exec: move S_ISREG() check earlier
[platform/kernel/linux-rpi.git] / fs / exec.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/exec.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 /*
9  * #!-checking implemented by tytso.
10  */
11 /*
12  * Demand-loading implemented 01.12.91 - no need to read anything but
13  * the header into memory. The inode of the executable is put into
14  * "current->executable", and page faults do the actual loading. Clean.
15  *
16  * Once more I can proudly say that linux stood up to being changed: it
17  * was less than 2 hours work to get demand-loading completely implemented.
18  *
19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20  * current->executable is only used by the procfs.  This allows a dispatch
21  * table to check for several different types  of binary formats.  We keep
22  * trying until we recognize the file or we run out of supported binary
23  * formats.
24  */
25
26 #include <linux/slab.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/mm.h>
30 #include <linux/vmacache.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/tracehook.h>
59 #include <linux/kmod.h>
60 #include <linux/fsnotify.h>
61 #include <linux/fs_struct.h>
62 #include <linux/oom.h>
63 #include <linux/compat.h>
64 #include <linux/vmalloc.h>
65
66 #include <linux/uaccess.h>
67 #include <asm/mmu_context.h>
68 #include <asm/tlb.h>
69
70 #include <trace/events/task.h>
71 #include "internal.h"
72
73 #include <trace/events/sched.h>
74
75 static int bprm_creds_from_file(struct linux_binprm *bprm);
76
77 int suid_dumpable = 0;
78
79 static LIST_HEAD(formats);
80 static DEFINE_RWLOCK(binfmt_lock);
81
82 void __register_binfmt(struct linux_binfmt * fmt, int insert)
83 {
84         BUG_ON(!fmt);
85         if (WARN_ON(!fmt->load_binary))
86                 return;
87         write_lock(&binfmt_lock);
88         insert ? list_add(&fmt->lh, &formats) :
89                  list_add_tail(&fmt->lh, &formats);
90         write_unlock(&binfmt_lock);
91 }
92
93 EXPORT_SYMBOL(__register_binfmt);
94
95 void unregister_binfmt(struct linux_binfmt * fmt)
96 {
97         write_lock(&binfmt_lock);
98         list_del(&fmt->lh);
99         write_unlock(&binfmt_lock);
100 }
101
102 EXPORT_SYMBOL(unregister_binfmt);
103
104 static inline void put_binfmt(struct linux_binfmt * fmt)
105 {
106         module_put(fmt->module);
107 }
108
109 bool path_noexec(const struct path *path)
110 {
111         return (path->mnt->mnt_flags & MNT_NOEXEC) ||
112                (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
113 }
114
115 #ifdef CONFIG_USELIB
116 /*
117  * Note that a shared library must be both readable and executable due to
118  * security reasons.
119  *
120  * Also note that we take the address to load from from the file itself.
121  */
122 SYSCALL_DEFINE1(uselib, const char __user *, library)
123 {
124         struct linux_binfmt *fmt;
125         struct file *file;
126         struct filename *tmp = getname(library);
127         int error = PTR_ERR(tmp);
128         static const struct open_flags uselib_flags = {
129                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
130                 .acc_mode = MAY_READ | MAY_EXEC,
131                 .intent = LOOKUP_OPEN,
132                 .lookup_flags = LOOKUP_FOLLOW,
133         };
134
135         if (IS_ERR(tmp))
136                 goto out;
137
138         file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
139         putname(tmp);
140         error = PTR_ERR(file);
141         if (IS_ERR(file))
142                 goto out;
143
144         /*
145          * may_open() has already checked for this, so it should be
146          * impossible to trip now. But we need to be extra cautious
147          * and check again at the very end too.
148          */
149         error = -EACCES;
150         if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode)))
151                 goto exit;
152
153         if (path_noexec(&file->f_path))
154                 goto exit;
155
156         fsnotify_open(file);
157
158         error = -ENOEXEC;
159
160         read_lock(&binfmt_lock);
161         list_for_each_entry(fmt, &formats, lh) {
162                 if (!fmt->load_shlib)
163                         continue;
164                 if (!try_module_get(fmt->module))
165                         continue;
166                 read_unlock(&binfmt_lock);
167                 error = fmt->load_shlib(file);
168                 read_lock(&binfmt_lock);
169                 put_binfmt(fmt);
170                 if (error != -ENOEXEC)
171                         break;
172         }
173         read_unlock(&binfmt_lock);
174 exit:
175         fput(file);
176 out:
177         return error;
178 }
179 #endif /* #ifdef CONFIG_USELIB */
180
181 #ifdef CONFIG_MMU
182 /*
183  * The nascent bprm->mm is not visible until exec_mmap() but it can
184  * use a lot of memory, account these pages in current->mm temporary
185  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
186  * change the counter back via acct_arg_size(0).
187  */
188 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
189 {
190         struct mm_struct *mm = current->mm;
191         long diff = (long)(pages - bprm->vma_pages);
192
193         if (!mm || !diff)
194                 return;
195
196         bprm->vma_pages = pages;
197         add_mm_counter(mm, MM_ANONPAGES, diff);
198 }
199
200 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
201                 int write)
202 {
203         struct page *page;
204         int ret;
205         unsigned int gup_flags = FOLL_FORCE;
206
207 #ifdef CONFIG_STACK_GROWSUP
208         if (write) {
209                 ret = expand_downwards(bprm->vma, pos);
210                 if (ret < 0)
211                         return NULL;
212         }
213 #endif
214
215         if (write)
216                 gup_flags |= FOLL_WRITE;
217
218         /*
219          * We are doing an exec().  'current' is the process
220          * doing the exec and bprm->mm is the new process's mm.
221          */
222         ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
223                         &page, NULL, NULL);
224         if (ret <= 0)
225                 return NULL;
226
227         if (write)
228                 acct_arg_size(bprm, vma_pages(bprm->vma));
229
230         return page;
231 }
232
233 static void put_arg_page(struct page *page)
234 {
235         put_page(page);
236 }
237
238 static void free_arg_pages(struct linux_binprm *bprm)
239 {
240 }
241
242 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
243                 struct page *page)
244 {
245         flush_cache_page(bprm->vma, pos, page_to_pfn(page));
246 }
247
248 static int __bprm_mm_init(struct linux_binprm *bprm)
249 {
250         int err;
251         struct vm_area_struct *vma = NULL;
252         struct mm_struct *mm = bprm->mm;
253
254         bprm->vma = vma = vm_area_alloc(mm);
255         if (!vma)
256                 return -ENOMEM;
257         vma_set_anonymous(vma);
258
259         if (mmap_write_lock_killable(mm)) {
260                 err = -EINTR;
261                 goto err_free;
262         }
263
264         /*
265          * Place the stack at the largest stack address the architecture
266          * supports. Later, we'll move this to an appropriate place. We don't
267          * use STACK_TOP because that can depend on attributes which aren't
268          * configured yet.
269          */
270         BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
271         vma->vm_end = STACK_TOP_MAX;
272         vma->vm_start = vma->vm_end - PAGE_SIZE;
273         vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
274         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
275
276         err = insert_vm_struct(mm, vma);
277         if (err)
278                 goto err;
279
280         mm->stack_vm = mm->total_vm = 1;
281         mmap_write_unlock(mm);
282         bprm->p = vma->vm_end - sizeof(void *);
283         return 0;
284 err:
285         mmap_write_unlock(mm);
286 err_free:
287         bprm->vma = NULL;
288         vm_area_free(vma);
289         return err;
290 }
291
292 static bool valid_arg_len(struct linux_binprm *bprm, long len)
293 {
294         return len <= MAX_ARG_STRLEN;
295 }
296
297 #else
298
299 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
300 {
301 }
302
303 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
304                 int write)
305 {
306         struct page *page;
307
308         page = bprm->page[pos / PAGE_SIZE];
309         if (!page && write) {
310                 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
311                 if (!page)
312                         return NULL;
313                 bprm->page[pos / PAGE_SIZE] = page;
314         }
315
316         return page;
317 }
318
319 static void put_arg_page(struct page *page)
320 {
321 }
322
323 static void free_arg_page(struct linux_binprm *bprm, int i)
324 {
325         if (bprm->page[i]) {
326                 __free_page(bprm->page[i]);
327                 bprm->page[i] = NULL;
328         }
329 }
330
331 static void free_arg_pages(struct linux_binprm *bprm)
332 {
333         int i;
334
335         for (i = 0; i < MAX_ARG_PAGES; i++)
336                 free_arg_page(bprm, i);
337 }
338
339 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
340                 struct page *page)
341 {
342 }
343
344 static int __bprm_mm_init(struct linux_binprm *bprm)
345 {
346         bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
347         return 0;
348 }
349
350 static bool valid_arg_len(struct linux_binprm *bprm, long len)
351 {
352         return len <= bprm->p;
353 }
354
355 #endif /* CONFIG_MMU */
356
357 /*
358  * Create a new mm_struct and populate it with a temporary stack
359  * vm_area_struct.  We don't have enough context at this point to set the stack
360  * flags, permissions, and offset, so we use temporary values.  We'll update
361  * them later in setup_arg_pages().
362  */
363 static int bprm_mm_init(struct linux_binprm *bprm)
364 {
365         int err;
366         struct mm_struct *mm = NULL;
367
368         bprm->mm = mm = mm_alloc();
369         err = -ENOMEM;
370         if (!mm)
371                 goto err;
372
373         /* Save current stack limit for all calculations made during exec. */
374         task_lock(current->group_leader);
375         bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
376         task_unlock(current->group_leader);
377
378         err = __bprm_mm_init(bprm);
379         if (err)
380                 goto err;
381
382         return 0;
383
384 err:
385         if (mm) {
386                 bprm->mm = NULL;
387                 mmdrop(mm);
388         }
389
390         return err;
391 }
392
393 struct user_arg_ptr {
394 #ifdef CONFIG_COMPAT
395         bool is_compat;
396 #endif
397         union {
398                 const char __user *const __user *native;
399 #ifdef CONFIG_COMPAT
400                 const compat_uptr_t __user *compat;
401 #endif
402         } ptr;
403 };
404
405 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
406 {
407         const char __user *native;
408
409 #ifdef CONFIG_COMPAT
410         if (unlikely(argv.is_compat)) {
411                 compat_uptr_t compat;
412
413                 if (get_user(compat, argv.ptr.compat + nr))
414                         return ERR_PTR(-EFAULT);
415
416                 return compat_ptr(compat);
417         }
418 #endif
419
420         if (get_user(native, argv.ptr.native + nr))
421                 return ERR_PTR(-EFAULT);
422
423         return native;
424 }
425
426 /*
427  * count() counts the number of strings in array ARGV.
428  */
429 static int count(struct user_arg_ptr argv, int max)
430 {
431         int i = 0;
432
433         if (argv.ptr.native != NULL) {
434                 for (;;) {
435                         const char __user *p = get_user_arg_ptr(argv, i);
436
437                         if (!p)
438                                 break;
439
440                         if (IS_ERR(p))
441                                 return -EFAULT;
442
443                         if (i >= max)
444                                 return -E2BIG;
445                         ++i;
446
447                         if (fatal_signal_pending(current))
448                                 return -ERESTARTNOHAND;
449                         cond_resched();
450                 }
451         }
452         return i;
453 }
454
455 static int count_strings_kernel(const char *const *argv)
456 {
457         int i;
458
459         if (!argv)
460                 return 0;
461
462         for (i = 0; argv[i]; ++i) {
463                 if (i >= MAX_ARG_STRINGS)
464                         return -E2BIG;
465                 if (fatal_signal_pending(current))
466                         return -ERESTARTNOHAND;
467                 cond_resched();
468         }
469         return i;
470 }
471
472 static int bprm_stack_limits(struct linux_binprm *bprm)
473 {
474         unsigned long limit, ptr_size;
475
476         /*
477          * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
478          * (whichever is smaller) for the argv+env strings.
479          * This ensures that:
480          *  - the remaining binfmt code will not run out of stack space,
481          *  - the program will have a reasonable amount of stack left
482          *    to work from.
483          */
484         limit = _STK_LIM / 4 * 3;
485         limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
486         /*
487          * We've historically supported up to 32 pages (ARG_MAX)
488          * of argument strings even with small stacks
489          */
490         limit = max_t(unsigned long, limit, ARG_MAX);
491         /*
492          * We must account for the size of all the argv and envp pointers to
493          * the argv and envp strings, since they will also take up space in
494          * the stack. They aren't stored until much later when we can't
495          * signal to the parent that the child has run out of stack space.
496          * Instead, calculate it here so it's possible to fail gracefully.
497          */
498         ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
499         if (limit <= ptr_size)
500                 return -E2BIG;
501         limit -= ptr_size;
502
503         bprm->argmin = bprm->p - limit;
504         return 0;
505 }
506
507 /*
508  * 'copy_strings()' copies argument/environment strings from the old
509  * processes's memory to the new process's stack.  The call to get_user_pages()
510  * ensures the destination page is created and not swapped out.
511  */
512 static int copy_strings(int argc, struct user_arg_ptr argv,
513                         struct linux_binprm *bprm)
514 {
515         struct page *kmapped_page = NULL;
516         char *kaddr = NULL;
517         unsigned long kpos = 0;
518         int ret;
519
520         while (argc-- > 0) {
521                 const char __user *str;
522                 int len;
523                 unsigned long pos;
524
525                 ret = -EFAULT;
526                 str = get_user_arg_ptr(argv, argc);
527                 if (IS_ERR(str))
528                         goto out;
529
530                 len = strnlen_user(str, MAX_ARG_STRLEN);
531                 if (!len)
532                         goto out;
533
534                 ret = -E2BIG;
535                 if (!valid_arg_len(bprm, len))
536                         goto out;
537
538                 /* We're going to work our way backwords. */
539                 pos = bprm->p;
540                 str += len;
541                 bprm->p -= len;
542 #ifdef CONFIG_MMU
543                 if (bprm->p < bprm->argmin)
544                         goto out;
545 #endif
546
547                 while (len > 0) {
548                         int offset, bytes_to_copy;
549
550                         if (fatal_signal_pending(current)) {
551                                 ret = -ERESTARTNOHAND;
552                                 goto out;
553                         }
554                         cond_resched();
555
556                         offset = pos % PAGE_SIZE;
557                         if (offset == 0)
558                                 offset = PAGE_SIZE;
559
560                         bytes_to_copy = offset;
561                         if (bytes_to_copy > len)
562                                 bytes_to_copy = len;
563
564                         offset -= bytes_to_copy;
565                         pos -= bytes_to_copy;
566                         str -= bytes_to_copy;
567                         len -= bytes_to_copy;
568
569                         if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
570                                 struct page *page;
571
572                                 page = get_arg_page(bprm, pos, 1);
573                                 if (!page) {
574                                         ret = -E2BIG;
575                                         goto out;
576                                 }
577
578                                 if (kmapped_page) {
579                                         flush_kernel_dcache_page(kmapped_page);
580                                         kunmap(kmapped_page);
581                                         put_arg_page(kmapped_page);
582                                 }
583                                 kmapped_page = page;
584                                 kaddr = kmap(kmapped_page);
585                                 kpos = pos & PAGE_MASK;
586                                 flush_arg_page(bprm, kpos, kmapped_page);
587                         }
588                         if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
589                                 ret = -EFAULT;
590                                 goto out;
591                         }
592                 }
593         }
594         ret = 0;
595 out:
596         if (kmapped_page) {
597                 flush_kernel_dcache_page(kmapped_page);
598                 kunmap(kmapped_page);
599                 put_arg_page(kmapped_page);
600         }
601         return ret;
602 }
603
604 /*
605  * Copy and argument/environment string from the kernel to the processes stack.
606  */
607 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
608 {
609         int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
610         unsigned long pos = bprm->p;
611
612         if (len == 0)
613                 return -EFAULT;
614         if (!valid_arg_len(bprm, len))
615                 return -E2BIG;
616
617         /* We're going to work our way backwards. */
618         arg += len;
619         bprm->p -= len;
620         if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
621                 return -E2BIG;
622
623         while (len > 0) {
624                 unsigned int bytes_to_copy = min_t(unsigned int, len,
625                                 min_not_zero(offset_in_page(pos), PAGE_SIZE));
626                 struct page *page;
627                 char *kaddr;
628
629                 pos -= bytes_to_copy;
630                 arg -= bytes_to_copy;
631                 len -= bytes_to_copy;
632
633                 page = get_arg_page(bprm, pos, 1);
634                 if (!page)
635                         return -E2BIG;
636                 kaddr = kmap_atomic(page);
637                 flush_arg_page(bprm, pos & PAGE_MASK, page);
638                 memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy);
639                 flush_kernel_dcache_page(page);
640                 kunmap_atomic(kaddr);
641                 put_arg_page(page);
642         }
643
644         return 0;
645 }
646 EXPORT_SYMBOL(copy_string_kernel);
647
648 static int copy_strings_kernel(int argc, const char *const *argv,
649                                struct linux_binprm *bprm)
650 {
651         while (argc-- > 0) {
652                 int ret = copy_string_kernel(argv[argc], bprm);
653                 if (ret < 0)
654                         return ret;
655                 if (fatal_signal_pending(current))
656                         return -ERESTARTNOHAND;
657                 cond_resched();
658         }
659         return 0;
660 }
661
662 #ifdef CONFIG_MMU
663
664 /*
665  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
666  * the binfmt code determines where the new stack should reside, we shift it to
667  * its final location.  The process proceeds as follows:
668  *
669  * 1) Use shift to calculate the new vma endpoints.
670  * 2) Extend vma to cover both the old and new ranges.  This ensures the
671  *    arguments passed to subsequent functions are consistent.
672  * 3) Move vma's page tables to the new range.
673  * 4) Free up any cleared pgd range.
674  * 5) Shrink the vma to cover only the new range.
675  */
676 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
677 {
678         struct mm_struct *mm = vma->vm_mm;
679         unsigned long old_start = vma->vm_start;
680         unsigned long old_end = vma->vm_end;
681         unsigned long length = old_end - old_start;
682         unsigned long new_start = old_start - shift;
683         unsigned long new_end = old_end - shift;
684         struct mmu_gather tlb;
685
686         BUG_ON(new_start > new_end);
687
688         /*
689          * ensure there are no vmas between where we want to go
690          * and where we are
691          */
692         if (vma != find_vma(mm, new_start))
693                 return -EFAULT;
694
695         /*
696          * cover the whole range: [new_start, old_end)
697          */
698         if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
699                 return -ENOMEM;
700
701         /*
702          * move the page tables downwards, on failure we rely on
703          * process cleanup to remove whatever mess we made.
704          */
705         if (length != move_page_tables(vma, old_start,
706                                        vma, new_start, length, false))
707                 return -ENOMEM;
708
709         lru_add_drain();
710         tlb_gather_mmu(&tlb, mm, old_start, old_end);
711         if (new_end > old_start) {
712                 /*
713                  * when the old and new regions overlap clear from new_end.
714                  */
715                 free_pgd_range(&tlb, new_end, old_end, new_end,
716                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
717         } else {
718                 /*
719                  * otherwise, clean from old_start; this is done to not touch
720                  * the address space in [new_end, old_start) some architectures
721                  * have constraints on va-space that make this illegal (IA64) -
722                  * for the others its just a little faster.
723                  */
724                 free_pgd_range(&tlb, old_start, old_end, new_end,
725                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
726         }
727         tlb_finish_mmu(&tlb, old_start, old_end);
728
729         /*
730          * Shrink the vma to just the new range.  Always succeeds.
731          */
732         vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
733
734         return 0;
735 }
736
737 /*
738  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
739  * the stack is optionally relocated, and some extra space is added.
740  */
741 int setup_arg_pages(struct linux_binprm *bprm,
742                     unsigned long stack_top,
743                     int executable_stack)
744 {
745         unsigned long ret;
746         unsigned long stack_shift;
747         struct mm_struct *mm = current->mm;
748         struct vm_area_struct *vma = bprm->vma;
749         struct vm_area_struct *prev = NULL;
750         unsigned long vm_flags;
751         unsigned long stack_base;
752         unsigned long stack_size;
753         unsigned long stack_expand;
754         unsigned long rlim_stack;
755
756 #ifdef CONFIG_STACK_GROWSUP
757         /* Limit stack size */
758         stack_base = bprm->rlim_stack.rlim_max;
759         if (stack_base > STACK_SIZE_MAX)
760                 stack_base = STACK_SIZE_MAX;
761
762         /* Add space for stack randomization. */
763         stack_base += (STACK_RND_MASK << PAGE_SHIFT);
764
765         /* Make sure we didn't let the argument array grow too large. */
766         if (vma->vm_end - vma->vm_start > stack_base)
767                 return -ENOMEM;
768
769         stack_base = PAGE_ALIGN(stack_top - stack_base);
770
771         stack_shift = vma->vm_start - stack_base;
772         mm->arg_start = bprm->p - stack_shift;
773         bprm->p = vma->vm_end - stack_shift;
774 #else
775         stack_top = arch_align_stack(stack_top);
776         stack_top = PAGE_ALIGN(stack_top);
777
778         if (unlikely(stack_top < mmap_min_addr) ||
779             unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
780                 return -ENOMEM;
781
782         stack_shift = vma->vm_end - stack_top;
783
784         bprm->p -= stack_shift;
785         mm->arg_start = bprm->p;
786 #endif
787
788         if (bprm->loader)
789                 bprm->loader -= stack_shift;
790         bprm->exec -= stack_shift;
791
792         if (mmap_write_lock_killable(mm))
793                 return -EINTR;
794
795         vm_flags = VM_STACK_FLAGS;
796
797         /*
798          * Adjust stack execute permissions; explicitly enable for
799          * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
800          * (arch default) otherwise.
801          */
802         if (unlikely(executable_stack == EXSTACK_ENABLE_X))
803                 vm_flags |= VM_EXEC;
804         else if (executable_stack == EXSTACK_DISABLE_X)
805                 vm_flags &= ~VM_EXEC;
806         vm_flags |= mm->def_flags;
807         vm_flags |= VM_STACK_INCOMPLETE_SETUP;
808
809         ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
810                         vm_flags);
811         if (ret)
812                 goto out_unlock;
813         BUG_ON(prev != vma);
814
815         if (unlikely(vm_flags & VM_EXEC)) {
816                 pr_warn_once("process '%pD4' started with executable stack\n",
817                              bprm->file);
818         }
819
820         /* Move stack pages down in memory. */
821         if (stack_shift) {
822                 ret = shift_arg_pages(vma, stack_shift);
823                 if (ret)
824                         goto out_unlock;
825         }
826
827         /* mprotect_fixup is overkill to remove the temporary stack flags */
828         vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
829
830         stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
831         stack_size = vma->vm_end - vma->vm_start;
832         /*
833          * Align this down to a page boundary as expand_stack
834          * will align it up.
835          */
836         rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
837 #ifdef CONFIG_STACK_GROWSUP
838         if (stack_size + stack_expand > rlim_stack)
839                 stack_base = vma->vm_start + rlim_stack;
840         else
841                 stack_base = vma->vm_end + stack_expand;
842 #else
843         if (stack_size + stack_expand > rlim_stack)
844                 stack_base = vma->vm_end - rlim_stack;
845         else
846                 stack_base = vma->vm_start - stack_expand;
847 #endif
848         current->mm->start_stack = bprm->p;
849         ret = expand_stack(vma, stack_base);
850         if (ret)
851                 ret = -EFAULT;
852
853 out_unlock:
854         mmap_write_unlock(mm);
855         return ret;
856 }
857 EXPORT_SYMBOL(setup_arg_pages);
858
859 #else
860
861 /*
862  * Transfer the program arguments and environment from the holding pages
863  * onto the stack. The provided stack pointer is adjusted accordingly.
864  */
865 int transfer_args_to_stack(struct linux_binprm *bprm,
866                            unsigned long *sp_location)
867 {
868         unsigned long index, stop, sp;
869         int ret = 0;
870
871         stop = bprm->p >> PAGE_SHIFT;
872         sp = *sp_location;
873
874         for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
875                 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
876                 char *src = kmap(bprm->page[index]) + offset;
877                 sp -= PAGE_SIZE - offset;
878                 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
879                         ret = -EFAULT;
880                 kunmap(bprm->page[index]);
881                 if (ret)
882                         goto out;
883         }
884
885         *sp_location = sp;
886
887 out:
888         return ret;
889 }
890 EXPORT_SYMBOL(transfer_args_to_stack);
891
892 #endif /* CONFIG_MMU */
893
894 static struct file *do_open_execat(int fd, struct filename *name, int flags)
895 {
896         struct file *file;
897         int err;
898         struct open_flags open_exec_flags = {
899                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
900                 .acc_mode = MAY_EXEC,
901                 .intent = LOOKUP_OPEN,
902                 .lookup_flags = LOOKUP_FOLLOW,
903         };
904
905         if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
906                 return ERR_PTR(-EINVAL);
907         if (flags & AT_SYMLINK_NOFOLLOW)
908                 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
909         if (flags & AT_EMPTY_PATH)
910                 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
911
912         file = do_filp_open(fd, name, &open_exec_flags);
913         if (IS_ERR(file))
914                 goto out;
915
916         /*
917          * may_open() has already checked for this, so it should be
918          * impossible to trip now. But we need to be extra cautious
919          * and check again at the very end too.
920          */
921         err = -EACCES;
922         if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode)))
923                 goto exit;
924
925         if (path_noexec(&file->f_path))
926                 goto exit;
927
928         err = deny_write_access(file);
929         if (err)
930                 goto exit;
931
932         if (name->name[0] != '\0')
933                 fsnotify_open(file);
934
935 out:
936         return file;
937
938 exit:
939         fput(file);
940         return ERR_PTR(err);
941 }
942
943 struct file *open_exec(const char *name)
944 {
945         struct filename *filename = getname_kernel(name);
946         struct file *f = ERR_CAST(filename);
947
948         if (!IS_ERR(filename)) {
949                 f = do_open_execat(AT_FDCWD, filename, 0);
950                 putname(filename);
951         }
952         return f;
953 }
954 EXPORT_SYMBOL(open_exec);
955
956 int kernel_read_file(struct file *file, void **buf, loff_t *size,
957                      loff_t max_size, enum kernel_read_file_id id)
958 {
959         loff_t i_size, pos;
960         ssize_t bytes = 0;
961         int ret;
962
963         if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
964                 return -EINVAL;
965
966         ret = deny_write_access(file);
967         if (ret)
968                 return ret;
969
970         ret = security_kernel_read_file(file, id);
971         if (ret)
972                 goto out;
973
974         i_size = i_size_read(file_inode(file));
975         if (i_size <= 0) {
976                 ret = -EINVAL;
977                 goto out;
978         }
979         if (i_size > SIZE_MAX || (max_size > 0 && i_size > max_size)) {
980                 ret = -EFBIG;
981                 goto out;
982         }
983
984         if (id != READING_FIRMWARE_PREALLOC_BUFFER)
985                 *buf = vmalloc(i_size);
986         if (!*buf) {
987                 ret = -ENOMEM;
988                 goto out;
989         }
990
991         pos = 0;
992         while (pos < i_size) {
993                 bytes = kernel_read(file, *buf + pos, i_size - pos, &pos);
994                 if (bytes < 0) {
995                         ret = bytes;
996                         goto out_free;
997                 }
998
999                 if (bytes == 0)
1000                         break;
1001         }
1002
1003         if (pos != i_size) {
1004                 ret = -EIO;
1005                 goto out_free;
1006         }
1007
1008         ret = security_kernel_post_read_file(file, *buf, i_size, id);
1009         if (!ret)
1010                 *size = pos;
1011
1012 out_free:
1013         if (ret < 0) {
1014                 if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
1015                         vfree(*buf);
1016                         *buf = NULL;
1017                 }
1018         }
1019
1020 out:
1021         allow_write_access(file);
1022         return ret;
1023 }
1024 EXPORT_SYMBOL_GPL(kernel_read_file);
1025
1026 int kernel_read_file_from_path(const char *path, void **buf, loff_t *size,
1027                                loff_t max_size, enum kernel_read_file_id id)
1028 {
1029         struct file *file;
1030         int ret;
1031
1032         if (!path || !*path)
1033                 return -EINVAL;
1034
1035         file = filp_open(path, O_RDONLY, 0);
1036         if (IS_ERR(file))
1037                 return PTR_ERR(file);
1038
1039         ret = kernel_read_file(file, buf, size, max_size, id);
1040         fput(file);
1041         return ret;
1042 }
1043 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
1044
1045 int kernel_read_file_from_path_initns(const char *path, void **buf,
1046                                       loff_t *size, loff_t max_size,
1047                                       enum kernel_read_file_id id)
1048 {
1049         struct file *file;
1050         struct path root;
1051         int ret;
1052
1053         if (!path || !*path)
1054                 return -EINVAL;
1055
1056         task_lock(&init_task);
1057         get_fs_root(init_task.fs, &root);
1058         task_unlock(&init_task);
1059
1060         file = file_open_root(root.dentry, root.mnt, path, O_RDONLY, 0);
1061         path_put(&root);
1062         if (IS_ERR(file))
1063                 return PTR_ERR(file);
1064
1065         ret = kernel_read_file(file, buf, size, max_size, id);
1066         fput(file);
1067         return ret;
1068 }
1069 EXPORT_SYMBOL_GPL(kernel_read_file_from_path_initns);
1070
1071 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
1072                              enum kernel_read_file_id id)
1073 {
1074         struct fd f = fdget(fd);
1075         int ret = -EBADF;
1076
1077         if (!f.file)
1078                 goto out;
1079
1080         ret = kernel_read_file(f.file, buf, size, max_size, id);
1081 out:
1082         fdput(f);
1083         return ret;
1084 }
1085 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
1086
1087 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \
1088     defined(CONFIG_BINFMT_ELF_FDPIC)
1089 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
1090 {
1091         ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1092         if (res > 0)
1093                 flush_icache_user_range(addr, addr + len);
1094         return res;
1095 }
1096 EXPORT_SYMBOL(read_code);
1097 #endif
1098
1099 /*
1100  * Maps the mm_struct mm into the current task struct.
1101  * On success, this function returns with the mutex
1102  * exec_update_mutex locked.
1103  */
1104 static int exec_mmap(struct mm_struct *mm)
1105 {
1106         struct task_struct *tsk;
1107         struct mm_struct *old_mm, *active_mm;
1108         int ret;
1109
1110         /* Notify parent that we're no longer interested in the old VM */
1111         tsk = current;
1112         old_mm = current->mm;
1113         exec_mm_release(tsk, old_mm);
1114         if (old_mm)
1115                 sync_mm_rss(old_mm);
1116
1117         ret = mutex_lock_killable(&tsk->signal->exec_update_mutex);
1118         if (ret)
1119                 return ret;
1120
1121         if (old_mm) {
1122                 /*
1123                  * Make sure that if there is a core dump in progress
1124                  * for the old mm, we get out and die instead of going
1125                  * through with the exec.  We must hold mmap_lock around
1126                  * checking core_state and changing tsk->mm.
1127                  */
1128                 mmap_read_lock(old_mm);
1129                 if (unlikely(old_mm->core_state)) {
1130                         mmap_read_unlock(old_mm);
1131                         mutex_unlock(&tsk->signal->exec_update_mutex);
1132                         return -EINTR;
1133                 }
1134         }
1135
1136         task_lock(tsk);
1137         active_mm = tsk->active_mm;
1138         membarrier_exec_mmap(mm);
1139         tsk->mm = mm;
1140         tsk->active_mm = mm;
1141         activate_mm(active_mm, mm);
1142         tsk->mm->vmacache_seqnum = 0;
1143         vmacache_flush(tsk);
1144         task_unlock(tsk);
1145         if (old_mm) {
1146                 mmap_read_unlock(old_mm);
1147                 BUG_ON(active_mm != old_mm);
1148                 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1149                 mm_update_next_owner(old_mm);
1150                 mmput(old_mm);
1151                 return 0;
1152         }
1153         mmdrop(active_mm);
1154         return 0;
1155 }
1156
1157 static int de_thread(struct task_struct *tsk)
1158 {
1159         struct signal_struct *sig = tsk->signal;
1160         struct sighand_struct *oldsighand = tsk->sighand;
1161         spinlock_t *lock = &oldsighand->siglock;
1162
1163         if (thread_group_empty(tsk))
1164                 goto no_thread_group;
1165
1166         /*
1167          * Kill all other threads in the thread group.
1168          */
1169         spin_lock_irq(lock);
1170         if (signal_group_exit(sig)) {
1171                 /*
1172                  * Another group action in progress, just
1173                  * return so that the signal is processed.
1174                  */
1175                 spin_unlock_irq(lock);
1176                 return -EAGAIN;
1177         }
1178
1179         sig->group_exit_task = tsk;
1180         sig->notify_count = zap_other_threads(tsk);
1181         if (!thread_group_leader(tsk))
1182                 sig->notify_count--;
1183
1184         while (sig->notify_count) {
1185                 __set_current_state(TASK_KILLABLE);
1186                 spin_unlock_irq(lock);
1187                 schedule();
1188                 if (__fatal_signal_pending(tsk))
1189                         goto killed;
1190                 spin_lock_irq(lock);
1191         }
1192         spin_unlock_irq(lock);
1193
1194         /*
1195          * At this point all other threads have exited, all we have to
1196          * do is to wait for the thread group leader to become inactive,
1197          * and to assume its PID:
1198          */
1199         if (!thread_group_leader(tsk)) {
1200                 struct task_struct *leader = tsk->group_leader;
1201
1202                 for (;;) {
1203                         cgroup_threadgroup_change_begin(tsk);
1204                         write_lock_irq(&tasklist_lock);
1205                         /*
1206                          * Do this under tasklist_lock to ensure that
1207                          * exit_notify() can't miss ->group_exit_task
1208                          */
1209                         sig->notify_count = -1;
1210                         if (likely(leader->exit_state))
1211                                 break;
1212                         __set_current_state(TASK_KILLABLE);
1213                         write_unlock_irq(&tasklist_lock);
1214                         cgroup_threadgroup_change_end(tsk);
1215                         schedule();
1216                         if (__fatal_signal_pending(tsk))
1217                                 goto killed;
1218                 }
1219
1220                 /*
1221                  * The only record we have of the real-time age of a
1222                  * process, regardless of execs it's done, is start_time.
1223                  * All the past CPU time is accumulated in signal_struct
1224                  * from sister threads now dead.  But in this non-leader
1225                  * exec, nothing survives from the original leader thread,
1226                  * whose birth marks the true age of this process now.
1227                  * When we take on its identity by switching to its PID, we
1228                  * also take its birthdate (always earlier than our own).
1229                  */
1230                 tsk->start_time = leader->start_time;
1231                 tsk->start_boottime = leader->start_boottime;
1232
1233                 BUG_ON(!same_thread_group(leader, tsk));
1234                 /*
1235                  * An exec() starts a new thread group with the
1236                  * TGID of the previous thread group. Rehash the
1237                  * two threads with a switched PID, and release
1238                  * the former thread group leader:
1239                  */
1240
1241                 /* Become a process group leader with the old leader's pid.
1242                  * The old leader becomes a thread of the this thread group.
1243                  */
1244                 exchange_tids(tsk, leader);
1245                 transfer_pid(leader, tsk, PIDTYPE_TGID);
1246                 transfer_pid(leader, tsk, PIDTYPE_PGID);
1247                 transfer_pid(leader, tsk, PIDTYPE_SID);
1248
1249                 list_replace_rcu(&leader->tasks, &tsk->tasks);
1250                 list_replace_init(&leader->sibling, &tsk->sibling);
1251
1252                 tsk->group_leader = tsk;
1253                 leader->group_leader = tsk;
1254
1255                 tsk->exit_signal = SIGCHLD;
1256                 leader->exit_signal = -1;
1257
1258                 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1259                 leader->exit_state = EXIT_DEAD;
1260
1261                 /*
1262                  * We are going to release_task()->ptrace_unlink() silently,
1263                  * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1264                  * the tracer wont't block again waiting for this thread.
1265                  */
1266                 if (unlikely(leader->ptrace))
1267                         __wake_up_parent(leader, leader->parent);
1268                 write_unlock_irq(&tasklist_lock);
1269                 cgroup_threadgroup_change_end(tsk);
1270
1271                 release_task(leader);
1272         }
1273
1274         sig->group_exit_task = NULL;
1275         sig->notify_count = 0;
1276
1277 no_thread_group:
1278         /* we have changed execution domain */
1279         tsk->exit_signal = SIGCHLD;
1280
1281         BUG_ON(!thread_group_leader(tsk));
1282         return 0;
1283
1284 killed:
1285         /* protects against exit_notify() and __exit_signal() */
1286         read_lock(&tasklist_lock);
1287         sig->group_exit_task = NULL;
1288         sig->notify_count = 0;
1289         read_unlock(&tasklist_lock);
1290         return -EAGAIN;
1291 }
1292
1293
1294 /*
1295  * This function makes sure the current process has its own signal table,
1296  * so that flush_signal_handlers can later reset the handlers without
1297  * disturbing other processes.  (Other processes might share the signal
1298  * table via the CLONE_SIGHAND option to clone().)
1299  */
1300 static int unshare_sighand(struct task_struct *me)
1301 {
1302         struct sighand_struct *oldsighand = me->sighand;
1303
1304         if (refcount_read(&oldsighand->count) != 1) {
1305                 struct sighand_struct *newsighand;
1306                 /*
1307                  * This ->sighand is shared with the CLONE_SIGHAND
1308                  * but not CLONE_THREAD task, switch to the new one.
1309                  */
1310                 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1311                 if (!newsighand)
1312                         return -ENOMEM;
1313
1314                 refcount_set(&newsighand->count, 1);
1315                 memcpy(newsighand->action, oldsighand->action,
1316                        sizeof(newsighand->action));
1317
1318                 write_lock_irq(&tasklist_lock);
1319                 spin_lock(&oldsighand->siglock);
1320                 rcu_assign_pointer(me->sighand, newsighand);
1321                 spin_unlock(&oldsighand->siglock);
1322                 write_unlock_irq(&tasklist_lock);
1323
1324                 __cleanup_sighand(oldsighand);
1325         }
1326         return 0;
1327 }
1328
1329 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1330 {
1331         task_lock(tsk);
1332         strncpy(buf, tsk->comm, buf_size);
1333         task_unlock(tsk);
1334         return buf;
1335 }
1336 EXPORT_SYMBOL_GPL(__get_task_comm);
1337
1338 /*
1339  * These functions flushes out all traces of the currently running executable
1340  * so that a new one can be started
1341  */
1342
1343 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1344 {
1345         task_lock(tsk);
1346         trace_task_rename(tsk, buf);
1347         strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1348         task_unlock(tsk);
1349         perf_event_comm(tsk, exec);
1350 }
1351
1352 /*
1353  * Calling this is the point of no return. None of the failures will be
1354  * seen by userspace since either the process is already taking a fatal
1355  * signal (via de_thread() or coredump), or will have SEGV raised
1356  * (after exec_mmap()) by search_binary_handler (see below).
1357  */
1358 int begin_new_exec(struct linux_binprm * bprm)
1359 {
1360         struct task_struct *me = current;
1361         int retval;
1362
1363         /* Once we are committed compute the creds */
1364         retval = bprm_creds_from_file(bprm);
1365         if (retval)
1366                 return retval;
1367
1368         /*
1369          * Ensure all future errors are fatal.
1370          */
1371         bprm->point_of_no_return = true;
1372
1373         /*
1374          * Make this the only thread in the thread group.
1375          */
1376         retval = de_thread(me);
1377         if (retval)
1378                 goto out;
1379
1380         /*
1381          * Must be called _before_ exec_mmap() as bprm->mm is
1382          * not visibile until then. This also enables the update
1383          * to be lockless.
1384          */
1385         set_mm_exe_file(bprm->mm, bprm->file);
1386
1387         /* If the binary is not readable then enforce mm->dumpable=0 */
1388         would_dump(bprm, bprm->file);
1389         if (bprm->have_execfd)
1390                 would_dump(bprm, bprm->executable);
1391
1392         /*
1393          * Release all of the old mmap stuff
1394          */
1395         acct_arg_size(bprm, 0);
1396         retval = exec_mmap(bprm->mm);
1397         if (retval)
1398                 goto out;
1399
1400         bprm->mm = NULL;
1401
1402 #ifdef CONFIG_POSIX_TIMERS
1403         exit_itimers(me->signal);
1404         flush_itimer_signals();
1405 #endif
1406
1407         /*
1408          * Make the signal table private.
1409          */
1410         retval = unshare_sighand(me);
1411         if (retval)
1412                 goto out_unlock;
1413
1414         /*
1415          * Ensure that the uaccess routines can actually operate on userspace
1416          * pointers:
1417          */
1418         force_uaccess_begin();
1419
1420         me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1421                                         PF_NOFREEZE | PF_NO_SETAFFINITY);
1422         flush_thread();
1423         me->personality &= ~bprm->per_clear;
1424
1425         /*
1426          * We have to apply CLOEXEC before we change whether the process is
1427          * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1428          * trying to access the should-be-closed file descriptors of a process
1429          * undergoing exec(2).
1430          */
1431         do_close_on_exec(me->files);
1432
1433         if (bprm->secureexec) {
1434                 /* Make sure parent cannot signal privileged process. */
1435                 me->pdeath_signal = 0;
1436
1437                 /*
1438                  * For secureexec, reset the stack limit to sane default to
1439                  * avoid bad behavior from the prior rlimits. This has to
1440                  * happen before arch_pick_mmap_layout(), which examines
1441                  * RLIMIT_STACK, but after the point of no return to avoid
1442                  * needing to clean up the change on failure.
1443                  */
1444                 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1445                         bprm->rlim_stack.rlim_cur = _STK_LIM;
1446         }
1447
1448         me->sas_ss_sp = me->sas_ss_size = 0;
1449
1450         /*
1451          * Figure out dumpability. Note that this checking only of current
1452          * is wrong, but userspace depends on it. This should be testing
1453          * bprm->secureexec instead.
1454          */
1455         if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1456             !(uid_eq(current_euid(), current_uid()) &&
1457               gid_eq(current_egid(), current_gid())))
1458                 set_dumpable(current->mm, suid_dumpable);
1459         else
1460                 set_dumpable(current->mm, SUID_DUMP_USER);
1461
1462         perf_event_exec();
1463         __set_task_comm(me, kbasename(bprm->filename), true);
1464
1465         /* An exec changes our domain. We are no longer part of the thread
1466            group */
1467         WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1468         flush_signal_handlers(me, 0);
1469
1470         /*
1471          * install the new credentials for this executable
1472          */
1473         security_bprm_committing_creds(bprm);
1474
1475         commit_creds(bprm->cred);
1476         bprm->cred = NULL;
1477
1478         /*
1479          * Disable monitoring for regular users
1480          * when executing setuid binaries. Must
1481          * wait until new credentials are committed
1482          * by commit_creds() above
1483          */
1484         if (get_dumpable(me->mm) != SUID_DUMP_USER)
1485                 perf_event_exit_task(me);
1486         /*
1487          * cred_guard_mutex must be held at least to this point to prevent
1488          * ptrace_attach() from altering our determination of the task's
1489          * credentials; any time after this it may be unlocked.
1490          */
1491         security_bprm_committed_creds(bprm);
1492
1493         /* Pass the opened binary to the interpreter. */
1494         if (bprm->have_execfd) {
1495                 retval = get_unused_fd_flags(0);
1496                 if (retval < 0)
1497                         goto out_unlock;
1498                 fd_install(retval, bprm->executable);
1499                 bprm->executable = NULL;
1500                 bprm->execfd = retval;
1501         }
1502         return 0;
1503
1504 out_unlock:
1505         mutex_unlock(&me->signal->exec_update_mutex);
1506 out:
1507         return retval;
1508 }
1509 EXPORT_SYMBOL(begin_new_exec);
1510
1511 void would_dump(struct linux_binprm *bprm, struct file *file)
1512 {
1513         struct inode *inode = file_inode(file);
1514         if (inode_permission(inode, MAY_READ) < 0) {
1515                 struct user_namespace *old, *user_ns;
1516                 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1517
1518                 /* Ensure mm->user_ns contains the executable */
1519                 user_ns = old = bprm->mm->user_ns;
1520                 while ((user_ns != &init_user_ns) &&
1521                        !privileged_wrt_inode_uidgid(user_ns, inode))
1522                         user_ns = user_ns->parent;
1523
1524                 if (old != user_ns) {
1525                         bprm->mm->user_ns = get_user_ns(user_ns);
1526                         put_user_ns(old);
1527                 }
1528         }
1529 }
1530 EXPORT_SYMBOL(would_dump);
1531
1532 void setup_new_exec(struct linux_binprm * bprm)
1533 {
1534         /* Setup things that can depend upon the personality */
1535         struct task_struct *me = current;
1536
1537         arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1538
1539         arch_setup_new_exec();
1540
1541         /* Set the new mm task size. We have to do that late because it may
1542          * depend on TIF_32BIT which is only updated in flush_thread() on
1543          * some architectures like powerpc
1544          */
1545         me->mm->task_size = TASK_SIZE;
1546         mutex_unlock(&me->signal->exec_update_mutex);
1547         mutex_unlock(&me->signal->cred_guard_mutex);
1548 }
1549 EXPORT_SYMBOL(setup_new_exec);
1550
1551 /* Runs immediately before start_thread() takes over. */
1552 void finalize_exec(struct linux_binprm *bprm)
1553 {
1554         /* Store any stack rlimit changes before starting thread. */
1555         task_lock(current->group_leader);
1556         current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1557         task_unlock(current->group_leader);
1558 }
1559 EXPORT_SYMBOL(finalize_exec);
1560
1561 /*
1562  * Prepare credentials and lock ->cred_guard_mutex.
1563  * setup_new_exec() commits the new creds and drops the lock.
1564  * Or, if exec fails before, free_bprm() should release ->cred and
1565  * and unlock.
1566  */
1567 static int prepare_bprm_creds(struct linux_binprm *bprm)
1568 {
1569         if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1570                 return -ERESTARTNOINTR;
1571
1572         bprm->cred = prepare_exec_creds();
1573         if (likely(bprm->cred))
1574                 return 0;
1575
1576         mutex_unlock(&current->signal->cred_guard_mutex);
1577         return -ENOMEM;
1578 }
1579
1580 static void free_bprm(struct linux_binprm *bprm)
1581 {
1582         if (bprm->mm) {
1583                 acct_arg_size(bprm, 0);
1584                 mmput(bprm->mm);
1585         }
1586         free_arg_pages(bprm);
1587         if (bprm->cred) {
1588                 mutex_unlock(&current->signal->cred_guard_mutex);
1589                 abort_creds(bprm->cred);
1590         }
1591         if (bprm->file) {
1592                 allow_write_access(bprm->file);
1593                 fput(bprm->file);
1594         }
1595         if (bprm->executable)
1596                 fput(bprm->executable);
1597         /* If a binfmt changed the interp, free it. */
1598         if (bprm->interp != bprm->filename)
1599                 kfree(bprm->interp);
1600         kfree(bprm->fdpath);
1601         kfree(bprm);
1602 }
1603
1604 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1605 {
1606         struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1607         int retval = -ENOMEM;
1608         if (!bprm)
1609                 goto out;
1610
1611         if (fd == AT_FDCWD || filename->name[0] == '/') {
1612                 bprm->filename = filename->name;
1613         } else {
1614                 if (filename->name[0] == '\0')
1615                         bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1616                 else
1617                         bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1618                                                   fd, filename->name);
1619                 if (!bprm->fdpath)
1620                         goto out_free;
1621
1622                 bprm->filename = bprm->fdpath;
1623         }
1624         bprm->interp = bprm->filename;
1625
1626         retval = bprm_mm_init(bprm);
1627         if (retval)
1628                 goto out_free;
1629         return bprm;
1630
1631 out_free:
1632         free_bprm(bprm);
1633 out:
1634         return ERR_PTR(retval);
1635 }
1636
1637 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1638 {
1639         /* If a binfmt changed the interp, free it first. */
1640         if (bprm->interp != bprm->filename)
1641                 kfree(bprm->interp);
1642         bprm->interp = kstrdup(interp, GFP_KERNEL);
1643         if (!bprm->interp)
1644                 return -ENOMEM;
1645         return 0;
1646 }
1647 EXPORT_SYMBOL(bprm_change_interp);
1648
1649 /*
1650  * determine how safe it is to execute the proposed program
1651  * - the caller must hold ->cred_guard_mutex to protect against
1652  *   PTRACE_ATTACH or seccomp thread-sync
1653  */
1654 static void check_unsafe_exec(struct linux_binprm *bprm)
1655 {
1656         struct task_struct *p = current, *t;
1657         unsigned n_fs;
1658
1659         if (p->ptrace)
1660                 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1661
1662         /*
1663          * This isn't strictly necessary, but it makes it harder for LSMs to
1664          * mess up.
1665          */
1666         if (task_no_new_privs(current))
1667                 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1668
1669         t = p;
1670         n_fs = 1;
1671         spin_lock(&p->fs->lock);
1672         rcu_read_lock();
1673         while_each_thread(p, t) {
1674                 if (t->fs == p->fs)
1675                         n_fs++;
1676         }
1677         rcu_read_unlock();
1678
1679         if (p->fs->users > n_fs)
1680                 bprm->unsafe |= LSM_UNSAFE_SHARE;
1681         else
1682                 p->fs->in_exec = 1;
1683         spin_unlock(&p->fs->lock);
1684 }
1685
1686 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1687 {
1688         /* Handle suid and sgid on files */
1689         struct inode *inode;
1690         unsigned int mode;
1691         kuid_t uid;
1692         kgid_t gid;
1693
1694         if (!mnt_may_suid(file->f_path.mnt))
1695                 return;
1696
1697         if (task_no_new_privs(current))
1698                 return;
1699
1700         inode = file->f_path.dentry->d_inode;
1701         mode = READ_ONCE(inode->i_mode);
1702         if (!(mode & (S_ISUID|S_ISGID)))
1703                 return;
1704
1705         /* Be careful if suid/sgid is set */
1706         inode_lock(inode);
1707
1708         /* reload atomically mode/uid/gid now that lock held */
1709         mode = inode->i_mode;
1710         uid = inode->i_uid;
1711         gid = inode->i_gid;
1712         inode_unlock(inode);
1713
1714         /* We ignore suid/sgid if there are no mappings for them in the ns */
1715         if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1716                  !kgid_has_mapping(bprm->cred->user_ns, gid))
1717                 return;
1718
1719         if (mode & S_ISUID) {
1720                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1721                 bprm->cred->euid = uid;
1722         }
1723
1724         if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1725                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1726                 bprm->cred->egid = gid;
1727         }
1728 }
1729
1730 /*
1731  * Compute brpm->cred based upon the final binary.
1732  */
1733 static int bprm_creds_from_file(struct linux_binprm *bprm)
1734 {
1735         /* Compute creds based on which file? */
1736         struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1737
1738         bprm_fill_uid(bprm, file);
1739         return security_bprm_creds_from_file(bprm, file);
1740 }
1741
1742 /*
1743  * Fill the binprm structure from the inode.
1744  * Read the first BINPRM_BUF_SIZE bytes
1745  *
1746  * This may be called multiple times for binary chains (scripts for example).
1747  */
1748 static int prepare_binprm(struct linux_binprm *bprm)
1749 {
1750         loff_t pos = 0;
1751
1752         memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1753         return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1754 }
1755
1756 /*
1757  * Arguments are '\0' separated strings found at the location bprm->p
1758  * points to; chop off the first by relocating brpm->p to right after
1759  * the first '\0' encountered.
1760  */
1761 int remove_arg_zero(struct linux_binprm *bprm)
1762 {
1763         int ret = 0;
1764         unsigned long offset;
1765         char *kaddr;
1766         struct page *page;
1767
1768         if (!bprm->argc)
1769                 return 0;
1770
1771         do {
1772                 offset = bprm->p & ~PAGE_MASK;
1773                 page = get_arg_page(bprm, bprm->p, 0);
1774                 if (!page) {
1775                         ret = -EFAULT;
1776                         goto out;
1777                 }
1778                 kaddr = kmap_atomic(page);
1779
1780                 for (; offset < PAGE_SIZE && kaddr[offset];
1781                                 offset++, bprm->p++)
1782                         ;
1783
1784                 kunmap_atomic(kaddr);
1785                 put_arg_page(page);
1786         } while (offset == PAGE_SIZE);
1787
1788         bprm->p++;
1789         bprm->argc--;
1790         ret = 0;
1791
1792 out:
1793         return ret;
1794 }
1795 EXPORT_SYMBOL(remove_arg_zero);
1796
1797 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1798 /*
1799  * cycle the list of binary formats handler, until one recognizes the image
1800  */
1801 static int search_binary_handler(struct linux_binprm *bprm)
1802 {
1803         bool need_retry = IS_ENABLED(CONFIG_MODULES);
1804         struct linux_binfmt *fmt;
1805         int retval;
1806
1807         retval = prepare_binprm(bprm);
1808         if (retval < 0)
1809                 return retval;
1810
1811         retval = security_bprm_check(bprm);
1812         if (retval)
1813                 return retval;
1814
1815         retval = -ENOENT;
1816  retry:
1817         read_lock(&binfmt_lock);
1818         list_for_each_entry(fmt, &formats, lh) {
1819                 if (!try_module_get(fmt->module))
1820                         continue;
1821                 read_unlock(&binfmt_lock);
1822
1823                 retval = fmt->load_binary(bprm);
1824
1825                 read_lock(&binfmt_lock);
1826                 put_binfmt(fmt);
1827                 if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1828                         read_unlock(&binfmt_lock);
1829                         return retval;
1830                 }
1831         }
1832         read_unlock(&binfmt_lock);
1833
1834         if (need_retry) {
1835                 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1836                     printable(bprm->buf[2]) && printable(bprm->buf[3]))
1837                         return retval;
1838                 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1839                         return retval;
1840                 need_retry = false;
1841                 goto retry;
1842         }
1843
1844         return retval;
1845 }
1846
1847 static int exec_binprm(struct linux_binprm *bprm)
1848 {
1849         pid_t old_pid, old_vpid;
1850         int ret, depth;
1851
1852         /* Need to fetch pid before load_binary changes it */
1853         old_pid = current->pid;
1854         rcu_read_lock();
1855         old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1856         rcu_read_unlock();
1857
1858         /* This allows 4 levels of binfmt rewrites before failing hard. */
1859         for (depth = 0;; depth++) {
1860                 struct file *exec;
1861                 if (depth > 5)
1862                         return -ELOOP;
1863
1864                 ret = search_binary_handler(bprm);
1865                 if (ret < 0)
1866                         return ret;
1867                 if (!bprm->interpreter)
1868                         break;
1869
1870                 exec = bprm->file;
1871                 bprm->file = bprm->interpreter;
1872                 bprm->interpreter = NULL;
1873
1874                 allow_write_access(exec);
1875                 if (unlikely(bprm->have_execfd)) {
1876                         if (bprm->executable) {
1877                                 fput(exec);
1878                                 return -ENOEXEC;
1879                         }
1880                         bprm->executable = exec;
1881                 } else
1882                         fput(exec);
1883         }
1884
1885         audit_bprm(bprm);
1886         trace_sched_process_exec(current, old_pid, bprm);
1887         ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1888         proc_exec_connector(current);
1889         return 0;
1890 }
1891
1892 /*
1893  * sys_execve() executes a new program.
1894  */
1895 static int bprm_execve(struct linux_binprm *bprm,
1896                        int fd, struct filename *filename, int flags)
1897 {
1898         struct file *file;
1899         struct files_struct *displaced;
1900         int retval;
1901
1902         retval = unshare_files(&displaced);
1903         if (retval)
1904                 return retval;
1905
1906         retval = prepare_bprm_creds(bprm);
1907         if (retval)
1908                 goto out_files;
1909
1910         check_unsafe_exec(bprm);
1911         current->in_execve = 1;
1912
1913         file = do_open_execat(fd, filename, flags);
1914         retval = PTR_ERR(file);
1915         if (IS_ERR(file))
1916                 goto out_unmark;
1917
1918         sched_exec();
1919
1920         bprm->file = file;
1921         /*
1922          * Record that a name derived from an O_CLOEXEC fd will be
1923          * inaccessible after exec. Relies on having exclusive access to
1924          * current->files (due to unshare_files above).
1925          */
1926         if (bprm->fdpath &&
1927             close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1928                 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1929
1930         /* Set the unchanging part of bprm->cred */
1931         retval = security_bprm_creds_for_exec(bprm);
1932         if (retval)
1933                 goto out;
1934
1935         retval = exec_binprm(bprm);
1936         if (retval < 0)
1937                 goto out;
1938
1939         /* execve succeeded */
1940         current->fs->in_exec = 0;
1941         current->in_execve = 0;
1942         rseq_execve(current);
1943         acct_update_integrals(current);
1944         task_numa_free(current, false);
1945         if (displaced)
1946                 put_files_struct(displaced);
1947         return retval;
1948
1949 out:
1950         /*
1951          * If past the point of no return ensure the the code never
1952          * returns to the userspace process.  Use an existing fatal
1953          * signal if present otherwise terminate the process with
1954          * SIGSEGV.
1955          */
1956         if (bprm->point_of_no_return && !fatal_signal_pending(current))
1957                 force_sigsegv(SIGSEGV);
1958
1959 out_unmark:
1960         current->fs->in_exec = 0;
1961         current->in_execve = 0;
1962
1963 out_files:
1964         if (displaced)
1965                 reset_files_struct(displaced);
1966
1967         return retval;
1968 }
1969
1970 static int do_execveat_common(int fd, struct filename *filename,
1971                               struct user_arg_ptr argv,
1972                               struct user_arg_ptr envp,
1973                               int flags)
1974 {
1975         struct linux_binprm *bprm;
1976         int retval;
1977
1978         if (IS_ERR(filename))
1979                 return PTR_ERR(filename);
1980
1981         /*
1982          * We move the actual failure in case of RLIMIT_NPROC excess from
1983          * set*uid() to execve() because too many poorly written programs
1984          * don't check setuid() return code.  Here we additionally recheck
1985          * whether NPROC limit is still exceeded.
1986          */
1987         if ((current->flags & PF_NPROC_EXCEEDED) &&
1988             atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1989                 retval = -EAGAIN;
1990                 goto out_ret;
1991         }
1992
1993         /* We're below the limit (still or again), so we don't want to make
1994          * further execve() calls fail. */
1995         current->flags &= ~PF_NPROC_EXCEEDED;
1996
1997         bprm = alloc_bprm(fd, filename);
1998         if (IS_ERR(bprm)) {
1999                 retval = PTR_ERR(bprm);
2000                 goto out_ret;
2001         }
2002
2003         retval = count(argv, MAX_ARG_STRINGS);
2004         if (retval < 0)
2005                 goto out_free;
2006         bprm->argc = retval;
2007
2008         retval = count(envp, MAX_ARG_STRINGS);
2009         if (retval < 0)
2010                 goto out_free;
2011         bprm->envc = retval;
2012
2013         retval = bprm_stack_limits(bprm);
2014         if (retval < 0)
2015                 goto out_free;
2016
2017         retval = copy_string_kernel(bprm->filename, bprm);
2018         if (retval < 0)
2019                 goto out_free;
2020         bprm->exec = bprm->p;
2021
2022         retval = copy_strings(bprm->envc, envp, bprm);
2023         if (retval < 0)
2024                 goto out_free;
2025
2026         retval = copy_strings(bprm->argc, argv, bprm);
2027         if (retval < 0)
2028                 goto out_free;
2029
2030         retval = bprm_execve(bprm, fd, filename, flags);
2031 out_free:
2032         free_bprm(bprm);
2033
2034 out_ret:
2035         putname(filename);
2036         return retval;
2037 }
2038
2039 int kernel_execve(const char *kernel_filename,
2040                   const char *const *argv, const char *const *envp)
2041 {
2042         struct filename *filename;
2043         struct linux_binprm *bprm;
2044         int fd = AT_FDCWD;
2045         int retval;
2046
2047         filename = getname_kernel(kernel_filename);
2048         if (IS_ERR(filename))
2049                 return PTR_ERR(filename);
2050
2051         bprm = alloc_bprm(fd, filename);
2052         if (IS_ERR(bprm)) {
2053                 retval = PTR_ERR(bprm);
2054                 goto out_ret;
2055         }
2056
2057         retval = count_strings_kernel(argv);
2058         if (retval < 0)
2059                 goto out_free;
2060         bprm->argc = retval;
2061
2062         retval = count_strings_kernel(envp);
2063         if (retval < 0)
2064                 goto out_free;
2065         bprm->envc = retval;
2066
2067         retval = bprm_stack_limits(bprm);
2068         if (retval < 0)
2069                 goto out_free;
2070
2071         retval = copy_string_kernel(bprm->filename, bprm);
2072         if (retval < 0)
2073                 goto out_free;
2074         bprm->exec = bprm->p;
2075
2076         retval = copy_strings_kernel(bprm->envc, envp, bprm);
2077         if (retval < 0)
2078                 goto out_free;
2079
2080         retval = copy_strings_kernel(bprm->argc, argv, bprm);
2081         if (retval < 0)
2082                 goto out_free;
2083
2084         retval = bprm_execve(bprm, fd, filename, 0);
2085 out_free:
2086         free_bprm(bprm);
2087 out_ret:
2088         putname(filename);
2089         return retval;
2090 }
2091
2092 static int do_execve(struct filename *filename,
2093         const char __user *const __user *__argv,
2094         const char __user *const __user *__envp)
2095 {
2096         struct user_arg_ptr argv = { .ptr.native = __argv };
2097         struct user_arg_ptr envp = { .ptr.native = __envp };
2098         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2099 }
2100
2101 static int do_execveat(int fd, struct filename *filename,
2102                 const char __user *const __user *__argv,
2103                 const char __user *const __user *__envp,
2104                 int flags)
2105 {
2106         struct user_arg_ptr argv = { .ptr.native = __argv };
2107         struct user_arg_ptr envp = { .ptr.native = __envp };
2108
2109         return do_execveat_common(fd, filename, argv, envp, flags);
2110 }
2111
2112 #ifdef CONFIG_COMPAT
2113 static int compat_do_execve(struct filename *filename,
2114         const compat_uptr_t __user *__argv,
2115         const compat_uptr_t __user *__envp)
2116 {
2117         struct user_arg_ptr argv = {
2118                 .is_compat = true,
2119                 .ptr.compat = __argv,
2120         };
2121         struct user_arg_ptr envp = {
2122                 .is_compat = true,
2123                 .ptr.compat = __envp,
2124         };
2125         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2126 }
2127
2128 static int compat_do_execveat(int fd, struct filename *filename,
2129                               const compat_uptr_t __user *__argv,
2130                               const compat_uptr_t __user *__envp,
2131                               int flags)
2132 {
2133         struct user_arg_ptr argv = {
2134                 .is_compat = true,
2135                 .ptr.compat = __argv,
2136         };
2137         struct user_arg_ptr envp = {
2138                 .is_compat = true,
2139                 .ptr.compat = __envp,
2140         };
2141         return do_execveat_common(fd, filename, argv, envp, flags);
2142 }
2143 #endif
2144
2145 void set_binfmt(struct linux_binfmt *new)
2146 {
2147         struct mm_struct *mm = current->mm;
2148
2149         if (mm->binfmt)
2150                 module_put(mm->binfmt->module);
2151
2152         mm->binfmt = new;
2153         if (new)
2154                 __module_get(new->module);
2155 }
2156 EXPORT_SYMBOL(set_binfmt);
2157
2158 /*
2159  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2160  */
2161 void set_dumpable(struct mm_struct *mm, int value)
2162 {
2163         if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2164                 return;
2165
2166         set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2167 }
2168
2169 SYSCALL_DEFINE3(execve,
2170                 const char __user *, filename,
2171                 const char __user *const __user *, argv,
2172                 const char __user *const __user *, envp)
2173 {
2174         return do_execve(getname(filename), argv, envp);
2175 }
2176
2177 SYSCALL_DEFINE5(execveat,
2178                 int, fd, const char __user *, filename,
2179                 const char __user *const __user *, argv,
2180                 const char __user *const __user *, envp,
2181                 int, flags)
2182 {
2183         int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2184
2185         return do_execveat(fd,
2186                            getname_flags(filename, lookup_flags, NULL),
2187                            argv, envp, flags);
2188 }
2189
2190 #ifdef CONFIG_COMPAT
2191 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2192         const compat_uptr_t __user *, argv,
2193         const compat_uptr_t __user *, envp)
2194 {
2195         return compat_do_execve(getname(filename), argv, envp);
2196 }
2197
2198 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2199                        const char __user *, filename,
2200                        const compat_uptr_t __user *, argv,
2201                        const compat_uptr_t __user *, envp,
2202                        int,  flags)
2203 {
2204         int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2205
2206         return compat_do_execveat(fd,
2207                                   getname_flags(filename, lookup_flags, NULL),
2208                                   argv, envp, flags);
2209 }
2210 #endif