free(current);
1532         free_bprm(bprm);
1533         putname(filename);
1534         if (displaced)
1535                 put_files_struct(displaced);
1536         return retval;
1537
1538 out:
1539         if (bprm->mm) {
1540                 acct_arg_size(bprm, 0);
1541                 mmput(bprm->mm);
1542         }
1543
1544 out_unmark:
1545         current->fs->in_exec = 0;
1546         current->in_execve = 0;
1547
1548 out_free:
1549         free_bprm(bprm);
1550
1551 out_files:
1552         if (displaced)
1553                 reset_files_struct(displaced);
1554 out_ret:
1555         putname(filename);
1556         return retval;
1557 }
1558
1559 int do_execve(struct filename *filename,
1560         const char __user *const __user *__argv,
1561         const char __user *const __user *__envp)
1562 {
1563         struct user_arg_ptr argv = { .ptr.native = __argv };
1564         struct user_arg_ptr envp = { .ptr.native = __envp };
1565         return do_execve_common(filename, argv, envp);
1566 }
1567
1568 #ifdef CONFIG_COMPAT
1569 static int compat_do_execve(struct filename *filename,
1570         const compat_uptr_t __user *__argv,
1571         const compat_uptr_t __user *__envp)
1572 {
1573         struct user_arg_ptr argv = {
1574                 .is_compat = true,
1575                 .ptr.compat = __argv,
1576         };
1577         struct user_arg_ptr envp = {
1578                 .is_compat = true,
1579                 .ptr.compat = __envp,
1580         };
1581         return do_execve_common(filename, argv, envp);
1582 }
1583 #endif
1584
1585 void set_binfmt(struct linux_binfmt *new)
1586 {
1587         struct mm_struct *mm = current->mm;
1588
1589         if (mm->binfmt)
1590                 module_put(mm->binfmt->module);
1591
1592         mm->binfmt = new;
1593         if (new)
1594                 __module_get(new->module);
1595 }
1596 EXPORT_SYMBOL(set_binfmt);
1597
1598 /*
1599  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1600  */
1601 void set_dumpable(struct mm_struct *mm, int value)
1602 {
1603         unsigned long old, new;
1604
1605         if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1606                 return;
1607
1608         do {
1609                 old = ACCESS_ONCE(mm->flags);
1610                 new = (old & ~MMF_DUMPABLE_MASK) | value;
1611         } while (cmpxchg(&mm->flags, old, new) != old);
1612 }
1613
1614 SYSCALL_DEFINE3(execve,
1615                 const char __user *, filename,
1616                 const char __user *const __user *, argv,
1617                 const char __user *const __user *, envp)
1618 {
1619         return do_execve(getname(filename), argv, envp);
1620 }
1621 #ifdef CONFIG_COMPAT
1622 asmlinkage long compat_sys_execve(const char __user * filename,
1623         const compat_uptr_t __user * argv,
1624         const compat_uptr_t __user * envp)
1625 {
1626         return compat_do_execve(getname(filename), argv, envp);
1627 }
1628 #endif