Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc
[profile/ivi/kernel-adaptation-intel-automotive.git] / fs / exec.c
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats. 
23  */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/security.h>
47 #include <linux/syscalls.h>
48 #include <linux/tsacct_kern.h>
49 #include <linux/cn_proc.h>
50 #include <linux/audit.h>
51 #include <linux/tracehook.h>
52 #include <linux/kmod.h>
53 #include <linux/fsnotify.h>
54 #include <linux/fs_struct.h>
55 #include <linux/pipe_fs_i.h>
56 #include <linux/oom.h>
57 #include <linux/compat.h>
58
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/tlb.h>
62 #include <asm/exec.h>
63
64 #include <trace/events/task.h>
65 #include "internal.h"
66 #include "coredump.h"
67
68 #include <trace/events/sched.h>
69
70 int suid_dumpable = 0;
71
72 static LIST_HEAD(formats);
73 static DEFINE_RWLOCK(binfmt_lock);
74
75 void __register_binfmt(struct linux_binfmt * fmt, int insert)
76 {
77         BUG_ON(!fmt);
78         write_lock(&binfmt_lock);
79         insert ? list_add(&fmt->lh, &formats) :
80                  list_add_tail(&fmt->lh, &formats);
81         write_unlock(&binfmt_lock);
82 }
83
84 EXPORT_SYMBOL(__register_binfmt);
85
86 void unregister_binfmt(struct linux_binfmt * fmt)
87 {
88         write_lock(&binfmt_lock);
89         list_del(&fmt->lh);
90         write_unlock(&binfmt_lock);
91 }
92
93 EXPORT_SYMBOL(unregister_binfmt);
94
95 static inline void put_binfmt(struct linux_binfmt * fmt)
96 {
97         module_put(fmt->module);
98 }
99
100 /*
101  * Note that a shared library must be both readable and executable due to
102  * security reasons.
103  *
104  * Also note that we take the address to load from from the file itself.
105  */
106 SYSCALL_DEFINE1(uselib, const char __user *, library)
107 {
108         struct file *file;
109         char *tmp = getname(library);
110         int error = PTR_ERR(tmp);
111         static const struct open_flags uselib_flags = {
112                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
113                 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
114                 .intent = LOOKUP_OPEN
115         };
116
117         if (IS_ERR(tmp))
118                 goto out;
119
120         file = do_filp_open(AT_FDCWD, tmp, &uselib_flags, LOOKUP_FOLLOW);
121         putname(tmp);
122         error = PTR_ERR(file);
123         if (IS_ERR(file))
124                 goto out;
125
126         error = -EINVAL;
127         if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
128                 goto exit;
129
130         error = -EACCES;
131         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
132                 goto exit;
133
134         fsnotify_open(file);
135
136         error = -ENOEXEC;
137         if(file->f_op) {
138                 struct linux_binfmt * fmt;
139
140                 read_lock(&binfmt_lock);
141                 list_for_each_entry(fmt, &formats, lh) {
142                         if (!fmt->load_shlib)
143                                 continue;
144                         if (!try_module_get(fmt->module))
145                                 continue;
146                         read_unlock(&binfmt_lock);
147                         error = fmt->load_shlib(file);
148                         read_lock(&binfmt_lock);
149                         put_binfmt(fmt);
150                         if (error != -ENOEXEC)
151                                 break;
152                 }
153                 read_unlock(&binfmt_lock);
154         }
155 exit:
156         fput(file);
157 out:
158         return error;
159 }
160
161 #ifdef CONFIG_MMU
162 /*
163  * The nascent bprm->mm is not visible until exec_mmap() but it can
164  * use a lot of memory, account these pages in current->mm temporary
165  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
166  * change the counter back via acct_arg_size(0).
167  */
168 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
169 {
170         struct mm_struct *mm = current->mm;
171         long diff = (long)(pages - bprm->vma_pages);
172
173         if (!mm || !diff)
174                 return;
175
176         bprm->vma_pages = pages;
177         add_mm_counter(mm, MM_ANONPAGES, diff);
178 }
179
180 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
181                 int write)
182 {
183         struct page *page;
184         int ret;
185
186 #ifdef CONFIG_STACK_GROWSUP
187         if (write) {
188                 ret = expand_downwards(bprm->vma, pos);
189                 if (ret < 0)
190                         return NULL;
191         }
192 #endif
193         ret = get_user_pages(current, bprm->mm, pos,
194                         1, write, 1, &page, NULL);
195         if (ret <= 0)
196                 return NULL;
197
198         if (write) {
199                 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
200                 struct rlimit *rlim;
201
202                 acct_arg_size(bprm, size / PAGE_SIZE);
203
204                 /*
205                  * We've historically supported up to 32 pages (ARG_MAX)
206                  * of argument strings even with small stacks
207                  */
208                 if (size <= ARG_MAX)
209                         return page;
210
211                 /*
212                  * Limit to 1/4-th the stack size for the argv+env strings.
213                  * This ensures that:
214                  *  - the remaining binfmt code will not run out of stack space,
215                  *  - the program will have a reasonable amount of stack left
216                  *    to work from.
217                  */
218                 rlim = current->signal->rlim;
219                 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
220                         put_page(page);
221                         return NULL;
222                 }
223         }
224
225         return page;
226 }
227
228 static void put_arg_page(struct page *page)
229 {
230         put_page(page);
231 }
232
233 static void free_arg_page(struct linux_binprm *bprm, int i)
234 {
235 }
236
237 static void free_arg_pages(struct linux_binprm *bprm)
238 {
239 }
240
241 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
242                 struct page *page)
243 {
244         flush_cache_page(bprm->vma, pos, page_to_pfn(page));
245 }
246
247 static int __bprm_mm_init(struct linux_binprm *bprm)
248 {
249         int err;
250         struct vm_area_struct *vma = NULL;
251         struct mm_struct *mm = bprm->mm;
252
253         bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
254         if (!vma)
255                 return -ENOMEM;
256
257         down_write(&mm->mmap_sem);
258         vma->vm_mm = mm;
259
260         /*
261          * Place the stack at the largest stack address the architecture
262          * supports. Later, we'll move this to an appropriate place. We don't
263          * use STACK_TOP because that can depend on attributes which aren't
264          * configured yet.
265          */
266         BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
267         vma->vm_end = STACK_TOP_MAX;
268         vma->vm_start = vma->vm_end - PAGE_SIZE;
269         vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
270         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
271         INIT_LIST_HEAD(&vma->anon_vma_chain);
272
273         err = insert_vm_struct(mm, vma);
274         if (err)
275                 goto err;
276
277         mm->stack_vm = mm->total_vm = 1;
278         up_write(&mm->mmap_sem);
279         bprm->p = vma->vm_end - sizeof(void *);
280         return 0;
281 err:
282         up_write(&mm->mmap_sem);
283         bprm->vma = NULL;
284         kmem_cache_free(vm_area_cachep, vma);
285         return err;
286 }
287
288 static bool valid_arg_len(struct linux_binprm *bprm, long len)
289 {
290         return len <= MAX_ARG_STRLEN;
291 }
292
293 #else
294
295 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
296 {
297 }
298
299 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
300                 int write)
301 {
302         struct page *page;
303
304         page = bprm->page[pos / PAGE_SIZE];
305         if (!page && write) {
306                 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
307                 if (!page)
308                         return NULL;
309                 bprm->page[pos / PAGE_SIZE] = page;
310         }
311
312         return page;
313 }
314
315 static void put_arg_page(struct page *page)
316 {
317 }
318
319 static void free_arg_page(struct linux_binprm *bprm, int i)
320 {
321         if (bprm->page[i]) {
322                 __free_page(bprm->page[i]);
323                 bprm->page[i] = NULL;
324         }
325 }
326
327 static void free_arg_pages(struct linux_binprm *bprm)
328 {
329         int i;
330
331         for (i = 0; i < MAX_ARG_PAGES; i++)
332                 free_arg_page(bprm, i);
333 }
334
335 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
336                 struct page *page)
337 {
338 }
339
340 static int __bprm_mm_init(struct linux_binprm *bprm)
341 {
342         bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
343         return 0;
344 }
345
346 static bool valid_arg_len(struct linux_binprm *bprm, long len)
347 {
348         return len <= bprm->p;
349 }
350
351 #endif /* CONFIG_MMU */
352
353 /*
354  * Create a new mm_struct and populate it with a temporary stack
355  * vm_area_struct.  We don't have enough context at this point to set the stack
356  * flags, permissions, and offset, so we use temporary values.  We'll update
357  * them later in setup_arg_pages().
358  */
359 int bprm_mm_init(struct linux_binprm *bprm)
360 {
361         int err;
362         struct mm_struct *mm = NULL;
363
364         bprm->mm = mm = mm_alloc();
365         err = -ENOMEM;
366         if (!mm)
367                 goto err;
368
369         err = init_new_context(current, mm);
370         if (err)
371                 goto err;
372
373         err = __bprm_mm_init(bprm);
374         if (err)
375                 goto err;
376
377         return 0;
378
379 err:
380         if (mm) {
381                 bprm->mm = NULL;
382                 mmdrop(mm);
383         }
384
385         return err;
386 }
387
388 struct user_arg_ptr {
389 #ifdef CONFIG_COMPAT
390         bool is_compat;
391 #endif
392         union {
393                 const char __user *const __user *native;
394 #ifdef CONFIG_COMPAT
395                 compat_uptr_t __user *compat;
396 #endif
397         } ptr;
398 };
399
400 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
401 {
402         const char __user *native;
403
404 #ifdef CONFIG_COMPAT
405         if (unlikely(argv.is_compat)) {
406                 compat_uptr_t compat;
407
408                 if (get_user(compat, argv.ptr.compat + nr))
409                         return ERR_PTR(-EFAULT);
410
411                 return compat_ptr(compat);
412         }
413 #endif
414
415         if (get_user(native, argv.ptr.native + nr))
416                 return ERR_PTR(-EFAULT);
417
418         return native;
419 }
420
421 /*
422  * count() counts the number of strings in array ARGV.
423  */
424 static int count(struct user_arg_ptr argv, int max)
425 {
426         int i = 0;
427
428         if (argv.ptr.native != NULL) {
429                 for (;;) {
430                         const char __user *p = get_user_arg_ptr(argv, i);
431
432                         if (!p)
433                                 break;
434
435                         if (IS_ERR(p))
436                                 return -EFAULT;
437
438                         if (i++ >= max)
439                                 return -E2BIG;
440
441                         if (fatal_signal_pending(current))
442                                 return -ERESTARTNOHAND;
443                         cond_resched();
444                 }
445         }
446         return i;
447 }
448
449 /*
450  * 'copy_strings()' copies argument/environment strings from the old
451  * processes's memory to the new process's stack.  The call to get_user_pages()
452  * ensures the destination page is created and not swapped out.
453  */
454 static int copy_strings(int argc, struct user_arg_ptr argv,
455                         struct linux_binprm *bprm)
456 {
457         struct page *kmapped_page = NULL;
458         char *kaddr = NULL;
459         unsigned long kpos = 0;
460         int ret;
461
462         while (argc-- > 0) {
463                 const char __user *str;
464                 int len;
465                 unsigned long pos;
466
467                 ret = -EFAULT;
468                 str = get_user_arg_ptr(argv, argc);
469                 if (IS_ERR(str))
470                         goto out;
471
472                 len = strnlen_user(str, MAX_ARG_STRLEN);
473                 if (!len)
474                         goto out;
475
476                 ret = -E2BIG;
477                 if (!valid_arg_len(bprm, len))
478                         goto out;
479
480                 /* We're going to work our way backwords. */
481                 pos = bprm->p;
482                 str += len;
483                 bprm->p -= len;
484
485                 while (len > 0) {
486                         int offset, bytes_to_copy;
487
488                         if (fatal_signal_pending(current)) {
489                                 ret = -ERESTARTNOHAND;
490                                 goto out;
491                         }
492                         cond_resched();
493
494                         offset = pos % PAGE_SIZE;
495                         if (offset == 0)
496                                 offset = PAGE_SIZE;
497
498                         bytes_to_copy = offset;
499                         if (bytes_to_copy > len)
500                                 bytes_to_copy = len;
501
502                         offset -= bytes_to_copy;
503                         pos -= bytes_to_copy;
504                         str -= bytes_to_copy;
505                         len -= bytes_to_copy;
506
507                         if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
508                                 struct page *page;
509
510                                 page = get_arg_page(bprm, pos, 1);
511                                 if (!page) {
512                                         ret = -E2BIG;
513                                         goto out;
514                                 }
515
516                                 if (kmapped_page) {
517                                         flush_kernel_dcache_page(kmapped_page);
518                                         kunmap(kmapped_page);
519                                         put_arg_page(kmapped_page);
520                                 }
521                                 kmapped_page = page;
522                                 kaddr = kmap(kmapped_page);
523                                 kpos = pos & PAGE_MASK;
524                                 flush_arg_page(bprm, kpos, kmapped_page);
525                         }
526                         if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
527                                 ret = -EFAULT;
528                                 goto out;
529                         }
530                 }
531         }
532         ret = 0;
533 out:
534         if (kmapped_page) {
535                 flush_kernel_dcache_page(kmapped_page);
536                 kunmap(kmapped_page);
537                 put_arg_page(kmapped_page);
538         }
539         return ret;
540 }
541
542 /*
543  * Like copy_strings, but get argv and its values from kernel memory.
544  */
545 int copy_strings_kernel(int argc, const char *const *__argv,
546                         struct linux_binprm *bprm)
547 {
548         int r;
549         mm_segment_t oldfs = get_fs();
550         struct user_arg_ptr argv = {
551                 .ptr.native = (const char __user *const  __user *)__argv,
552         };
553
554         set_fs(KERNEL_DS);
555         r = copy_strings(argc, argv, bprm);
556         set_fs(oldfs);
557
558         return r;
559 }
560 EXPORT_SYMBOL(copy_strings_kernel);
561
562 #ifdef CONFIG_MMU
563
564 /*
565  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
566  * the binfmt code determines where the new stack should reside, we shift it to
567  * its final location.  The process proceeds as follows:
568  *
569  * 1) Use shift to calculate the new vma endpoints.
570  * 2) Extend vma to cover both the old and new ranges.  This ensures the
571  *    arguments passed to subsequent functions are consistent.
572  * 3) Move vma's page tables to the new range.
573  * 4) Free up any cleared pgd range.
574  * 5) Shrink the vma to cover only the new range.
575  */
576 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
577 {
578         struct mm_struct *mm = vma->vm_mm;
579         unsigned long old_start = vma->vm_start;
580         unsigned long old_end = vma->vm_end;
581         unsigned long length = old_end - old_start;
582         unsigned long new_start = old_start - shift;
583         unsigned long new_end = old_end - shift;
584         struct mmu_gather tlb;
585
586         BUG_ON(new_start > new_end);
587
588         /*
589          * ensure there are no vmas between where we want to go
590          * and where we are
591          */
592         if (vma != find_vma(mm, new_start))
593                 return -EFAULT;
594
595         /*
596          * cover the whole range: [new_start, old_end)
597          */
598         if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
599                 return -ENOMEM;
600
601         /*
602          * move the page tables downwards, on failure we rely on
603          * process cleanup to remove whatever mess we made.
604          */
605         if (length != move_page_tables(vma, old_start,
606                                        vma, new_start, length))
607                 return -ENOMEM;
608
609         lru_add_drain();
610         tlb_gather_mmu(&tlb, mm, 0);
611         if (new_end > old_start) {
612                 /*
613                  * when the old and new regions overlap clear from new_end.
614                  */
615                 free_pgd_range(&tlb, new_end, old_end, new_end,
616                         vma->vm_next ? vma->vm_next->vm_start : 0);
617         } else {
618                 /*
619                  * otherwise, clean from old_start; this is done to not touch
620                  * the address space in [new_end, old_start) some architectures
621                  * have constraints on va-space that make this illegal (IA64) -
622                  * for the others its just a little faster.
623                  */
624                 free_pgd_range(&tlb, old_start, old_end, new_end,
625                         vma->vm_next ? vma->vm_next->vm_start : 0);
626         }
627         tlb_finish_mmu(&tlb, new_end, old_end);
628
629         /*
630          * Shrink the vma to just the new range.  Always succeeds.
631          */
632         vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
633
634         return 0;
635 }
636
637 /*
638  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
639  * the stack is optionally relocated, and some extra space is added.
640  */
641 int setup_arg_pages(struct linux_binprm *bprm,
642                     unsigned long stack_top,
643                     int executable_stack)
644 {
645         unsigned long ret;
646         unsigned long stack_shift;
647         struct mm_struct *mm = current->mm;
648         struct vm_area_struct *vma = bprm->vma;
649         struct vm_area_struct *prev = NULL;
650         unsigned long vm_flags;
651         unsigned long stack_base;
652         unsigned long stack_size;
653         unsigned long stack_expand;
654         unsigned long rlim_stack;
655
656 #ifdef CONFIG_STACK_GROWSUP
657         /* Limit stack size to 1GB */
658         stack_base = rlimit_max(RLIMIT_STACK);
659         if (stack_base > (1 << 30))
660                 stack_base = 1 << 30;
661
662         /* Make sure we didn't let the argument array grow too large. */
663         if (vma->vm_end - vma->vm_start > stack_base)
664                 return -ENOMEM;
665
666         stack_base = PAGE_ALIGN(stack_top - stack_base);
667
668         stack_shift = vma->vm_start - stack_base;
669         mm->arg_start = bprm->p - stack_shift;
670         bprm->p = vma->vm_end - stack_shift;
671 #else
672         stack_top = arch_align_stack(stack_top);
673         stack_top = PAGE_ALIGN(stack_top);
674
675         if (unlikely(stack_top < mmap_min_addr) ||
676             unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
677                 return -ENOMEM;
678
679         stack_shift = vma->vm_end - stack_top;
680
681         bprm->p -= stack_shift;
682         mm->arg_start = bprm->p;
683 #endif
684
685         if (bprm->loader)
686                 bprm->loader -= stack_shift;
687         bprm->exec -= stack_shift;
688
689         down_write(&mm->mmap_sem);
690         vm_flags = VM_STACK_FLAGS;
691
692         /*
693          * Adjust stack execute permissions; explicitly enable for
694          * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
695          * (arch default) otherwise.
696          */
697         if (unlikely(executable_stack == EXSTACK_ENABLE_X))
698                 vm_flags |= VM_EXEC;
699         else if (executable_stack == EXSTACK_DISABLE_X)
700                 vm_flags &= ~VM_EXEC;
701         vm_flags |= mm->def_flags;
702         vm_flags |= VM_STACK_INCOMPLETE_SETUP;
703
704         ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
705                         vm_flags);
706         if (ret)
707                 goto out_unlock;
708         BUG_ON(prev != vma);
709
710         /* Move stack pages down in memory. */
711         if (stack_shift) {
712                 ret = shift_arg_pages(vma, stack_shift);
713                 if (ret)
714                         goto out_unlock;
715         }
716
717         /* mprotect_fixup is overkill to remove the temporary stack flags */
718         vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
719
720         stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
721         stack_size = vma->vm_end - vma->vm_start;
722         /*
723          * Align this down to a page boundary as expand_stack
724          * will align it up.
725          */
726         rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
727 #ifdef CONFIG_STACK_GROWSUP
728         if (stack_size + stack_expand > rlim_stack)
729                 stack_base = vma->vm_start + rlim_stack;
730         else
731                 stack_base = vma->vm_end + stack_expand;
732 #else
733         if (stack_size + stack_expand > rlim_stack)
734                 stack_base = vma->vm_end - rlim_stack;
735         else
736                 stack_base = vma->vm_start - stack_expand;
737 #endif
738         current->mm->start_stack = bprm->p;
739         ret = expand_stack(vma, stack_base);
740         if (ret)
741                 ret = -EFAULT;
742
743 out_unlock:
744         up_write(&mm->mmap_sem);
745         return ret;
746 }
747 EXPORT_SYMBOL(setup_arg_pages);
748
749 #endif /* CONFIG_MMU */
750
751 struct file *open_exec(const char *name)
752 {
753         struct file *file;
754         int err;
755         static const struct open_flags open_exec_flags = {
756                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
757                 .acc_mode = MAY_EXEC | MAY_OPEN,
758                 .intent = LOOKUP_OPEN
759         };
760
761         file = do_filp_open(AT_FDCWD, name, &open_exec_flags, LOOKUP_FOLLOW);
762         if (IS_ERR(file))
763                 goto out;
764
765         err = -EACCES;
766         if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
767                 goto exit;
768
769         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
770                 goto exit;
771
772         fsnotify_open(file);
773
774         err = deny_write_access(file);
775         if (err)
776                 goto exit;
777
778 out:
779         return file;
780
781 exit:
782         fput(file);
783         return ERR_PTR(err);
784 }
785 EXPORT_SYMBOL(open_exec);
786
787 int kernel_read(struct file *file, loff_t offset,
788                 char *addr, unsigned long count)
789 {
790         mm_segment_t old_fs;
791         loff_t pos = offset;
792         int result;
793
794         old_fs = get_fs();
795         set_fs(get_ds());
796         /* The cast to a user pointer is valid due to the set_fs() */
797         result = vfs_read(file, (void __user *)addr, count, &pos);
798         set_fs(old_fs);
799         return result;
800 }
801
802 EXPORT_SYMBOL(kernel_read);
803
804 static int exec_mmap(struct mm_struct *mm)
805 {
806         struct task_struct *tsk;
807         struct mm_struct * old_mm, *active_mm;
808
809         /* Notify parent that we're no longer interested in the old VM */
810         tsk = current;
811         old_mm = current->mm;
812         mm_release(tsk, old_mm);
813
814         if (old_mm) {
815                 sync_mm_rss(old_mm);
816                 /*
817                  * Make sure that if there is a core dump in progress
818                  * for the old mm, we get out and die instead of going
819                  * through with the exec.  We must hold mmap_sem around
820                  * checking core_state and changing tsk->mm.
821                  */
822                 down_read(&old_mm->mmap_sem);
823                 if (unlikely(old_mm->core_state)) {
824                         up_read(&old_mm->mmap_sem);
825                         return -EINTR;
826                 }
827         }
828         task_lock(tsk);
829         active_mm = tsk->active_mm;
830         tsk->mm = mm;
831         tsk->active_mm = mm;
832         activate_mm(active_mm, mm);
833         task_unlock(tsk);
834         arch_pick_mmap_layout(mm);
835         if (old_mm) {
836                 up_read(&old_mm->mmap_sem);
837                 BUG_ON(active_mm != old_mm);
838                 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
839                 mm_update_next_owner(old_mm);
840                 mmput(old_mm);
841                 return 0;
842         }
843         mmdrop(active_mm);
844         return 0;
845 }
846
847 /*
848  * This function makes sure the current process has its own signal table,
849  * so that flush_signal_handlers can later reset the handlers without
850  * disturbing other processes.  (Other processes might share the signal
851  * table via the CLONE_SIGHAND option to clone().)
852  */
853 static int de_thread(struct task_struct *tsk)
854 {
855         struct signal_struct *sig = tsk->signal;
856         struct sighand_struct *oldsighand = tsk->sighand;
857         spinlock_t *lock = &oldsighand->siglock;
858
859         if (thread_group_empty(tsk))
860                 goto no_thread_group;
861
862         /*
863          * Kill all other threads in the thread group.
864          */
865         spin_lock_irq(lock);
866         if (signal_group_exit(sig)) {
867                 /*
868                  * Another group action in progress, just
869                  * return so that the signal is processed.
870                  */
871                 spin_unlock_irq(lock);
872                 return -EAGAIN;
873         }
874
875         sig->group_exit_task = tsk;
876         sig->notify_count = zap_other_threads(tsk);
877         if (!thread_group_leader(tsk))
878                 sig->notify_count--;
879
880         while (sig->notify_count) {
881                 __set_current_state(TASK_UNINTERRUPTIBLE);
882                 spin_unlock_irq(lock);
883                 schedule();
884                 spin_lock_irq(lock);
885         }
886         spin_unlock_irq(lock);
887
888         /*
889          * At this point all other threads have exited, all we have to
890          * do is to wait for the thread group leader to become inactive,
891          * and to assume its PID:
892          */
893         if (!thread_group_leader(tsk)) {
894                 struct task_struct *leader = tsk->group_leader;
895
896                 sig->notify_count = -1; /* for exit_notify() */
897                 for (;;) {
898                         write_lock_irq(&tasklist_lock);
899                         if (likely(leader->exit_state))
900                                 break;
901                         __set_current_state(TASK_UNINTERRUPTIBLE);
902                         write_unlock_irq(&tasklist_lock);
903                         schedule();
904                 }
905
906                 /*
907                  * The only record we have of the real-time age of a
908                  * process, regardless of execs it's done, is start_time.
909                  * All the past CPU time is accumulated in signal_struct
910                  * from sister threads now dead.  But in this non-leader
911                  * exec, nothing survives from the original leader thread,
912                  * whose birth marks the true age of this process now.
913                  * When we take on its identity by switching to its PID, we
914                  * also take its birthdate (always earlier than our own).
915                  */
916                 tsk->start_time = leader->start_time;
917
918                 BUG_ON(!same_thread_group(leader, tsk));
919                 BUG_ON(has_group_leader_pid(tsk));
920                 /*
921                  * An exec() starts a new thread group with the
922                  * TGID of the previous thread group. Rehash the
923                  * two threads with a switched PID, and release
924                  * the former thread group leader:
925                  */
926
927                 /* Become a process group leader with the old leader's pid.
928                  * The old leader becomes a thread of the this thread group.
929                  * Note: The old leader also uses this pid until release_task
930                  *       is called.  Odd but simple and correct.
931                  */
932                 detach_pid(tsk, PIDTYPE_PID);
933                 tsk->pid = leader->pid;
934                 attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
935                 transfer_pid(leader, tsk, PIDTYPE_PGID);
936                 transfer_pid(leader, tsk, PIDTYPE_SID);
937
938                 list_replace_rcu(&leader->tasks, &tsk->tasks);
939                 list_replace_init(&leader->sibling, &tsk->sibling);
940
941                 tsk->group_leader = tsk;
942                 leader->group_leader = tsk;
943
944                 tsk->exit_signal = SIGCHLD;
945                 leader->exit_signal = -1;
946
947                 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
948                 leader->exit_state = EXIT_DEAD;
949
950                 /*
951                  * We are going to release_task()->ptrace_unlink() silently,
952                  * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
953                  * the tracer wont't block again waiting for this thread.
954                  */
955                 if (unlikely(leader->ptrace))
956                         __wake_up_parent(leader, leader->parent);
957                 write_unlock_irq(&tasklist_lock);
958
959                 release_task(leader);
960         }
961
962         sig->group_exit_task = NULL;
963         sig->notify_count = 0;
964
965 no_thread_group:
966         /* we have changed execution domain */
967         tsk->exit_signal = SIGCHLD;
968
969         exit_itimers(sig);
970         flush_itimer_signals();
971
972         if (atomic_read(&oldsighand->count) != 1) {
973                 struct sighand_struct *newsighand;
974                 /*
975                  * This ->sighand is shared with the CLONE_SIGHAND
976                  * but not CLONE_THREAD task, switch to the new one.
977                  */
978                 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
979                 if (!newsighand)
980                         return -ENOMEM;
981
982                 atomic_set(&newsighand->count, 1);
983                 memcpy(newsighand->action, oldsighand->action,
984                        sizeof(newsighand->action));
985
986                 write_lock_irq(&tasklist_lock);
987                 spin_lock(&oldsighand->siglock);
988                 rcu_assign_pointer(tsk->sighand, newsighand);
989                 spin_unlock(&oldsighand->siglock);
990                 write_unlock_irq(&tasklist_lock);
991
992                 __cleanup_sighand(oldsighand);
993         }
994
995         BUG_ON(!thread_group_leader(tsk));
996         return 0;
997 }
998
999 char *get_task_comm(char *buf, struct task_struct *tsk)
1000 {
1001         /* buf must be at least sizeof(tsk->comm) in size */
1002         task_lock(tsk);
1003         strncpy(buf, tsk->comm, sizeof(tsk->comm));
1004         task_unlock(tsk);
1005         return buf;
1006 }
1007 EXPORT_SYMBOL_GPL(get_task_comm);
1008
1009 /*
1010  * These functions flushes out all traces of the currently running executable
1011  * so that a new one can be started
1012  */
1013
1014 void set_task_comm(struct task_struct *tsk, char *buf)
1015 {
1016         task_lock(tsk);
1017
1018         trace_task_rename(tsk, buf);
1019
1020         /*
1021          * Threads may access current->comm without holding
1022          * the task lock, so write the string carefully.
1023          * Readers without a lock may see incomplete new
1024          * names but are safe from non-terminating string reads.
1025          */
1026         memset(tsk->comm, 0, TASK_COMM_LEN);
1027         wmb();
1028         strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1029         task_unlock(tsk);
1030         perf_event_comm(tsk);
1031 }
1032
1033 static void filename_to_taskname(char *tcomm, const char *fn, unsigned int len)
1034 {
1035         int i, ch;
1036
1037         /* Copies the binary name from after last slash */
1038         for (i = 0; (ch = *(fn++)) != '\0';) {
1039                 if (ch == '/')
1040                         i = 0; /* overwrite what we wrote */
1041                 else
1042                         if (i < len - 1)
1043                                 tcomm[i++] = ch;
1044         }
1045         tcomm[i] = '\0';
1046 }
1047
1048 int flush_old_exec(struct linux_binprm * bprm)
1049 {
1050         int retval;
1051
1052         /*
1053          * Make sure we have a private signal table and that
1054          * we are unassociated from the previous thread group.
1055          */
1056         retval = de_thread(current);
1057         if (retval)
1058                 goto out;
1059
1060         set_mm_exe_file(bprm->mm, bprm->file);
1061
1062         filename_to_taskname(bprm->tcomm, bprm->filename, sizeof(bprm->tcomm));
1063         /*
1064          * Release all of the old mmap stuff
1065          */
1066         acct_arg_size(bprm, 0);
1067         retval = exec_mmap(bprm->mm);
1068         if (retval)
1069                 goto out;
1070
1071         bprm->mm = NULL;                /* We're using it now */
1072
1073         set_fs(USER_DS);
1074         current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD);
1075         flush_thread();
1076         current->personality &= ~bprm->per_clear;
1077
1078         return 0;
1079
1080 out:
1081         return retval;
1082 }
1083 EXPORT_SYMBOL(flush_old_exec);
1084
1085 void would_dump(struct linux_binprm *bprm, struct file *file)
1086 {
1087         if (inode_permission(file->f_path.dentry->d_inode, MAY_READ) < 0)
1088                 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1089 }
1090 EXPORT_SYMBOL(would_dump);
1091
1092 void setup_new_exec(struct linux_binprm * bprm)
1093 {
1094         arch_pick_mmap_layout(current->mm);
1095
1096         /* This is the point of no return */
1097         current->sas_ss_sp = current->sas_ss_size = 0;
1098
1099         if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1100                 set_dumpable(current->mm, SUID_DUMPABLE_ENABLED);
1101         else
1102                 set_dumpable(current->mm, suid_dumpable);
1103
1104         set_task_comm(current, bprm->tcomm);
1105
1106         /* Set the new mm task size. We have to do that late because it may
1107          * depend on TIF_32BIT which is only updated in flush_thread() on
1108          * some architectures like powerpc
1109          */
1110         current->mm->task_size = TASK_SIZE;
1111
1112         /* install the new credentials */
1113         if (!uid_eq(bprm->cred->uid, current_euid()) ||
1114             !gid_eq(bprm->cred->gid, current_egid())) {
1115                 current->pdeath_signal = 0;
1116         } else {
1117                 would_dump(bprm, bprm->file);
1118                 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1119                         set_dumpable(current->mm, suid_dumpable);
1120         }
1121
1122         /*
1123          * Flush performance counters when crossing a
1124          * security domain:
1125          */
1126         if (!get_dumpable(current->mm))
1127                 perf_event_exit_task(current);
1128
1129         /* An exec changes our domain. We are no longer part of the thread
1130            group */
1131
1132         current->self_exec_id++;
1133                         
1134         flush_signal_handlers(current, 0);
1135         do_close_on_exec(current->files);
1136 }
1137 EXPORT_SYMBOL(setup_new_exec);
1138
1139 /*
1140  * Prepare credentials and lock ->cred_guard_mutex.
1141  * install_exec_creds() commits the new creds and drops the lock.
1142  * Or, if exec fails before, free_bprm() should release ->cred and
1143  * and unlock.
1144  */
1145 int prepare_bprm_creds(struct linux_binprm *bprm)
1146 {
1147         if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1148                 return -ERESTARTNOINTR;
1149
1150         bprm->cred = prepare_exec_creds();
1151         if (likely(bprm->cred))
1152                 return 0;
1153
1154         mutex_unlock(&current->signal->cred_guard_mutex);
1155         return -ENOMEM;
1156 }
1157
1158 void free_bprm(struct linux_binprm *bprm)
1159 {
1160         free_arg_pages(bprm);
1161         if (bprm->cred) {
1162                 mutex_unlock(&current->signal->cred_guard_mutex);
1163                 abort_creds(bprm->cred);
1164         }
1165         kfree(bprm);
1166 }
1167
1168 /*
1169  * install the new credentials for this executable
1170  */
1171 void install_exec_creds(struct linux_binprm *bprm)
1172 {
1173         security_bprm_committing_creds(bprm);
1174
1175         commit_creds(bprm->cred);
1176         bprm->cred = NULL;
1177         /*
1178          * cred_guard_mutex must be held at least to this point to prevent
1179          * ptrace_attach() from altering our determination of the task's
1180          * credentials; any time after this it may be unlocked.
1181          */
1182         security_bprm_committed_creds(bprm);
1183         mutex_unlock(&current->signal->cred_guard_mutex);
1184 }
1185 EXPORT_SYMBOL(install_exec_creds);
1186
1187 /*
1188  * determine how safe it is to execute the proposed program
1189  * - the caller must hold ->cred_guard_mutex to protect against
1190  *   PTRACE_ATTACH
1191  */
1192 static int check_unsafe_exec(struct linux_binprm *bprm)
1193 {
1194         struct task_struct *p = current, *t;
1195         unsigned n_fs;
1196         int res = 0;
1197
1198         if (p->ptrace) {
1199                 if (p->ptrace & PT_PTRACE_CAP)
1200                         bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1201                 else
1202                         bprm->unsafe |= LSM_UNSAFE_PTRACE;
1203         }
1204
1205         /*
1206          * This isn't strictly necessary, but it makes it harder for LSMs to
1207          * mess up.
1208          */
1209         if (current->no_new_privs)
1210                 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1211
1212         n_fs = 1;
1213         spin_lock(&p->fs->lock);
1214         rcu_read_lock();
1215         for (t = next_thread(p); t != p; t = next_thread(t)) {
1216                 if (t->fs == p->fs)
1217                         n_fs++;
1218         }
1219         rcu_read_unlock();
1220
1221         if (p->fs->users > n_fs) {
1222                 bprm->unsafe |= LSM_UNSAFE_SHARE;
1223         } else {
1224                 res = -EAGAIN;
1225                 if (!p->fs->in_exec) {
1226                         p->fs->in_exec = 1;
1227                         res = 1;
1228                 }
1229         }
1230         spin_unlock(&p->fs->lock);
1231
1232         return res;
1233 }
1234
1235 /* 
1236  * Fill the binprm structure from the inode. 
1237  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1238  *
1239  * This may be called multiple times for binary chains (scripts for example).
1240  */
1241 int prepare_binprm(struct linux_binprm *bprm)
1242 {
1243         umode_t mode;
1244         struct inode * inode = bprm->file->f_path.dentry->d_inode;
1245         int retval;
1246
1247         mode = inode->i_mode;
1248         if (bprm->file->f_op == NULL)
1249                 return -EACCES;
1250
1251         /* clear any previous set[ug]id data from a previous binary */
1252         bprm->cred->euid = current_euid();
1253         bprm->cred->egid = current_egid();
1254
1255         if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) &&
1256             !current->no_new_privs) {
1257                 /* Set-uid? */
1258                 if (mode & S_ISUID) {
1259                         if (!kuid_has_mapping(bprm->cred->user_ns, inode->i_uid))
1260                                 return -EPERM;
1261                         bprm->per_clear |= PER_CLEAR_ON_SETID;
1262                         bprm->cred->euid = inode->i_uid;
1263
1264                 }
1265
1266                 /* Set-gid? */
1267                 /*
1268                  * If setgid is set but no group execute bit then this
1269                  * is a candidate for mandatory locking, not a setgid
1270                  * executable.
1271                  */
1272                 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1273                         if (!kgid_has_mapping(bprm->cred->user_ns, inode->i_gid))
1274                                 return -EPERM;
1275                         bprm->per_clear |= PER_CLEAR_ON_SETID;
1276                         bprm->cred->egid = inode->i_gid;
1277                 }
1278         }
1279
1280         /* fill in binprm security blob */
1281         retval = security_bprm_set_creds(bprm);
1282         if (retval)
1283                 return retval;
1284         bprm->cred_prepared = 1;
1285
1286         memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1287         return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1288 }
1289
1290 EXPORT_SYMBOL(prepare_binprm);
1291
1292 /*
1293  * Arguments are '\0' separated strings found at the location bprm->p
1294  * points to; chop off the first by relocating brpm->p to right after
1295  * the first '\0' encountered.
1296  */
1297 int remove_arg_zero(struct linux_binprm *bprm)
1298 {
1299         int ret = 0;
1300         unsigned long offset;
1301         char *kaddr;
1302         struct page *page;
1303
1304         if (!bprm->argc)
1305                 return 0;
1306
1307         do {
1308                 offset = bprm->p & ~PAGE_MASK;
1309                 page = get_arg_page(bprm, bprm->p, 0);
1310                 if (!page) {
1311                         ret = -EFAULT;
1312                         goto out;
1313                 }
1314                 kaddr = kmap_atomic(page);
1315
1316                 for (; offset < PAGE_SIZE && kaddr[offset];
1317                                 offset++, bprm->p++)
1318                         ;
1319
1320                 kunmap_atomic(kaddr);
1321                 put_arg_page(page);
1322
1323                 if (offset == PAGE_SIZE)
1324                         free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1325         } while (offset == PAGE_SIZE);
1326
1327         bprm->p++;
1328         bprm->argc--;
1329         ret = 0;
1330
1331 out:
1332         return ret;
1333 }
1334 EXPORT_SYMBOL(remove_arg_zero);
1335
1336 /*
1337  * cycle the list of binary formats handler, until one recognizes the image
1338  */
1339 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1340 {
1341         unsigned int depth = bprm->recursion_depth;
1342         int try,retval;
1343         struct linux_binfmt *fmt;
1344         pid_t old_pid, old_vpid;
1345
1346         retval = security_bprm_check(bprm);
1347         if (retval)
1348                 return retval;
1349
1350         retval = audit_bprm(bprm);
1351         if (retval)
1352                 return retval;
1353
1354         /* Need to fetch pid before load_binary changes it */
1355         old_pid = current->pid;
1356         rcu_read_lock();
1357         old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1358         rcu_read_unlock();
1359
1360         retval = -ENOENT;
1361         for (try=0; try<2; try++) {
1362                 read_lock(&binfmt_lock);
1363                 list_for_each_entry(fmt, &formats, lh) {
1364                         int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1365                         if (!fn)
1366                                 continue;
1367                         if (!try_module_get(fmt->module))
1368                                 continue;
1369                         read_unlock(&binfmt_lock);
1370                         retval = fn(bprm, regs);
1371                         /*
1372                          * Restore the depth counter to its starting value
1373                          * in this call, so we don't have to rely on every
1374                          * load_binary function to restore it on return.
1375                          */
1376                         bprm->recursion_depth = depth;
1377                         if (retval >= 0) {
1378                                 if (depth == 0) {
1379                                         trace_sched_process_exec(current, old_pid, bprm);
1380                                         ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1381                                 }
1382                                 put_binfmt(fmt);
1383                                 allow_write_access(bprm->file);
1384                                 if (bprm->file)
1385                                         fput(bprm->file);
1386                                 bprm->file = NULL;
1387                                 current->did_exec = 1;
1388                                 proc_exec_connector(current);
1389                                 return retval;
1390                         }
1391                         read_lock(&binfmt_lock);
1392                         put_binfmt(fmt);
1393                         if (retval != -ENOEXEC || bprm->mm == NULL)
1394                                 break;
1395                         if (!bprm->file) {
1396                                 read_unlock(&binfmt_lock);
1397                                 return retval;
1398                         }
1399                 }
1400                 read_unlock(&binfmt_lock);
1401 #ifdef CONFIG_MODULES
1402                 if (retval != -ENOEXEC || bprm->mm == NULL) {
1403                         break;
1404                 } else {
1405 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1406                         if (printable(bprm->buf[0]) &&
1407                             printable(bprm->buf[1]) &&
1408                             printable(bprm->buf[2]) &&
1409                             printable(bprm->buf[3]))
1410                                 break; /* -ENOEXEC */
1411                         if (try)
1412                                 break; /* -ENOEXEC */
1413                         request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1414                 }
1415 #else
1416                 break;
1417 #endif
1418         }
1419         return retval;
1420 }
1421
1422 EXPORT_SYMBOL(search_binary_handler);
1423
1424 /*
1425  * sys_execve() executes a new program.
1426  */
1427 static int do_execve_common(const char *filename,
1428                                 struct user_arg_ptr argv,
1429                                 struct user_arg_ptr envp,
1430                                 struct pt_regs *regs)
1431 {
1432         struct linux_binprm *bprm;
1433         struct file *file;
1434         struct files_struct *displaced;
1435         bool clear_in_exec;
1436         int retval;
1437         const struct cred *cred = current_cred();
1438
1439         /*
1440          * We move the actual failure in case of RLIMIT_NPROC excess from
1441          * set*uid() to execve() because too many poorly written programs
1442          * don't check setuid() return code.  Here we additionally recheck
1443          * whether NPROC limit is still exceeded.
1444          */
1445         if ((current->flags & PF_NPROC_EXCEEDED) &&
1446             atomic_read(&cred->user->processes) > rlimit(RLIMIT_NPROC)) {
1447                 retval = -EAGAIN;
1448                 goto out_ret;
1449         }
1450
1451         /* We're below the limit (still or again), so we don't want to make
1452          * further execve() calls fail. */
1453         current->flags &= ~PF_NPROC_EXCEEDED;
1454
1455         retval = unshare_files(&displaced);
1456         if (retval)
1457                 goto out_ret;
1458
1459         retval = -ENOMEM;
1460         bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1461         if (!bprm)
1462                 goto out_files;
1463
1464         retval = prepare_bprm_creds(bprm);
1465         if (retval)
1466                 goto out_free;
1467
1468         retval = check_unsafe_exec(bprm);
1469         if (retval < 0)
1470                 goto out_free;
1471         clear_in_exec = retval;
1472         current->in_execve = 1;
1473
1474         file = open_exec(filename);
1475         retval = PTR_ERR(file);
1476         if (IS_ERR(file))
1477                 goto out_unmark;
1478
1479         sched_exec();
1480
1481         bprm->file = file;
1482         bprm->filename = filename;
1483         bprm->interp = filename;
1484
1485         retval = bprm_mm_init(bprm);
1486         if (retval)
1487                 goto out_file;
1488
1489         bprm->argc = count(argv, MAX_ARG_STRINGS);
1490         if ((retval = bprm->argc) < 0)
1491                 goto out;
1492
1493         bprm->envc = count(envp, MAX_ARG_STRINGS);
1494         if ((retval = bprm->envc) < 0)
1495                 goto out;
1496
1497         retval = prepare_binprm(bprm);
1498         if (retval < 0)
1499                 goto out;
1500
1501         retval = copy_strings_kernel(1, &bprm->filename, bprm);
1502         if (retval < 0)
1503                 goto out;
1504
1505         bprm->exec = bprm->p;
1506         retval = copy_strings(bprm->envc, envp, bprm);
1507         if (retval < 0)
1508                 goto out;
1509
1510         retval = copy_strings(bprm->argc, argv, bprm);
1511         if (retval < 0)
1512                 goto out;
1513
1514         retval = search_binary_handler(bprm,regs);
1515         if (retval < 0)
1516                 goto out;
1517
1518         /* execve succeeded */
1519         current->fs->in_exec = 0;
1520         current->in_execve = 0;
1521         acct_update_integrals(current);
1522         free_bprm(bprm);
1523         if (displaced)
1524                 put_files_struct(displaced);
1525         return retval;
1526
1527 out:
1528         if (bprm->mm) {
1529                 acct_arg_size(bprm, 0);
1530                 mmput(bprm->mm);
1531         }
1532
1533 out_file:
1534         if (bprm->file) {
1535                 allow_write_access(bprm->file);
1536                 fput(bprm->file);
1537         }
1538
1539 out_unmark:
1540         if (clear_in_exec)
1541                 current->fs->in_exec = 0;
1542         current->in_execve = 0;
1543
1544 out_free:
1545         free_bprm(bprm);
1546
1547 out_files:
1548         if (displaced)
1549                 reset_files_struct(displaced);
1550 out_ret:
1551         return retval;
1552 }
1553
1554 int do_execve(const char *filename,
1555         const char __user *const __user *__argv,
1556         const char __user *const __user *__envp,
1557         struct pt_regs *regs)
1558 {
1559         struct user_arg_ptr argv = { .ptr.native = __argv };
1560         struct user_arg_ptr envp = { .ptr.native = __envp };
1561         return do_execve_common(filename, argv, envp, regs);
1562 }
1563
1564 #ifdef CONFIG_COMPAT
1565 int compat_do_execve(char *filename,
1566         compat_uptr_t __user *__argv,
1567         compat_uptr_t __user *__envp,
1568         struct pt_regs *regs)
1569 {
1570         struct user_arg_ptr argv = {
1571                 .is_compat = true,
1572                 .ptr.compat = __argv,
1573         };
1574         struct user_arg_ptr envp = {
1575                 .is_compat = true,
1576                 .ptr.compat = __envp,
1577         };
1578         return do_execve_common(filename, argv, envp, regs);
1579 }
1580 #endif
1581
1582 void set_binfmt(struct linux_binfmt *new)
1583 {
1584         struct mm_struct *mm = current->mm;
1585
1586         if (mm->binfmt)
1587                 module_put(mm->binfmt->module);
1588
1589         mm->binfmt = new;
1590         if (new)
1591                 __module_get(new->module);
1592 }
1593
1594 EXPORT_SYMBOL(set_binfmt);
1595
1596 /*
1597  * set_dumpable converts traditional three-value dumpable to two flags and
1598  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1599  * these bits are not changed atomically.  So get_dumpable can observe the
1600  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1601  * return either old dumpable or new one by paying attention to the order of
1602  * modifying the bits.
1603  *
1604  * dumpable |   mm->flags (binary)
1605  * old  new | initial interim  final
1606  * ---------+-----------------------
1607  *  0    1  |   00      01      01
1608  *  0    2  |   00      10(*)   11
1609  *  1    0  |   01      00      00
1610  *  1    2  |   01      11      11
1611  *  2    0  |   11      10(*)   00
1612  *  2    1  |   11      11      01
1613  *
1614  * (*) get_dumpable regards interim value of 10 as 11.
1615  */
1616 void set_dumpable(struct mm_struct *mm, int value)
1617 {
1618         switch (value) {
1619         case SUID_DUMPABLE_DISABLED:
1620                 clear_bit(MMF_DUMPABLE, &mm->flags);
1621                 smp_wmb();
1622                 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1623                 break;
1624         case SUID_DUMPABLE_ENABLED:
1625                 set_bit(MMF_DUMPABLE, &mm->flags);
1626                 smp_wmb();
1627                 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1628                 break;
1629         case SUID_DUMPABLE_SAFE:
1630                 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1631                 smp_wmb();
1632                 set_bit(MMF_DUMPABLE, &mm->flags);
1633                 break;
1634         }
1635 }
1636
1637 int __get_dumpable(unsigned long mm_flags)
1638 {
1639         int ret;
1640
1641         ret = mm_flags & MMF_DUMPABLE_MASK;
1642         return (ret > SUID_DUMPABLE_ENABLED) ? SUID_DUMPABLE_SAFE : ret;
1643 }
1644
1645 int get_dumpable(struct mm_struct *mm)
1646 {
1647         return __get_dumpable(mm->flags);
1648 }