4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/security.h>
47 #include <linux/syscalls.h>
48 #include <linux/tsacct_kern.h>
49 #include <linux/cn_proc.h>
50 #include <linux/audit.h>
51 #include <linux/tracehook.h>
52 #include <linux/kmod.h>
53 #include <linux/fsnotify.h>
54 #include <linux/fs_struct.h>
55 #include <linux/pipe_fs_i.h>
56 #include <linux/oom.h>
57 #include <linux/compat.h>
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
64 #include <trace/events/task.h>
68 #include <trace/events/sched.h>
70 int suid_dumpable = 0;
72 static LIST_HEAD(formats);
73 static DEFINE_RWLOCK(binfmt_lock);
75 void __register_binfmt(struct linux_binfmt * fmt, int insert)
78 write_lock(&binfmt_lock);
79 insert ? list_add(&fmt->lh, &formats) :
80 list_add_tail(&fmt->lh, &formats);
81 write_unlock(&binfmt_lock);
84 EXPORT_SYMBOL(__register_binfmt);
86 void unregister_binfmt(struct linux_binfmt * fmt)
88 write_lock(&binfmt_lock);
90 write_unlock(&binfmt_lock);
93 EXPORT_SYMBOL(unregister_binfmt);
95 static inline void put_binfmt(struct linux_binfmt * fmt)
97 module_put(fmt->module);
101 * Note that a shared library must be both readable and executable due to
104 * Also note that we take the address to load from from the file itself.
106 SYSCALL_DEFINE1(uselib, const char __user *, library)
109 char *tmp = getname(library);
110 int error = PTR_ERR(tmp);
111 static const struct open_flags uselib_flags = {
112 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
113 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
114 .intent = LOOKUP_OPEN
120 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags, LOOKUP_FOLLOW);
122 error = PTR_ERR(file);
127 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
131 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
138 struct linux_binfmt * fmt;
140 read_lock(&binfmt_lock);
141 list_for_each_entry(fmt, &formats, lh) {
142 if (!fmt->load_shlib)
144 if (!try_module_get(fmt->module))
146 read_unlock(&binfmt_lock);
147 error = fmt->load_shlib(file);
148 read_lock(&binfmt_lock);
150 if (error != -ENOEXEC)
153 read_unlock(&binfmt_lock);
163 * The nascent bprm->mm is not visible until exec_mmap() but it can
164 * use a lot of memory, account these pages in current->mm temporary
165 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
166 * change the counter back via acct_arg_size(0).
168 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
170 struct mm_struct *mm = current->mm;
171 long diff = (long)(pages - bprm->vma_pages);
176 bprm->vma_pages = pages;
177 add_mm_counter(mm, MM_ANONPAGES, diff);
180 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
186 #ifdef CONFIG_STACK_GROWSUP
188 ret = expand_downwards(bprm->vma, pos);
193 ret = get_user_pages(current, bprm->mm, pos,
194 1, write, 1, &page, NULL);
199 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
202 acct_arg_size(bprm, size / PAGE_SIZE);
205 * We've historically supported up to 32 pages (ARG_MAX)
206 * of argument strings even with small stacks
212 * Limit to 1/4-th the stack size for the argv+env strings.
214 * - the remaining binfmt code will not run out of stack space,
215 * - the program will have a reasonable amount of stack left
218 rlim = current->signal->rlim;
219 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
228 static void put_arg_page(struct page *page)
233 static void free_arg_page(struct linux_binprm *bprm, int i)
237 static void free_arg_pages(struct linux_binprm *bprm)
241 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
244 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
247 static int __bprm_mm_init(struct linux_binprm *bprm)
250 struct vm_area_struct *vma = NULL;
251 struct mm_struct *mm = bprm->mm;
253 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
257 down_write(&mm->mmap_sem);
261 * Place the stack at the largest stack address the architecture
262 * supports. Later, we'll move this to an appropriate place. We don't
263 * use STACK_TOP because that can depend on attributes which aren't
266 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
267 vma->vm_end = STACK_TOP_MAX;
268 vma->vm_start = vma->vm_end - PAGE_SIZE;
269 vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
270 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
271 INIT_LIST_HEAD(&vma->anon_vma_chain);
273 err = insert_vm_struct(mm, vma);
277 mm->stack_vm = mm->total_vm = 1;
278 up_write(&mm->mmap_sem);
279 bprm->p = vma->vm_end - sizeof(void *);
282 up_write(&mm->mmap_sem);
284 kmem_cache_free(vm_area_cachep, vma);
288 static bool valid_arg_len(struct linux_binprm *bprm, long len)
290 return len <= MAX_ARG_STRLEN;
295 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
299 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
304 page = bprm->page[pos / PAGE_SIZE];
305 if (!page && write) {
306 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
309 bprm->page[pos / PAGE_SIZE] = page;
315 static void put_arg_page(struct page *page)
319 static void free_arg_page(struct linux_binprm *bprm, int i)
322 __free_page(bprm->page[i]);
323 bprm->page[i] = NULL;
327 static void free_arg_pages(struct linux_binprm *bprm)
331 for (i = 0; i < MAX_ARG_PAGES; i++)
332 free_arg_page(bprm, i);
335 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
340 static int __bprm_mm_init(struct linux_binprm *bprm)
342 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
346 static bool valid_arg_len(struct linux_binprm *bprm, long len)
348 return len <= bprm->p;
351 #endif /* CONFIG_MMU */
354 * Create a new mm_struct and populate it with a temporary stack
355 * vm_area_struct. We don't have enough context at this point to set the stack
356 * flags, permissions, and offset, so we use temporary values. We'll update
357 * them later in setup_arg_pages().
359 int bprm_mm_init(struct linux_binprm *bprm)
362 struct mm_struct *mm = NULL;
364 bprm->mm = mm = mm_alloc();
369 err = init_new_context(current, mm);
373 err = __bprm_mm_init(bprm);
388 struct user_arg_ptr {
393 const char __user *const __user *native;
395 compat_uptr_t __user *compat;
400 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
402 const char __user *native;
405 if (unlikely(argv.is_compat)) {
406 compat_uptr_t compat;
408 if (get_user(compat, argv.ptr.compat + nr))
409 return ERR_PTR(-EFAULT);
411 return compat_ptr(compat);
415 if (get_user(native, argv.ptr.native + nr))
416 return ERR_PTR(-EFAULT);
422 * count() counts the number of strings in array ARGV.
424 static int count(struct user_arg_ptr argv, int max)
428 if (argv.ptr.native != NULL) {
430 const char __user *p = get_user_arg_ptr(argv, i);
441 if (fatal_signal_pending(current))
442 return -ERESTARTNOHAND;
450 * 'copy_strings()' copies argument/environment strings from the old
451 * processes's memory to the new process's stack. The call to get_user_pages()
452 * ensures the destination page is created and not swapped out.
454 static int copy_strings(int argc, struct user_arg_ptr argv,
455 struct linux_binprm *bprm)
457 struct page *kmapped_page = NULL;
459 unsigned long kpos = 0;
463 const char __user *str;
468 str = get_user_arg_ptr(argv, argc);
472 len = strnlen_user(str, MAX_ARG_STRLEN);
477 if (!valid_arg_len(bprm, len))
480 /* We're going to work our way backwords. */
486 int offset, bytes_to_copy;
488 if (fatal_signal_pending(current)) {
489 ret = -ERESTARTNOHAND;
494 offset = pos % PAGE_SIZE;
498 bytes_to_copy = offset;
499 if (bytes_to_copy > len)
502 offset -= bytes_to_copy;
503 pos -= bytes_to_copy;
504 str -= bytes_to_copy;
505 len -= bytes_to_copy;
507 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
510 page = get_arg_page(bprm, pos, 1);
517 flush_kernel_dcache_page(kmapped_page);
518 kunmap(kmapped_page);
519 put_arg_page(kmapped_page);
522 kaddr = kmap(kmapped_page);
523 kpos = pos & PAGE_MASK;
524 flush_arg_page(bprm, kpos, kmapped_page);
526 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
535 flush_kernel_dcache_page(kmapped_page);
536 kunmap(kmapped_page);
537 put_arg_page(kmapped_page);
543 * Like copy_strings, but get argv and its values from kernel memory.
545 int copy_strings_kernel(int argc, const char *const *__argv,
546 struct linux_binprm *bprm)
549 mm_segment_t oldfs = get_fs();
550 struct user_arg_ptr argv = {
551 .ptr.native = (const char __user *const __user *)__argv,
555 r = copy_strings(argc, argv, bprm);
560 EXPORT_SYMBOL(copy_strings_kernel);
565 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
566 * the binfmt code determines where the new stack should reside, we shift it to
567 * its final location. The process proceeds as follows:
569 * 1) Use shift to calculate the new vma endpoints.
570 * 2) Extend vma to cover both the old and new ranges. This ensures the
571 * arguments passed to subsequent functions are consistent.
572 * 3) Move vma's page tables to the new range.
573 * 4) Free up any cleared pgd range.
574 * 5) Shrink the vma to cover only the new range.
576 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
578 struct mm_struct *mm = vma->vm_mm;
579 unsigned long old_start = vma->vm_start;
580 unsigned long old_end = vma->vm_end;
581 unsigned long length = old_end - old_start;
582 unsigned long new_start = old_start - shift;
583 unsigned long new_end = old_end - shift;
584 struct mmu_gather tlb;
586 BUG_ON(new_start > new_end);
589 * ensure there are no vmas between where we want to go
592 if (vma != find_vma(mm, new_start))
596 * cover the whole range: [new_start, old_end)
598 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
602 * move the page tables downwards, on failure we rely on
603 * process cleanup to remove whatever mess we made.
605 if (length != move_page_tables(vma, old_start,
606 vma, new_start, length))
610 tlb_gather_mmu(&tlb, mm, 0);
611 if (new_end > old_start) {
613 * when the old and new regions overlap clear from new_end.
615 free_pgd_range(&tlb, new_end, old_end, new_end,
616 vma->vm_next ? vma->vm_next->vm_start : 0);
619 * otherwise, clean from old_start; this is done to not touch
620 * the address space in [new_end, old_start) some architectures
621 * have constraints on va-space that make this illegal (IA64) -
622 * for the others its just a little faster.
624 free_pgd_range(&tlb, old_start, old_end, new_end,
625 vma->vm_next ? vma->vm_next->vm_start : 0);
627 tlb_finish_mmu(&tlb, new_end, old_end);
630 * Shrink the vma to just the new range. Always succeeds.
632 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
638 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
639 * the stack is optionally relocated, and some extra space is added.
641 int setup_arg_pages(struct linux_binprm *bprm,
642 unsigned long stack_top,
643 int executable_stack)
646 unsigned long stack_shift;
647 struct mm_struct *mm = current->mm;
648 struct vm_area_struct *vma = bprm->vma;
649 struct vm_area_struct *prev = NULL;
650 unsigned long vm_flags;
651 unsigned long stack_base;
652 unsigned long stack_size;
653 unsigned long stack_expand;
654 unsigned long rlim_stack;
656 #ifdef CONFIG_STACK_GROWSUP
657 /* Limit stack size to 1GB */
658 stack_base = rlimit_max(RLIMIT_STACK);
659 if (stack_base > (1 << 30))
660 stack_base = 1 << 30;
662 /* Make sure we didn't let the argument array grow too large. */
663 if (vma->vm_end - vma->vm_start > stack_base)
666 stack_base = PAGE_ALIGN(stack_top - stack_base);
668 stack_shift = vma->vm_start - stack_base;
669 mm->arg_start = bprm->p - stack_shift;
670 bprm->p = vma->vm_end - stack_shift;
672 stack_top = arch_align_stack(stack_top);
673 stack_top = PAGE_ALIGN(stack_top);
675 if (unlikely(stack_top < mmap_min_addr) ||
676 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
679 stack_shift = vma->vm_end - stack_top;
681 bprm->p -= stack_shift;
682 mm->arg_start = bprm->p;
686 bprm->loader -= stack_shift;
687 bprm->exec -= stack_shift;
689 down_write(&mm->mmap_sem);
690 vm_flags = VM_STACK_FLAGS;
693 * Adjust stack execute permissions; explicitly enable for
694 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
695 * (arch default) otherwise.
697 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
699 else if (executable_stack == EXSTACK_DISABLE_X)
700 vm_flags &= ~VM_EXEC;
701 vm_flags |= mm->def_flags;
702 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
704 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
710 /* Move stack pages down in memory. */
712 ret = shift_arg_pages(vma, stack_shift);
717 /* mprotect_fixup is overkill to remove the temporary stack flags */
718 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
720 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
721 stack_size = vma->vm_end - vma->vm_start;
723 * Align this down to a page boundary as expand_stack
726 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
727 #ifdef CONFIG_STACK_GROWSUP
728 if (stack_size + stack_expand > rlim_stack)
729 stack_base = vma->vm_start + rlim_stack;
731 stack_base = vma->vm_end + stack_expand;
733 if (stack_size + stack_expand > rlim_stack)
734 stack_base = vma->vm_end - rlim_stack;
736 stack_base = vma->vm_start - stack_expand;
738 current->mm->start_stack = bprm->p;
739 ret = expand_stack(vma, stack_base);
744 up_write(&mm->mmap_sem);
747 EXPORT_SYMBOL(setup_arg_pages);
749 #endif /* CONFIG_MMU */
751 struct file *open_exec(const char *name)
755 static const struct open_flags open_exec_flags = {
756 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
757 .acc_mode = MAY_EXEC | MAY_OPEN,
758 .intent = LOOKUP_OPEN
761 file = do_filp_open(AT_FDCWD, name, &open_exec_flags, LOOKUP_FOLLOW);
766 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
769 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
774 err = deny_write_access(file);
785 EXPORT_SYMBOL(open_exec);
787 int kernel_read(struct file *file, loff_t offset,
788 char *addr, unsigned long count)
796 /* The cast to a user pointer is valid due to the set_fs() */
797 result = vfs_read(file, (void __user *)addr, count, &pos);
802 EXPORT_SYMBOL(kernel_read);
804 static int exec_mmap(struct mm_struct *mm)
806 struct task_struct *tsk;
807 struct mm_struct * old_mm, *active_mm;
809 /* Notify parent that we're no longer interested in the old VM */
811 old_mm = current->mm;
812 mm_release(tsk, old_mm);
817 * Make sure that if there is a core dump in progress
818 * for the old mm, we get out and die instead of going
819 * through with the exec. We must hold mmap_sem around
820 * checking core_state and changing tsk->mm.
822 down_read(&old_mm->mmap_sem);
823 if (unlikely(old_mm->core_state)) {
824 up_read(&old_mm->mmap_sem);
829 active_mm = tsk->active_mm;
832 activate_mm(active_mm, mm);
834 arch_pick_mmap_layout(mm);
836 up_read(&old_mm->mmap_sem);
837 BUG_ON(active_mm != old_mm);
838 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
839 mm_update_next_owner(old_mm);
848 * This function makes sure the current process has its own signal table,
849 * so that flush_signal_handlers can later reset the handlers without
850 * disturbing other processes. (Other processes might share the signal
851 * table via the CLONE_SIGHAND option to clone().)
853 static int de_thread(struct task_struct *tsk)
855 struct signal_struct *sig = tsk->signal;
856 struct sighand_struct *oldsighand = tsk->sighand;
857 spinlock_t *lock = &oldsighand->siglock;
859 if (thread_group_empty(tsk))
860 goto no_thread_group;
863 * Kill all other threads in the thread group.
866 if (signal_group_exit(sig)) {
868 * Another group action in progress, just
869 * return so that the signal is processed.
871 spin_unlock_irq(lock);
875 sig->group_exit_task = tsk;
876 sig->notify_count = zap_other_threads(tsk);
877 if (!thread_group_leader(tsk))
880 while (sig->notify_count) {
881 __set_current_state(TASK_UNINTERRUPTIBLE);
882 spin_unlock_irq(lock);
886 spin_unlock_irq(lock);
889 * At this point all other threads have exited, all we have to
890 * do is to wait for the thread group leader to become inactive,
891 * and to assume its PID:
893 if (!thread_group_leader(tsk)) {
894 struct task_struct *leader = tsk->group_leader;
896 sig->notify_count = -1; /* for exit_notify() */
898 write_lock_irq(&tasklist_lock);
899 if (likely(leader->exit_state))
901 __set_current_state(TASK_UNINTERRUPTIBLE);
902 write_unlock_irq(&tasklist_lock);
907 * The only record we have of the real-time age of a
908 * process, regardless of execs it's done, is start_time.
909 * All the past CPU time is accumulated in signal_struct
910 * from sister threads now dead. But in this non-leader
911 * exec, nothing survives from the original leader thread,
912 * whose birth marks the true age of this process now.
913 * When we take on its identity by switching to its PID, we
914 * also take its birthdate (always earlier than our own).
916 tsk->start_time = leader->start_time;
918 BUG_ON(!same_thread_group(leader, tsk));
919 BUG_ON(has_group_leader_pid(tsk));
921 * An exec() starts a new thread group with the
922 * TGID of the previous thread group. Rehash the
923 * two threads with a switched PID, and release
924 * the former thread group leader:
927 /* Become a process group leader with the old leader's pid.
928 * The old leader becomes a thread of the this thread group.
929 * Note: The old leader also uses this pid until release_task
930 * is called. Odd but simple and correct.
932 detach_pid(tsk, PIDTYPE_PID);
933 tsk->pid = leader->pid;
934 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
935 transfer_pid(leader, tsk, PIDTYPE_PGID);
936 transfer_pid(leader, tsk, PIDTYPE_SID);
938 list_replace_rcu(&leader->tasks, &tsk->tasks);
939 list_replace_init(&leader->sibling, &tsk->sibling);
941 tsk->group_leader = tsk;
942 leader->group_leader = tsk;
944 tsk->exit_signal = SIGCHLD;
945 leader->exit_signal = -1;
947 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
948 leader->exit_state = EXIT_DEAD;
951 * We are going to release_task()->ptrace_unlink() silently,
952 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
953 * the tracer wont't block again waiting for this thread.
955 if (unlikely(leader->ptrace))
956 __wake_up_parent(leader, leader->parent);
957 write_unlock_irq(&tasklist_lock);
959 release_task(leader);
962 sig->group_exit_task = NULL;
963 sig->notify_count = 0;
966 /* we have changed execution domain */
967 tsk->exit_signal = SIGCHLD;
970 flush_itimer_signals();
972 if (atomic_read(&oldsighand->count) != 1) {
973 struct sighand_struct *newsighand;
975 * This ->sighand is shared with the CLONE_SIGHAND
976 * but not CLONE_THREAD task, switch to the new one.
978 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
982 atomic_set(&newsighand->count, 1);
983 memcpy(newsighand->action, oldsighand->action,
984 sizeof(newsighand->action));
986 write_lock_irq(&tasklist_lock);
987 spin_lock(&oldsighand->siglock);
988 rcu_assign_pointer(tsk->sighand, newsighand);
989 spin_unlock(&oldsighand->siglock);
990 write_unlock_irq(&tasklist_lock);
992 __cleanup_sighand(oldsighand);
995 BUG_ON(!thread_group_leader(tsk));
999 char *get_task_comm(char *buf, struct task_struct *tsk)
1001 /* buf must be at least sizeof(tsk->comm) in size */
1003 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1007 EXPORT_SYMBOL_GPL(get_task_comm);
1010 * These functions flushes out all traces of the currently running executable
1011 * so that a new one can be started
1014 void set_task_comm(struct task_struct *tsk, char *buf)
1018 trace_task_rename(tsk, buf);
1021 * Threads may access current->comm without holding
1022 * the task lock, so write the string carefully.
1023 * Readers without a lock may see incomplete new
1024 * names but are safe from non-terminating string reads.
1026 memset(tsk->comm, 0, TASK_COMM_LEN);
1028 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1030 perf_event_comm(tsk);
1033 static void filename_to_taskname(char *tcomm, const char *fn, unsigned int len)
1037 /* Copies the binary name from after last slash */
1038 for (i = 0; (ch = *(fn++)) != '\0';) {
1040 i = 0; /* overwrite what we wrote */
1048 int flush_old_exec(struct linux_binprm * bprm)
1053 * Make sure we have a private signal table and that
1054 * we are unassociated from the previous thread group.
1056 retval = de_thread(current);
1060 set_mm_exe_file(bprm->mm, bprm->file);
1062 filename_to_taskname(bprm->tcomm, bprm->filename, sizeof(bprm->tcomm));
1064 * Release all of the old mmap stuff
1066 acct_arg_size(bprm, 0);
1067 retval = exec_mmap(bprm->mm);
1071 bprm->mm = NULL; /* We're using it now */
1074 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD);
1076 current->personality &= ~bprm->per_clear;
1083 EXPORT_SYMBOL(flush_old_exec);
1085 void would_dump(struct linux_binprm *bprm, struct file *file)
1087 if (inode_permission(file->f_path.dentry->d_inode, MAY_READ) < 0)
1088 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1090 EXPORT_SYMBOL(would_dump);
1092 void setup_new_exec(struct linux_binprm * bprm)
1094 arch_pick_mmap_layout(current->mm);
1096 /* This is the point of no return */
1097 current->sas_ss_sp = current->sas_ss_size = 0;
1099 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1100 set_dumpable(current->mm, SUID_DUMPABLE_ENABLED);
1102 set_dumpable(current->mm, suid_dumpable);
1104 set_task_comm(current, bprm->tcomm);
1106 /* Set the new mm task size. We have to do that late because it may
1107 * depend on TIF_32BIT which is only updated in flush_thread() on
1108 * some architectures like powerpc
1110 current->mm->task_size = TASK_SIZE;
1112 /* install the new credentials */
1113 if (!uid_eq(bprm->cred->uid, current_euid()) ||
1114 !gid_eq(bprm->cred->gid, current_egid())) {
1115 current->pdeath_signal = 0;
1117 would_dump(bprm, bprm->file);
1118 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1119 set_dumpable(current->mm, suid_dumpable);
1123 * Flush performance counters when crossing a
1126 if (!get_dumpable(current->mm))
1127 perf_event_exit_task(current);
1129 /* An exec changes our domain. We are no longer part of the thread
1132 current->self_exec_id++;
1134 flush_signal_handlers(current, 0);
1135 do_close_on_exec(current->files);
1137 EXPORT_SYMBOL(setup_new_exec);
1140 * Prepare credentials and lock ->cred_guard_mutex.
1141 * install_exec_creds() commits the new creds and drops the lock.
1142 * Or, if exec fails before, free_bprm() should release ->cred and
1145 int prepare_bprm_creds(struct linux_binprm *bprm)
1147 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex))
1148 return -ERESTARTNOINTR;
1150 bprm->cred = prepare_exec_creds();
1151 if (likely(bprm->cred))
1154 mutex_unlock(¤t->signal->cred_guard_mutex);
1158 void free_bprm(struct linux_binprm *bprm)
1160 free_arg_pages(bprm);
1162 mutex_unlock(¤t->signal->cred_guard_mutex);
1163 abort_creds(bprm->cred);
1169 * install the new credentials for this executable
1171 void install_exec_creds(struct linux_binprm *bprm)
1173 security_bprm_committing_creds(bprm);
1175 commit_creds(bprm->cred);
1178 * cred_guard_mutex must be held at least to this point to prevent
1179 * ptrace_attach() from altering our determination of the task's
1180 * credentials; any time after this it may be unlocked.
1182 security_bprm_committed_creds(bprm);
1183 mutex_unlock(¤t->signal->cred_guard_mutex);
1185 EXPORT_SYMBOL(install_exec_creds);
1188 * determine how safe it is to execute the proposed program
1189 * - the caller must hold ->cred_guard_mutex to protect against
1192 static int check_unsafe_exec(struct linux_binprm *bprm)
1194 struct task_struct *p = current, *t;
1199 if (p->ptrace & PT_PTRACE_CAP)
1200 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1202 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1206 * This isn't strictly necessary, but it makes it harder for LSMs to
1209 if (current->no_new_privs)
1210 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1213 spin_lock(&p->fs->lock);
1215 for (t = next_thread(p); t != p; t = next_thread(t)) {
1221 if (p->fs->users > n_fs) {
1222 bprm->unsafe |= LSM_UNSAFE_SHARE;
1225 if (!p->fs->in_exec) {
1230 spin_unlock(&p->fs->lock);
1236 * Fill the binprm structure from the inode.
1237 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1239 * This may be called multiple times for binary chains (scripts for example).
1241 int prepare_binprm(struct linux_binprm *bprm)
1244 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1247 mode = inode->i_mode;
1248 if (bprm->file->f_op == NULL)
1251 /* clear any previous set[ug]id data from a previous binary */
1252 bprm->cred->euid = current_euid();
1253 bprm->cred->egid = current_egid();
1255 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) &&
1256 !current->no_new_privs) {
1258 if (mode & S_ISUID) {
1259 if (!kuid_has_mapping(bprm->cred->user_ns, inode->i_uid))
1261 bprm->per_clear |= PER_CLEAR_ON_SETID;
1262 bprm->cred->euid = inode->i_uid;
1268 * If setgid is set but no group execute bit then this
1269 * is a candidate for mandatory locking, not a setgid
1272 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1273 if (!kgid_has_mapping(bprm->cred->user_ns, inode->i_gid))
1275 bprm->per_clear |= PER_CLEAR_ON_SETID;
1276 bprm->cred->egid = inode->i_gid;
1280 /* fill in binprm security blob */
1281 retval = security_bprm_set_creds(bprm);
1284 bprm->cred_prepared = 1;
1286 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1287 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1290 EXPORT_SYMBOL(prepare_binprm);
1293 * Arguments are '\0' separated strings found at the location bprm->p
1294 * points to; chop off the first by relocating brpm->p to right after
1295 * the first '\0' encountered.
1297 int remove_arg_zero(struct linux_binprm *bprm)
1300 unsigned long offset;
1308 offset = bprm->p & ~PAGE_MASK;
1309 page = get_arg_page(bprm, bprm->p, 0);
1314 kaddr = kmap_atomic(page);
1316 for (; offset < PAGE_SIZE && kaddr[offset];
1317 offset++, bprm->p++)
1320 kunmap_atomic(kaddr);
1323 if (offset == PAGE_SIZE)
1324 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1325 } while (offset == PAGE_SIZE);
1334 EXPORT_SYMBOL(remove_arg_zero);
1337 * cycle the list of binary formats handler, until one recognizes the image
1339 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1341 unsigned int depth = bprm->recursion_depth;
1343 struct linux_binfmt *fmt;
1344 pid_t old_pid, old_vpid;
1346 retval = security_bprm_check(bprm);
1350 retval = audit_bprm(bprm);
1354 /* Need to fetch pid before load_binary changes it */
1355 old_pid = current->pid;
1357 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1361 for (try=0; try<2; try++) {
1362 read_lock(&binfmt_lock);
1363 list_for_each_entry(fmt, &formats, lh) {
1364 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1367 if (!try_module_get(fmt->module))
1369 read_unlock(&binfmt_lock);
1370 retval = fn(bprm, regs);
1372 * Restore the depth counter to its starting value
1373 * in this call, so we don't have to rely on every
1374 * load_binary function to restore it on return.
1376 bprm->recursion_depth = depth;
1379 trace_sched_process_exec(current, old_pid, bprm);
1380 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1383 allow_write_access(bprm->file);
1387 current->did_exec = 1;
1388 proc_exec_connector(current);
1391 read_lock(&binfmt_lock);
1393 if (retval != -ENOEXEC || bprm->mm == NULL)
1396 read_unlock(&binfmt_lock);
1400 read_unlock(&binfmt_lock);
1401 #ifdef CONFIG_MODULES
1402 if (retval != -ENOEXEC || bprm->mm == NULL) {
1405 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1406 if (printable(bprm->buf[0]) &&
1407 printable(bprm->buf[1]) &&
1408 printable(bprm->buf[2]) &&
1409 printable(bprm->buf[3]))
1410 break; /* -ENOEXEC */
1412 break; /* -ENOEXEC */
1413 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1422 EXPORT_SYMBOL(search_binary_handler);
1425 * sys_execve() executes a new program.
1427 static int do_execve_common(const char *filename,
1428 struct user_arg_ptr argv,
1429 struct user_arg_ptr envp,
1430 struct pt_regs *regs)
1432 struct linux_binprm *bprm;
1434 struct files_struct *displaced;
1437 const struct cred *cred = current_cred();
1440 * We move the actual failure in case of RLIMIT_NPROC excess from
1441 * set*uid() to execve() because too many poorly written programs
1442 * don't check setuid() return code. Here we additionally recheck
1443 * whether NPROC limit is still exceeded.
1445 if ((current->flags & PF_NPROC_EXCEEDED) &&
1446 atomic_read(&cred->user->processes) > rlimit(RLIMIT_NPROC)) {
1451 /* We're below the limit (still or again), so we don't want to make
1452 * further execve() calls fail. */
1453 current->flags &= ~PF_NPROC_EXCEEDED;
1455 retval = unshare_files(&displaced);
1460 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1464 retval = prepare_bprm_creds(bprm);
1468 retval = check_unsafe_exec(bprm);
1471 clear_in_exec = retval;
1472 current->in_execve = 1;
1474 file = open_exec(filename);
1475 retval = PTR_ERR(file);
1482 bprm->filename = filename;
1483 bprm->interp = filename;
1485 retval = bprm_mm_init(bprm);
1489 bprm->argc = count(argv, MAX_ARG_STRINGS);
1490 if ((retval = bprm->argc) < 0)
1493 bprm->envc = count(envp, MAX_ARG_STRINGS);
1494 if ((retval = bprm->envc) < 0)
1497 retval = prepare_binprm(bprm);
1501 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1505 bprm->exec = bprm->p;
1506 retval = copy_strings(bprm->envc, envp, bprm);
1510 retval = copy_strings(bprm->argc, argv, bprm);
1514 retval = search_binary_handler(bprm,regs);
1518 /* execve succeeded */
1519 current->fs->in_exec = 0;
1520 current->in_execve = 0;
1521 acct_update_integrals(current);
1524 put_files_struct(displaced);
1529 acct_arg_size(bprm, 0);
1535 allow_write_access(bprm->file);
1541 current->fs->in_exec = 0;
1542 current->in_execve = 0;
1549 reset_files_struct(displaced);
1554 int do_execve(const char *filename,
1555 const char __user *const __user *__argv,
1556 const char __user *const __user *__envp,
1557 struct pt_regs *regs)
1559 struct user_arg_ptr argv = { .ptr.native = __argv };
1560 struct user_arg_ptr envp = { .ptr.native = __envp };
1561 return do_execve_common(filename, argv, envp, regs);
1564 #ifdef CONFIG_COMPAT
1565 int compat_do_execve(char *filename,
1566 compat_uptr_t __user *__argv,
1567 compat_uptr_t __user *__envp,
1568 struct pt_regs *regs)
1570 struct user_arg_ptr argv = {
1572 .ptr.compat = __argv,
1574 struct user_arg_ptr envp = {
1576 .ptr.compat = __envp,
1578 return do_execve_common(filename, argv, envp, regs);
1582 void set_binfmt(struct linux_binfmt *new)
1584 struct mm_struct *mm = current->mm;
1587 module_put(mm->binfmt->module);
1591 __module_get(new->module);
1594 EXPORT_SYMBOL(set_binfmt);
1597 * set_dumpable converts traditional three-value dumpable to two flags and
1598 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1599 * these bits are not changed atomically. So get_dumpable can observe the
1600 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1601 * return either old dumpable or new one by paying attention to the order of
1602 * modifying the bits.
1604 * dumpable | mm->flags (binary)
1605 * old new | initial interim final
1606 * ---------+-----------------------
1614 * (*) get_dumpable regards interim value of 10 as 11.
1616 void set_dumpable(struct mm_struct *mm, int value)
1619 case SUID_DUMPABLE_DISABLED:
1620 clear_bit(MMF_DUMPABLE, &mm->flags);
1622 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1624 case SUID_DUMPABLE_ENABLED:
1625 set_bit(MMF_DUMPABLE, &mm->flags);
1627 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1629 case SUID_DUMPABLE_SAFE:
1630 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1632 set_bit(MMF_DUMPABLE, &mm->flags);
1637 int __get_dumpable(unsigned long mm_flags)
1641 ret = mm_flags & MMF_DUMPABLE_MASK;
1642 return (ret > SUID_DUMPABLE_ENABLED) ? SUID_DUMPABLE_SAFE : ret;
1645 int get_dumpable(struct mm_struct *mm)
1647 return __get_dumpable(mm->flags);