Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[platform/adaptation/renesas_rcar/renesas_kernel.git] / fs / exec.c
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats. 
23  */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/security.h>
47 #include <linux/syscalls.h>
48 #include <linux/tsacct_kern.h>
49 #include <linux/cn_proc.h>
50 #include <linux/audit.h>
51 #include <linux/tracehook.h>
52 #include <linux/kmod.h>
53 #include <linux/fsnotify.h>
54 #include <linux/fs_struct.h>
55 #include <linux/pipe_fs_i.h>
56 #include <linux/oom.h>
57 #include <linux/compat.h>
58
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/tlb.h>
62
63 #include <trace/events/task.h>
64 #include "internal.h"
65 #include "coredump.h"
66
67 #include <trace/events/sched.h>
68
69 int suid_dumpable = 0;
70
71 static LIST_HEAD(formats);
72 static DEFINE_RWLOCK(binfmt_lock);
73
74 void __register_binfmt(struct linux_binfmt * fmt, int insert)
75 {
76         BUG_ON(!fmt);
77         if (WARN_ON(!fmt->load_binary))
78                 return;
79         write_lock(&binfmt_lock);
80         insert ? list_add(&fmt->lh, &formats) :
81                  list_add_tail(&fmt->lh, &formats);
82         write_unlock(&binfmt_lock);
83 }
84
85 EXPORT_SYMBOL(__register_binfmt);
86
87 void unregister_binfmt(struct linux_binfmt * fmt)
88 {
89         write_lock(&binfmt_lock);
90         list_del(&fmt->lh);
91         write_unlock(&binfmt_lock);
92 }
93
94 EXPORT_SYMBOL(unregister_binfmt);
95
96 static inline void put_binfmt(struct linux_binfmt * fmt)
97 {
98         module_put(fmt->module);
99 }
100
101 /*
102  * Note that a shared library must be both readable and executable due to
103  * security reasons.
104  *
105  * Also note that we take the address to load from from the file itself.
106  */
107 SYSCALL_DEFINE1(uselib, const char __user *, library)
108 {
109         struct file *file;
110         struct filename *tmp = getname(library);
111         int error = PTR_ERR(tmp);
112         static const struct open_flags uselib_flags = {
113                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
114                 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
115                 .intent = LOOKUP_OPEN,
116                 .lookup_flags = LOOKUP_FOLLOW,
117         };
118
119         if (IS_ERR(tmp))
120                 goto out;
121
122         file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
123         putname(tmp);
124         error = PTR_ERR(file);
125         if (IS_ERR(file))
126                 goto out;
127
128         error = -EINVAL;
129         if (!S_ISREG(file_inode(file)->i_mode))
130                 goto exit;
131
132         error = -EACCES;
133         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
134                 goto exit;
135
136         fsnotify_open(file);
137
138         error = -ENOEXEC;
139         if(file->f_op) {
140                 struct linux_binfmt * fmt;
141
142                 read_lock(&binfmt_lock);
143                 list_for_each_entry(fmt, &formats, lh) {
144                         if (!fmt->load_shlib)
145                                 continue;
146                         if (!try_module_get(fmt->module))
147                                 continue;
148                         read_unlock(&binfmt_lock);
149                         error = fmt->load_shlib(file);
150                         read_lock(&binfmt_lock);
151                         put_binfmt(fmt);
152                         if (error != -ENOEXEC)
153                                 break;
154                 }
155                 read_unlock(&binfmt_lock);
156         }
157 exit:
158         fput(file);
159 out:
160         return error;
161 }
162
163 #ifdef CONFIG_MMU
164 /*
165  * The nascent bprm->mm is not visible until exec_mmap() but it can
166  * use a lot of memory, account these pages in current->mm temporary
167  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
168  * change the counter back via acct_arg_size(0).
169  */
170 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
171 {
172         struct mm_struct *mm = current->mm;
173         long diff = (long)(pages - bprm->vma_pages);
174
175         if (!mm || !diff)
176                 return;
177
178         bprm->vma_pages = pages;
179         add_mm_counter(mm, MM_ANONPAGES, diff);
180 }
181
182 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
183                 int write)
184 {
185         struct page *page;
186         int ret;
187
188 #ifdef CONFIG_STACK_GROWSUP
189         if (write) {
190                 ret = expand_downwards(bprm->vma, pos);
191                 if (ret < 0)
192                         return NULL;
193         }
194 #endif
195         ret = get_user_pages(current, bprm->mm, pos,
196                         1, write, 1, &page, NULL);
197         if (ret <= 0)
198                 return NULL;
199
200         if (write) {
201                 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
202                 struct rlimit *rlim;
203
204                 acct_arg_size(bprm, size / PAGE_SIZE);
205
206                 /*
207                  * We've historically supported up to 32 pages (ARG_MAX)
208                  * of argument strings even with small stacks
209                  */
210                 if (size <= ARG_MAX)
211                         return page;
212
213                 /*
214                  * Limit to 1/4-th the stack size for the argv+env strings.
215                  * This ensures that:
216                  *  - the remaining binfmt code will not run out of stack space,
217                  *  - the program will have a reasonable amount of stack left
218                  *    to work from.
219                  */
220                 rlim = current->signal->rlim;
221                 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
222                         put_page(page);
223                         return NULL;
224                 }
225         }
226
227         return page;
228 }
229
230 static void put_arg_page(struct page *page)
231 {
232         put_page(page);
233 }
234
235 static void free_arg_page(struct linux_binprm *bprm, int i)
236 {
237 }
238
239 static void free_arg_pages(struct linux_binprm *bprm)
240 {
241 }
242
243 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
244                 struct page *page)
245 {
246         flush_cache_page(bprm->vma, pos, page_to_pfn(page));
247 }
248
249 static int __bprm_mm_init(struct linux_binprm *bprm)
250 {
251         int err;
252         struct vm_area_struct *vma = NULL;
253         struct mm_struct *mm = bprm->mm;
254
255         bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
256         if (!vma)
257                 return -ENOMEM;
258
259         down_write(&mm->mmap_sem);
260         vma->vm_mm = mm;
261
262         /*
263          * Place the stack at the largest stack address the architecture
264          * supports. Later, we'll move this to an appropriate place. We don't
265          * use STACK_TOP because that can depend on attributes which aren't
266          * configured yet.
267          */
268         BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
269         vma->vm_end = STACK_TOP_MAX;
270         vma->vm_start = vma->vm_end - PAGE_SIZE;
271         vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
272         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
273         INIT_LIST_HEAD(&vma->anon_vma_chain);
274
275         err = insert_vm_struct(mm, vma);
276         if (err)
277                 goto err;
278
279         mm->stack_vm = mm->total_vm = 1;
280         up_write(&mm->mmap_sem);
281         bprm->p = vma->vm_end - sizeof(void *);
282         return 0;
283 err:
284         up_write(&mm->mmap_sem);
285         bprm->vma = NULL;
286         kmem_cache_free(vm_area_cachep, vma);
287         return err;
288 }
289
290 static bool valid_arg_len(struct linux_binprm *bprm, long len)
291 {
292         return len <= MAX_ARG_STRLEN;
293 }
294
295 #else
296
297 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
298 {
299 }
300
301 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
302                 int write)
303 {
304         struct page *page;
305
306         page = bprm->page[pos / PAGE_SIZE];
307         if (!page && write) {
308                 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
309                 if (!page)
310                         return NULL;
311                 bprm->page[pos / PAGE_SIZE] = page;
312         }
313
314         return page;
315 }
316
317 static void put_arg_page(struct page *page)
318 {
319 }
320
321 static void free_arg_page(struct linux_binprm *bprm, int i)
322 {
323         if (bprm->page[i]) {
324                 __free_page(bprm->page[i]);
325                 bprm->page[i] = NULL;
326         }
327 }
328
329 static void free_arg_pages(struct linux_binprm *bprm)
330 {
331         int i;
332
333         for (i = 0; i < MAX_ARG_PAGES; i++)
334                 free_arg_page(bprm, i);
335 }
336
337 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
338                 struct page *page)
339 {
340 }
341
342 static int __bprm_mm_init(struct linux_binprm *bprm)
343 {
344         bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
345         return 0;
346 }
347
348 static bool valid_arg_len(struct linux_binprm *bprm, long len)
349 {
350         return len <= bprm->p;
351 }
352
353 #endif /* CONFIG_MMU */
354
355 /*
356  * Create a new mm_struct and populate it with a temporary stack
357  * vm_area_struct.  We don't have enough context at this point to set the stack
358  * flags, permissions, and offset, so we use temporary values.  We'll update
359  * them later in setup_arg_pages().
360  */
361 static int bprm_mm_init(struct linux_binprm *bprm)
362 {
363         int err;
364         struct mm_struct *mm = NULL;
365
366         bprm->mm = mm = mm_alloc();
367         err = -ENOMEM;
368         if (!mm)
369                 goto err;
370
371         err = init_new_context(current, mm);
372         if (err)
373                 goto err;
374
375         err = __bprm_mm_init(bprm);
376         if (err)
377                 goto err;
378
379         return 0;
380
381 err:
382         if (mm) {
383                 bprm->mm = NULL;
384                 mmdrop(mm);
385         }
386
387         return err;
388 }
389
390 struct user_arg_ptr {
391 #ifdef CONFIG_COMPAT
392         bool is_compat;
393 #endif
394         union {
395                 const char __user *const __user *native;
396 #ifdef CONFIG_COMPAT
397                 const compat_uptr_t __user *compat;
398 #endif
399         } ptr;
400 };
401
402 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
403 {
404         const char __user *native;
405
406 #ifdef CONFIG_COMPAT
407         if (unlikely(argv.is_compat)) {
408                 compat_uptr_t compat;
409
410                 if (get_user(compat, argv.ptr.compat + nr))
411                         return ERR_PTR(-EFAULT);
412
413                 return compat_ptr(compat);
414         }
415 #endif
416
417         if (get_user(native, argv.ptr.native + nr))
418                 return ERR_PTR(-EFAULT);
419
420         return native;
421 }
422
423 /*
424  * count() counts the number of strings in array ARGV.
425  */
426 static int count(struct user_arg_ptr argv, int max)
427 {
428         int i = 0;
429
430         if (argv.ptr.native != NULL) {
431                 for (;;) {
432                         const char __user *p = get_user_arg_ptr(argv, i);
433
434                         if (!p)
435                                 break;
436
437                         if (IS_ERR(p))
438                                 return -EFAULT;
439
440                         if (i >= max)
441                                 return -E2BIG;
442                         ++i;
443
444                         if (fatal_signal_pending(current))
445                                 return -ERESTARTNOHAND;
446                         cond_resched();
447                 }
448         }
449         return i;
450 }
451
452 /*
453  * 'copy_strings()' copies argument/environment strings from the old
454  * processes's memory to the new process's stack.  The call to get_user_pages()
455  * ensures the destination page is created and not swapped out.
456  */
457 static int copy_strings(int argc, struct user_arg_ptr argv,
458                         struct linux_binprm *bprm)
459 {
460         struct page *kmapped_page = NULL;
461         char *kaddr = NULL;
462         unsigned long kpos = 0;
463         int ret;
464
465         while (argc-- > 0) {
466                 const char __user *str;
467                 int len;
468                 unsigned long pos;
469
470                 ret = -EFAULT;
471                 str = get_user_arg_ptr(argv, argc);
472                 if (IS_ERR(str))
473                         goto out;
474
475                 len = strnlen_user(str, MAX_ARG_STRLEN);
476                 if (!len)
477                         goto out;
478
479                 ret = -E2BIG;
480                 if (!valid_arg_len(bprm, len))
481                         goto out;
482
483                 /* We're going to work our way backwords. */
484                 pos = bprm->p;
485                 str += len;
486                 bprm->p -= len;
487
488                 while (len > 0) {
489                         int offset, bytes_to_copy;
490
491                         if (fatal_signal_pending(current)) {
492                                 ret = -ERESTARTNOHAND;
493                                 goto out;
494                         }
495                         cond_resched();
496
497                         offset = pos % PAGE_SIZE;
498                         if (offset == 0)
499                                 offset = PAGE_SIZE;
500
501                         bytes_to_copy = offset;
502                         if (bytes_to_copy > len)
503                                 bytes_to_copy = len;
504
505                         offset -= bytes_to_copy;
506                         pos -= bytes_to_copy;
507                         str -= bytes_to_copy;
508                         len -= bytes_to_copy;
509
510                         if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
511                                 struct page *page;
512
513                                 page = get_arg_page(bprm, pos, 1);
514                                 if (!page) {
515                                         ret = -E2BIG;
516                                         goto out;
517                                 }
518
519                                 if (kmapped_page) {
520                                         flush_kernel_dcache_page(kmapped_page);
521                                         kunmap(kmapped_page);
522                                         put_arg_page(kmapped_page);
523                                 }
524                                 kmapped_page = page;
525                                 kaddr = kmap(kmapped_page);
526                                 kpos = pos & PAGE_MASK;
527                                 flush_arg_page(bprm, kpos, kmapped_page);
528                         }
529                         if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
530                                 ret = -EFAULT;
531                                 goto out;
532                         }
533                 }
534         }
535         ret = 0;
536 out:
537         if (kmapped_page) {
538                 flush_kernel_dcache_page(kmapped_page);
539                 kunmap(kmapped_page);
540                 put_arg_page(kmapped_page);
541         }
542         return ret;
543 }
544
545 /*
546  * Like copy_strings, but get argv and its values from kernel memory.
547  */
548 int copy_strings_kernel(int argc, const char *const *__argv,
549                         struct linux_binprm *bprm)
550 {
551         int r;
552         mm_segment_t oldfs = get_fs();
553         struct user_arg_ptr argv = {
554                 .ptr.native = (const char __user *const  __user *)__argv,
555         };
556
557         set_fs(KERNEL_DS);
558         r = copy_strings(argc, argv, bprm);
559         set_fs(oldfs);
560
561         return r;
562 }
563 EXPORT_SYMBOL(copy_strings_kernel);
564
565 #ifdef CONFIG_MMU
566
567 /*
568  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
569  * the binfmt code determines where the new stack should reside, we shift it to
570  * its final location.  The process proceeds as follows:
571  *
572  * 1) Use shift to calculate the new vma endpoints.
573  * 2) Extend vma to cover both the old and new ranges.  This ensures the
574  *    arguments passed to subsequent functions are consistent.
575  * 3) Move vma's page tables to the new range.
576  * 4) Free up any cleared pgd range.
577  * 5) Shrink the vma to cover only the new range.
578  */
579 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
580 {
581         struct mm_struct *mm = vma->vm_mm;
582         unsigned long old_start = vma->vm_start;
583         unsigned long old_end = vma->vm_end;
584         unsigned long length = old_end - old_start;
585         unsigned long new_start = old_start - shift;
586         unsigned long new_end = old_end - shift;
587         struct mmu_gather tlb;
588
589         BUG_ON(new_start > new_end);
590
591         /*
592          * ensure there are no vmas between where we want to go
593          * and where we are
594          */
595         if (vma != find_vma(mm, new_start))
596                 return -EFAULT;
597
598         /*
599          * cover the whole range: [new_start, old_end)
600          */
601         if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
602                 return -ENOMEM;
603
604         /*
605          * move the page tables downwards, on failure we rely on
606          * process cleanup to remove whatever mess we made.
607          */
608         if (length != move_page_tables(vma, old_start,
609                                        vma, new_start, length, false))
610                 return -ENOMEM;
611
612         lru_add_drain();
613         tlb_gather_mmu(&tlb, mm, old_start, old_end);
614         if (new_end > old_start) {
615                 /*
616                  * when the old and new regions overlap clear from new_end.
617                  */
618                 free_pgd_range(&tlb, new_end, old_end, new_end,
619                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
620         } else {
621                 /*
622                  * otherwise, clean from old_start; this is done to not touch
623                  * the address space in [new_end, old_start) some architectures
624                  * have constraints on va-space that make this illegal (IA64) -
625                  * for the others its just a little faster.
626                  */
627                 free_pgd_range(&tlb, old_start, old_end, new_end,
628                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
629         }
630         tlb_finish_mmu(&tlb, old_start, old_end);
631
632         /*
633          * Shrink the vma to just the new range.  Always succeeds.
634          */
635         vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
636
637         return 0;
638 }
639
640 /*
641  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
642  * the stack is optionally relocated, and some extra space is added.
643  */
644 int setup_arg_pages(struct linux_binprm *bprm,
645                     unsigned long stack_top,
646                     int executable_stack)
647 {
648         unsigned long ret;
649         unsigned long stack_shift;
650         struct mm_struct *mm = current->mm;
651         struct vm_area_struct *vma = bprm->vma;
652         struct vm_area_struct *prev = NULL;
653         unsigned long vm_flags;
654         unsigned long stack_base;
655         unsigned long stack_size;
656         unsigned long stack_expand;
657         unsigned long rlim_stack;
658
659 #ifdef CONFIG_STACK_GROWSUP
660         /* Limit stack size to 1GB */
661         stack_base = rlimit_max(RLIMIT_STACK);
662         if (stack_base > (1 << 30))
663                 stack_base = 1 << 30;
664
665         /* Make sure we didn't let the argument array grow too large. */
666         if (vma->vm_end - vma->vm_start > stack_base)
667                 return -ENOMEM;
668
669         stack_base = PAGE_ALIGN(stack_top - stack_base);
670
671         stack_shift = vma->vm_start - stack_base;
672         mm->arg_start = bprm->p - stack_shift;
673         bprm->p = vma->vm_end - stack_shift;
674 #else
675         stack_top = arch_align_stack(stack_top);
676         stack_top = PAGE_ALIGN(stack_top);
677
678         if (unlikely(stack_top < mmap_min_addr) ||
679             unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
680                 return -ENOMEM;
681
682         stack_shift = vma->vm_end - stack_top;
683
684         bprm->p -= stack_shift;
685         mm->arg_start = bprm->p;
686 #endif
687
688         if (bprm->loader)
689                 bprm->loader -= stack_shift;
690         bprm->exec -= stack_shift;
691
692         down_write(&mm->mmap_sem);
693         vm_flags = VM_STACK_FLAGS;
694
695         /*
696          * Adjust stack execute permissions; explicitly enable for
697          * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
698          * (arch default) otherwise.
699          */
700         if (unlikely(executable_stack == EXSTACK_ENABLE_X))
701                 vm_flags |= VM_EXEC;
702         else if (executable_stack == EXSTACK_DISABLE_X)
703                 vm_flags &= ~VM_EXEC;
704         vm_flags |= mm->def_flags;
705         vm_flags |= VM_STACK_INCOMPLETE_SETUP;
706
707         ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
708                         vm_flags);
709         if (ret)
710                 goto out_unlock;
711         BUG_ON(prev != vma);
712
713         /* Move stack pages down in memory. */
714         if (stack_shift) {
715                 ret = shift_arg_pages(vma, stack_shift);
716                 if (ret)
717                         goto out_unlock;
718         }
719
720         /* mprotect_fixup is overkill to remove the temporary stack flags */
721         vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
722
723         stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
724         stack_size = vma->vm_end - vma->vm_start;
725         /*
726          * Align this down to a page boundary as expand_stack
727          * will align it up.
728          */
729         rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
730 #ifdef CONFIG_STACK_GROWSUP
731         if (stack_size + stack_expand > rlim_stack)
732                 stack_base = vma->vm_start + rlim_stack;
733         else
734                 stack_base = vma->vm_end + stack_expand;
735 #else
736         if (stack_size + stack_expand > rlim_stack)
737                 stack_base = vma->vm_end - rlim_stack;
738         else
739                 stack_base = vma->vm_start - stack_expand;
740 #endif
741         current->mm->start_stack = bprm->p;
742         ret = expand_stack(vma, stack_base);
743         if (ret)
744                 ret = -EFAULT;
745
746 out_unlock:
747         up_write(&mm->mmap_sem);
748         return ret;
749 }
750 EXPORT_SYMBOL(setup_arg_pages);
751
752 #endif /* CONFIG_MMU */
753
754 struct file *open_exec(const char *name)
755 {
756         struct file *file;
757         int err;
758         struct filename tmp = { .name = name };
759         static const struct open_flags open_exec_flags = {
760                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
761                 .acc_mode = MAY_EXEC | MAY_OPEN,
762                 .intent = LOOKUP_OPEN,
763                 .lookup_flags = LOOKUP_FOLLOW,
764         };
765
766         file = do_filp_open(AT_FDCWD, &tmp, &open_exec_flags);
767         if (IS_ERR(file))
768                 goto out;
769
770         err = -EACCES;
771         if (!S_ISREG(file_inode(file)->i_mode))
772                 goto exit;
773
774         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
775                 goto exit;
776
777         fsnotify_open(file);
778
779         err = deny_write_access(file);
780         if (err)
781                 goto exit;
782
783 out:
784         return file;
785
786 exit:
787         fput(file);
788         return ERR_PTR(err);
789 }
790 EXPORT_SYMBOL(open_exec);
791
792 int kernel_read(struct file *file, loff_t offset,
793                 char *addr, unsigned long count)
794 {
795         mm_segment_t old_fs;
796         loff_t pos = offset;
797         int result;
798
799         old_fs = get_fs();
800         set_fs(get_ds());
801         /* The cast to a user pointer is valid due to the set_fs() */
802         result = vfs_read(file, (void __user *)addr, count, &pos);
803         set_fs(old_fs);
804         return result;
805 }
806
807 EXPORT_SYMBOL(kernel_read);
808
809 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
810 {
811         ssize_t res = file->f_op->read(file, (void __user *)addr, len, &pos);
812         if (res > 0)
813                 flush_icache_range(addr, addr + len);
814         return res;
815 }
816 EXPORT_SYMBOL(read_code);
817
818 static int exec_mmap(struct mm_struct *mm)
819 {
820         struct task_struct *tsk;
821         struct mm_struct * old_mm, *active_mm;
822
823         /* Notify parent that we're no longer interested in the old VM */
824         tsk = current;
825         old_mm = current->mm;
826         mm_release(tsk, old_mm);
827
828         if (old_mm) {
829                 sync_mm_rss(old_mm);
830                 /*
831                  * Make sure that if there is a core dump in progress
832                  * for the old mm, we get out and die instead of going
833                  * through with the exec.  We must hold mmap_sem around
834                  * checking core_state and changing tsk->mm.
835                  */
836                 down_read(&old_mm->mmap_sem);
837                 if (unlikely(old_mm->core_state)) {
838                         up_read(&old_mm->mmap_sem);
839                         return -EINTR;
840                 }
841         }
842         task_lock(tsk);
843         active_mm = tsk->active_mm;
844         tsk->mm = mm;
845         tsk->active_mm = mm;
846         activate_mm(active_mm, mm);
847         task_unlock(tsk);
848         arch_pick_mmap_layout(mm);
849         if (old_mm) {
850                 up_read(&old_mm->mmap_sem);
851                 BUG_ON(active_mm != old_mm);
852                 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
853                 mm_update_next_owner(old_mm);
854                 mmput(old_mm);
855                 return 0;
856         }
857         mmdrop(active_mm);
858         return 0;
859 }
860
861 /*
862  * This function makes sure the current process has its own signal table,
863  * so that flush_signal_handlers can later reset the handlers without
864  * disturbing other processes.  (Other processes might share the signal
865  * table via the CLONE_SIGHAND option to clone().)
866  */
867 static int de_thread(struct task_struct *tsk)
868 {
869         struct signal_struct *sig = tsk->signal;
870         struct sighand_struct *oldsighand = tsk->sighand;
871         spinlock_t *lock = &oldsighand->siglock;
872
873         if (thread_group_empty(tsk))
874                 goto no_thread_group;
875
876         /*
877          * Kill all other threads in the thread group.
878          */
879         spin_lock_irq(lock);
880         if (signal_group_exit(sig)) {
881                 /*
882                  * Another group action in progress, just
883                  * return so that the signal is processed.
884                  */
885                 spin_unlock_irq(lock);
886                 return -EAGAIN;
887         }
888
889         sig->group_exit_task = tsk;
890         sig->notify_count = zap_other_threads(tsk);
891         if (!thread_group_leader(tsk))
892                 sig->notify_count--;
893
894         while (sig->notify_count) {
895                 __set_current_state(TASK_KILLABLE);
896                 spin_unlock_irq(lock);
897                 schedule();
898                 if (unlikely(__fatal_signal_pending(tsk)))
899                         goto killed;
900                 spin_lock_irq(lock);
901         }
902         spin_unlock_irq(lock);
903
904         /*
905          * At this point all other threads have exited, all we have to
906          * do is to wait for the thread group leader to become inactive,
907          * and to assume its PID:
908          */
909         if (!thread_group_leader(tsk)) {
910                 struct task_struct *leader = tsk->group_leader;
911
912                 sig->notify_count = -1; /* for exit_notify() */
913                 for (;;) {
914                         threadgroup_change_begin(tsk);
915                         write_lock_irq(&tasklist_lock);
916                         if (likely(leader->exit_state))
917                                 break;
918                         __set_current_state(TASK_KILLABLE);
919                         write_unlock_irq(&tasklist_lock);
920                         threadgroup_change_end(tsk);
921                         schedule();
922                         if (unlikely(__fatal_signal_pending(tsk)))
923                                 goto killed;
924                 }
925
926                 /*
927                  * The only record we have of the real-time age of a
928                  * process, regardless of execs it's done, is start_time.
929                  * All the past CPU time is accumulated in signal_struct
930                  * from sister threads now dead.  But in this non-leader
931                  * exec, nothing survives from the original leader thread,
932                  * whose birth marks the true age of this process now.
933                  * When we take on its identity by switching to its PID, we
934                  * also take its birthdate (always earlier than our own).
935                  */
936                 tsk->start_time = leader->start_time;
937                 tsk->real_start_time = leader->real_start_time;
938
939                 BUG_ON(!same_thread_group(leader, tsk));
940                 BUG_ON(has_group_leader_pid(tsk));
941                 /*
942                  * An exec() starts a new thread group with the
943                  * TGID of the previous thread group. Rehash the
944                  * two threads with a switched PID, and release
945                  * the former thread group leader:
946                  */
947
948                 /* Become a process group leader with the old leader's pid.
949                  * The old leader becomes a thread of the this thread group.
950                  * Note: The old leader also uses this pid until release_task
951                  *       is called.  Odd but simple and correct.
952                  */
953                 tsk->pid = leader->pid;
954                 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
955                 transfer_pid(leader, tsk, PIDTYPE_PGID);
956                 transfer_pid(leader, tsk, PIDTYPE_SID);
957
958                 list_replace_rcu(&leader->tasks, &tsk->tasks);
959                 list_replace_init(&leader->sibling, &tsk->sibling);
960
961                 tsk->group_leader = tsk;
962                 leader->group_leader = tsk;
963
964                 tsk->exit_signal = SIGCHLD;
965                 leader->exit_signal = -1;
966
967                 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
968                 leader->exit_state = EXIT_DEAD;
969
970                 /*
971                  * We are going to release_task()->ptrace_unlink() silently,
972                  * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
973                  * the tracer wont't block again waiting for this thread.
974                  */
975                 if (unlikely(leader->ptrace))
976                         __wake_up_parent(leader, leader->parent);
977                 write_unlock_irq(&tasklist_lock);
978                 threadgroup_change_end(tsk);
979
980                 release_task(leader);
981         }
982
983         sig->group_exit_task = NULL;
984         sig->notify_count = 0;
985
986 no_thread_group:
987         /* we have changed execution domain */
988         tsk->exit_signal = SIGCHLD;
989
990         exit_itimers(sig);
991         flush_itimer_signals();
992
993         if (atomic_read(&oldsighand->count) != 1) {
994                 struct sighand_struct *newsighand;
995                 /*
996                  * This ->sighand is shared with the CLONE_SIGHAND
997                  * but not CLONE_THREAD task, switch to the new one.
998                  */
999                 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1000                 if (!newsighand)
1001                         return -ENOMEM;
1002
1003                 atomic_set(&newsighand->count, 1);
1004                 memcpy(newsighand->action, oldsighand->action,
1005                        sizeof(newsighand->action));
1006
1007                 write_lock_irq(&tasklist_lock);
1008                 spin_lock(&oldsighand->siglock);
1009                 rcu_assign_pointer(tsk->sighand, newsighand);
1010                 spin_unlock(&oldsighand->siglock);
1011                 write_unlock_irq(&tasklist_lock);
1012
1013                 __cleanup_sighand(oldsighand);
1014         }
1015
1016         BUG_ON(!thread_group_leader(tsk));
1017         return 0;
1018
1019 killed:
1020         /* protects against exit_notify() and __exit_signal() */
1021         read_lock(&tasklist_lock);
1022         sig->group_exit_task = NULL;
1023         sig->notify_count = 0;
1024         read_unlock(&tasklist_lock);
1025         return -EAGAIN;
1026 }
1027
1028 char *get_task_comm(char *buf, struct task_struct *tsk)
1029 {
1030         /* buf must be at least sizeof(tsk->comm) in size */
1031         task_lock(tsk);
1032         strncpy(buf, tsk->comm, sizeof(tsk->comm));
1033         task_unlock(tsk);
1034         return buf;
1035 }
1036 EXPORT_SYMBOL_GPL(get_task_comm);
1037
1038 /*
1039  * These functions flushes out all traces of the currently running executable
1040  * so that a new one can be started
1041  */
1042
1043 void set_task_comm(struct task_struct *tsk, char *buf)
1044 {
1045         task_lock(tsk);
1046         trace_task_rename(tsk, buf);
1047         strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1048         task_unlock(tsk);
1049         perf_event_comm(tsk);
1050 }
1051
1052 static void filename_to_taskname(char *tcomm, const char *fn, unsigned int len)
1053 {
1054         int i, ch;
1055
1056         /* Copies the binary name from after last slash */
1057         for (i = 0; (ch = *(fn++)) != '\0';) {
1058                 if (ch == '/')
1059                         i = 0; /* overwrite what we wrote */
1060                 else
1061                         if (i < len - 1)
1062                                 tcomm[i++] = ch;
1063         }
1064         tcomm[i] = '\0';
1065 }
1066
1067 int flush_old_exec(struct linux_binprm * bprm)
1068 {
1069         int retval;
1070
1071         /*
1072          * Make sure we have a private signal table and that
1073          * we are unassociated from the previous thread group.
1074          */
1075         retval = de_thread(current);
1076         if (retval)
1077                 goto out;
1078
1079         set_mm_exe_file(bprm->mm, bprm->file);
1080
1081         filename_to_taskname(bprm->tcomm, bprm->filename, sizeof(bprm->tcomm));
1082         /*
1083          * Release all of the old mmap stuff
1084          */
1085         acct_arg_size(bprm, 0);
1086         retval = exec_mmap(bprm->mm);
1087         if (retval)
1088                 goto out;
1089
1090         bprm->mm = NULL;                /* We're using it now */
1091
1092         set_fs(USER_DS);
1093         current->flags &=
1094                 ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD | PF_NOFREEZE);
1095         flush_thread();
1096         current->personality &= ~bprm->per_clear;
1097
1098         return 0;
1099
1100 out:
1101         return retval;
1102 }
1103 EXPORT_SYMBOL(flush_old_exec);
1104
1105 void would_dump(struct linux_binprm *bprm, struct file *file)
1106 {
1107         if (inode_permission(file_inode(file), MAY_READ) < 0)
1108                 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1109 }
1110 EXPORT_SYMBOL(would_dump);
1111
1112 void setup_new_exec(struct linux_binprm * bprm)
1113 {
1114         arch_pick_mmap_layout(current->mm);
1115
1116         /* This is the point of no return */
1117         current->sas_ss_sp = current->sas_ss_size = 0;
1118
1119         if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1120                 set_dumpable(current->mm, SUID_DUMP_USER);
1121         else
1122                 set_dumpable(current->mm, suid_dumpable);
1123
1124         set_task_comm(current, bprm->tcomm);
1125
1126         /* Set the new mm task size. We have to do that late because it may
1127          * depend on TIF_32BIT which is only updated in flush_thread() on
1128          * some architectures like powerpc
1129          */
1130         current->mm->task_size = TASK_SIZE;
1131
1132         /* install the new credentials */
1133         if (!uid_eq(bprm->cred->uid, current_euid()) ||
1134             !gid_eq(bprm->cred->gid, current_egid())) {
1135                 current->pdeath_signal = 0;
1136         } else {
1137                 would_dump(bprm, bprm->file);
1138                 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1139                         set_dumpable(current->mm, suid_dumpable);
1140         }
1141
1142         /* An exec changes our domain. We are no longer part of the thread
1143            group */
1144
1145         current->self_exec_id++;
1146                         
1147         flush_signal_handlers(current, 0);
1148         do_close_on_exec(current->files);
1149 }
1150 EXPORT_SYMBOL(setup_new_exec);
1151
1152 /*
1153  * Prepare credentials and lock ->cred_guard_mutex.
1154  * install_exec_creds() commits the new creds and drops the lock.
1155  * Or, if exec fails before, free_bprm() should release ->cred and
1156  * and unlock.
1157  */
1158 int prepare_bprm_creds(struct linux_binprm *bprm)
1159 {
1160         if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1161                 return -ERESTARTNOINTR;
1162
1163         bprm->cred = prepare_exec_creds();
1164         if (likely(bprm->cred))
1165                 return 0;
1166
1167         mutex_unlock(&current->signal->cred_guard_mutex);
1168         return -ENOMEM;
1169 }
1170
1171 void free_bprm(struct linux_binprm *bprm)
1172 {
1173         free_arg_pages(bprm);
1174         if (bprm->cred) {
1175                 mutex_unlock(&current->signal->cred_guard_mutex);
1176                 abort_creds(bprm->cred);
1177         }
1178         /* If a binfmt changed the interp, free it. */
1179         if (bprm->interp != bprm->filename)
1180                 kfree(bprm->interp);
1181         kfree(bprm);
1182 }
1183
1184 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1185 {
1186         /* If a binfmt changed the interp, free it first. */
1187         if (bprm->interp != bprm->filename)
1188                 kfree(bprm->interp);
1189         bprm->interp = kstrdup(interp, GFP_KERNEL);
1190         if (!bprm->interp)
1191                 return -ENOMEM;
1192         return 0;
1193 }
1194 EXPORT_SYMBOL(bprm_change_interp);
1195
1196 /*
1197  * install the new credentials for this executable
1198  */
1199 void install_exec_creds(struct linux_binprm *bprm)
1200 {
1201         security_bprm_committing_creds(bprm);
1202
1203         commit_creds(bprm->cred);
1204         bprm->cred = NULL;
1205
1206         /*
1207          * Disable monitoring for regular users
1208          * when executing setuid binaries. Must
1209          * wait until new credentials are committed
1210          * by commit_creds() above
1211          */
1212         if (get_dumpable(current->mm) != SUID_DUMP_USER)
1213                 perf_event_exit_task(current);
1214         /*
1215          * cred_guard_mutex must be held at least to this point to prevent
1216          * ptrace_attach() from altering our determination of the task's
1217          * credentials; any time after this it may be unlocked.
1218          */
1219         security_bprm_committed_creds(bprm);
1220         mutex_unlock(&current->signal->cred_guard_mutex);
1221 }
1222 EXPORT_SYMBOL(install_exec_creds);
1223
1224 /*
1225  * determine how safe it is to execute the proposed program
1226  * - the caller must hold ->cred_guard_mutex to protect against
1227  *   PTRACE_ATTACH
1228  */
1229 static int check_unsafe_exec(struct linux_binprm *bprm)
1230 {
1231         struct task_struct *p = current, *t;
1232         unsigned n_fs;
1233         int res = 0;
1234
1235         if (p->ptrace) {
1236                 if (p->ptrace & PT_PTRACE_CAP)
1237                         bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1238                 else
1239                         bprm->unsafe |= LSM_UNSAFE_PTRACE;
1240         }
1241
1242         /*
1243          * This isn't strictly necessary, but it makes it harder for LSMs to
1244          * mess up.
1245          */
1246         if (current->no_new_privs)
1247                 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1248
1249         n_fs = 1;
1250         spin_lock(&p->fs->lock);
1251         rcu_read_lock();
1252         for (t = next_thread(p); t != p; t = next_thread(t)) {
1253                 if (t->fs == p->fs)
1254                         n_fs++;
1255         }
1256         rcu_read_unlock();
1257
1258         if (p->fs->users > n_fs) {
1259                 bprm->unsafe |= LSM_UNSAFE_SHARE;
1260         } else {
1261                 res = -EAGAIN;
1262                 if (!p->fs->in_exec) {
1263                         p->fs->in_exec = 1;
1264                         res = 1;
1265                 }
1266         }
1267         spin_unlock(&p->fs->lock);
1268
1269         return res;
1270 }
1271
1272 /* 
1273  * Fill the binprm structure from the inode. 
1274  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1275  *
1276  * This may be called multiple times for binary chains (scripts for example).
1277  */
1278 int prepare_binprm(struct linux_binprm *bprm)
1279 {
1280         umode_t mode;
1281         struct inode * inode = file_inode(bprm->file);
1282         int retval;
1283
1284         mode = inode->i_mode;
1285         if (bprm->file->f_op == NULL)
1286                 return -EACCES;
1287
1288         /* clear any previous set[ug]id data from a previous binary */
1289         bprm->cred->euid = current_euid();
1290         bprm->cred->egid = current_egid();
1291
1292         if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) &&
1293             !current->no_new_privs &&
1294             kuid_has_mapping(bprm->cred->user_ns, inode->i_uid) &&
1295             kgid_has_mapping(bprm->cred->user_ns, inode->i_gid)) {
1296                 /* Set-uid? */
1297                 if (mode & S_ISUID) {
1298                         bprm->per_clear |= PER_CLEAR_ON_SETID;
1299                         bprm->cred->euid = inode->i_uid;
1300                 }
1301
1302                 /* Set-gid? */
1303                 /*
1304                  * If setgid is set but no group execute bit then this
1305                  * is a candidate for mandatory locking, not a setgid
1306                  * executable.
1307                  */
1308                 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1309                         bprm->per_clear |= PER_CLEAR_ON_SETID;
1310                         bprm->cred->egid = inode->i_gid;
1311                 }
1312         }
1313
1314         /* fill in binprm security blob */
1315         retval = security_bprm_set_creds(bprm);
1316         if (retval)
1317                 return retval;
1318         bprm->cred_prepared = 1;
1319
1320         memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1321         return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1322 }
1323
1324 EXPORT_SYMBOL(prepare_binprm);
1325
1326 /*
1327  * Arguments are '\0' separated strings found at the location bprm->p
1328  * points to; chop off the first by relocating brpm->p to right after
1329  * the first '\0' encountered.
1330  */
1331 int remove_arg_zero(struct linux_binprm *bprm)
1332 {
1333         int ret = 0;
1334         unsigned long offset;
1335         char *kaddr;
1336         struct page *page;
1337
1338         if (!bprm->argc)
1339                 return 0;
1340
1341         do {
1342                 offset = bprm->p & ~PAGE_MASK;
1343                 page = get_arg_page(bprm, bprm->p, 0);
1344                 if (!page) {
1345                         ret = -EFAULT;
1346                         goto out;
1347                 }
1348                 kaddr = kmap_atomic(page);
1349
1350                 for (; offset < PAGE_SIZE && kaddr[offset];
1351                                 offset++, bprm->p++)
1352                         ;
1353
1354                 kunmap_atomic(kaddr);
1355                 put_arg_page(page);
1356
1357                 if (offset == PAGE_SIZE)
1358                         free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1359         } while (offset == PAGE_SIZE);
1360
1361         bprm->p++;
1362         bprm->argc--;
1363         ret = 0;
1364
1365 out:
1366         return ret;
1367 }
1368 EXPORT_SYMBOL(remove_arg_zero);
1369
1370 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1371 /*
1372  * cycle the list of binary formats handler, until one recognizes the image
1373  */
1374 int search_binary_handler(struct linux_binprm *bprm)
1375 {
1376         bool need_retry = IS_ENABLED(CONFIG_MODULES);
1377         struct linux_binfmt *fmt;
1378         int retval;
1379
1380         /* This allows 4 levels of binfmt rewrites before failing hard. */
1381         if (bprm->recursion_depth > 5)
1382                 return -ELOOP;
1383
1384         retval = security_bprm_check(bprm);
1385         if (retval)
1386                 return retval;
1387
1388         retval = audit_bprm(bprm);
1389         if (retval)
1390                 return retval;
1391
1392         retval = -ENOENT;
1393  retry:
1394         read_lock(&binfmt_lock);
1395         list_for_each_entry(fmt, &formats, lh) {
1396                 if (!try_module_get(fmt->module))
1397                         continue;
1398                 read_unlock(&binfmt_lock);
1399                 bprm->recursion_depth++;
1400                 retval = fmt->load_binary(bprm);
1401                 bprm->recursion_depth--;
1402                 if (retval >= 0 || retval != -ENOEXEC ||
1403                     bprm->mm == NULL || bprm->file == NULL) {
1404                         put_binfmt(fmt);
1405                         return retval;
1406                 }
1407                 read_lock(&binfmt_lock);
1408                 put_binfmt(fmt);
1409         }
1410         read_unlock(&binfmt_lock);
1411
1412         if (need_retry && retval == -ENOEXEC) {
1413                 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1414                     printable(bprm->buf[2]) && printable(bprm->buf[3]))
1415                         return retval;
1416                 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1417                         return retval;
1418                 need_retry = false;
1419                 goto retry;
1420         }
1421
1422         return retval;
1423 }
1424 EXPORT_SYMBOL(search_binary_handler);
1425
1426 static int exec_binprm(struct linux_binprm *bprm)
1427 {
1428         pid_t old_pid, old_vpid;
1429         int ret;
1430
1431         /* Need to fetch pid before load_binary changes it */
1432         old_pid = current->pid;
1433         rcu_read_lock();
1434         old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1435         rcu_read_unlock();
1436
1437         ret = search_binary_handler(bprm);
1438         if (ret >= 0) {
1439                 trace_sched_process_exec(current, old_pid, bprm);
1440                 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1441                 current->did_exec = 1;
1442                 proc_exec_connector(current);
1443
1444                 if (bprm->file) {
1445                         allow_write_access(bprm->file);
1446                         fput(bprm->file);
1447                         bprm->file = NULL; /* to catch use-after-free */
1448                 }
1449         }
1450
1451         return ret;
1452 }
1453
1454 /*
1455  * sys_execve() executes a new program.
1456  */
1457 static int do_execve_common(const char *filename,
1458                                 struct user_arg_ptr argv,
1459                                 struct user_arg_ptr envp)
1460 {
1461         struct linux_binprm *bprm;
1462         struct file *file;
1463         struct files_struct *displaced;
1464         bool clear_in_exec;
1465         int retval;
1466
1467         /*
1468          * We move the actual failure in case of RLIMIT_NPROC excess from
1469          * set*uid() to execve() because too many poorly written programs
1470          * don't check setuid() return code.  Here we additionally recheck
1471          * whether NPROC limit is still exceeded.
1472          */
1473         if ((current->flags & PF_NPROC_EXCEEDED) &&
1474             atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1475                 retval = -EAGAIN;
1476                 goto out_ret;
1477         }
1478
1479         /* We're below the limit (still or again), so we don't want to make
1480          * further execve() calls fail. */
1481         current->flags &= ~PF_NPROC_EXCEEDED;
1482
1483         retval = unshare_files(&displaced);
1484         if (retval)
1485                 goto out_ret;
1486
1487         retval = -ENOMEM;
1488         bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1489         if (!bprm)
1490                 goto out_files;
1491
1492         retval = prepare_bprm_creds(bprm);
1493         if (retval)
1494                 goto out_free;
1495
1496         retval = check_unsafe_exec(bprm);
1497         if (retval < 0)
1498                 goto out_free;
1499         clear_in_exec = retval;
1500         current->in_execve = 1;
1501
1502         file = open_exec(filename);
1503         retval = PTR_ERR(file);
1504         if (IS_ERR(file))
1505                 goto out_unmark;
1506
1507         sched_exec();
1508
1509         bprm->file = file;
1510         bprm->filename = filename;
1511         bprm->interp = filename;
1512
1513         retval = bprm_mm_init(bprm);
1514         if (retval)
1515                 goto out_file;
1516
1517         bprm->argc = count(argv, MAX_ARG_STRINGS);
1518         if ((retval = bprm->argc) < 0)
1519                 goto out;
1520
1521         bprm->envc = count(envp, MAX_ARG_STRINGS);
1522         if ((retval = bprm->envc) < 0)
1523                 goto out;
1524
1525         retval = prepare_binprm(bprm);
1526         if (retval < 0)
1527                 goto out;
1528
1529         retval = copy_strings_kernel(1, &bprm->filename, bprm);
1530         if (retval < 0)
1531                 goto out;
1532
1533         bprm->exec = bprm->p;
1534         retval = copy_strings(bprm->envc, envp, bprm);
1535         if (retval < 0)
1536                 goto out;
1537
1538         retval = copy_strings(bprm->argc, argv, bprm);
1539         if (retval < 0)
1540                 goto out;
1541
1542         retval = exec_binprm(bprm);
1543         if (retval < 0)
1544                 goto out;
1545
1546         /* execve succeeded */
1547         current->fs->in_exec = 0;
1548         current->in_execve = 0;
1549         acct_update_integrals(current);
1550         free_bprm(bprm);
1551         if (displaced)
1552                 put_files_struct(displaced);
1553         return retval;
1554
1555 out:
1556         if (bprm->mm) {
1557                 acct_arg_size(bprm, 0);
1558                 mmput(bprm->mm);
1559         }
1560
1561 out_file:
1562         if (bprm->file) {
1563                 allow_write_access(bprm->file);
1564                 fput(bprm->file);
1565         }
1566
1567 out_unmark:
1568         if (clear_in_exec)
1569                 current->fs->in_exec = 0;
1570         current->in_execve = 0;
1571
1572 out_free:
1573         free_bprm(bprm);
1574
1575 out_files:
1576         if (displaced)
1577                 reset_files_struct(displaced);
1578 out_ret:
1579         return retval;
1580 }
1581
1582 int do_execve(const char *filename,
1583         const char __user *const __user *__argv,
1584         const char __user *const __user *__envp)
1585 {
1586         struct user_arg_ptr argv = { .ptr.native = __argv };
1587         struct user_arg_ptr envp = { .ptr.native = __envp };
1588         return do_execve_common(filename, argv, envp);
1589 }
1590
1591 #ifdef CONFIG_COMPAT
1592 static int compat_do_execve(const char *filename,
1593         const compat_uptr_t __user *__argv,
1594         const compat_uptr_t __user *__envp)
1595 {
1596         struct user_arg_ptr argv = {
1597                 .is_compat = true,
1598                 .ptr.compat = __argv,
1599         };
1600         struct user_arg_ptr envp = {
1601                 .is_compat = true,
1602                 .ptr.compat = __envp,
1603         };
1604         return do_execve_common(filename, argv, envp);
1605 }
1606 #endif
1607
1608 void set_binfmt(struct linux_binfmt *new)
1609 {
1610         struct mm_struct *mm = current->mm;
1611
1612         if (mm->binfmt)
1613                 module_put(mm->binfmt->module);
1614
1615         mm->binfmt = new;
1616         if (new)
1617                 __module_get(new->module);
1618 }
1619
1620 EXPORT_SYMBOL(set_binfmt);
1621
1622 /*
1623  * set_dumpable converts traditional three-value dumpable to two flags and
1624  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1625  * these bits are not changed atomically.  So get_dumpable can observe the
1626  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1627  * return either old dumpable or new one by paying attention to the order of
1628  * modifying the bits.
1629  *
1630  * dumpable |   mm->flags (binary)
1631  * old  new | initial interim  final
1632  * ---------+-----------------------
1633  *  0    1  |   00      01      01
1634  *  0    2  |   00      10(*)   11
1635  *  1    0  |   01      00      00
1636  *  1    2  |   01      11      11
1637  *  2    0  |   11      10(*)   00
1638  *  2    1  |   11      11      01
1639  *
1640  * (*) get_dumpable regards interim value of 10 as 11.
1641  */
1642 void set_dumpable(struct mm_struct *mm, int value)
1643 {
1644         switch (value) {
1645         case SUID_DUMP_DISABLE:
1646                 clear_bit(MMF_DUMPABLE, &mm->flags);
1647                 smp_wmb();
1648                 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1649                 break;
1650         case SUID_DUMP_USER:
1651                 set_bit(MMF_DUMPABLE, &mm->flags);
1652                 smp_wmb();
1653                 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1654                 break;
1655         case SUID_DUMP_ROOT:
1656                 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1657                 smp_wmb();
1658                 set_bit(MMF_DUMPABLE, &mm->flags);
1659                 break;
1660         }
1661 }
1662
1663 int __get_dumpable(unsigned long mm_flags)
1664 {
1665         int ret;
1666
1667         ret = mm_flags & MMF_DUMPABLE_MASK;
1668         return (ret > SUID_DUMP_USER) ? SUID_DUMP_ROOT : ret;
1669 }
1670
1671 int get_dumpable(struct mm_struct *mm)
1672 {
1673         return __get_dumpable(mm->flags);
1674 }
1675
1676 SYSCALL_DEFINE3(execve,
1677                 const char __user *, filename,
1678                 const char __user *const __user *, argv,
1679                 const char __user *const __user *, envp)
1680 {
1681         struct filename *path = getname(filename);
1682         int error = PTR_ERR(path);
1683         if (!IS_ERR(path)) {
1684                 error = do_execve(path->name, argv, envp);
1685                 putname(path);
1686         }
1687         return error;
1688 }
1689 #ifdef CONFIG_COMPAT
1690 asmlinkage long compat_sys_execve(const char __user * filename,
1691         const compat_uptr_t __user * argv,
1692         const compat_uptr_t __user * envp)
1693 {
1694         struct filename *path = getname(filename);
1695         int error = PTR_ERR(path);
1696         if (!IS_ERR(path)) {
1697                 error = compat_do_execve(path->name, argv, envp);
1698                 putname(path);
1699         }
1700         return error;
1701 }
1702 #endif