4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/security.h>
47 #include <linux/syscalls.h>
48 #include <linux/tsacct_kern.h>
49 #include <linux/cn_proc.h>
50 #include <linux/audit.h>
51 #include <linux/tracehook.h>
52 #include <linux/kmod.h>
53 #include <linux/fsnotify.h>
54 #include <linux/fs_struct.h>
55 #include <linux/pipe_fs_i.h>
56 #include <linux/oom.h>
57 #include <linux/compat.h>
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
64 #include <trace/events/task.h>
67 #include <trace/events/sched.h>
69 int suid_dumpable = 0;
71 static LIST_HEAD(formats);
72 static DEFINE_RWLOCK(binfmt_lock);
74 void __register_binfmt(struct linux_binfmt * fmt, int insert)
77 write_lock(&binfmt_lock);
78 insert ? list_add(&fmt->lh, &formats) :
79 list_add_tail(&fmt->lh, &formats);
80 write_unlock(&binfmt_lock);
83 EXPORT_SYMBOL(__register_binfmt);
85 void unregister_binfmt(struct linux_binfmt * fmt)
87 write_lock(&binfmt_lock);
89 write_unlock(&binfmt_lock);
92 EXPORT_SYMBOL(unregister_binfmt);
94 static inline void put_binfmt(struct linux_binfmt * fmt)
96 module_put(fmt->module);
100 * Note that a shared library must be both readable and executable due to
103 * Also note that we take the address to load from from the file itself.
105 SYSCALL_DEFINE1(uselib, const char __user *, library)
108 char *tmp = getname(library);
109 int error = PTR_ERR(tmp);
110 static const struct open_flags uselib_flags = {
111 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
112 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
113 .intent = LOOKUP_OPEN
119 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags, LOOKUP_FOLLOW);
121 error = PTR_ERR(file);
126 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
130 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
137 struct linux_binfmt * fmt;
139 read_lock(&binfmt_lock);
140 list_for_each_entry(fmt, &formats, lh) {
141 if (!fmt->load_shlib)
143 if (!try_module_get(fmt->module))
145 read_unlock(&binfmt_lock);
146 error = fmt->load_shlib(file);
147 read_lock(&binfmt_lock);
149 if (error != -ENOEXEC)
152 read_unlock(&binfmt_lock);
162 * The nascent bprm->mm is not visible until exec_mmap() but it can
163 * use a lot of memory, account these pages in current->mm temporary
164 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
165 * change the counter back via acct_arg_size(0).
167 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
169 struct mm_struct *mm = current->mm;
170 long diff = (long)(pages - bprm->vma_pages);
175 bprm->vma_pages = pages;
176 add_mm_counter(mm, MM_ANONPAGES, diff);
179 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
185 #ifdef CONFIG_STACK_GROWSUP
187 ret = expand_downwards(bprm->vma, pos);
192 ret = get_user_pages(current, bprm->mm, pos,
193 1, write, 1, &page, NULL);
198 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
201 acct_arg_size(bprm, size / PAGE_SIZE);
204 * We've historically supported up to 32 pages (ARG_MAX)
205 * of argument strings even with small stacks
211 * Limit to 1/4-th the stack size for the argv+env strings.
213 * - the remaining binfmt code will not run out of stack space,
214 * - the program will have a reasonable amount of stack left
217 rlim = current->signal->rlim;
218 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
227 static void put_arg_page(struct page *page)
232 static void free_arg_page(struct linux_binprm *bprm, int i)
236 static void free_arg_pages(struct linux_binprm *bprm)
240 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
243 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
246 static int __bprm_mm_init(struct linux_binprm *bprm)
249 struct vm_area_struct *vma = NULL;
250 struct mm_struct *mm = bprm->mm;
252 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
256 down_write(&mm->mmap_sem);
260 * Place the stack at the largest stack address the architecture
261 * supports. Later, we'll move this to an appropriate place. We don't
262 * use STACK_TOP because that can depend on attributes which aren't
265 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
266 vma->vm_end = STACK_TOP_MAX;
267 vma->vm_start = vma->vm_end - PAGE_SIZE;
268 vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
269 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
270 INIT_LIST_HEAD(&vma->anon_vma_chain);
272 err = insert_vm_struct(mm, vma);
276 mm->stack_vm = mm->total_vm = 1;
277 up_write(&mm->mmap_sem);
278 bprm->p = vma->vm_end - sizeof(void *);
281 up_write(&mm->mmap_sem);
283 kmem_cache_free(vm_area_cachep, vma);
287 static bool valid_arg_len(struct linux_binprm *bprm, long len)
289 return len <= MAX_ARG_STRLEN;
294 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
298 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
303 page = bprm->page[pos / PAGE_SIZE];
304 if (!page && write) {
305 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
308 bprm->page[pos / PAGE_SIZE] = page;
314 static void put_arg_page(struct page *page)
318 static void free_arg_page(struct linux_binprm *bprm, int i)
321 __free_page(bprm->page[i]);
322 bprm->page[i] = NULL;
326 static void free_arg_pages(struct linux_binprm *bprm)
330 for (i = 0; i < MAX_ARG_PAGES; i++)
331 free_arg_page(bprm, i);
334 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
339 static int __bprm_mm_init(struct linux_binprm *bprm)
341 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
345 static bool valid_arg_len(struct linux_binprm *bprm, long len)
347 return len <= bprm->p;
350 #endif /* CONFIG_MMU */
353 * Create a new mm_struct and populate it with a temporary stack
354 * vm_area_struct. We don't have enough context at this point to set the stack
355 * flags, permissions, and offset, so we use temporary values. We'll update
356 * them later in setup_arg_pages().
358 int bprm_mm_init(struct linux_binprm *bprm)
361 struct mm_struct *mm = NULL;
363 bprm->mm = mm = mm_alloc();
368 err = init_new_context(current, mm);
372 err = __bprm_mm_init(bprm);
387 struct user_arg_ptr {
392 const char __user *const __user *native;
394 compat_uptr_t __user *compat;
399 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
401 const char __user *native;
404 if (unlikely(argv.is_compat)) {
405 compat_uptr_t compat;
407 if (get_user(compat, argv.ptr.compat + nr))
408 return ERR_PTR(-EFAULT);
410 return compat_ptr(compat);
414 if (get_user(native, argv.ptr.native + nr))
415 return ERR_PTR(-EFAULT);
421 * count() counts the number of strings in array ARGV.
423 static int count(struct user_arg_ptr argv, int max)
427 if (argv.ptr.native != NULL) {
429 const char __user *p = get_user_arg_ptr(argv, i);
440 if (fatal_signal_pending(current))
441 return -ERESTARTNOHAND;
449 * 'copy_strings()' copies argument/environment strings from the old
450 * processes's memory to the new process's stack. The call to get_user_pages()
451 * ensures the destination page is created and not swapped out.
453 static int copy_strings(int argc, struct user_arg_ptr argv,
454 struct linux_binprm *bprm)
456 struct page *kmapped_page = NULL;
458 unsigned long kpos = 0;
462 const char __user *str;
467 str = get_user_arg_ptr(argv, argc);
471 len = strnlen_user(str, MAX_ARG_STRLEN);
476 if (!valid_arg_len(bprm, len))
479 /* We're going to work our way backwords. */
485 int offset, bytes_to_copy;
487 if (fatal_signal_pending(current)) {
488 ret = -ERESTARTNOHAND;
493 offset = pos % PAGE_SIZE;
497 bytes_to_copy = offset;
498 if (bytes_to_copy > len)
501 offset -= bytes_to_copy;
502 pos -= bytes_to_copy;
503 str -= bytes_to_copy;
504 len -= bytes_to_copy;
506 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
509 page = get_arg_page(bprm, pos, 1);
516 flush_kernel_dcache_page(kmapped_page);
517 kunmap(kmapped_page);
518 put_arg_page(kmapped_page);
521 kaddr = kmap(kmapped_page);
522 kpos = pos & PAGE_MASK;
523 flush_arg_page(bprm, kpos, kmapped_page);
525 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
534 flush_kernel_dcache_page(kmapped_page);
535 kunmap(kmapped_page);
536 put_arg_page(kmapped_page);
542 * Like copy_strings, but get argv and its values from kernel memory.
544 int copy_strings_kernel(int argc, const char *const *__argv,
545 struct linux_binprm *bprm)
548 mm_segment_t oldfs = get_fs();
549 struct user_arg_ptr argv = {
550 .ptr.native = (const char __user *const __user *)__argv,
554 r = copy_strings(argc, argv, bprm);
559 EXPORT_SYMBOL(copy_strings_kernel);
564 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
565 * the binfmt code determines where the new stack should reside, we shift it to
566 * its final location. The process proceeds as follows:
568 * 1) Use shift to calculate the new vma endpoints.
569 * 2) Extend vma to cover both the old and new ranges. This ensures the
570 * arguments passed to subsequent functions are consistent.
571 * 3) Move vma's page tables to the new range.
572 * 4) Free up any cleared pgd range.
573 * 5) Shrink the vma to cover only the new range.
575 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
577 struct mm_struct *mm = vma->vm_mm;
578 unsigned long old_start = vma->vm_start;
579 unsigned long old_end = vma->vm_end;
580 unsigned long length = old_end - old_start;
581 unsigned long new_start = old_start - shift;
582 unsigned long new_end = old_end - shift;
583 struct mmu_gather tlb;
585 BUG_ON(new_start > new_end);
588 * ensure there are no vmas between where we want to go
591 if (vma != find_vma(mm, new_start))
595 * cover the whole range: [new_start, old_end)
597 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
601 * move the page tables downwards, on failure we rely on
602 * process cleanup to remove whatever mess we made.
604 if (length != move_page_tables(vma, old_start,
605 vma, new_start, length))
609 tlb_gather_mmu(&tlb, mm, 0);
610 if (new_end > old_start) {
612 * when the old and new regions overlap clear from new_end.
614 free_pgd_range(&tlb, new_end, old_end, new_end,
615 vma->vm_next ? vma->vm_next->vm_start : 0);
618 * otherwise, clean from old_start; this is done to not touch
619 * the address space in [new_end, old_start) some architectures
620 * have constraints on va-space that make this illegal (IA64) -
621 * for the others its just a little faster.
623 free_pgd_range(&tlb, old_start, old_end, new_end,
624 vma->vm_next ? vma->vm_next->vm_start : 0);
626 tlb_finish_mmu(&tlb, new_end, old_end);
629 * Shrink the vma to just the new range. Always succeeds.
631 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
637 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
638 * the stack is optionally relocated, and some extra space is added.
640 int setup_arg_pages(struct linux_binprm *bprm,
641 unsigned long stack_top,
642 int executable_stack)
645 unsigned long stack_shift;
646 struct mm_struct *mm = current->mm;
647 struct vm_area_struct *vma = bprm->vma;
648 struct vm_area_struct *prev = NULL;
649 unsigned long vm_flags;
650 unsigned long stack_base;
651 unsigned long stack_size;
652 unsigned long stack_expand;
653 unsigned long rlim_stack;
655 #ifdef CONFIG_STACK_GROWSUP
656 /* Limit stack size to 1GB */
657 stack_base = rlimit_max(RLIMIT_STACK);
658 if (stack_base > (1 << 30))
659 stack_base = 1 << 30;
661 /* Make sure we didn't let the argument array grow too large. */
662 if (vma->vm_end - vma->vm_start > stack_base)
665 stack_base = PAGE_ALIGN(stack_top - stack_base);
667 stack_shift = vma->vm_start - stack_base;
668 mm->arg_start = bprm->p - stack_shift;
669 bprm->p = vma->vm_end - stack_shift;
671 stack_top = arch_align_stack(stack_top);
672 stack_top = PAGE_ALIGN(stack_top);
674 if (unlikely(stack_top < mmap_min_addr) ||
675 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
678 stack_shift = vma->vm_end - stack_top;
680 bprm->p -= stack_shift;
681 mm->arg_start = bprm->p;
685 bprm->loader -= stack_shift;
686 bprm->exec -= stack_shift;
688 down_write(&mm->mmap_sem);
689 vm_flags = VM_STACK_FLAGS;
692 * Adjust stack execute permissions; explicitly enable for
693 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
694 * (arch default) otherwise.
696 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
698 else if (executable_stack == EXSTACK_DISABLE_X)
699 vm_flags &= ~VM_EXEC;
700 vm_flags |= mm->def_flags;
701 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
703 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
709 /* Move stack pages down in memory. */
711 ret = shift_arg_pages(vma, stack_shift);
716 /* mprotect_fixup is overkill to remove the temporary stack flags */
717 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
719 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
720 stack_size = vma->vm_end - vma->vm_start;
722 * Align this down to a page boundary as expand_stack
725 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
726 #ifdef CONFIG_STACK_GROWSUP
727 if (stack_size + stack_expand > rlim_stack)
728 stack_base = vma->vm_start + rlim_stack;
730 stack_base = vma->vm_end + stack_expand;
732 if (stack_size + stack_expand > rlim_stack)
733 stack_base = vma->vm_end - rlim_stack;
735 stack_base = vma->vm_start - stack_expand;
737 current->mm->start_stack = bprm->p;
738 ret = expand_stack(vma, stack_base);
743 up_write(&mm->mmap_sem);
746 EXPORT_SYMBOL(setup_arg_pages);
748 #endif /* CONFIG_MMU */
750 struct file *open_exec(const char *name)
754 static const struct open_flags open_exec_flags = {
755 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
756 .acc_mode = MAY_EXEC | MAY_OPEN,
757 .intent = LOOKUP_OPEN
760 file = do_filp_open(AT_FDCWD, name, &open_exec_flags, LOOKUP_FOLLOW);
765 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
768 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
773 err = deny_write_access(file);
784 EXPORT_SYMBOL(open_exec);
786 int kernel_read(struct file *file, loff_t offset,
787 char *addr, unsigned long count)
795 /* The cast to a user pointer is valid due to the set_fs() */
796 result = vfs_read(file, (void __user *)addr, count, &pos);
801 EXPORT_SYMBOL(kernel_read);
803 static int exec_mmap(struct mm_struct *mm)
805 struct task_struct *tsk;
806 struct mm_struct * old_mm, *active_mm;
808 /* Notify parent that we're no longer interested in the old VM */
810 old_mm = current->mm;
811 mm_release(tsk, old_mm);
816 * Make sure that if there is a core dump in progress
817 * for the old mm, we get out and die instead of going
818 * through with the exec. We must hold mmap_sem around
819 * checking core_state and changing tsk->mm.
821 down_read(&old_mm->mmap_sem);
822 if (unlikely(old_mm->core_state)) {
823 up_read(&old_mm->mmap_sem);
828 active_mm = tsk->active_mm;
831 activate_mm(active_mm, mm);
833 arch_pick_mmap_layout(mm);
835 up_read(&old_mm->mmap_sem);
836 BUG_ON(active_mm != old_mm);
837 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
838 mm_update_next_owner(old_mm);
847 * This function makes sure the current process has its own signal table,
848 * so that flush_signal_handlers can later reset the handlers without
849 * disturbing other processes. (Other processes might share the signal
850 * table via the CLONE_SIGHAND option to clone().)
852 static int de_thread(struct task_struct *tsk)
854 struct signal_struct *sig = tsk->signal;
855 struct sighand_struct *oldsighand = tsk->sighand;
856 spinlock_t *lock = &oldsighand->siglock;
858 if (thread_group_empty(tsk))
859 goto no_thread_group;
862 * Kill all other threads in the thread group.
865 if (signal_group_exit(sig)) {
867 * Another group action in progress, just
868 * return so that the signal is processed.
870 spin_unlock_irq(lock);
874 sig->group_exit_task = tsk;
875 sig->notify_count = zap_other_threads(tsk);
876 if (!thread_group_leader(tsk))
879 while (sig->notify_count) {
880 __set_current_state(TASK_UNINTERRUPTIBLE);
881 spin_unlock_irq(lock);
885 spin_unlock_irq(lock);
888 * At this point all other threads have exited, all we have to
889 * do is to wait for the thread group leader to become inactive,
890 * and to assume its PID:
892 if (!thread_group_leader(tsk)) {
893 struct task_struct *leader = tsk->group_leader;
895 sig->notify_count = -1; /* for exit_notify() */
897 write_lock_irq(&tasklist_lock);
898 if (likely(leader->exit_state))
900 __set_current_state(TASK_UNINTERRUPTIBLE);
901 write_unlock_irq(&tasklist_lock);
906 * The only record we have of the real-time age of a
907 * process, regardless of execs it's done, is start_time.
908 * All the past CPU time is accumulated in signal_struct
909 * from sister threads now dead. But in this non-leader
910 * exec, nothing survives from the original leader thread,
911 * whose birth marks the true age of this process now.
912 * When we take on its identity by switching to its PID, we
913 * also take its birthdate (always earlier than our own).
915 tsk->start_time = leader->start_time;
917 BUG_ON(!same_thread_group(leader, tsk));
918 BUG_ON(has_group_leader_pid(tsk));
920 * An exec() starts a new thread group with the
921 * TGID of the previous thread group. Rehash the
922 * two threads with a switched PID, and release
923 * the former thread group leader:
926 /* Become a process group leader with the old leader's pid.
927 * The old leader becomes a thread of the this thread group.
928 * Note: The old leader also uses this pid until release_task
929 * is called. Odd but simple and correct.
931 detach_pid(tsk, PIDTYPE_PID);
932 tsk->pid = leader->pid;
933 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
934 transfer_pid(leader, tsk, PIDTYPE_PGID);
935 transfer_pid(leader, tsk, PIDTYPE_SID);
937 list_replace_rcu(&leader->tasks, &tsk->tasks);
938 list_replace_init(&leader->sibling, &tsk->sibling);
940 tsk->group_leader = tsk;
941 leader->group_leader = tsk;
943 tsk->exit_signal = SIGCHLD;
944 leader->exit_signal = -1;
946 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
947 leader->exit_state = EXIT_DEAD;
950 * We are going to release_task()->ptrace_unlink() silently,
951 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
952 * the tracer wont't block again waiting for this thread.
954 if (unlikely(leader->ptrace))
955 __wake_up_parent(leader, leader->parent);
956 write_unlock_irq(&tasklist_lock);
958 release_task(leader);
961 sig->group_exit_task = NULL;
962 sig->notify_count = 0;
965 /* we have changed execution domain */
966 tsk->exit_signal = SIGCHLD;
969 flush_itimer_signals();
971 if (atomic_read(&oldsighand->count) != 1) {
972 struct sighand_struct *newsighand;
974 * This ->sighand is shared with the CLONE_SIGHAND
975 * but not CLONE_THREAD task, switch to the new one.
977 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
981 atomic_set(&newsighand->count, 1);
982 memcpy(newsighand->action, oldsighand->action,
983 sizeof(newsighand->action));
985 write_lock_irq(&tasklist_lock);
986 spin_lock(&oldsighand->siglock);
987 rcu_assign_pointer(tsk->sighand, newsighand);
988 spin_unlock(&oldsighand->siglock);
989 write_unlock_irq(&tasklist_lock);
991 __cleanup_sighand(oldsighand);
994 BUG_ON(!thread_group_leader(tsk));
998 char *get_task_comm(char *buf, struct task_struct *tsk)
1000 /* buf must be at least sizeof(tsk->comm) in size */
1002 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1006 EXPORT_SYMBOL_GPL(get_task_comm);
1009 * These functions flushes out all traces of the currently running executable
1010 * so that a new one can be started
1013 void set_task_comm(struct task_struct *tsk, char *buf)
1017 trace_task_rename(tsk, buf);
1020 * Threads may access current->comm without holding
1021 * the task lock, so write the string carefully.
1022 * Readers without a lock may see incomplete new
1023 * names but are safe from non-terminating string reads.
1025 memset(tsk->comm, 0, TASK_COMM_LEN);
1027 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1029 perf_event_comm(tsk);
1032 static void filename_to_taskname(char *tcomm, const char *fn, unsigned int len)
1036 /* Copies the binary name from after last slash */
1037 for (i = 0; (ch = *(fn++)) != '\0';) {
1039 i = 0; /* overwrite what we wrote */
1047 int flush_old_exec(struct linux_binprm * bprm)
1052 * Make sure we have a private signal table and that
1053 * we are unassociated from the previous thread group.
1055 retval = de_thread(current);
1059 set_mm_exe_file(bprm->mm, bprm->file);
1061 filename_to_taskname(bprm->tcomm, bprm->filename, sizeof(bprm->tcomm));
1063 * Release all of the old mmap stuff
1065 acct_arg_size(bprm, 0);
1066 retval = exec_mmap(bprm->mm);
1070 bprm->mm = NULL; /* We're using it now */
1073 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD);
1075 current->personality &= ~bprm->per_clear;
1082 EXPORT_SYMBOL(flush_old_exec);
1084 void would_dump(struct linux_binprm *bprm, struct file *file)
1086 if (inode_permission(file->f_path.dentry->d_inode, MAY_READ) < 0)
1087 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1089 EXPORT_SYMBOL(would_dump);
1091 void setup_new_exec(struct linux_binprm * bprm)
1093 arch_pick_mmap_layout(current->mm);
1095 /* This is the point of no return */
1096 current->sas_ss_sp = current->sas_ss_size = 0;
1098 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1099 set_dumpable(current->mm, 1);
1101 set_dumpable(current->mm, suid_dumpable);
1103 set_task_comm(current, bprm->tcomm);
1105 /* Set the new mm task size. We have to do that late because it may
1106 * depend on TIF_32BIT which is only updated in flush_thread() on
1107 * some architectures like powerpc
1109 current->mm->task_size = TASK_SIZE;
1111 /* install the new credentials */
1112 if (!uid_eq(bprm->cred->uid, current_euid()) ||
1113 !gid_eq(bprm->cred->gid, current_egid())) {
1114 current->pdeath_signal = 0;
1116 would_dump(bprm, bprm->file);
1117 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1118 set_dumpable(current->mm, suid_dumpable);
1122 * Flush performance counters when crossing a
1125 if (!get_dumpable(current->mm))
1126 perf_event_exit_task(current);
1128 /* An exec changes our domain. We are no longer part of the thread
1131 current->self_exec_id++;
1133 flush_signal_handlers(current, 0);
1134 do_close_on_exec(current->files);
1136 EXPORT_SYMBOL(setup_new_exec);
1139 * Prepare credentials and lock ->cred_guard_mutex.
1140 * install_exec_creds() commits the new creds and drops the lock.
1141 * Or, if exec fails before, free_bprm() should release ->cred and
1144 int prepare_bprm_creds(struct linux_binprm *bprm)
1146 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex))
1147 return -ERESTARTNOINTR;
1149 bprm->cred = prepare_exec_creds();
1150 if (likely(bprm->cred))
1153 mutex_unlock(¤t->signal->cred_guard_mutex);
1157 void free_bprm(struct linux_binprm *bprm)
1159 free_arg_pages(bprm);
1161 mutex_unlock(¤t->signal->cred_guard_mutex);
1162 abort_creds(bprm->cred);
1168 * install the new credentials for this executable
1170 void install_exec_creds(struct linux_binprm *bprm)
1172 security_bprm_committing_creds(bprm);
1174 commit_creds(bprm->cred);
1177 * cred_guard_mutex must be held at least to this point to prevent
1178 * ptrace_attach() from altering our determination of the task's
1179 * credentials; any time after this it may be unlocked.
1181 security_bprm_committed_creds(bprm);
1182 mutex_unlock(¤t->signal->cred_guard_mutex);
1184 EXPORT_SYMBOL(install_exec_creds);
1187 * determine how safe it is to execute the proposed program
1188 * - the caller must hold ->cred_guard_mutex to protect against
1191 static int check_unsafe_exec(struct linux_binprm *bprm)
1193 struct task_struct *p = current, *t;
1198 if (p->ptrace & PT_PTRACE_CAP)
1199 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1201 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1205 * This isn't strictly necessary, but it makes it harder for LSMs to
1208 if (current->no_new_privs)
1209 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1212 spin_lock(&p->fs->lock);
1214 for (t = next_thread(p); t != p; t = next_thread(t)) {
1220 if (p->fs->users > n_fs) {
1221 bprm->unsafe |= LSM_UNSAFE_SHARE;
1224 if (!p->fs->in_exec) {
1229 spin_unlock(&p->fs->lock);
1235 * Fill the binprm structure from the inode.
1236 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1238 * This may be called multiple times for binary chains (scripts for example).
1240 int prepare_binprm(struct linux_binprm *bprm)
1243 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1246 mode = inode->i_mode;
1247 if (bprm->file->f_op == NULL)
1250 /* clear any previous set[ug]id data from a previous binary */
1251 bprm->cred->euid = current_euid();
1252 bprm->cred->egid = current_egid();
1254 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) &&
1255 !current->no_new_privs) {
1257 if (mode & S_ISUID) {
1258 if (!kuid_has_mapping(bprm->cred->user_ns, inode->i_uid))
1260 bprm->per_clear |= PER_CLEAR_ON_SETID;
1261 bprm->cred->euid = inode->i_uid;
1267 * If setgid is set but no group execute bit then this
1268 * is a candidate for mandatory locking, not a setgid
1271 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1272 if (!kgid_has_mapping(bprm->cred->user_ns, inode->i_gid))
1274 bprm->per_clear |= PER_CLEAR_ON_SETID;
1275 bprm->cred->egid = inode->i_gid;
1279 /* fill in binprm security blob */
1280 retval = security_bprm_set_creds(bprm);
1283 bprm->cred_prepared = 1;
1285 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1286 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1289 EXPORT_SYMBOL(prepare_binprm);
1292 * Arguments are '\0' separated strings found at the location bprm->p
1293 * points to; chop off the first by relocating brpm->p to right after
1294 * the first '\0' encountered.
1296 int remove_arg_zero(struct linux_binprm *bprm)
1299 unsigned long offset;
1307 offset = bprm->p & ~PAGE_MASK;
1308 page = get_arg_page(bprm, bprm->p, 0);
1313 kaddr = kmap_atomic(page);
1315 for (; offset < PAGE_SIZE && kaddr[offset];
1316 offset++, bprm->p++)
1319 kunmap_atomic(kaddr);
1322 if (offset == PAGE_SIZE)
1323 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1324 } while (offset == PAGE_SIZE);
1333 EXPORT_SYMBOL(remove_arg_zero);
1336 * cycle the list of binary formats handler, until one recognizes the image
1338 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1340 unsigned int depth = bprm->recursion_depth;
1342 struct linux_binfmt *fmt;
1343 pid_t old_pid, old_vpid;
1345 retval = security_bprm_check(bprm);
1349 retval = audit_bprm(bprm);
1353 /* Need to fetch pid before load_binary changes it */
1354 old_pid = current->pid;
1356 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1360 for (try=0; try<2; try++) {
1361 read_lock(&binfmt_lock);
1362 list_for_each_entry(fmt, &formats, lh) {
1363 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1366 if (!try_module_get(fmt->module))
1368 read_unlock(&binfmt_lock);
1369 retval = fn(bprm, regs);
1371 * Restore the depth counter to its starting value
1372 * in this call, so we don't have to rely on every
1373 * load_binary function to restore it on return.
1375 bprm->recursion_depth = depth;
1378 trace_sched_process_exec(current, old_pid, bprm);
1379 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1382 allow_write_access(bprm->file);
1386 current->did_exec = 1;
1387 proc_exec_connector(current);
1390 read_lock(&binfmt_lock);
1392 if (retval != -ENOEXEC || bprm->mm == NULL)
1395 read_unlock(&binfmt_lock);
1399 read_unlock(&binfmt_lock);
1400 #ifdef CONFIG_MODULES
1401 if (retval != -ENOEXEC || bprm->mm == NULL) {
1404 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1405 if (printable(bprm->buf[0]) &&
1406 printable(bprm->buf[1]) &&
1407 printable(bprm->buf[2]) &&
1408 printable(bprm->buf[3]))
1409 break; /* -ENOEXEC */
1411 break; /* -ENOEXEC */
1412 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1421 EXPORT_SYMBOL(search_binary_handler);
1424 * sys_execve() executes a new program.
1426 static int do_execve_common(const char *filename,
1427 struct user_arg_ptr argv,
1428 struct user_arg_ptr envp,
1429 struct pt_regs *regs)
1431 struct linux_binprm *bprm;
1433 struct files_struct *displaced;
1436 const struct cred *cred = current_cred();
1439 * We move the actual failure in case of RLIMIT_NPROC excess from
1440 * set*uid() to execve() because too many poorly written programs
1441 * don't check setuid() return code. Here we additionally recheck
1442 * whether NPROC limit is still exceeded.
1444 if ((current->flags & PF_NPROC_EXCEEDED) &&
1445 atomic_read(&cred->user->processes) > rlimit(RLIMIT_NPROC)) {
1450 /* We're below the limit (still or again), so we don't want to make
1451 * further execve() calls fail. */
1452 current->flags &= ~PF_NPROC_EXCEEDED;
1454 retval = unshare_files(&displaced);
1459 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1463 retval = prepare_bprm_creds(bprm);
1467 retval = check_unsafe_exec(bprm);
1470 clear_in_exec = retval;
1471 current->in_execve = 1;
1473 file = open_exec(filename);
1474 retval = PTR_ERR(file);
1481 bprm->filename = filename;
1482 bprm->interp = filename;
1484 retval = bprm_mm_init(bprm);
1488 bprm->argc = count(argv, MAX_ARG_STRINGS);
1489 if ((retval = bprm->argc) < 0)
1492 bprm->envc = count(envp, MAX_ARG_STRINGS);
1493 if ((retval = bprm->envc) < 0)
1496 retval = prepare_binprm(bprm);
1500 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1504 bprm->exec = bprm->p;
1505 retval = copy_strings(bprm->envc, envp, bprm);
1509 retval = copy_strings(bprm->argc, argv, bprm);
1513 retval = search_binary_handler(bprm,regs);
1517 /* execve succeeded */
1518 current->fs->in_exec = 0;
1519 current->in_execve = 0;
1520 acct_update_integrals(current);
1523 put_files_struct(displaced);
1528 acct_arg_size(bprm, 0);
1534 allow_write_access(bprm->file);
1540 current->fs->in_exec = 0;
1541 current->in_execve = 0;
1548 reset_files_struct(displaced);
1553 int do_execve(const char *filename,
1554 const char __user *const __user *__argv,
1555 const char __user *const __user *__envp,
1556 struct pt_regs *regs)
1558 struct user_arg_ptr argv = { .ptr.native = __argv };
1559 struct user_arg_ptr envp = { .ptr.native = __envp };
1560 return do_execve_common(filename, argv, envp, regs);
1563 #ifdef CONFIG_COMPAT
1564 int compat_do_execve(char *filename,
1565 compat_uptr_t __user *__argv,
1566 compat_uptr_t __user *__envp,
1567 struct pt_regs *regs)
1569 struct user_arg_ptr argv = {
1571 .ptr.compat = __argv,
1573 struct user_arg_ptr envp = {
1575 .ptr.compat = __envp,
1577 return do_execve_common(filename, argv, envp, regs);
1581 void set_binfmt(struct linux_binfmt *new)
1583 struct mm_struct *mm = current->mm;
1586 module_put(mm->binfmt->module);
1590 __module_get(new->module);
1593 EXPORT_SYMBOL(set_binfmt);
1596 * set_dumpable converts traditional three-value dumpable to two flags and
1597 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1598 * these bits are not changed atomically. So get_dumpable can observe the
1599 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1600 * return either old dumpable or new one by paying attention to the order of
1601 * modifying the bits.
1603 * dumpable | mm->flags (binary)
1604 * old new | initial interim final
1605 * ---------+-----------------------
1613 * (*) get_dumpable regards interim value of 10 as 11.
1615 void set_dumpable(struct mm_struct *mm, int value)
1618 case SUID_DUMPABLE_DISABLED:
1619 clear_bit(MMF_DUMPABLE, &mm->flags);
1621 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1623 case SUID_DUMPABLE_ENABLED:
1624 set_bit(MMF_DUMPABLE, &mm->flags);
1626 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1628 case SUID_DUMPABLE_SAFE:
1629 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1631 set_bit(MMF_DUMPABLE, &mm->flags);
1636 int __get_dumpable(unsigned long mm_flags)
1640 ret = mm_flags & MMF_DUMPABLE_MASK;
1641 return (ret > SUID_DUMPABLE_ENABLED) ? SUID_DUMPABLE_SAFE : ret;
1644 int get_dumpable(struct mm_struct *mm)
1646 return __get_dumpable(mm->flags);