Merge branch 'dmi-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jdelvar...
[platform/kernel/linux-rpi.git] / fs / exec.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/exec.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 /*
9  * #!-checking implemented by tytso.
10  */
11 /*
12  * Demand-loading implemented 01.12.91 - no need to read anything but
13  * the header into memory. The inode of the executable is put into
14  * "current->executable", and page faults do the actual loading. Clean.
15  *
16  * Once more I can proudly say that linux stood up to being changed: it
17  * was less than 2 hours work to get demand-loading completely implemented.
18  *
19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20  * current->executable is only used by the procfs.  This allows a dispatch
21  * table to check for several different types  of binary formats.  We keep
22  * trying until we recognize the file or we run out of supported binary
23  * formats.
24  */
25
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/vmacache.h>
32 #include <linux/stat.h>
33 #include <linux/fcntl.h>
34 #include <linux/swap.h>
35 #include <linux/string.h>
36 #include <linux/init.h>
37 #include <linux/sched/mm.h>
38 #include <linux/sched/coredump.h>
39 #include <linux/sched/signal.h>
40 #include <linux/sched/numa_balancing.h>
41 #include <linux/sched/task.h>
42 #include <linux/pagemap.h>
43 #include <linux/perf_event.h>
44 #include <linux/highmem.h>
45 #include <linux/spinlock.h>
46 #include <linux/key.h>
47 #include <linux/personality.h>
48 #include <linux/binfmts.h>
49 #include <linux/utsname.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/module.h>
52 #include <linux/namei.h>
53 #include <linux/mount.h>
54 #include <linux/security.h>
55 #include <linux/syscalls.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/audit.h>
59 #include <linux/tracehook.h>
60 #include <linux/kmod.h>
61 #include <linux/fsnotify.h>
62 #include <linux/fs_struct.h>
63 #include <linux/oom.h>
64 #include <linux/compat.h>
65 #include <linux/vmalloc.h>
66 #include <linux/io_uring.h>
67
68 #include <linux/uaccess.h>
69 #include <asm/mmu_context.h>
70 #include <asm/tlb.h>
71
72 #include <trace/events/task.h>
73 #include "internal.h"
74
75 #include <trace/events/sched.h>
76
77 static int bprm_creds_from_file(struct linux_binprm *bprm);
78
79 int suid_dumpable = 0;
80
81 static LIST_HEAD(formats);
82 static DEFINE_RWLOCK(binfmt_lock);
83
84 void __register_binfmt(struct linux_binfmt * fmt, int insert)
85 {
86         BUG_ON(!fmt);
87         if (WARN_ON(!fmt->load_binary))
88                 return;
89         write_lock(&binfmt_lock);
90         insert ? list_add(&fmt->lh, &formats) :
91                  list_add_tail(&fmt->lh, &formats);
92         write_unlock(&binfmt_lock);
93 }
94
95 EXPORT_SYMBOL(__register_binfmt);
96
97 void unregister_binfmt(struct linux_binfmt * fmt)
98 {
99         write_lock(&binfmt_lock);
100         list_del(&fmt->lh);
101         write_unlock(&binfmt_lock);
102 }
103
104 EXPORT_SYMBOL(unregister_binfmt);
105
106 static inline void put_binfmt(struct linux_binfmt * fmt)
107 {
108         module_put(fmt->module);
109 }
110
111 bool path_noexec(const struct path *path)
112 {
113         return (path->mnt->mnt_flags & MNT_NOEXEC) ||
114                (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
115 }
116
117 #ifdef CONFIG_USELIB
118 /*
119  * Note that a shared library must be both readable and executable due to
120  * security reasons.
121  *
122  * Also note that we take the address to load from from the file itself.
123  */
124 SYSCALL_DEFINE1(uselib, const char __user *, library)
125 {
126         struct linux_binfmt *fmt;
127         struct file *file;
128         struct filename *tmp = getname(library);
129         int error = PTR_ERR(tmp);
130         static const struct open_flags uselib_flags = {
131                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
132                 .acc_mode = MAY_READ | MAY_EXEC,
133                 .intent = LOOKUP_OPEN,
134                 .lookup_flags = LOOKUP_FOLLOW,
135         };
136
137         if (IS_ERR(tmp))
138                 goto out;
139
140         file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
141         putname(tmp);
142         error = PTR_ERR(file);
143         if (IS_ERR(file))
144                 goto out;
145
146         /*
147          * may_open() has already checked for this, so it should be
148          * impossible to trip now. But we need to be extra cautious
149          * and check again at the very end too.
150          */
151         error = -EACCES;
152         if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
153                          path_noexec(&file->f_path)))
154                 goto exit;
155
156         fsnotify_open(file);
157
158         error = -ENOEXEC;
159
160         read_lock(&binfmt_lock);
161         list_for_each_entry(fmt, &formats, lh) {
162                 if (!fmt->load_shlib)
163                         continue;
164                 if (!try_module_get(fmt->module))
165                         continue;
166                 read_unlock(&binfmt_lock);
167                 error = fmt->load_shlib(file);
168                 read_lock(&binfmt_lock);
169                 put_binfmt(fmt);
170                 if (error != -ENOEXEC)
171                         break;
172         }
173         read_unlock(&binfmt_lock);
174 exit:
175         fput(file);
176 out:
177         return error;
178 }
179 #endif /* #ifdef CONFIG_USELIB */
180
181 #ifdef CONFIG_MMU
182 /*
183  * The nascent bprm->mm is not visible until exec_mmap() but it can
184  * use a lot of memory, account these pages in current->mm temporary
185  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
186  * change the counter back via acct_arg_size(0).
187  */
188 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
189 {
190         struct mm_struct *mm = current->mm;
191         long diff = (long)(pages - bprm->vma_pages);
192
193         if (!mm || !diff)
194                 return;
195
196         bprm->vma_pages = pages;
197         add_mm_counter(mm, MM_ANONPAGES, diff);
198 }
199
200 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
201                 int write)
202 {
203         struct page *page;
204         int ret;
205         unsigned int gup_flags = FOLL_FORCE;
206
207 #ifdef CONFIG_STACK_GROWSUP
208         if (write) {
209                 ret = expand_downwards(bprm->vma, pos);
210                 if (ret < 0)
211                         return NULL;
212         }
213 #endif
214
215         if (write)
216                 gup_flags |= FOLL_WRITE;
217
218         /*
219          * We are doing an exec().  'current' is the process
220          * doing the exec and bprm->mm is the new process's mm.
221          */
222         ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags,
223                         &page, NULL, NULL);
224         if (ret <= 0)
225                 return NULL;
226
227         if (write)
228                 acct_arg_size(bprm, vma_pages(bprm->vma));
229
230         return page;
231 }
232
233 static void put_arg_page(struct page *page)
234 {
235         put_page(page);
236 }
237
238 static void free_arg_pages(struct linux_binprm *bprm)
239 {
240 }
241
242 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
243                 struct page *page)
244 {
245         flush_cache_page(bprm->vma, pos, page_to_pfn(page));
246 }
247
248 static int __bprm_mm_init(struct linux_binprm *bprm)
249 {
250         int err;
251         struct vm_area_struct *vma = NULL;
252         struct mm_struct *mm = bprm->mm;
253
254         bprm->vma = vma = vm_area_alloc(mm);
255         if (!vma)
256                 return -ENOMEM;
257         vma_set_anonymous(vma);
258
259         if (mmap_write_lock_killable(mm)) {
260                 err = -EINTR;
261                 goto err_free;
262         }
263
264         /*
265          * Place the stack at the largest stack address the architecture
266          * supports. Later, we'll move this to an appropriate place. We don't
267          * use STACK_TOP because that can depend on attributes which aren't
268          * configured yet.
269          */
270         BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
271         vma->vm_end = STACK_TOP_MAX;
272         vma->vm_start = vma->vm_end - PAGE_SIZE;
273         vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
274         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
275
276         err = insert_vm_struct(mm, vma);
277         if (err)
278                 goto err;
279
280         mm->stack_vm = mm->total_vm = 1;
281         mmap_write_unlock(mm);
282         bprm->p = vma->vm_end - sizeof(void *);
283         return 0;
284 err:
285         mmap_write_unlock(mm);
286 err_free:
287         bprm->vma = NULL;
288         vm_area_free(vma);
289         return err;
290 }
291
292 static bool valid_arg_len(struct linux_binprm *bprm, long len)
293 {
294         return len <= MAX_ARG_STRLEN;
295 }
296
297 #else
298
299 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
300 {
301 }
302
303 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
304                 int write)
305 {
306         struct page *page;
307
308         page = bprm->page[pos / PAGE_SIZE];
309         if (!page && write) {
310                 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
311                 if (!page)
312                         return NULL;
313                 bprm->page[pos / PAGE_SIZE] = page;
314         }
315
316         return page;
317 }
318
319 static void put_arg_page(struct page *page)
320 {
321 }
322
323 static void free_arg_page(struct linux_binprm *bprm, int i)
324 {
325         if (bprm->page[i]) {
326                 __free_page(bprm->page[i]);
327                 bprm->page[i] = NULL;
328         }
329 }
330
331 static void free_arg_pages(struct linux_binprm *bprm)
332 {
333         int i;
334
335         for (i = 0; i < MAX_ARG_PAGES; i++)
336                 free_arg_page(bprm, i);
337 }
338
339 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
340                 struct page *page)
341 {
342 }
343
344 static int __bprm_mm_init(struct linux_binprm *bprm)
345 {
346         bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
347         return 0;
348 }
349
350 static bool valid_arg_len(struct linux_binprm *bprm, long len)
351 {
352         return len <= bprm->p;
353 }
354
355 #endif /* CONFIG_MMU */
356
357 /*
358  * Create a new mm_struct and populate it with a temporary stack
359  * vm_area_struct.  We don't have enough context at this point to set the stack
360  * flags, permissions, and offset, so we use temporary values.  We'll update
361  * them later in setup_arg_pages().
362  */
363 static int bprm_mm_init(struct linux_binprm *bprm)
364 {
365         int err;
366         struct mm_struct *mm = NULL;
367
368         bprm->mm = mm = mm_alloc();
369         err = -ENOMEM;
370         if (!mm)
371                 goto err;
372
373         /* Save current stack limit for all calculations made during exec. */
374         task_lock(current->group_leader);
375         bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
376         task_unlock(current->group_leader);
377
378         err = __bprm_mm_init(bprm);
379         if (err)
380                 goto err;
381
382         return 0;
383
384 err:
385         if (mm) {
386                 bprm->mm = NULL;
387                 mmdrop(mm);
388         }
389
390         return err;
391 }
392
393 struct user_arg_ptr {
394 #ifdef CONFIG_COMPAT
395         bool is_compat;
396 #endif
397         union {
398                 const char __user *const __user *native;
399 #ifdef CONFIG_COMPAT
400                 const compat_uptr_t __user *compat;
401 #endif
402         } ptr;
403 };
404
405 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
406 {
407         const char __user *native;
408
409 #ifdef CONFIG_COMPAT
410         if (unlikely(argv.is_compat)) {
411                 compat_uptr_t compat;
412
413                 if (get_user(compat, argv.ptr.compat + nr))
414                         return ERR_PTR(-EFAULT);
415
416                 return compat_ptr(compat);
417         }
418 #endif
419
420         if (get_user(native, argv.ptr.native + nr))
421                 return ERR_PTR(-EFAULT);
422
423         return native;
424 }
425
426 /*
427  * count() counts the number of strings in array ARGV.
428  */
429 static int count(struct user_arg_ptr argv, int max)
430 {
431         int i = 0;
432
433         if (argv.ptr.native != NULL) {
434                 for (;;) {
435                         const char __user *p = get_user_arg_ptr(argv, i);
436
437                         if (!p)
438                                 break;
439
440                         if (IS_ERR(p))
441                                 return -EFAULT;
442
443                         if (i >= max)
444                                 return -E2BIG;
445                         ++i;
446
447                         if (fatal_signal_pending(current))
448                                 return -ERESTARTNOHAND;
449                         cond_resched();
450                 }
451         }
452         return i;
453 }
454
455 static int count_strings_kernel(const char *const *argv)
456 {
457         int i;
458
459         if (!argv)
460                 return 0;
461
462         for (i = 0; argv[i]; ++i) {
463                 if (i >= MAX_ARG_STRINGS)
464                         return -E2BIG;
465                 if (fatal_signal_pending(current))
466                         return -ERESTARTNOHAND;
467                 cond_resched();
468         }
469         return i;
470 }
471
472 static int bprm_stack_limits(struct linux_binprm *bprm)
473 {
474         unsigned long limit, ptr_size;
475
476         /*
477          * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
478          * (whichever is smaller) for the argv+env strings.
479          * This ensures that:
480          *  - the remaining binfmt code will not run out of stack space,
481          *  - the program will have a reasonable amount of stack left
482          *    to work from.
483          */
484         limit = _STK_LIM / 4 * 3;
485         limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
486         /*
487          * We've historically supported up to 32 pages (ARG_MAX)
488          * of argument strings even with small stacks
489          */
490         limit = max_t(unsigned long, limit, ARG_MAX);
491         /*
492          * We must account for the size of all the argv and envp pointers to
493          * the argv and envp strings, since they will also take up space in
494          * the stack. They aren't stored until much later when we can't
495          * signal to the parent that the child has run out of stack space.
496          * Instead, calculate it here so it's possible to fail gracefully.
497          */
498         ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
499         if (limit <= ptr_size)
500                 return -E2BIG;
501         limit -= ptr_size;
502
503         bprm->argmin = bprm->p - limit;
504         return 0;
505 }
506
507 /*
508  * 'copy_strings()' copies argument/environment strings from the old
509  * processes's memory to the new process's stack.  The call to get_user_pages()
510  * ensures the destination page is created and not swapped out.
511  */
512 static int copy_strings(int argc, struct user_arg_ptr argv,
513                         struct linux_binprm *bprm)
514 {
515         struct page *kmapped_page = NULL;
516         char *kaddr = NULL;
517         unsigned long kpos = 0;
518         int ret;
519
520         while (argc-- > 0) {
521                 const char __user *str;
522                 int len;
523                 unsigned long pos;
524
525                 ret = -EFAULT;
526                 str = get_user_arg_ptr(argv, argc);
527                 if (IS_ERR(str))
528                         goto out;
529
530                 len = strnlen_user(str, MAX_ARG_STRLEN);
531                 if (!len)
532                         goto out;
533
534                 ret = -E2BIG;
535                 if (!valid_arg_len(bprm, len))
536                         goto out;
537
538                 /* We're going to work our way backwords. */
539                 pos = bprm->p;
540                 str += len;
541                 bprm->p -= len;
542 #ifdef CONFIG_MMU
543                 if (bprm->p < bprm->argmin)
544                         goto out;
545 #endif
546
547                 while (len > 0) {
548                         int offset, bytes_to_copy;
549
550                         if (fatal_signal_pending(current)) {
551                                 ret = -ERESTARTNOHAND;
552                                 goto out;
553                         }
554                         cond_resched();
555
556                         offset = pos % PAGE_SIZE;
557                         if (offset == 0)
558                                 offset = PAGE_SIZE;
559
560                         bytes_to_copy = offset;
561                         if (bytes_to_copy > len)
562                                 bytes_to_copy = len;
563
564                         offset -= bytes_to_copy;
565                         pos -= bytes_to_copy;
566                         str -= bytes_to_copy;
567                         len -= bytes_to_copy;
568
569                         if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
570                                 struct page *page;
571
572                                 page = get_arg_page(bprm, pos, 1);
573                                 if (!page) {
574                                         ret = -E2BIG;
575                                         goto out;
576                                 }
577
578                                 if (kmapped_page) {
579                                         flush_kernel_dcache_page(kmapped_page);
580                                         kunmap(kmapped_page);
581                                         put_arg_page(kmapped_page);
582                                 }
583                                 kmapped_page = page;
584                                 kaddr = kmap(kmapped_page);
585                                 kpos = pos & PAGE_MASK;
586                                 flush_arg_page(bprm, kpos, kmapped_page);
587                         }
588                         if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
589                                 ret = -EFAULT;
590                                 goto out;
591                         }
592                 }
593         }
594         ret = 0;
595 out:
596         if (kmapped_page) {
597                 flush_kernel_dcache_page(kmapped_page);
598                 kunmap(kmapped_page);
599                 put_arg_page(kmapped_page);
600         }
601         return ret;
602 }
603
604 /*
605  * Copy and argument/environment string from the kernel to the processes stack.
606  */
607 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
608 {
609         int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
610         unsigned long pos = bprm->p;
611
612         if (len == 0)
613                 return -EFAULT;
614         if (!valid_arg_len(bprm, len))
615                 return -E2BIG;
616
617         /* We're going to work our way backwards. */
618         arg += len;
619         bprm->p -= len;
620         if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
621                 return -E2BIG;
622
623         while (len > 0) {
624                 unsigned int bytes_to_copy = min_t(unsigned int, len,
625                                 min_not_zero(offset_in_page(pos), PAGE_SIZE));
626                 struct page *page;
627                 char *kaddr;
628
629                 pos -= bytes_to_copy;
630                 arg -= bytes_to_copy;
631                 len -= bytes_to_copy;
632
633                 page = get_arg_page(bprm, pos, 1);
634                 if (!page)
635                         return -E2BIG;
636                 kaddr = kmap_atomic(page);
637                 flush_arg_page(bprm, pos & PAGE_MASK, page);
638                 memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy);
639                 flush_kernel_dcache_page(page);
640                 kunmap_atomic(kaddr);
641                 put_arg_page(page);
642         }
643
644         return 0;
645 }
646 EXPORT_SYMBOL(copy_string_kernel);
647
648 static int copy_strings_kernel(int argc, const char *const *argv,
649                                struct linux_binprm *bprm)
650 {
651         while (argc-- > 0) {
652                 int ret = copy_string_kernel(argv[argc], bprm);
653                 if (ret < 0)
654                         return ret;
655                 if (fatal_signal_pending(current))
656                         return -ERESTARTNOHAND;
657                 cond_resched();
658         }
659         return 0;
660 }
661
662 #ifdef CONFIG_MMU
663
664 /*
665  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
666  * the binfmt code determines where the new stack should reside, we shift it to
667  * its final location.  The process proceeds as follows:
668  *
669  * 1) Use shift to calculate the new vma endpoints.
670  * 2) Extend vma to cover both the old and new ranges.  This ensures the
671  *    arguments passed to subsequent functions are consistent.
672  * 3) Move vma's page tables to the new range.
673  * 4) Free up any cleared pgd range.
674  * 5) Shrink the vma to cover only the new range.
675  */
676 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
677 {
678         struct mm_struct *mm = vma->vm_mm;
679         unsigned long old_start = vma->vm_start;
680         unsigned long old_end = vma->vm_end;
681         unsigned long length = old_end - old_start;
682         unsigned long new_start = old_start - shift;
683         unsigned long new_end = old_end - shift;
684         struct mmu_gather tlb;
685
686         BUG_ON(new_start > new_end);
687
688         /*
689          * ensure there are no vmas between where we want to go
690          * and where we are
691          */
692         if (vma != find_vma(mm, new_start))
693                 return -EFAULT;
694
695         /*
696          * cover the whole range: [new_start, old_end)
697          */
698         if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
699                 return -ENOMEM;
700
701         /*
702          * move the page tables downwards, on failure we rely on
703          * process cleanup to remove whatever mess we made.
704          */
705         if (length != move_page_tables(vma, old_start,
706                                        vma, new_start, length, false))
707                 return -ENOMEM;
708
709         lru_add_drain();
710         tlb_gather_mmu(&tlb, mm, old_start, old_end);
711         if (new_end > old_start) {
712                 /*
713                  * when the old and new regions overlap clear from new_end.
714                  */
715                 free_pgd_range(&tlb, new_end, old_end, new_end,
716                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
717         } else {
718                 /*
719                  * otherwise, clean from old_start; this is done to not touch
720                  * the address space in [new_end, old_start) some architectures
721                  * have constraints on va-space that make this illegal (IA64) -
722                  * for the others its just a little faster.
723                  */
724                 free_pgd_range(&tlb, old_start, old_end, new_end,
725                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
726         }
727         tlb_finish_mmu(&tlb, old_start, old_end);
728
729         /*
730          * Shrink the vma to just the new range.  Always succeeds.
731          */
732         vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
733
734         return 0;
735 }
736
737 /*
738  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
739  * the stack is optionally relocated, and some extra space is added.
740  */
741 int setup_arg_pages(struct linux_binprm *bprm,
742                     unsigned long stack_top,
743                     int executable_stack)
744 {
745         unsigned long ret;
746         unsigned long stack_shift;
747         struct mm_struct *mm = current->mm;
748         struct vm_area_struct *vma = bprm->vma;
749         struct vm_area_struct *prev = NULL;
750         unsigned long vm_flags;
751         unsigned long stack_base;
752         unsigned long stack_size;
753         unsigned long stack_expand;
754         unsigned long rlim_stack;
755
756 #ifdef CONFIG_STACK_GROWSUP
757         /* Limit stack size */
758         stack_base = bprm->rlim_stack.rlim_max;
759         if (stack_base > STACK_SIZE_MAX)
760                 stack_base = STACK_SIZE_MAX;
761
762         /* Add space for stack randomization. */
763         stack_base += (STACK_RND_MASK << PAGE_SHIFT);
764
765         /* Make sure we didn't let the argument array grow too large. */
766         if (vma->vm_end - vma->vm_start > stack_base)
767                 return -ENOMEM;
768
769         stack_base = PAGE_ALIGN(stack_top - stack_base);
770
771         stack_shift = vma->vm_start - stack_base;
772         mm->arg_start = bprm->p - stack_shift;
773         bprm->p = vma->vm_end - stack_shift;
774 #else
775         stack_top = arch_align_stack(stack_top);
776         stack_top = PAGE_ALIGN(stack_top);
777
778         if (unlikely(stack_top < mmap_min_addr) ||
779             unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
780                 return -ENOMEM;
781
782         stack_shift = vma->vm_end - stack_top;
783
784         bprm->p -= stack_shift;
785         mm->arg_start = bprm->p;
786 #endif
787
788         if (bprm->loader)
789                 bprm->loader -= stack_shift;
790         bprm->exec -= stack_shift;
791
792         if (mmap_write_lock_killable(mm))
793                 return -EINTR;
794
795         vm_flags = VM_STACK_FLAGS;
796
797         /*
798          * Adjust stack execute permissions; explicitly enable for
799          * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
800          * (arch default) otherwise.
801          */
802         if (unlikely(executable_stack == EXSTACK_ENABLE_X))
803                 vm_flags |= VM_EXEC;
804         else if (executable_stack == EXSTACK_DISABLE_X)
805                 vm_flags &= ~VM_EXEC;
806         vm_flags |= mm->def_flags;
807         vm_flags |= VM_STACK_INCOMPLETE_SETUP;
808
809         ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
810                         vm_flags);
811         if (ret)
812                 goto out_unlock;
813         BUG_ON(prev != vma);
814
815         if (unlikely(vm_flags & VM_EXEC)) {
816                 pr_warn_once("process '%pD4' started with executable stack\n",
817                              bprm->file);
818         }
819
820         /* Move stack pages down in memory. */
821         if (stack_shift) {
822                 ret = shift_arg_pages(vma, stack_shift);
823                 if (ret)
824                         goto out_unlock;
825         }
826
827         /* mprotect_fixup is overkill to remove the temporary stack flags */
828         vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
829
830         stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
831         stack_size = vma->vm_end - vma->vm_start;
832         /*
833          * Align this down to a page boundary as expand_stack
834          * will align it up.
835          */
836         rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
837 #ifdef CONFIG_STACK_GROWSUP
838         if (stack_size + stack_expand > rlim_stack)
839                 stack_base = vma->vm_start + rlim_stack;
840         else
841                 stack_base = vma->vm_end + stack_expand;
842 #else
843         if (stack_size + stack_expand > rlim_stack)
844                 stack_base = vma->vm_end - rlim_stack;
845         else
846                 stack_base = vma->vm_start - stack_expand;
847 #endif
848         current->mm->start_stack = bprm->p;
849         ret = expand_stack(vma, stack_base);
850         if (ret)
851                 ret = -EFAULT;
852
853 out_unlock:
854         mmap_write_unlock(mm);
855         return ret;
856 }
857 EXPORT_SYMBOL(setup_arg_pages);
858
859 #else
860
861 /*
862  * Transfer the program arguments and environment from the holding pages
863  * onto the stack. The provided stack pointer is adjusted accordingly.
864  */
865 int transfer_args_to_stack(struct linux_binprm *bprm,
866                            unsigned long *sp_location)
867 {
868         unsigned long index, stop, sp;
869         int ret = 0;
870
871         stop = bprm->p >> PAGE_SHIFT;
872         sp = *sp_location;
873
874         for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
875                 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
876                 char *src = kmap(bprm->page[index]) + offset;
877                 sp -= PAGE_SIZE - offset;
878                 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
879                         ret = -EFAULT;
880                 kunmap(bprm->page[index]);
881                 if (ret)
882                         goto out;
883         }
884
885         *sp_location = sp;
886
887 out:
888         return ret;
889 }
890 EXPORT_SYMBOL(transfer_args_to_stack);
891
892 #endif /* CONFIG_MMU */
893
894 static struct file *do_open_execat(int fd, struct filename *name, int flags)
895 {
896         struct file *file;
897         int err;
898         struct open_flags open_exec_flags = {
899                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
900                 .acc_mode = MAY_EXEC,
901                 .intent = LOOKUP_OPEN,
902                 .lookup_flags = LOOKUP_FOLLOW,
903         };
904
905         if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
906                 return ERR_PTR(-EINVAL);
907         if (flags & AT_SYMLINK_NOFOLLOW)
908                 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
909         if (flags & AT_EMPTY_PATH)
910                 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
911
912         file = do_filp_open(fd, name, &open_exec_flags);
913         if (IS_ERR(file))
914                 goto out;
915
916         /*
917          * may_open() has already checked for this, so it should be
918          * impossible to trip now. But we need to be extra cautious
919          * and check again at the very end too.
920          */
921         err = -EACCES;
922         if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
923                          path_noexec(&file->f_path)))
924                 goto exit;
925
926         err = deny_write_access(file);
927         if (err)
928                 goto exit;
929
930         if (name->name[0] != '\0')
931                 fsnotify_open(file);
932
933 out:
934         return file;
935
936 exit:
937         fput(file);
938         return ERR_PTR(err);
939 }
940
941 struct file *open_exec(const char *name)
942 {
943         struct filename *filename = getname_kernel(name);
944         struct file *f = ERR_CAST(filename);
945
946         if (!IS_ERR(filename)) {
947                 f = do_open_execat(AT_FDCWD, filename, 0);
948                 putname(filename);
949         }
950         return f;
951 }
952 EXPORT_SYMBOL(open_exec);
953
954 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \
955     defined(CONFIG_BINFMT_ELF_FDPIC)
956 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
957 {
958         ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
959         if (res > 0)
960                 flush_icache_user_range(addr, addr + len);
961         return res;
962 }
963 EXPORT_SYMBOL(read_code);
964 #endif
965
966 /*
967  * Maps the mm_struct mm into the current task struct.
968  * On success, this function returns with the mutex
969  * exec_update_mutex locked.
970  */
971 static int exec_mmap(struct mm_struct *mm)
972 {
973         struct task_struct *tsk;
974         struct mm_struct *old_mm, *active_mm;
975         int ret;
976
977         /* Notify parent that we're no longer interested in the old VM */
978         tsk = current;
979         old_mm = current->mm;
980         exec_mm_release(tsk, old_mm);
981         if (old_mm)
982                 sync_mm_rss(old_mm);
983
984         ret = mutex_lock_killable(&tsk->signal->exec_update_mutex);
985         if (ret)
986                 return ret;
987
988         if (old_mm) {
989                 /*
990                  * Make sure that if there is a core dump in progress
991                  * for the old mm, we get out and die instead of going
992                  * through with the exec.  We must hold mmap_lock around
993                  * checking core_state and changing tsk->mm.
994                  */
995                 mmap_read_lock(old_mm);
996                 if (unlikely(old_mm->core_state)) {
997                         mmap_read_unlock(old_mm);
998                         mutex_unlock(&tsk->signal->exec_update_mutex);
999                         return -EINTR;
1000                 }
1001         }
1002
1003         task_lock(tsk);
1004         membarrier_exec_mmap(mm);
1005
1006         local_irq_disable();
1007         active_mm = tsk->active_mm;
1008         tsk->active_mm = mm;
1009         tsk->mm = mm;
1010         /*
1011          * This prevents preemption while active_mm is being loaded and
1012          * it and mm are being updated, which could cause problems for
1013          * lazy tlb mm refcounting when these are updated by context
1014          * switches. Not all architectures can handle irqs off over
1015          * activate_mm yet.
1016          */
1017         if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1018                 local_irq_enable();
1019         activate_mm(active_mm, mm);
1020         if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1021                 local_irq_enable();
1022         tsk->mm->vmacache_seqnum = 0;
1023         vmacache_flush(tsk);
1024         task_unlock(tsk);
1025         if (old_mm) {
1026                 mmap_read_unlock(old_mm);
1027                 BUG_ON(active_mm != old_mm);
1028                 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1029                 mm_update_next_owner(old_mm);
1030                 mmput(old_mm);
1031                 return 0;
1032         }
1033         mmdrop(active_mm);
1034         return 0;
1035 }
1036
1037 static int de_thread(struct task_struct *tsk)
1038 {
1039         struct signal_struct *sig = tsk->signal;
1040         struct sighand_struct *oldsighand = tsk->sighand;
1041         spinlock_t *lock = &oldsighand->siglock;
1042
1043         if (thread_group_empty(tsk))
1044                 goto no_thread_group;
1045
1046         /*
1047          * Kill all other threads in the thread group.
1048          */
1049         spin_lock_irq(lock);
1050         if (signal_group_exit(sig)) {
1051                 /*
1052                  * Another group action in progress, just
1053                  * return so that the signal is processed.
1054                  */
1055                 spin_unlock_irq(lock);
1056                 return -EAGAIN;
1057         }
1058
1059         sig->group_exit_task = tsk;
1060         sig->notify_count = zap_other_threads(tsk);
1061         if (!thread_group_leader(tsk))
1062                 sig->notify_count--;
1063
1064         while (sig->notify_count) {
1065                 __set_current_state(TASK_KILLABLE);
1066                 spin_unlock_irq(lock);
1067                 schedule();
1068                 if (__fatal_signal_pending(tsk))
1069                         goto killed;
1070                 spin_lock_irq(lock);
1071         }
1072         spin_unlock_irq(lock);
1073
1074         /*
1075          * At this point all other threads have exited, all we have to
1076          * do is to wait for the thread group leader to become inactive,
1077          * and to assume its PID:
1078          */
1079         if (!thread_group_leader(tsk)) {
1080                 struct task_struct *leader = tsk->group_leader;
1081
1082                 for (;;) {
1083                         cgroup_threadgroup_change_begin(tsk);
1084                         write_lock_irq(&tasklist_lock);
1085                         /*
1086                          * Do this under tasklist_lock to ensure that
1087                          * exit_notify() can't miss ->group_exit_task
1088                          */
1089                         sig->notify_count = -1;
1090                         if (likely(leader->exit_state))
1091                                 break;
1092                         __set_current_state(TASK_KILLABLE);
1093                         write_unlock_irq(&tasklist_lock);
1094                         cgroup_threadgroup_change_end(tsk);
1095                         schedule();
1096                         if (__fatal_signal_pending(tsk))
1097                                 goto killed;
1098                 }
1099
1100                 /*
1101                  * The only record we have of the real-time age of a
1102                  * process, regardless of execs it's done, is start_time.
1103                  * All the past CPU time is accumulated in signal_struct
1104                  * from sister threads now dead.  But in this non-leader
1105                  * exec, nothing survives from the original leader thread,
1106                  * whose birth marks the true age of this process now.
1107                  * When we take on its identity by switching to its PID, we
1108                  * also take its birthdate (always earlier than our own).
1109                  */
1110                 tsk->start_time = leader->start_time;
1111                 tsk->start_boottime = leader->start_boottime;
1112
1113                 BUG_ON(!same_thread_group(leader, tsk));
1114                 /*
1115                  * An exec() starts a new thread group with the
1116                  * TGID of the previous thread group. Rehash the
1117                  * two threads with a switched PID, and release
1118                  * the former thread group leader:
1119                  */
1120
1121                 /* Become a process group leader with the old leader's pid.
1122                  * The old leader becomes a thread of the this thread group.
1123                  */
1124                 exchange_tids(tsk, leader);
1125                 transfer_pid(leader, tsk, PIDTYPE_TGID);
1126                 transfer_pid(leader, tsk, PIDTYPE_PGID);
1127                 transfer_pid(leader, tsk, PIDTYPE_SID);
1128
1129                 list_replace_rcu(&leader->tasks, &tsk->tasks);
1130                 list_replace_init(&leader->sibling, &tsk->sibling);
1131
1132                 tsk->group_leader = tsk;
1133                 leader->group_leader = tsk;
1134
1135                 tsk->exit_signal = SIGCHLD;
1136                 leader->exit_signal = -1;
1137
1138                 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1139                 leader->exit_state = EXIT_DEAD;
1140
1141                 /*
1142                  * We are going to release_task()->ptrace_unlink() silently,
1143                  * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1144                  * the tracer wont't block again waiting for this thread.
1145                  */
1146                 if (unlikely(leader->ptrace))
1147                         __wake_up_parent(leader, leader->parent);
1148                 write_unlock_irq(&tasklist_lock);
1149                 cgroup_threadgroup_change_end(tsk);
1150
1151                 release_task(leader);
1152         }
1153
1154         sig->group_exit_task = NULL;
1155         sig->notify_count = 0;
1156
1157 no_thread_group:
1158         /* we have changed execution domain */
1159         tsk->exit_signal = SIGCHLD;
1160
1161         BUG_ON(!thread_group_leader(tsk));
1162         return 0;
1163
1164 killed:
1165         /* protects against exit_notify() and __exit_signal() */
1166         read_lock(&tasklist_lock);
1167         sig->group_exit_task = NULL;
1168         sig->notify_count = 0;
1169         read_unlock(&tasklist_lock);
1170         return -EAGAIN;
1171 }
1172
1173
1174 /*
1175  * This function makes sure the current process has its own signal table,
1176  * so that flush_signal_handlers can later reset the handlers without
1177  * disturbing other processes.  (Other processes might share the signal
1178  * table via the CLONE_SIGHAND option to clone().)
1179  */
1180 static int unshare_sighand(struct task_struct *me)
1181 {
1182         struct sighand_struct *oldsighand = me->sighand;
1183
1184         if (refcount_read(&oldsighand->count) != 1) {
1185                 struct sighand_struct *newsighand;
1186                 /*
1187                  * This ->sighand is shared with the CLONE_SIGHAND
1188                  * but not CLONE_THREAD task, switch to the new one.
1189                  */
1190                 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1191                 if (!newsighand)
1192                         return -ENOMEM;
1193
1194                 refcount_set(&newsighand->count, 1);
1195                 memcpy(newsighand->action, oldsighand->action,
1196                        sizeof(newsighand->action));
1197
1198                 write_lock_irq(&tasklist_lock);
1199                 spin_lock(&oldsighand->siglock);
1200                 rcu_assign_pointer(me->sighand, newsighand);
1201                 spin_unlock(&oldsighand->siglock);
1202                 write_unlock_irq(&tasklist_lock);
1203
1204                 __cleanup_sighand(oldsighand);
1205         }
1206         return 0;
1207 }
1208
1209 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1210 {
1211         task_lock(tsk);
1212         strncpy(buf, tsk->comm, buf_size);
1213         task_unlock(tsk);
1214         return buf;
1215 }
1216 EXPORT_SYMBOL_GPL(__get_task_comm);
1217
1218 /*
1219  * These functions flushes out all traces of the currently running executable
1220  * so that a new one can be started
1221  */
1222
1223 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1224 {
1225         task_lock(tsk);
1226         trace_task_rename(tsk, buf);
1227         strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1228         task_unlock(tsk);
1229         perf_event_comm(tsk, exec);
1230 }
1231
1232 /*
1233  * Calling this is the point of no return. None of the failures will be
1234  * seen by userspace since either the process is already taking a fatal
1235  * signal (via de_thread() or coredump), or will have SEGV raised
1236  * (after exec_mmap()) by search_binary_handler (see below).
1237  */
1238 int begin_new_exec(struct linux_binprm * bprm)
1239 {
1240         struct task_struct *me = current;
1241         int retval;
1242
1243         /* Once we are committed compute the creds */
1244         retval = bprm_creds_from_file(bprm);
1245         if (retval)
1246                 return retval;
1247
1248         /*
1249          * Ensure all future errors are fatal.
1250          */
1251         bprm->point_of_no_return = true;
1252
1253         /*
1254          * Make this the only thread in the thread group.
1255          */
1256         retval = de_thread(me);
1257         if (retval)
1258                 goto out;
1259
1260         /*
1261          * Must be called _before_ exec_mmap() as bprm->mm is
1262          * not visibile until then. This also enables the update
1263          * to be lockless.
1264          */
1265         set_mm_exe_file(bprm->mm, bprm->file);
1266
1267         /* If the binary is not readable then enforce mm->dumpable=0 */
1268         would_dump(bprm, bprm->file);
1269         if (bprm->have_execfd)
1270                 would_dump(bprm, bprm->executable);
1271
1272         /*
1273          * Release all of the old mmap stuff
1274          */
1275         acct_arg_size(bprm, 0);
1276         retval = exec_mmap(bprm->mm);
1277         if (retval)
1278                 goto out;
1279
1280         bprm->mm = NULL;
1281
1282 #ifdef CONFIG_POSIX_TIMERS
1283         exit_itimers(me->signal);
1284         flush_itimer_signals();
1285 #endif
1286
1287         /*
1288          * Make the signal table private.
1289          */
1290         retval = unshare_sighand(me);
1291         if (retval)
1292                 goto out_unlock;
1293
1294         /*
1295          * Ensure that the uaccess routines can actually operate on userspace
1296          * pointers:
1297          */
1298         force_uaccess_begin();
1299
1300         me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1301                                         PF_NOFREEZE | PF_NO_SETAFFINITY);
1302         flush_thread();
1303         me->personality &= ~bprm->per_clear;
1304
1305         /*
1306          * We have to apply CLOEXEC before we change whether the process is
1307          * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1308          * trying to access the should-be-closed file descriptors of a process
1309          * undergoing exec(2).
1310          */
1311         do_close_on_exec(me->files);
1312
1313         if (bprm->secureexec) {
1314                 /* Make sure parent cannot signal privileged process. */
1315                 me->pdeath_signal = 0;
1316
1317                 /*
1318                  * For secureexec, reset the stack limit to sane default to
1319                  * avoid bad behavior from the prior rlimits. This has to
1320                  * happen before arch_pick_mmap_layout(), which examines
1321                  * RLIMIT_STACK, but after the point of no return to avoid
1322                  * needing to clean up the change on failure.
1323                  */
1324                 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1325                         bprm->rlim_stack.rlim_cur = _STK_LIM;
1326         }
1327
1328         me->sas_ss_sp = me->sas_ss_size = 0;
1329
1330         /*
1331          * Figure out dumpability. Note that this checking only of current
1332          * is wrong, but userspace depends on it. This should be testing
1333          * bprm->secureexec instead.
1334          */
1335         if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1336             !(uid_eq(current_euid(), current_uid()) &&
1337               gid_eq(current_egid(), current_gid())))
1338                 set_dumpable(current->mm, suid_dumpable);
1339         else
1340                 set_dumpable(current->mm, SUID_DUMP_USER);
1341
1342         perf_event_exec();
1343         __set_task_comm(me, kbasename(bprm->filename), true);
1344
1345         /* An exec changes our domain. We are no longer part of the thread
1346            group */
1347         WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1348         flush_signal_handlers(me, 0);
1349
1350         /*
1351          * install the new credentials for this executable
1352          */
1353         security_bprm_committing_creds(bprm);
1354
1355         commit_creds(bprm->cred);
1356         bprm->cred = NULL;
1357
1358         /*
1359          * Disable monitoring for regular users
1360          * when executing setuid binaries. Must
1361          * wait until new credentials are committed
1362          * by commit_creds() above
1363          */
1364         if (get_dumpable(me->mm) != SUID_DUMP_USER)
1365                 perf_event_exit_task(me);
1366         /*
1367          * cred_guard_mutex must be held at least to this point to prevent
1368          * ptrace_attach() from altering our determination of the task's
1369          * credentials; any time after this it may be unlocked.
1370          */
1371         security_bprm_committed_creds(bprm);
1372
1373         /* Pass the opened binary to the interpreter. */
1374         if (bprm->have_execfd) {
1375                 retval = get_unused_fd_flags(0);
1376                 if (retval < 0)
1377                         goto out_unlock;
1378                 fd_install(retval, bprm->executable);
1379                 bprm->executable = NULL;
1380                 bprm->execfd = retval;
1381         }
1382         return 0;
1383
1384 out_unlock:
1385         mutex_unlock(&me->signal->exec_update_mutex);
1386 out:
1387         return retval;
1388 }
1389 EXPORT_SYMBOL(begin_new_exec);
1390
1391 void would_dump(struct linux_binprm *bprm, struct file *file)
1392 {
1393         struct inode *inode = file_inode(file);
1394         if (inode_permission(inode, MAY_READ) < 0) {
1395                 struct user_namespace *old, *user_ns;
1396                 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1397
1398                 /* Ensure mm->user_ns contains the executable */
1399                 user_ns = old = bprm->mm->user_ns;
1400                 while ((user_ns != &init_user_ns) &&
1401                        !privileged_wrt_inode_uidgid(user_ns, inode))
1402                         user_ns = user_ns->parent;
1403
1404                 if (old != user_ns) {
1405                         bprm->mm->user_ns = get_user_ns(user_ns);
1406                         put_user_ns(old);
1407                 }
1408         }
1409 }
1410 EXPORT_SYMBOL(would_dump);
1411
1412 void setup_new_exec(struct linux_binprm * bprm)
1413 {
1414         /* Setup things that can depend upon the personality */
1415         struct task_struct *me = current;
1416
1417         arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1418
1419         arch_setup_new_exec();
1420
1421         /* Set the new mm task size. We have to do that late because it may
1422          * depend on TIF_32BIT which is only updated in flush_thread() on
1423          * some architectures like powerpc
1424          */
1425         me->mm->task_size = TASK_SIZE;
1426         mutex_unlock(&me->signal->exec_update_mutex);
1427         mutex_unlock(&me->signal->cred_guard_mutex);
1428 }
1429 EXPORT_SYMBOL(setup_new_exec);
1430
1431 /* Runs immediately before start_thread() takes over. */
1432 void finalize_exec(struct linux_binprm *bprm)
1433 {
1434         /* Store any stack rlimit changes before starting thread. */
1435         task_lock(current->group_leader);
1436         current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1437         task_unlock(current->group_leader);
1438 }
1439 EXPORT_SYMBOL(finalize_exec);
1440
1441 /*
1442  * Prepare credentials and lock ->cred_guard_mutex.
1443  * setup_new_exec() commits the new creds and drops the lock.
1444  * Or, if exec fails before, free_bprm() should release ->cred and
1445  * and unlock.
1446  */
1447 static int prepare_bprm_creds(struct linux_binprm *bprm)
1448 {
1449         if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1450                 return -ERESTARTNOINTR;
1451
1452         bprm->cred = prepare_exec_creds();
1453         if (likely(bprm->cred))
1454                 return 0;
1455
1456         mutex_unlock(&current->signal->cred_guard_mutex);
1457         return -ENOMEM;
1458 }
1459
1460 static void free_bprm(struct linux_binprm *bprm)
1461 {
1462         if (bprm->mm) {
1463                 acct_arg_size(bprm, 0);
1464                 mmput(bprm->mm);
1465         }
1466         free_arg_pages(bprm);
1467         if (bprm->cred) {
1468                 mutex_unlock(&current->signal->cred_guard_mutex);
1469                 abort_creds(bprm->cred);
1470         }
1471         if (bprm->file) {
1472                 allow_write_access(bprm->file);
1473                 fput(bprm->file);
1474         }
1475         if (bprm->executable)
1476                 fput(bprm->executable);
1477         /* If a binfmt changed the interp, free it. */
1478         if (bprm->interp != bprm->filename)
1479                 kfree(bprm->interp);
1480         kfree(bprm->fdpath);
1481         kfree(bprm);
1482 }
1483
1484 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1485 {
1486         struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1487         int retval = -ENOMEM;
1488         if (!bprm)
1489                 goto out;
1490
1491         if (fd == AT_FDCWD || filename->name[0] == '/') {
1492                 bprm->filename = filename->name;
1493         } else {
1494                 if (filename->name[0] == '\0')
1495                         bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1496                 else
1497                         bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1498                                                   fd, filename->name);
1499                 if (!bprm->fdpath)
1500                         goto out_free;
1501
1502                 bprm->filename = bprm->fdpath;
1503         }
1504         bprm->interp = bprm->filename;
1505
1506         retval = bprm_mm_init(bprm);
1507         if (retval)
1508                 goto out_free;
1509         return bprm;
1510
1511 out_free:
1512         free_bprm(bprm);
1513 out:
1514         return ERR_PTR(retval);
1515 }
1516
1517 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1518 {
1519         /* If a binfmt changed the interp, free it first. */
1520         if (bprm->interp != bprm->filename)
1521                 kfree(bprm->interp);
1522         bprm->interp = kstrdup(interp, GFP_KERNEL);
1523         if (!bprm->interp)
1524                 return -ENOMEM;
1525         return 0;
1526 }
1527 EXPORT_SYMBOL(bprm_change_interp);
1528
1529 /*
1530  * determine how safe it is to execute the proposed program
1531  * - the caller must hold ->cred_guard_mutex to protect against
1532  *   PTRACE_ATTACH or seccomp thread-sync
1533  */
1534 static void check_unsafe_exec(struct linux_binprm *bprm)
1535 {
1536         struct task_struct *p = current, *t;
1537         unsigned n_fs;
1538
1539         if (p->ptrace)
1540                 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1541
1542         /*
1543          * This isn't strictly necessary, but it makes it harder for LSMs to
1544          * mess up.
1545          */
1546         if (task_no_new_privs(current))
1547                 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1548
1549         t = p;
1550         n_fs = 1;
1551         spin_lock(&p->fs->lock);
1552         rcu_read_lock();
1553         while_each_thread(p, t) {
1554                 if (t->fs == p->fs)
1555                         n_fs++;
1556         }
1557         rcu_read_unlock();
1558
1559         if (p->fs->users > n_fs)
1560                 bprm->unsafe |= LSM_UNSAFE_SHARE;
1561         else
1562                 p->fs->in_exec = 1;
1563         spin_unlock(&p->fs->lock);
1564 }
1565
1566 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1567 {
1568         /* Handle suid and sgid on files */
1569         struct inode *inode;
1570         unsigned int mode;
1571         kuid_t uid;
1572         kgid_t gid;
1573
1574         if (!mnt_may_suid(file->f_path.mnt))
1575                 return;
1576
1577         if (task_no_new_privs(current))
1578                 return;
1579
1580         inode = file->f_path.dentry->d_inode;
1581         mode = READ_ONCE(inode->i_mode);
1582         if (!(mode & (S_ISUID|S_ISGID)))
1583                 return;
1584
1585         /* Be careful if suid/sgid is set */
1586         inode_lock(inode);
1587
1588         /* reload atomically mode/uid/gid now that lock held */
1589         mode = inode->i_mode;
1590         uid = inode->i_uid;
1591         gid = inode->i_gid;
1592         inode_unlock(inode);
1593
1594         /* We ignore suid/sgid if there are no mappings for them in the ns */
1595         if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1596                  !kgid_has_mapping(bprm->cred->user_ns, gid))
1597                 return;
1598
1599         if (mode & S_ISUID) {
1600                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1601                 bprm->cred->euid = uid;
1602         }
1603
1604         if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1605                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1606                 bprm->cred->egid = gid;
1607         }
1608 }
1609
1610 /*
1611  * Compute brpm->cred based upon the final binary.
1612  */
1613 static int bprm_creds_from_file(struct linux_binprm *bprm)
1614 {
1615         /* Compute creds based on which file? */
1616         struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1617
1618         bprm_fill_uid(bprm, file);
1619         return security_bprm_creds_from_file(bprm, file);
1620 }
1621
1622 /*
1623  * Fill the binprm structure from the inode.
1624  * Read the first BINPRM_BUF_SIZE bytes
1625  *
1626  * This may be called multiple times for binary chains (scripts for example).
1627  */
1628 static int prepare_binprm(struct linux_binprm *bprm)
1629 {
1630         loff_t pos = 0;
1631
1632         memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1633         return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1634 }
1635
1636 /*
1637  * Arguments are '\0' separated strings found at the location bprm->p
1638  * points to; chop off the first by relocating brpm->p to right after
1639  * the first '\0' encountered.
1640  */
1641 int remove_arg_zero(struct linux_binprm *bprm)
1642 {
1643         int ret = 0;
1644         unsigned long offset;
1645         char *kaddr;
1646         struct page *page;
1647
1648         if (!bprm->argc)
1649                 return 0;
1650
1651         do {
1652                 offset = bprm->p & ~PAGE_MASK;
1653                 page = get_arg_page(bprm, bprm->p, 0);
1654                 if (!page) {
1655                         ret = -EFAULT;
1656                         goto out;
1657                 }
1658                 kaddr = kmap_atomic(page);
1659
1660                 for (; offset < PAGE_SIZE && kaddr[offset];
1661                                 offset++, bprm->p++)
1662                         ;
1663
1664                 kunmap_atomic(kaddr);
1665                 put_arg_page(page);
1666         } while (offset == PAGE_SIZE);
1667
1668         bprm->p++;
1669         bprm->argc--;
1670         ret = 0;
1671
1672 out:
1673         return ret;
1674 }
1675 EXPORT_SYMBOL(remove_arg_zero);
1676
1677 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1678 /*
1679  * cycle the list of binary formats handler, until one recognizes the image
1680  */
1681 static int search_binary_handler(struct linux_binprm *bprm)
1682 {
1683         bool need_retry = IS_ENABLED(CONFIG_MODULES);
1684         struct linux_binfmt *fmt;
1685         int retval;
1686
1687         retval = prepare_binprm(bprm);
1688         if (retval < 0)
1689                 return retval;
1690
1691         retval = security_bprm_check(bprm);
1692         if (retval)
1693                 return retval;
1694
1695         retval = -ENOENT;
1696  retry:
1697         read_lock(&binfmt_lock);
1698         list_for_each_entry(fmt, &formats, lh) {
1699                 if (!try_module_get(fmt->module))
1700                         continue;
1701                 read_unlock(&binfmt_lock);
1702
1703                 retval = fmt->load_binary(bprm);
1704
1705                 read_lock(&binfmt_lock);
1706                 put_binfmt(fmt);
1707                 if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1708                         read_unlock(&binfmt_lock);
1709                         return retval;
1710                 }
1711         }
1712         read_unlock(&binfmt_lock);
1713
1714         if (need_retry) {
1715                 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1716                     printable(bprm->buf[2]) && printable(bprm->buf[3]))
1717                         return retval;
1718                 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1719                         return retval;
1720                 need_retry = false;
1721                 goto retry;
1722         }
1723
1724         return retval;
1725 }
1726
1727 static int exec_binprm(struct linux_binprm *bprm)
1728 {
1729         pid_t old_pid, old_vpid;
1730         int ret, depth;
1731
1732         /* Need to fetch pid before load_binary changes it */
1733         old_pid = current->pid;
1734         rcu_read_lock();
1735         old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1736         rcu_read_unlock();
1737
1738         /* This allows 4 levels of binfmt rewrites before failing hard. */
1739         for (depth = 0;; depth++) {
1740                 struct file *exec;
1741                 if (depth > 5)
1742                         return -ELOOP;
1743
1744                 ret = search_binary_handler(bprm);
1745                 if (ret < 0)
1746                         return ret;
1747                 if (!bprm->interpreter)
1748                         break;
1749
1750                 exec = bprm->file;
1751                 bprm->file = bprm->interpreter;
1752                 bprm->interpreter = NULL;
1753
1754                 allow_write_access(exec);
1755                 if (unlikely(bprm->have_execfd)) {
1756                         if (bprm->executable) {
1757                                 fput(exec);
1758                                 return -ENOEXEC;
1759                         }
1760                         bprm->executable = exec;
1761                 } else
1762                         fput(exec);
1763         }
1764
1765         audit_bprm(bprm);
1766         trace_sched_process_exec(current, old_pid, bprm);
1767         ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1768         proc_exec_connector(current);
1769         return 0;
1770 }
1771
1772 /*
1773  * sys_execve() executes a new program.
1774  */
1775 static int bprm_execve(struct linux_binprm *bprm,
1776                        int fd, struct filename *filename, int flags)
1777 {
1778         struct file *file;
1779         struct files_struct *displaced;
1780         int retval;
1781
1782         /*
1783          * Cancel any io_uring activity across execve
1784          */
1785         io_uring_task_cancel();
1786
1787         retval = unshare_files(&displaced);
1788         if (retval)
1789                 return retval;
1790
1791         retval = prepare_bprm_creds(bprm);
1792         if (retval)
1793                 goto out_files;
1794
1795         check_unsafe_exec(bprm);
1796         current->in_execve = 1;
1797
1798         file = do_open_execat(fd, filename, flags);
1799         retval = PTR_ERR(file);
1800         if (IS_ERR(file))
1801                 goto out_unmark;
1802
1803         sched_exec();
1804
1805         bprm->file = file;
1806         /*
1807          * Record that a name derived from an O_CLOEXEC fd will be
1808          * inaccessible after exec. Relies on having exclusive access to
1809          * current->files (due to unshare_files above).
1810          */
1811         if (bprm->fdpath &&
1812             close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1813                 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1814
1815         /* Set the unchanging part of bprm->cred */
1816         retval = security_bprm_creds_for_exec(bprm);
1817         if (retval)
1818                 goto out;
1819
1820         retval = exec_binprm(bprm);
1821         if (retval < 0)
1822                 goto out;
1823
1824         /* execve succeeded */
1825         current->fs->in_exec = 0;
1826         current->in_execve = 0;
1827         rseq_execve(current);
1828         acct_update_integrals(current);
1829         task_numa_free(current, false);
1830         if (displaced)
1831                 put_files_struct(displaced);
1832         return retval;
1833
1834 out:
1835         /*
1836          * If past the point of no return ensure the the code never
1837          * returns to the userspace process.  Use an existing fatal
1838          * signal if present otherwise terminate the process with
1839          * SIGSEGV.
1840          */
1841         if (bprm->point_of_no_return && !fatal_signal_pending(current))
1842                 force_sigsegv(SIGSEGV);
1843
1844 out_unmark:
1845         current->fs->in_exec = 0;
1846         current->in_execve = 0;
1847
1848 out_files:
1849         if (displaced)
1850                 reset_files_struct(displaced);
1851
1852         return retval;
1853 }
1854
1855 static int do_execveat_common(int fd, struct filename *filename,
1856                               struct user_arg_ptr argv,
1857                               struct user_arg_ptr envp,
1858                               int flags)
1859 {
1860         struct linux_binprm *bprm;
1861         int retval;
1862
1863         if (IS_ERR(filename))
1864                 return PTR_ERR(filename);
1865
1866         /*
1867          * We move the actual failure in case of RLIMIT_NPROC excess from
1868          * set*uid() to execve() because too many poorly written programs
1869          * don't check setuid() return code.  Here we additionally recheck
1870          * whether NPROC limit is still exceeded.
1871          */
1872         if ((current->flags & PF_NPROC_EXCEEDED) &&
1873             atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1874                 retval = -EAGAIN;
1875                 goto out_ret;
1876         }
1877
1878         /* We're below the limit (still or again), so we don't want to make
1879          * further execve() calls fail. */
1880         current->flags &= ~PF_NPROC_EXCEEDED;
1881
1882         bprm = alloc_bprm(fd, filename);
1883         if (IS_ERR(bprm)) {
1884                 retval = PTR_ERR(bprm);
1885                 goto out_ret;
1886         }
1887
1888         retval = count(argv, MAX_ARG_STRINGS);
1889         if (retval < 0)
1890                 goto out_free;
1891         bprm->argc = retval;
1892
1893         retval = count(envp, MAX_ARG_STRINGS);
1894         if (retval < 0)
1895                 goto out_free;
1896         bprm->envc = retval;
1897
1898         retval = bprm_stack_limits(bprm);
1899         if (retval < 0)
1900                 goto out_free;
1901
1902         retval = copy_string_kernel(bprm->filename, bprm);
1903         if (retval < 0)
1904                 goto out_free;
1905         bprm->exec = bprm->p;
1906
1907         retval = copy_strings(bprm->envc, envp, bprm);
1908         if (retval < 0)
1909                 goto out_free;
1910
1911         retval = copy_strings(bprm->argc, argv, bprm);
1912         if (retval < 0)
1913                 goto out_free;
1914
1915         retval = bprm_execve(bprm, fd, filename, flags);
1916 out_free:
1917         free_bprm(bprm);
1918
1919 out_ret:
1920         putname(filename);
1921         return retval;
1922 }
1923
1924 int kernel_execve(const char *kernel_filename,
1925                   const char *const *argv, const char *const *envp)
1926 {
1927         struct filename *filename;
1928         struct linux_binprm *bprm;
1929         int fd = AT_FDCWD;
1930         int retval;
1931
1932         filename = getname_kernel(kernel_filename);
1933         if (IS_ERR(filename))
1934                 return PTR_ERR(filename);
1935
1936         bprm = alloc_bprm(fd, filename);
1937         if (IS_ERR(bprm)) {
1938                 retval = PTR_ERR(bprm);
1939                 goto out_ret;
1940         }
1941
1942         retval = count_strings_kernel(argv);
1943         if (retval < 0)
1944                 goto out_free;
1945         bprm->argc = retval;
1946
1947         retval = count_strings_kernel(envp);
1948         if (retval < 0)
1949                 goto out_free;
1950         bprm->envc = retval;
1951
1952         retval = bprm_stack_limits(bprm);
1953         if (retval < 0)
1954                 goto out_free;
1955
1956         retval = copy_string_kernel(bprm->filename, bprm);
1957         if (retval < 0)
1958                 goto out_free;
1959         bprm->exec = bprm->p;
1960
1961         retval = copy_strings_kernel(bprm->envc, envp, bprm);
1962         if (retval < 0)
1963                 goto out_free;
1964
1965         retval = copy_strings_kernel(bprm->argc, argv, bprm);
1966         if (retval < 0)
1967                 goto out_free;
1968
1969         retval = bprm_execve(bprm, fd, filename, 0);
1970 out_free:
1971         free_bprm(bprm);
1972 out_ret:
1973         putname(filename);
1974         return retval;
1975 }
1976
1977 static int do_execve(struct filename *filename,
1978         const char __user *const __user *__argv,
1979         const char __user *const __user *__envp)
1980 {
1981         struct user_arg_ptr argv = { .ptr.native = __argv };
1982         struct user_arg_ptr envp = { .ptr.native = __envp };
1983         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1984 }
1985
1986 static int do_execveat(int fd, struct filename *filename,
1987                 const char __user *const __user *__argv,
1988                 const char __user *const __user *__envp,
1989                 int flags)
1990 {
1991         struct user_arg_ptr argv = { .ptr.native = __argv };
1992         struct user_arg_ptr envp = { .ptr.native = __envp };
1993
1994         return do_execveat_common(fd, filename, argv, envp, flags);
1995 }
1996
1997 #ifdef CONFIG_COMPAT
1998 static int compat_do_execve(struct filename *filename,
1999         const compat_uptr_t __user *__argv,
2000         const compat_uptr_t __user *__envp)
2001 {
2002         struct user_arg_ptr argv = {
2003                 .is_compat = true,
2004                 .ptr.compat = __argv,
2005         };
2006         struct user_arg_ptr envp = {
2007                 .is_compat = true,
2008                 .ptr.compat = __envp,
2009         };
2010         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2011 }
2012
2013 static int compat_do_execveat(int fd, struct filename *filename,
2014                               const compat_uptr_t __user *__argv,
2015                               const compat_uptr_t __user *__envp,
2016                               int flags)
2017 {
2018         struct user_arg_ptr argv = {
2019                 .is_compat = true,
2020                 .ptr.compat = __argv,
2021         };
2022         struct user_arg_ptr envp = {
2023                 .is_compat = true,
2024                 .ptr.compat = __envp,
2025         };
2026         return do_execveat_common(fd, filename, argv, envp, flags);
2027 }
2028 #endif
2029
2030 void set_binfmt(struct linux_binfmt *new)
2031 {
2032         struct mm_struct *mm = current->mm;
2033
2034         if (mm->binfmt)
2035                 module_put(mm->binfmt->module);
2036
2037         mm->binfmt = new;
2038         if (new)
2039                 __module_get(new->module);
2040 }
2041 EXPORT_SYMBOL(set_binfmt);
2042
2043 /*
2044  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2045  */
2046 void set_dumpable(struct mm_struct *mm, int value)
2047 {
2048         if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2049                 return;
2050
2051         set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2052 }
2053
2054 SYSCALL_DEFINE3(execve,
2055                 const char __user *, filename,
2056                 const char __user *const __user *, argv,
2057                 const char __user *const __user *, envp)
2058 {
2059         return do_execve(getname(filename), argv, envp);
2060 }
2061
2062 SYSCALL_DEFINE5(execveat,
2063                 int, fd, const char __user *, filename,
2064                 const char __user *const __user *, argv,
2065                 const char __user *const __user *, envp,
2066                 int, flags)
2067 {
2068         int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2069
2070         return do_execveat(fd,
2071                            getname_flags(filename, lookup_flags, NULL),
2072                            argv, envp, flags);
2073 }
2074
2075 #ifdef CONFIG_COMPAT
2076 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2077         const compat_uptr_t __user *, argv,
2078         const compat_uptr_t __user *, envp)
2079 {
2080         return compat_do_execve(getname(filename), argv, envp);
2081 }
2082
2083 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2084                        const char __user *, filename,
2085                        const compat_uptr_t __user *, argv,
2086                        const compat_uptr_t __user *, envp,
2087                        int,  flags)
2088 {
2089         int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2090
2091         return compat_do_execveat(fd,
2092                                   getname_flags(filename, lookup_flags, NULL),
2093                                   argv, envp, flags);
2094 }
2095 #endif