1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992 Linus Torvalds
9 * #!-checking implemented by tytso.
12 * Demand-loading implemented 01.12.91 - no need to read anything but
13 * the header into memory. The inode of the executable is put into
14 * "current->executable", and page faults do the actual loading. Clean.
16 * Once more I can proudly say that linux stood up to being changed: it
17 * was less than 2 hours work to get demand-loading completely implemented.
19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
20 * current->executable is only used by the procfs. This allows a dispatch
21 * table to check for several different types of binary formats. We keep
22 * trying until we recognize the file or we run out of supported binary
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
31 #include <linux/vmacache.h>
32 #include <linux/stat.h>
33 #include <linux/fcntl.h>
34 #include <linux/swap.h>
35 #include <linux/string.h>
36 #include <linux/init.h>
37 #include <linux/sched/mm.h>
38 #include <linux/sched/coredump.h>
39 #include <linux/sched/signal.h>
40 #include <linux/sched/numa_balancing.h>
41 #include <linux/sched/task.h>
42 #include <linux/pagemap.h>
43 #include <linux/perf_event.h>
44 #include <linux/highmem.h>
45 #include <linux/spinlock.h>
46 #include <linux/key.h>
47 #include <linux/personality.h>
48 #include <linux/binfmts.h>
49 #include <linux/utsname.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/module.h>
52 #include <linux/namei.h>
53 #include <linux/mount.h>
54 #include <linux/security.h>
55 #include <linux/syscalls.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/audit.h>
59 #include <linux/tracehook.h>
60 #include <linux/kmod.h>
61 #include <linux/fsnotify.h>
62 #include <linux/fs_struct.h>
63 #include <linux/oom.h>
64 #include <linux/compat.h>
65 #include <linux/vmalloc.h>
66 #include <linux/io_uring.h>
67 #include <linux/syscall_user_dispatch.h>
68 #include <linux/coredump.h>
70 #include <linux/uaccess.h>
71 #include <asm/mmu_context.h>
74 #include <trace/events/task.h>
77 #include <trace/events/sched.h>
79 static int bprm_creds_from_file(struct linux_binprm *bprm);
81 int suid_dumpable = 0;
83 static LIST_HEAD(formats);
84 static DEFINE_RWLOCK(binfmt_lock);
86 void __register_binfmt(struct linux_binfmt * fmt, int insert)
88 write_lock(&binfmt_lock);
89 insert ? list_add(&fmt->lh, &formats) :
90 list_add_tail(&fmt->lh, &formats);
91 write_unlock(&binfmt_lock);
94 EXPORT_SYMBOL(__register_binfmt);
96 void unregister_binfmt(struct linux_binfmt * fmt)
98 write_lock(&binfmt_lock);
100 write_unlock(&binfmt_lock);
103 EXPORT_SYMBOL(unregister_binfmt);
105 static inline void put_binfmt(struct linux_binfmt * fmt)
107 module_put(fmt->module);
110 bool path_noexec(const struct path *path)
112 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
113 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
118 * Note that a shared library must be both readable and executable due to
121 * Also note that we take the address to load from the file itself.
123 SYSCALL_DEFINE1(uselib, const char __user *, library)
125 struct linux_binfmt *fmt;
127 struct filename *tmp = getname(library);
128 int error = PTR_ERR(tmp);
129 static const struct open_flags uselib_flags = {
130 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
131 .acc_mode = MAY_READ | MAY_EXEC,
132 .intent = LOOKUP_OPEN,
133 .lookup_flags = LOOKUP_FOLLOW,
139 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
141 error = PTR_ERR(file);
146 * may_open() has already checked for this, so it should be
147 * impossible to trip now. But we need to be extra cautious
148 * and check again at the very end too.
151 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
152 path_noexec(&file->f_path)))
159 read_lock(&binfmt_lock);
160 list_for_each_entry(fmt, &formats, lh) {
161 if (!fmt->load_shlib)
163 if (!try_module_get(fmt->module))
165 read_unlock(&binfmt_lock);
166 error = fmt->load_shlib(file);
167 read_lock(&binfmt_lock);
169 if (error != -ENOEXEC)
172 read_unlock(&binfmt_lock);
178 #endif /* #ifdef CONFIG_USELIB */
182 * The nascent bprm->mm is not visible until exec_mmap() but it can
183 * use a lot of memory, account these pages in current->mm temporary
184 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
185 * change the counter back via acct_arg_size(0).
187 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
189 struct mm_struct *mm = current->mm;
190 long diff = (long)(pages - bprm->vma_pages);
195 bprm->vma_pages = pages;
196 add_mm_counter(mm, MM_ANONPAGES, diff);
199 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
204 unsigned int gup_flags = FOLL_FORCE;
206 #ifdef CONFIG_STACK_GROWSUP
208 ret = expand_downwards(bprm->vma, pos);
215 gup_flags |= FOLL_WRITE;
218 * We are doing an exec(). 'current' is the process
219 * doing the exec and bprm->mm is the new process's mm.
221 mmap_read_lock(bprm->mm);
222 ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags,
224 mmap_read_unlock(bprm->mm);
229 acct_arg_size(bprm, vma_pages(bprm->vma));
234 static void put_arg_page(struct page *page)
239 static void free_arg_pages(struct linux_binprm *bprm)
243 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
246 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
249 static int __bprm_mm_init(struct linux_binprm *bprm)
252 struct vm_area_struct *vma = NULL;
253 struct mm_struct *mm = bprm->mm;
255 bprm->vma = vma = vm_area_alloc(mm);
258 vma_set_anonymous(vma);
260 if (mmap_write_lock_killable(mm)) {
266 * Place the stack at the largest stack address the architecture
267 * supports. Later, we'll move this to an appropriate place. We don't
268 * use STACK_TOP because that can depend on attributes which aren't
271 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
272 vma->vm_end = STACK_TOP_MAX;
273 vma->vm_start = vma->vm_end - PAGE_SIZE;
274 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
275 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
277 err = insert_vm_struct(mm, vma);
281 mm->stack_vm = mm->total_vm = 1;
282 mmap_write_unlock(mm);
283 bprm->p = vma->vm_end - sizeof(void *);
286 mmap_write_unlock(mm);
293 static bool valid_arg_len(struct linux_binprm *bprm, long len)
295 return len <= MAX_ARG_STRLEN;
300 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
304 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
309 page = bprm->page[pos / PAGE_SIZE];
310 if (!page && write) {
311 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
314 bprm->page[pos / PAGE_SIZE] = page;
320 static void put_arg_page(struct page *page)
324 static void free_arg_page(struct linux_binprm *bprm, int i)
327 __free_page(bprm->page[i]);
328 bprm->page[i] = NULL;
332 static void free_arg_pages(struct linux_binprm *bprm)
336 for (i = 0; i < MAX_ARG_PAGES; i++)
337 free_arg_page(bprm, i);
340 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
345 static int __bprm_mm_init(struct linux_binprm *bprm)
347 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
351 static bool valid_arg_len(struct linux_binprm *bprm, long len)
353 return len <= bprm->p;
356 #endif /* CONFIG_MMU */
359 * Create a new mm_struct and populate it with a temporary stack
360 * vm_area_struct. We don't have enough context at this point to set the stack
361 * flags, permissions, and offset, so we use temporary values. We'll update
362 * them later in setup_arg_pages().
364 static int bprm_mm_init(struct linux_binprm *bprm)
367 struct mm_struct *mm = NULL;
369 bprm->mm = mm = mm_alloc();
374 /* Save current stack limit for all calculations made during exec. */
375 task_lock(current->group_leader);
376 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
377 task_unlock(current->group_leader);
379 err = __bprm_mm_init(bprm);
394 struct user_arg_ptr {
399 const char __user *const __user *native;
401 const compat_uptr_t __user *compat;
406 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
408 const char __user *native;
411 if (unlikely(argv.is_compat)) {
412 compat_uptr_t compat;
414 if (get_user(compat, argv.ptr.compat + nr))
415 return ERR_PTR(-EFAULT);
417 return compat_ptr(compat);
421 if (get_user(native, argv.ptr.native + nr))
422 return ERR_PTR(-EFAULT);
428 * count() counts the number of strings in array ARGV.
430 static int count(struct user_arg_ptr argv, int max)
434 if (argv.ptr.native != NULL) {
436 const char __user *p = get_user_arg_ptr(argv, i);
448 if (fatal_signal_pending(current))
449 return -ERESTARTNOHAND;
456 static int count_strings_kernel(const char *const *argv)
463 for (i = 0; argv[i]; ++i) {
464 if (i >= MAX_ARG_STRINGS)
466 if (fatal_signal_pending(current))
467 return -ERESTARTNOHAND;
473 static int bprm_stack_limits(struct linux_binprm *bprm)
475 unsigned long limit, ptr_size;
478 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
479 * (whichever is smaller) for the argv+env strings.
481 * - the remaining binfmt code will not run out of stack space,
482 * - the program will have a reasonable amount of stack left
485 limit = _STK_LIM / 4 * 3;
486 limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
488 * We've historically supported up to 32 pages (ARG_MAX)
489 * of argument strings even with small stacks
491 limit = max_t(unsigned long, limit, ARG_MAX);
493 * We must account for the size of all the argv and envp pointers to
494 * the argv and envp strings, since they will also take up space in
495 * the stack. They aren't stored until much later when we can't
496 * signal to the parent that the child has run out of stack space.
497 * Instead, calculate it here so it's possible to fail gracefully.
499 * In the case of argc = 0, make sure there is space for adding a
500 * empty string (which will bump argc to 1), to ensure confused
501 * userspace programs don't start processing from argv[1], thinking
502 * argc can never be 0, to keep them from walking envp by accident.
503 * See do_execveat_common().
505 ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
506 if (limit <= ptr_size)
510 bprm->argmin = bprm->p - limit;
515 * 'copy_strings()' copies argument/environment strings from the old
516 * processes's memory to the new process's stack. The call to get_user_pages()
517 * ensures the destination page is created and not swapped out.
519 static int copy_strings(int argc, struct user_arg_ptr argv,
520 struct linux_binprm *bprm)
522 struct page *kmapped_page = NULL;
524 unsigned long kpos = 0;
528 const char __user *str;
533 str = get_user_arg_ptr(argv, argc);
537 len = strnlen_user(str, MAX_ARG_STRLEN);
542 if (!valid_arg_len(bprm, len))
545 /* We're going to work our way backwards. */
550 if (bprm->p < bprm->argmin)
555 int offset, bytes_to_copy;
557 if (fatal_signal_pending(current)) {
558 ret = -ERESTARTNOHAND;
563 offset = pos % PAGE_SIZE;
567 bytes_to_copy = offset;
568 if (bytes_to_copy > len)
571 offset -= bytes_to_copy;
572 pos -= bytes_to_copy;
573 str -= bytes_to_copy;
574 len -= bytes_to_copy;
576 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
579 page = get_arg_page(bprm, pos, 1);
586 flush_dcache_page(kmapped_page);
587 kunmap(kmapped_page);
588 put_arg_page(kmapped_page);
591 kaddr = kmap(kmapped_page);
592 kpos = pos & PAGE_MASK;
593 flush_arg_page(bprm, kpos, kmapped_page);
595 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
604 flush_dcache_page(kmapped_page);
605 kunmap(kmapped_page);
606 put_arg_page(kmapped_page);
612 * Copy and argument/environment string from the kernel to the processes stack.
614 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
616 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
617 unsigned long pos = bprm->p;
621 if (!valid_arg_len(bprm, len))
624 /* We're going to work our way backwards. */
627 if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
631 unsigned int bytes_to_copy = min_t(unsigned int, len,
632 min_not_zero(offset_in_page(pos), PAGE_SIZE));
636 pos -= bytes_to_copy;
637 arg -= bytes_to_copy;
638 len -= bytes_to_copy;
640 page = get_arg_page(bprm, pos, 1);
643 kaddr = kmap_atomic(page);
644 flush_arg_page(bprm, pos & PAGE_MASK, page);
645 memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy);
646 flush_dcache_page(page);
647 kunmap_atomic(kaddr);
653 EXPORT_SYMBOL(copy_string_kernel);
655 static int copy_strings_kernel(int argc, const char *const *argv,
656 struct linux_binprm *bprm)
659 int ret = copy_string_kernel(argv[argc], bprm);
662 if (fatal_signal_pending(current))
663 return -ERESTARTNOHAND;
672 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
673 * the binfmt code determines where the new stack should reside, we shift it to
674 * its final location. The process proceeds as follows:
676 * 1) Use shift to calculate the new vma endpoints.
677 * 2) Extend vma to cover both the old and new ranges. This ensures the
678 * arguments passed to subsequent functions are consistent.
679 * 3) Move vma's page tables to the new range.
680 * 4) Free up any cleared pgd range.
681 * 5) Shrink the vma to cover only the new range.
683 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
685 struct mm_struct *mm = vma->vm_mm;
686 unsigned long old_start = vma->vm_start;
687 unsigned long old_end = vma->vm_end;
688 unsigned long length = old_end - old_start;
689 unsigned long new_start = old_start - shift;
690 unsigned long new_end = old_end - shift;
691 struct mmu_gather tlb;
693 BUG_ON(new_start > new_end);
696 * ensure there are no vmas between where we want to go
699 if (vma != find_vma(mm, new_start))
703 * cover the whole range: [new_start, old_end)
705 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
709 * move the page tables downwards, on failure we rely on
710 * process cleanup to remove whatever mess we made.
712 if (length != move_page_tables(vma, old_start,
713 vma, new_start, length, false))
717 tlb_gather_mmu(&tlb, mm);
718 if (new_end > old_start) {
720 * when the old and new regions overlap clear from new_end.
722 free_pgd_range(&tlb, new_end, old_end, new_end,
723 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
726 * otherwise, clean from old_start; this is done to not touch
727 * the address space in [new_end, old_start) some architectures
728 * have constraints on va-space that make this illegal (IA64) -
729 * for the others its just a little faster.
731 free_pgd_range(&tlb, old_start, old_end, new_end,
732 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
734 tlb_finish_mmu(&tlb);
737 * Shrink the vma to just the new range. Always succeeds.
739 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
745 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
746 * the stack is optionally relocated, and some extra space is added.
748 int setup_arg_pages(struct linux_binprm *bprm,
749 unsigned long stack_top,
750 int executable_stack)
753 unsigned long stack_shift;
754 struct mm_struct *mm = current->mm;
755 struct vm_area_struct *vma = bprm->vma;
756 struct vm_area_struct *prev = NULL;
757 unsigned long vm_flags;
758 unsigned long stack_base;
759 unsigned long stack_size;
760 unsigned long stack_expand;
761 unsigned long rlim_stack;
763 #ifdef CONFIG_STACK_GROWSUP
764 /* Limit stack size */
765 stack_base = bprm->rlim_stack.rlim_max;
767 stack_base = calc_max_stack_size(stack_base);
769 /* Add space for stack randomization. */
770 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
772 /* Make sure we didn't let the argument array grow too large. */
773 if (vma->vm_end - vma->vm_start > stack_base)
776 stack_base = PAGE_ALIGN(stack_top - stack_base);
778 stack_shift = vma->vm_start - stack_base;
779 mm->arg_start = bprm->p - stack_shift;
780 bprm->p = vma->vm_end - stack_shift;
782 stack_top = arch_align_stack(stack_top);
783 stack_top = PAGE_ALIGN(stack_top);
785 if (unlikely(stack_top < mmap_min_addr) ||
786 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
789 stack_shift = vma->vm_end - stack_top;
791 bprm->p -= stack_shift;
792 mm->arg_start = bprm->p;
796 bprm->loader -= stack_shift;
797 bprm->exec -= stack_shift;
799 if (mmap_write_lock_killable(mm))
802 vm_flags = VM_STACK_FLAGS;
805 * Adjust stack execute permissions; explicitly enable for
806 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
807 * (arch default) otherwise.
809 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
811 else if (executable_stack == EXSTACK_DISABLE_X)
812 vm_flags &= ~VM_EXEC;
813 vm_flags |= mm->def_flags;
814 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
816 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
822 if (unlikely(vm_flags & VM_EXEC)) {
823 pr_warn_once("process '%pD4' started with executable stack\n",
827 /* Move stack pages down in memory. */
829 ret = shift_arg_pages(vma, stack_shift);
834 /* mprotect_fixup is overkill to remove the temporary stack flags */
835 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
837 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
838 stack_size = vma->vm_end - vma->vm_start;
840 * Align this down to a page boundary as expand_stack
843 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
844 #ifdef CONFIG_STACK_GROWSUP
845 if (stack_size + stack_expand > rlim_stack)
846 stack_base = vma->vm_start + rlim_stack;
848 stack_base = vma->vm_end + stack_expand;
850 if (stack_size + stack_expand > rlim_stack)
851 stack_base = vma->vm_end - rlim_stack;
853 stack_base = vma->vm_start - stack_expand;
855 current->mm->start_stack = bprm->p;
856 ret = expand_stack(vma, stack_base);
861 mmap_write_unlock(mm);
864 EXPORT_SYMBOL(setup_arg_pages);
869 * Transfer the program arguments and environment from the holding pages
870 * onto the stack. The provided stack pointer is adjusted accordingly.
872 int transfer_args_to_stack(struct linux_binprm *bprm,
873 unsigned long *sp_location)
875 unsigned long index, stop, sp;
878 stop = bprm->p >> PAGE_SHIFT;
881 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
882 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
883 char *src = kmap(bprm->page[index]) + offset;
884 sp -= PAGE_SIZE - offset;
885 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
887 kunmap(bprm->page[index]);
897 EXPORT_SYMBOL(transfer_args_to_stack);
899 #endif /* CONFIG_MMU */
901 static struct file *do_open_execat(int fd, struct filename *name, int flags)
905 struct open_flags open_exec_flags = {
906 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
907 .acc_mode = MAY_EXEC,
908 .intent = LOOKUP_OPEN,
909 .lookup_flags = LOOKUP_FOLLOW,
912 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
913 return ERR_PTR(-EINVAL);
914 if (flags & AT_SYMLINK_NOFOLLOW)
915 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
916 if (flags & AT_EMPTY_PATH)
917 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
919 file = do_filp_open(fd, name, &open_exec_flags);
924 * may_open() has already checked for this, so it should be
925 * impossible to trip now. But we need to be extra cautious
926 * and check again at the very end too.
929 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
930 path_noexec(&file->f_path)))
933 err = deny_write_access(file);
937 if (name->name[0] != '\0')
948 struct file *open_exec(const char *name)
950 struct filename *filename = getname_kernel(name);
951 struct file *f = ERR_CAST(filename);
953 if (!IS_ERR(filename)) {
954 f = do_open_execat(AT_FDCWD, filename, 0);
959 EXPORT_SYMBOL(open_exec);
961 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \
962 defined(CONFIG_BINFMT_ELF_FDPIC)
963 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
965 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
967 flush_icache_user_range(addr, addr + len);
970 EXPORT_SYMBOL(read_code);
974 * Maps the mm_struct mm into the current task struct.
975 * On success, this function returns with exec_update_lock
978 static int exec_mmap(struct mm_struct *mm)
980 struct task_struct *tsk;
981 struct mm_struct *old_mm, *active_mm;
984 /* Notify parent that we're no longer interested in the old VM */
986 old_mm = current->mm;
987 exec_mm_release(tsk, old_mm);
991 ret = down_write_killable(&tsk->signal->exec_update_lock);
997 * If there is a pending fatal signal perhaps a signal
998 * whose default action is to create a coredump get
999 * out and die instead of going through with the exec.
1001 ret = mmap_read_lock_killable(old_mm);
1003 up_write(&tsk->signal->exec_update_lock);
1009 membarrier_exec_mmap(mm);
1011 local_irq_disable();
1012 active_mm = tsk->active_mm;
1013 tsk->active_mm = mm;
1016 * This prevents preemption while active_mm is being loaded and
1017 * it and mm are being updated, which could cause problems for
1018 * lazy tlb mm refcounting when these are updated by context
1019 * switches. Not all architectures can handle irqs off over
1022 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1024 activate_mm(active_mm, mm);
1025 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1027 tsk->mm->vmacache_seqnum = 0;
1028 vmacache_flush(tsk);
1031 mmap_read_unlock(old_mm);
1032 BUG_ON(active_mm != old_mm);
1033 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1034 mm_update_next_owner(old_mm);
1042 static int de_thread(struct task_struct *tsk)
1044 struct signal_struct *sig = tsk->signal;
1045 struct sighand_struct *oldsighand = tsk->sighand;
1046 spinlock_t *lock = &oldsighand->siglock;
1048 if (thread_group_empty(tsk))
1049 goto no_thread_group;
1052 * Kill all other threads in the thread group.
1054 spin_lock_irq(lock);
1055 if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1057 * Another group action in progress, just
1058 * return so that the signal is processed.
1060 spin_unlock_irq(lock);
1064 sig->group_exec_task = tsk;
1065 sig->notify_count = zap_other_threads(tsk);
1066 if (!thread_group_leader(tsk))
1067 sig->notify_count--;
1069 while (sig->notify_count) {
1070 __set_current_state(TASK_KILLABLE);
1071 spin_unlock_irq(lock);
1073 if (__fatal_signal_pending(tsk))
1075 spin_lock_irq(lock);
1077 spin_unlock_irq(lock);
1080 * At this point all other threads have exited, all we have to
1081 * do is to wait for the thread group leader to become inactive,
1082 * and to assume its PID:
1084 if (!thread_group_leader(tsk)) {
1085 struct task_struct *leader = tsk->group_leader;
1088 cgroup_threadgroup_change_begin(tsk);
1089 write_lock_irq(&tasklist_lock);
1091 * Do this under tasklist_lock to ensure that
1092 * exit_notify() can't miss ->group_exec_task
1094 sig->notify_count = -1;
1095 if (likely(leader->exit_state))
1097 __set_current_state(TASK_KILLABLE);
1098 write_unlock_irq(&tasklist_lock);
1099 cgroup_threadgroup_change_end(tsk);
1101 if (__fatal_signal_pending(tsk))
1106 * The only record we have of the real-time age of a
1107 * process, regardless of execs it's done, is start_time.
1108 * All the past CPU time is accumulated in signal_struct
1109 * from sister threads now dead. But in this non-leader
1110 * exec, nothing survives from the original leader thread,
1111 * whose birth marks the true age of this process now.
1112 * When we take on its identity by switching to its PID, we
1113 * also take its birthdate (always earlier than our own).
1115 tsk->start_time = leader->start_time;
1116 tsk->start_boottime = leader->start_boottime;
1118 BUG_ON(!same_thread_group(leader, tsk));
1120 * An exec() starts a new thread group with the
1121 * TGID of the previous thread group. Rehash the
1122 * two threads with a switched PID, and release
1123 * the former thread group leader:
1126 /* Become a process group leader with the old leader's pid.
1127 * The old leader becomes a thread of the this thread group.
1129 exchange_tids(tsk, leader);
1130 transfer_pid(leader, tsk, PIDTYPE_TGID);
1131 transfer_pid(leader, tsk, PIDTYPE_PGID);
1132 transfer_pid(leader, tsk, PIDTYPE_SID);
1134 list_replace_rcu(&leader->tasks, &tsk->tasks);
1135 list_replace_init(&leader->sibling, &tsk->sibling);
1137 tsk->group_leader = tsk;
1138 leader->group_leader = tsk;
1140 tsk->exit_signal = SIGCHLD;
1141 leader->exit_signal = -1;
1143 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1144 leader->exit_state = EXIT_DEAD;
1147 * We are going to release_task()->ptrace_unlink() silently,
1148 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1149 * the tracer wont't block again waiting for this thread.
1151 if (unlikely(leader->ptrace))
1152 __wake_up_parent(leader, leader->parent);
1153 write_unlock_irq(&tasklist_lock);
1154 cgroup_threadgroup_change_end(tsk);
1156 release_task(leader);
1159 sig->group_exec_task = NULL;
1160 sig->notify_count = 0;
1163 /* we have changed execution domain */
1164 tsk->exit_signal = SIGCHLD;
1166 BUG_ON(!thread_group_leader(tsk));
1170 /* protects against exit_notify() and __exit_signal() */
1171 read_lock(&tasklist_lock);
1172 sig->group_exec_task = NULL;
1173 sig->notify_count = 0;
1174 read_unlock(&tasklist_lock);
1180 * This function makes sure the current process has its own signal table,
1181 * so that flush_signal_handlers can later reset the handlers without
1182 * disturbing other processes. (Other processes might share the signal
1183 * table via the CLONE_SIGHAND option to clone().)
1185 static int unshare_sighand(struct task_struct *me)
1187 struct sighand_struct *oldsighand = me->sighand;
1189 if (refcount_read(&oldsighand->count) != 1) {
1190 struct sighand_struct *newsighand;
1192 * This ->sighand is shared with the CLONE_SIGHAND
1193 * but not CLONE_THREAD task, switch to the new one.
1195 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1199 refcount_set(&newsighand->count, 1);
1200 memcpy(newsighand->action, oldsighand->action,
1201 sizeof(newsighand->action));
1203 write_lock_irq(&tasklist_lock);
1204 spin_lock(&oldsighand->siglock);
1205 rcu_assign_pointer(me->sighand, newsighand);
1206 spin_unlock(&oldsighand->siglock);
1207 write_unlock_irq(&tasklist_lock);
1209 __cleanup_sighand(oldsighand);
1214 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1217 /* Always NUL terminated and zero-padded */
1218 strscpy_pad(buf, tsk->comm, buf_size);
1222 EXPORT_SYMBOL_GPL(__get_task_comm);
1225 * These functions flushes out all traces of the currently running executable
1226 * so that a new one can be started
1229 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1232 trace_task_rename(tsk, buf);
1233 strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1235 perf_event_comm(tsk, exec);
1239 * Calling this is the point of no return. None of the failures will be
1240 * seen by userspace since either the process is already taking a fatal
1241 * signal (via de_thread() or coredump), or will have SEGV raised
1242 * (after exec_mmap()) by search_binary_handler (see below).
1244 int begin_new_exec(struct linux_binprm * bprm)
1246 struct task_struct *me = current;
1249 /* Once we are committed compute the creds */
1250 retval = bprm_creds_from_file(bprm);
1255 * Ensure all future errors are fatal.
1257 bprm->point_of_no_return = true;
1260 * Make this the only thread in the thread group.
1262 retval = de_thread(me);
1267 * Cancel any io_uring activity across execve
1269 io_uring_task_cancel();
1271 /* Ensure the files table is not shared. */
1272 retval = unshare_files();
1277 * Must be called _before_ exec_mmap() as bprm->mm is
1278 * not visible until then. This also enables the update
1281 retval = set_mm_exe_file(bprm->mm, bprm->file);
1285 /* If the binary is not readable then enforce mm->dumpable=0 */
1286 would_dump(bprm, bprm->file);
1287 if (bprm->have_execfd)
1288 would_dump(bprm, bprm->executable);
1291 * Release all of the old mmap stuff
1293 acct_arg_size(bprm, 0);
1294 retval = exec_mmap(bprm->mm);
1300 #ifdef CONFIG_POSIX_TIMERS
1301 exit_itimers(me->signal);
1302 flush_itimer_signals();
1306 * Make the signal table private.
1308 retval = unshare_sighand(me);
1313 * Ensure that the uaccess routines can actually operate on userspace
1316 force_uaccess_begin();
1318 if (me->flags & PF_KTHREAD)
1319 free_kthread_struct(me);
1320 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1321 PF_NOFREEZE | PF_NO_SETAFFINITY);
1323 me->personality &= ~bprm->per_clear;
1325 clear_syscall_work_syscall_user_dispatch(me);
1328 * We have to apply CLOEXEC before we change whether the process is
1329 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1330 * trying to access the should-be-closed file descriptors of a process
1331 * undergoing exec(2).
1333 do_close_on_exec(me->files);
1335 if (bprm->secureexec) {
1336 /* Make sure parent cannot signal privileged process. */
1337 me->pdeath_signal = 0;
1340 * For secureexec, reset the stack limit to sane default to
1341 * avoid bad behavior from the prior rlimits. This has to
1342 * happen before arch_pick_mmap_layout(), which examines
1343 * RLIMIT_STACK, but after the point of no return to avoid
1344 * needing to clean up the change on failure.
1346 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1347 bprm->rlim_stack.rlim_cur = _STK_LIM;
1350 me->sas_ss_sp = me->sas_ss_size = 0;
1353 * Figure out dumpability. Note that this checking only of current
1354 * is wrong, but userspace depends on it. This should be testing
1355 * bprm->secureexec instead.
1357 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1358 !(uid_eq(current_euid(), current_uid()) &&
1359 gid_eq(current_egid(), current_gid())))
1360 set_dumpable(current->mm, suid_dumpable);
1362 set_dumpable(current->mm, SUID_DUMP_USER);
1365 __set_task_comm(me, kbasename(bprm->filename), true);
1367 /* An exec changes our domain. We are no longer part of the thread
1369 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1370 flush_signal_handlers(me, 0);
1372 retval = set_cred_ucounts(bprm->cred);
1377 * install the new credentials for this executable
1379 security_bprm_committing_creds(bprm);
1381 commit_creds(bprm->cred);
1385 * Disable monitoring for regular users
1386 * when executing setuid binaries. Must
1387 * wait until new credentials are committed
1388 * by commit_creds() above
1390 if (get_dumpable(me->mm) != SUID_DUMP_USER)
1391 perf_event_exit_task(me);
1393 * cred_guard_mutex must be held at least to this point to prevent
1394 * ptrace_attach() from altering our determination of the task's
1395 * credentials; any time after this it may be unlocked.
1397 security_bprm_committed_creds(bprm);
1399 /* Pass the opened binary to the interpreter. */
1400 if (bprm->have_execfd) {
1401 retval = get_unused_fd_flags(0);
1404 fd_install(retval, bprm->executable);
1405 bprm->executable = NULL;
1406 bprm->execfd = retval;
1411 up_write(&me->signal->exec_update_lock);
1415 EXPORT_SYMBOL(begin_new_exec);
1417 void would_dump(struct linux_binprm *bprm, struct file *file)
1419 struct inode *inode = file_inode(file);
1420 struct user_namespace *mnt_userns = file_mnt_user_ns(file);
1421 if (inode_permission(mnt_userns, inode, MAY_READ) < 0) {
1422 struct user_namespace *old, *user_ns;
1423 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1425 /* Ensure mm->user_ns contains the executable */
1426 user_ns = old = bprm->mm->user_ns;
1427 while ((user_ns != &init_user_ns) &&
1428 !privileged_wrt_inode_uidgid(user_ns, mnt_userns, inode))
1429 user_ns = user_ns->parent;
1431 if (old != user_ns) {
1432 bprm->mm->user_ns = get_user_ns(user_ns);
1437 EXPORT_SYMBOL(would_dump);
1439 void setup_new_exec(struct linux_binprm * bprm)
1441 /* Setup things that can depend upon the personality */
1442 struct task_struct *me = current;
1444 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1446 arch_setup_new_exec();
1448 /* Set the new mm task size. We have to do that late because it may
1449 * depend on TIF_32BIT which is only updated in flush_thread() on
1450 * some architectures like powerpc
1452 me->mm->task_size = TASK_SIZE;
1453 up_write(&me->signal->exec_update_lock);
1454 mutex_unlock(&me->signal->cred_guard_mutex);
1456 EXPORT_SYMBOL(setup_new_exec);
1458 /* Runs immediately before start_thread() takes over. */
1459 void finalize_exec(struct linux_binprm *bprm)
1461 /* Store any stack rlimit changes before starting thread. */
1462 task_lock(current->group_leader);
1463 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1464 task_unlock(current->group_leader);
1466 EXPORT_SYMBOL(finalize_exec);
1469 * Prepare credentials and lock ->cred_guard_mutex.
1470 * setup_new_exec() commits the new creds and drops the lock.
1471 * Or, if exec fails before, free_bprm() should release ->cred
1474 static int prepare_bprm_creds(struct linux_binprm *bprm)
1476 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex))
1477 return -ERESTARTNOINTR;
1479 bprm->cred = prepare_exec_creds();
1480 if (likely(bprm->cred))
1483 mutex_unlock(¤t->signal->cred_guard_mutex);
1487 static void free_bprm(struct linux_binprm *bprm)
1490 acct_arg_size(bprm, 0);
1493 free_arg_pages(bprm);
1495 mutex_unlock(¤t->signal->cred_guard_mutex);
1496 abort_creds(bprm->cred);
1499 allow_write_access(bprm->file);
1502 if (bprm->executable)
1503 fput(bprm->executable);
1504 /* If a binfmt changed the interp, free it. */
1505 if (bprm->interp != bprm->filename)
1506 kfree(bprm->interp);
1507 kfree(bprm->fdpath);
1511 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1513 struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1514 int retval = -ENOMEM;
1518 if (fd == AT_FDCWD || filename->name[0] == '/') {
1519 bprm->filename = filename->name;
1521 if (filename->name[0] == '\0')
1522 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1524 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1525 fd, filename->name);
1529 bprm->filename = bprm->fdpath;
1531 bprm->interp = bprm->filename;
1533 retval = bprm_mm_init(bprm);
1541 return ERR_PTR(retval);
1544 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1546 /* If a binfmt changed the interp, free it first. */
1547 if (bprm->interp != bprm->filename)
1548 kfree(bprm->interp);
1549 bprm->interp = kstrdup(interp, GFP_KERNEL);
1554 EXPORT_SYMBOL(bprm_change_interp);
1557 * determine how safe it is to execute the proposed program
1558 * - the caller must hold ->cred_guard_mutex to protect against
1559 * PTRACE_ATTACH or seccomp thread-sync
1561 static void check_unsafe_exec(struct linux_binprm *bprm)
1563 struct task_struct *p = current, *t;
1567 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1570 * This isn't strictly necessary, but it makes it harder for LSMs to
1573 if (task_no_new_privs(current))
1574 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1578 spin_lock(&p->fs->lock);
1580 while_each_thread(p, t) {
1586 if (p->fs->users > n_fs)
1587 bprm->unsafe |= LSM_UNSAFE_SHARE;
1590 spin_unlock(&p->fs->lock);
1593 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1595 /* Handle suid and sgid on files */
1596 struct user_namespace *mnt_userns;
1597 struct inode *inode;
1602 if (!mnt_may_suid(file->f_path.mnt))
1605 if (task_no_new_privs(current))
1608 inode = file->f_path.dentry->d_inode;
1609 mode = READ_ONCE(inode->i_mode);
1610 if (!(mode & (S_ISUID|S_ISGID)))
1613 mnt_userns = file_mnt_user_ns(file);
1615 /* Be careful if suid/sgid is set */
1618 /* reload atomically mode/uid/gid now that lock held */
1619 mode = inode->i_mode;
1620 uid = i_uid_into_mnt(mnt_userns, inode);
1621 gid = i_gid_into_mnt(mnt_userns, inode);
1622 inode_unlock(inode);
1624 /* We ignore suid/sgid if there are no mappings for them in the ns */
1625 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1626 !kgid_has_mapping(bprm->cred->user_ns, gid))
1629 if (mode & S_ISUID) {
1630 bprm->per_clear |= PER_CLEAR_ON_SETID;
1631 bprm->cred->euid = uid;
1634 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1635 bprm->per_clear |= PER_CLEAR_ON_SETID;
1636 bprm->cred->egid = gid;
1641 * Compute brpm->cred based upon the final binary.
1643 static int bprm_creds_from_file(struct linux_binprm *bprm)
1645 /* Compute creds based on which file? */
1646 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1648 bprm_fill_uid(bprm, file);
1649 return security_bprm_creds_from_file(bprm, file);
1653 * Fill the binprm structure from the inode.
1654 * Read the first BINPRM_BUF_SIZE bytes
1656 * This may be called multiple times for binary chains (scripts for example).
1658 static int prepare_binprm(struct linux_binprm *bprm)
1662 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1663 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1667 * Arguments are '\0' separated strings found at the location bprm->p
1668 * points to; chop off the first by relocating brpm->p to right after
1669 * the first '\0' encountered.
1671 int remove_arg_zero(struct linux_binprm *bprm)
1674 unsigned long offset;
1682 offset = bprm->p & ~PAGE_MASK;
1683 page = get_arg_page(bprm, bprm->p, 0);
1688 kaddr = kmap_atomic(page);
1690 for (; offset < PAGE_SIZE && kaddr[offset];
1691 offset++, bprm->p++)
1694 kunmap_atomic(kaddr);
1696 } while (offset == PAGE_SIZE);
1705 EXPORT_SYMBOL(remove_arg_zero);
1707 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1709 * cycle the list of binary formats handler, until one recognizes the image
1711 static int search_binary_handler(struct linux_binprm *bprm)
1713 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1714 struct linux_binfmt *fmt;
1717 retval = prepare_binprm(bprm);
1721 retval = security_bprm_check(bprm);
1727 read_lock(&binfmt_lock);
1728 list_for_each_entry(fmt, &formats, lh) {
1729 if (!try_module_get(fmt->module))
1731 read_unlock(&binfmt_lock);
1733 retval = fmt->load_binary(bprm);
1735 read_lock(&binfmt_lock);
1737 if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1738 read_unlock(&binfmt_lock);
1742 read_unlock(&binfmt_lock);
1745 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1746 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1748 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1757 static int exec_binprm(struct linux_binprm *bprm)
1759 pid_t old_pid, old_vpid;
1762 /* Need to fetch pid before load_binary changes it */
1763 old_pid = current->pid;
1765 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1768 /* This allows 4 levels of binfmt rewrites before failing hard. */
1769 for (depth = 0;; depth++) {
1774 ret = search_binary_handler(bprm);
1777 if (!bprm->interpreter)
1781 bprm->file = bprm->interpreter;
1782 bprm->interpreter = NULL;
1784 allow_write_access(exec);
1785 if (unlikely(bprm->have_execfd)) {
1786 if (bprm->executable) {
1790 bprm->executable = exec;
1796 trace_sched_process_exec(current, old_pid, bprm);
1797 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1798 proc_exec_connector(current);
1803 * sys_execve() executes a new program.
1805 static int bprm_execve(struct linux_binprm *bprm,
1806 int fd, struct filename *filename, int flags)
1811 retval = prepare_bprm_creds(bprm);
1815 check_unsafe_exec(bprm);
1816 current->in_execve = 1;
1818 file = do_open_execat(fd, filename, flags);
1819 retval = PTR_ERR(file);
1827 * Record that a name derived from an O_CLOEXEC fd will be
1828 * inaccessible after exec. This allows the code in exec to
1829 * choose to fail when the executable is not mmaped into the
1830 * interpreter and an open file descriptor is not passed to
1831 * the interpreter. This makes for a better user experience
1832 * than having the interpreter start and then immediately fail
1833 * when it finds the executable is inaccessible.
1835 if (bprm->fdpath && get_close_on_exec(fd))
1836 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1838 /* Set the unchanging part of bprm->cred */
1839 retval = security_bprm_creds_for_exec(bprm);
1843 retval = exec_binprm(bprm);
1847 /* execve succeeded */
1848 current->fs->in_exec = 0;
1849 current->in_execve = 0;
1850 rseq_execve(current);
1851 acct_update_integrals(current);
1852 task_numa_free(current, false);
1857 * If past the point of no return ensure the code never
1858 * returns to the userspace process. Use an existing fatal
1859 * signal if present otherwise terminate the process with
1862 if (bprm->point_of_no_return && !fatal_signal_pending(current))
1863 force_fatal_sig(SIGSEGV);
1866 current->fs->in_exec = 0;
1867 current->in_execve = 0;
1872 static int do_execveat_common(int fd, struct filename *filename,
1873 struct user_arg_ptr argv,
1874 struct user_arg_ptr envp,
1877 struct linux_binprm *bprm;
1880 if (IS_ERR(filename))
1881 return PTR_ERR(filename);
1884 * We move the actual failure in case of RLIMIT_NPROC excess from
1885 * set*uid() to execve() because too many poorly written programs
1886 * don't check setuid() return code. Here we additionally recheck
1887 * whether NPROC limit is still exceeded.
1889 if ((current->flags & PF_NPROC_EXCEEDED) &&
1890 is_ucounts_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1895 /* We're below the limit (still or again), so we don't want to make
1896 * further execve() calls fail. */
1897 current->flags &= ~PF_NPROC_EXCEEDED;
1899 bprm = alloc_bprm(fd, filename);
1901 retval = PTR_ERR(bprm);
1905 retval = count(argv, MAX_ARG_STRINGS);
1907 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1908 current->comm, bprm->filename);
1911 bprm->argc = retval;
1913 retval = count(envp, MAX_ARG_STRINGS);
1916 bprm->envc = retval;
1918 retval = bprm_stack_limits(bprm);
1922 retval = copy_string_kernel(bprm->filename, bprm);
1925 bprm->exec = bprm->p;
1927 retval = copy_strings(bprm->envc, envp, bprm);
1931 retval = copy_strings(bprm->argc, argv, bprm);
1936 * When argv is empty, add an empty string ("") as argv[0] to
1937 * ensure confused userspace programs that start processing
1938 * from argv[1] won't end up walking envp. See also
1939 * bprm_stack_limits().
1941 if (bprm->argc == 0) {
1942 retval = copy_string_kernel("", bprm);
1948 retval = bprm_execve(bprm, fd, filename, flags);
1957 int kernel_execve(const char *kernel_filename,
1958 const char *const *argv, const char *const *envp)
1960 struct filename *filename;
1961 struct linux_binprm *bprm;
1965 filename = getname_kernel(kernel_filename);
1966 if (IS_ERR(filename))
1967 return PTR_ERR(filename);
1969 bprm = alloc_bprm(fd, filename);
1971 retval = PTR_ERR(bprm);
1975 retval = count_strings_kernel(argv);
1976 if (WARN_ON_ONCE(retval == 0))
1980 bprm->argc = retval;
1982 retval = count_strings_kernel(envp);
1985 bprm->envc = retval;
1987 retval = bprm_stack_limits(bprm);
1991 retval = copy_string_kernel(bprm->filename, bprm);
1994 bprm->exec = bprm->p;
1996 retval = copy_strings_kernel(bprm->envc, envp, bprm);
2000 retval = copy_strings_kernel(bprm->argc, argv, bprm);
2004 retval = bprm_execve(bprm, fd, filename, 0);
2012 static int do_execve(struct filename *filename,
2013 const char __user *const __user *__argv,
2014 const char __user *const __user *__envp)
2016 struct user_arg_ptr argv = { .ptr.native = __argv };
2017 struct user_arg_ptr envp = { .ptr.native = __envp };
2018 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2021 static int do_execveat(int fd, struct filename *filename,
2022 const char __user *const __user *__argv,
2023 const char __user *const __user *__envp,
2026 struct user_arg_ptr argv = { .ptr.native = __argv };
2027 struct user_arg_ptr envp = { .ptr.native = __envp };
2029 return do_execveat_common(fd, filename, argv, envp, flags);
2032 #ifdef CONFIG_COMPAT
2033 static int compat_do_execve(struct filename *filename,
2034 const compat_uptr_t __user *__argv,
2035 const compat_uptr_t __user *__envp)
2037 struct user_arg_ptr argv = {
2039 .ptr.compat = __argv,
2041 struct user_arg_ptr envp = {
2043 .ptr.compat = __envp,
2045 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2048 static int compat_do_execveat(int fd, struct filename *filename,
2049 const compat_uptr_t __user *__argv,
2050 const compat_uptr_t __user *__envp,
2053 struct user_arg_ptr argv = {
2055 .ptr.compat = __argv,
2057 struct user_arg_ptr envp = {
2059 .ptr.compat = __envp,
2061 return do_execveat_common(fd, filename, argv, envp, flags);
2065 void set_binfmt(struct linux_binfmt *new)
2067 struct mm_struct *mm = current->mm;
2070 module_put(mm->binfmt->module);
2074 __module_get(new->module);
2076 EXPORT_SYMBOL(set_binfmt);
2079 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2081 void set_dumpable(struct mm_struct *mm, int value)
2083 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2086 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2089 SYSCALL_DEFINE3(execve,
2090 const char __user *, filename,
2091 const char __user *const __user *, argv,
2092 const char __user *const __user *, envp)
2094 return do_execve(getname(filename), argv, envp);
2097 SYSCALL_DEFINE5(execveat,
2098 int, fd, const char __user *, filename,
2099 const char __user *const __user *, argv,
2100 const char __user *const __user *, envp,
2103 return do_execveat(fd,
2104 getname_uflags(filename, flags),
2108 #ifdef CONFIG_COMPAT
2109 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2110 const compat_uptr_t __user *, argv,
2111 const compat_uptr_t __user *, envp)
2113 return compat_do_execve(getname(filename), argv, envp);
2116 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2117 const char __user *, filename,
2118 const compat_uptr_t __user *, argv,
2119 const compat_uptr_t __user *, envp,
2122 return compat_do_execveat(fd,
2123 getname_uflags(filename, flags),
2128 #ifdef CONFIG_SYSCTL
2130 static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write,
2131 void *buffer, size_t *lenp, loff_t *ppos)
2133 int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2136 validate_coredump_safety();
2140 static struct ctl_table fs_exec_sysctls[] = {
2142 .procname = "suid_dumpable",
2143 .data = &suid_dumpable,
2144 .maxlen = sizeof(int),
2146 .proc_handler = proc_dointvec_minmax_coredump,
2147 .extra1 = SYSCTL_ZERO,
2148 .extra2 = SYSCTL_TWO,
2153 static int __init init_fs_exec_sysctls(void)
2155 register_sysctl_init("fs", fs_exec_sysctls);
2159 fs_initcall(init_fs_exec_sysctls);
2160 #endif /* CONFIG_SYSCTL */