Merge branches 'fixes' and 'misc' into for-linus
[platform/adaptation/renesas_rcar/renesas_kernel.git] / fs / exec.c
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats. 
23  */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/security.h>
47 #include <linux/syscalls.h>
48 #include <linux/tsacct_kern.h>
49 #include <linux/cn_proc.h>
50 #include <linux/audit.h>
51 #include <linux/tracehook.h>
52 #include <linux/kmod.h>
53 #include <linux/fsnotify.h>
54 #include <linux/fs_struct.h>
55 #include <linux/pipe_fs_i.h>
56 #include <linux/oom.h>
57 #include <linux/compat.h>
58
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/tlb.h>
62
63 #include <trace/events/task.h>
64 #include "internal.h"
65
66 #include <trace/events/sched.h>
67
68 int suid_dumpable = 0;
69
70 static LIST_HEAD(formats);
71 static DEFINE_RWLOCK(binfmt_lock);
72
73 void __register_binfmt(struct linux_binfmt * fmt, int insert)
74 {
75         BUG_ON(!fmt);
76         if (WARN_ON(!fmt->load_binary))
77                 return;
78         write_lock(&binfmt_lock);
79         insert ? list_add(&fmt->lh, &formats) :
80                  list_add_tail(&fmt->lh, &formats);
81         write_unlock(&binfmt_lock);
82 }
83
84 EXPORT_SYMBOL(__register_binfmt);
85
86 void unregister_binfmt(struct linux_binfmt * fmt)
87 {
88         write_lock(&binfmt_lock);
89         list_del(&fmt->lh);
90         write_unlock(&binfmt_lock);
91 }
92
93 EXPORT_SYMBOL(unregister_binfmt);
94
95 static inline void put_binfmt(struct linux_binfmt * fmt)
96 {
97         module_put(fmt->module);
98 }
99
100 /*
101  * Note that a shared library must be both readable and executable due to
102  * security reasons.
103  *
104  * Also note that we take the address to load from from the file itself.
105  */
106 SYSCALL_DEFINE1(uselib, const char __user *, library)
107 {
108         struct linux_binfmt *fmt;
109         struct file *file;
110         struct filename *tmp = getname(library);
111         int error = PTR_ERR(tmp);
112         static const struct open_flags uselib_flags = {
113                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
114                 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
115                 .intent = LOOKUP_OPEN,
116                 .lookup_flags = LOOKUP_FOLLOW,
117         };
118
119         if (IS_ERR(tmp))
120                 goto out;
121
122         file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
123         putname(tmp);
124         error = PTR_ERR(file);
125         if (IS_ERR(file))
126                 goto out;
127
128         error = -EINVAL;
129         if (!S_ISREG(file_inode(file)->i_mode))
130                 goto exit;
131
132         error = -EACCES;
133         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
134                 goto exit;
135
136         fsnotify_open(file);
137
138         error = -ENOEXEC;
139
140         read_lock(&binfmt_lock);
141         list_for_each_entry(fmt, &formats, lh) {
142                 if (!fmt->load_shlib)
143                         continue;
144                 if (!try_module_get(fmt->module))
145                         continue;
146                 read_unlock(&binfmt_lock);
147                 error = fmt->load_shlib(file);
148                 read_lock(&binfmt_lock);
149                 put_binfmt(fmt);
150                 if (error != -ENOEXEC)
151                         break;
152         }
153         read_unlock(&binfmt_lock);
154 exit:
155         fput(file);
156 out:
157         return error;
158 }
159
160 #ifdef CONFIG_MMU
161 /*
162  * The nascent bprm->mm is not visible until exec_mmap() but it can
163  * use a lot of memory, account these pages in current->mm temporary
164  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
165  * change the counter back via acct_arg_size(0).
166  */
167 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
168 {
169         struct mm_struct *mm = current->mm;
170         long diff = (long)(pages - bprm->vma_pages);
171
172         if (!mm || !diff)
173                 return;
174
175         bprm->vma_pages = pages;
176         add_mm_counter(mm, MM_ANONPAGES, diff);
177 }
178
179 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
180                 int write)
181 {
182         struct page *page;
183         int ret;
184
185 #ifdef CONFIG_STACK_GROWSUP
186         if (write) {
187                 ret = expand_downwards(bprm->vma, pos);
188                 if (ret < 0)
189                         return NULL;
190         }
191 #endif
192         ret = get_user_pages(current, bprm->mm, pos,
193                         1, write, 1, &page, NULL);
194         if (ret <= 0)
195                 return NULL;
196
197         if (write) {
198                 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
199                 struct rlimit *rlim;
200
201                 acct_arg_size(bprm, size / PAGE_SIZE);
202
203                 /*
204                  * We've historically supported up to 32 pages (ARG_MAX)
205                  * of argument strings even with small stacks
206                  */
207                 if (size <= ARG_MAX)
208                         return page;
209
210                 /*
211                  * Limit to 1/4-th the stack size for the argv+env strings.
212                  * This ensures that:
213                  *  - the remaining binfmt code will not run out of stack space,
214                  *  - the program will have a reasonable amount of stack left
215                  *    to work from.
216                  */
217                 rlim = current->signal->rlim;
218                 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
219                         put_page(page);
220                         return NULL;
221                 }
222         }
223
224         return page;
225 }
226
227 static void put_arg_page(struct page *page)
228 {
229         put_page(page);
230 }
231
232 static void free_arg_page(struct linux_binprm *bprm, int i)
233 {
234 }
235
236 static void free_arg_pages(struct linux_binprm *bprm)
237 {
238 }
239
240 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
241                 struct page *page)
242 {
243         flush_cache_page(bprm->vma, pos, page_to_pfn(page));
244 }
245
246 static int __bprm_mm_init(struct linux_binprm *bprm)
247 {
248         int err;
249         struct vm_area_struct *vma = NULL;
250         struct mm_struct *mm = bprm->mm;
251
252         bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
253         if (!vma)
254                 return -ENOMEM;
255
256         down_write(&mm->mmap_sem);
257         vma->vm_mm = mm;
258
259         /*
260          * Place the stack at the largest stack address the architecture
261          * supports. Later, we'll move this to an appropriate place. We don't
262          * use STACK_TOP because that can depend on attributes which aren't
263          * configured yet.
264          */
265         BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
266         vma->vm_end = STACK_TOP_MAX;
267         vma->vm_start = vma->vm_end - PAGE_SIZE;
268         vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
269         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
270         INIT_LIST_HEAD(&vma->anon_vma_chain);
271
272         err = insert_vm_struct(mm, vma);
273         if (err)
274                 goto err;
275
276         mm->stack_vm = mm->total_vm = 1;
277         up_write(&mm->mmap_sem);
278         bprm->p = vma->vm_end - sizeof(void *);
279         return 0;
280 err:
281         up_write(&mm->mmap_sem);
282         bprm->vma = NULL;
283         kmem_cache_free(vm_area_cachep, vma);
284         return err;
285 }
286
287 static bool valid_arg_len(struct linux_binprm *bprm, long len)
288 {
289         return len <= MAX_ARG_STRLEN;
290 }
291
292 #else
293
294 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
295 {
296 }
297
298 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
299                 int write)
300 {
301         struct page *page;
302
303         page = bprm->page[pos / PAGE_SIZE];
304         if (!page && write) {
305                 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
306                 if (!page)
307                         return NULL;
308                 bprm->page[pos / PAGE_SIZE] = page;
309         }
310
311         return page;
312 }
313
314 static void put_arg_page(struct page *page)
315 {
316 }
317
318 static void free_arg_page(struct linux_binprm *bprm, int i)
319 {
320         if (bprm->page[i]) {
321                 __free_page(bprm->page[i]);
322                 bprm->page[i] = NULL;
323         }
324 }
325
326 static void free_arg_pages(struct linux_binprm *bprm)
327 {
328         int i;
329
330         for (i = 0; i < MAX_ARG_PAGES; i++)
331                 free_arg_page(bprm, i);
332 }
333
334 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
335                 struct page *page)
336 {
337 }
338
339 static int __bprm_mm_init(struct linux_binprm *bprm)
340 {
341         bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
342         return 0;
343 }
344
345 static bool valid_arg_len(struct linux_binprm *bprm, long len)
346 {
347         return len <= bprm->p;
348 }
349
350 #endif /* CONFIG_MMU */
351
352 /*
353  * Create a new mm_struct and populate it with a temporary stack
354  * vm_area_struct.  We don't have enough context at this point to set the stack
355  * flags, permissions, and offset, so we use temporary values.  We'll update
356  * them later in setup_arg_pages().
357  */
358 static int bprm_mm_init(struct linux_binprm *bprm)
359 {
360         int err;
361         struct mm_struct *mm = NULL;
362
363         bprm->mm = mm = mm_alloc();
364         err = -ENOMEM;
365         if (!mm)
366                 goto err;
367
368         err = init_new_context(current, mm);
369         if (err)
370                 goto err;
371
372         err = __bprm_mm_init(bprm);
373         if (err)
374                 goto err;
375
376         return 0;
377
378 err:
379         if (mm) {
380                 bprm->mm = NULL;
381                 mmdrop(mm);
382         }
383
384         return err;
385 }
386
387 struct user_arg_ptr {
388 #ifdef CONFIG_COMPAT
389         bool is_compat;
390 #endif
391         union {
392                 const char __user *const __user *native;
393 #ifdef CONFIG_COMPAT
394                 const compat_uptr_t __user *compat;
395 #endif
396         } ptr;
397 };
398
399 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
400 {
401         const char __user *native;
402
403 #ifdef CONFIG_COMPAT
404         if (unlikely(argv.is_compat)) {
405                 compat_uptr_t compat;
406
407                 if (get_user(compat, argv.ptr.compat + nr))
408                         return ERR_PTR(-EFAULT);
409
410                 return compat_ptr(compat);
411         }
412 #endif
413
414         if (get_user(native, argv.ptr.native + nr))
415                 return ERR_PTR(-EFAULT);
416
417         return native;
418 }
419
420 /*
421  * count() counts the number of strings in array ARGV.
422  */
423 static int count(struct user_arg_ptr argv, int max)
424 {
425         int i = 0;
426
427         if (argv.ptr.native != NULL) {
428                 for (;;) {
429                         const char __user *p = get_user_arg_ptr(argv, i);
430
431                         if (!p)
432                                 break;
433
434                         if (IS_ERR(p))
435                                 return -EFAULT;
436
437                         if (i >= max)
438                                 return -E2BIG;
439                         ++i;
440
441                         if (fatal_signal_pending(current))
442                                 return -ERESTARTNOHAND;
443                         cond_resched();
444                 }
445         }
446         return i;
447 }
448
449 /*
450  * 'copy_strings()' copies argument/environment strings from the old
451  * processes's memory to the new process's stack.  The call to get_user_pages()
452  * ensures the destination page is created and not swapped out.
453  */
454 static int copy_strings(int argc, struct user_arg_ptr argv,
455                         struct linux_binprm *bprm)
456 {
457         struct page *kmapped_page = NULL;
458         char *kaddr = NULL;
459         unsigned long kpos = 0;
460         int ret;
461
462         while (argc-- > 0) {
463                 const char __user *str;
464                 int len;
465                 unsigned long pos;
466
467                 ret = -EFAULT;
468                 str = get_user_arg_ptr(argv, argc);
469                 if (IS_ERR(str))
470                         goto out;
471
472                 len = strnlen_user(str, MAX_ARG_STRLEN);
473                 if (!len)
474                         goto out;
475
476                 ret = -E2BIG;
477                 if (!valid_arg_len(bprm, len))
478                         goto out;
479
480                 /* We're going to work our way backwords. */
481                 pos = bprm->p;
482                 str += len;
483                 bprm->p -= len;
484
485                 while (len > 0) {
486                         int offset, bytes_to_copy;
487
488                         if (fatal_signal_pending(current)) {
489                                 ret = -ERESTARTNOHAND;
490                                 goto out;
491                         }
492                         cond_resched();
493
494                         offset = pos % PAGE_SIZE;
495                         if (offset == 0)
496                                 offset = PAGE_SIZE;
497
498                         bytes_to_copy = offset;
499                         if (bytes_to_copy > len)
500                                 bytes_to_copy = len;
501
502                         offset -= bytes_to_copy;
503                         pos -= bytes_to_copy;
504                         str -= bytes_to_copy;
505                         len -= bytes_to_copy;
506
507                         if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
508                                 struct page *page;
509
510                                 page = get_arg_page(bprm, pos, 1);
511                                 if (!page) {
512                                         ret = -E2BIG;
513                                         goto out;
514                                 }
515
516                                 if (kmapped_page) {
517                                         flush_kernel_dcache_page(kmapped_page);
518                                         kunmap(kmapped_page);
519                                         put_arg_page(kmapped_page);
520                                 }
521                                 kmapped_page = page;
522                                 kaddr = kmap(kmapped_page);
523                                 kpos = pos & PAGE_MASK;
524                                 flush_arg_page(bprm, kpos, kmapped_page);
525                         }
526                         if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
527                                 ret = -EFAULT;
528                                 goto out;
529                         }
530                 }
531         }
532         ret = 0;
533 out:
534         if (kmapped_page) {
535                 flush_kernel_dcache_page(kmapped_page);
536                 kunmap(kmapped_page);
537                 put_arg_page(kmapped_page);
538         }
539         return ret;
540 }
541
542 /*
543  * Like copy_strings, but get argv and its values from kernel memory.
544  */
545 int copy_strings_kernel(int argc, const char *const *__argv,
546                         struct linux_binprm *bprm)
547 {
548         int r;
549         mm_segment_t oldfs = get_fs();
550         struct user_arg_ptr argv = {
551                 .ptr.native = (const char __user *const  __user *)__argv,
552         };
553
554         set_fs(KERNEL_DS);
555         r = copy_strings(argc, argv, bprm);
556         set_fs(oldfs);
557
558         return r;
559 }
560 EXPORT_SYMBOL(copy_strings_kernel);
561
562 #ifdef CONFIG_MMU
563
564 /*
565  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
566  * the binfmt code determines where the new stack should reside, we shift it to
567  * its final location.  The process proceeds as follows:
568  *
569  * 1) Use shift to calculate the new vma endpoints.
570  * 2) Extend vma to cover both the old and new ranges.  This ensures the
571  *    arguments passed to subsequent functions are consistent.
572  * 3) Move vma's page tables to the new range.
573  * 4) Free up any cleared pgd range.
574  * 5) Shrink the vma to cover only the new range.
575  */
576 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
577 {
578         struct mm_struct *mm = vma->vm_mm;
579         unsigned long old_start = vma->vm_start;
580         unsigned long old_end = vma->vm_end;
581         unsigned long length = old_end - old_start;
582         unsigned long new_start = old_start - shift;
583         unsigned long new_end = old_end - shift;
584         struct mmu_gather tlb;
585
586         BUG_ON(new_start > new_end);
587
588         /*
589          * ensure there are no vmas between where we want to go
590          * and where we are
591          */
592         if (vma != find_vma(mm, new_start))
593                 return -EFAULT;
594
595         /*
596          * cover the whole range: [new_start, old_end)
597          */
598         if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
599                 return -ENOMEM;
600
601         /*
602          * move the page tables downwards, on failure we rely on
603          * process cleanup to remove whatever mess we made.
604          */
605         if (length != move_page_tables(vma, old_start,
606                                        vma, new_start, length, false))
607                 return -ENOMEM;
608
609         lru_add_drain();
610         tlb_gather_mmu(&tlb, mm, old_start, old_end);
611         if (new_end > old_start) {
612                 /*
613                  * when the old and new regions overlap clear from new_end.
614                  */
615                 free_pgd_range(&tlb, new_end, old_end, new_end,
616                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
617         } else {
618                 /*
619                  * otherwise, clean from old_start; this is done to not touch
620                  * the address space in [new_end, old_start) some architectures
621                  * have constraints on va-space that make this illegal (IA64) -
622                  * for the others its just a little faster.
623                  */
624                 free_pgd_range(&tlb, old_start, old_end, new_end,
625                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
626         }
627         tlb_finish_mmu(&tlb, old_start, old_end);
628
629         /*
630          * Shrink the vma to just the new range.  Always succeeds.
631          */
632         vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
633
634         return 0;
635 }
636
637 /*
638  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
639  * the stack is optionally relocated, and some extra space is added.
640  */
641 int setup_arg_pages(struct linux_binprm *bprm,
642                     unsigned long stack_top,
643                     int executable_stack)
644 {
645         unsigned long ret;
646         unsigned long stack_shift;
647         struct mm_struct *mm = current->mm;
648         struct vm_area_struct *vma = bprm->vma;
649         struct vm_area_struct *prev = NULL;
650         unsigned long vm_flags;
651         unsigned long stack_base;
652         unsigned long stack_size;
653         unsigned long stack_expand;
654         unsigned long rlim_stack;
655
656 #ifdef CONFIG_STACK_GROWSUP
657         /* Limit stack size to 1GB */
658         stack_base = rlimit_max(RLIMIT_STACK);
659         if (stack_base > (1 << 30))
660                 stack_base = 1 << 30;
661
662         /* Make sure we didn't let the argument array grow too large. */
663         if (vma->vm_end - vma->vm_start > stack_base)
664                 return -ENOMEM;
665
666         stack_base = PAGE_ALIGN(stack_top - stack_base);
667
668         stack_shift = vma->vm_start - stack_base;
669         mm->arg_start = bprm->p - stack_shift;
670         bprm->p = vma->vm_end - stack_shift;
671 #else
672         stack_top = arch_align_stack(stack_top);
673         stack_top = PAGE_ALIGN(stack_top);
674
675         if (unlikely(stack_top < mmap_min_addr) ||
676             unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
677                 return -ENOMEM;
678
679         stack_shift = vma->vm_end - stack_top;
680
681         bprm->p -= stack_shift;
682         mm->arg_start = bprm->p;
683 #endif
684
685         if (bprm->loader)
686                 bprm->loader -= stack_shift;
687         bprm->exec -= stack_shift;
688
689         down_write(&mm->mmap_sem);
690         vm_flags = VM_STACK_FLAGS;
691
692         /*
693          * Adjust stack execute permissions; explicitly enable for
694          * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
695          * (arch default) otherwise.
696          */
697         if (unlikely(executable_stack == EXSTACK_ENABLE_X))
698                 vm_flags |= VM_EXEC;
699         else if (executable_stack == EXSTACK_DISABLE_X)
700                 vm_flags &= ~VM_EXEC;
701         vm_flags |= mm->def_flags;
702         vm_flags |= VM_STACK_INCOMPLETE_SETUP;
703
704         ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
705                         vm_flags);
706         if (ret)
707                 goto out_unlock;
708         BUG_ON(prev != vma);
709
710         /* Move stack pages down in memory. */
711         if (stack_shift) {
712                 ret = shift_arg_pages(vma, stack_shift);
713                 if (ret)
714                         goto out_unlock;
715         }
716
717         /* mprotect_fixup is overkill to remove the temporary stack flags */
718         vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
719
720         stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
721         stack_size = vma->vm_end - vma->vm_start;
722         /*
723          * Align this down to a page boundary as expand_stack
724          * will align it up.
725          */
726         rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
727 #ifdef CONFIG_STACK_GROWSUP
728         if (stack_size + stack_expand > rlim_stack)
729                 stack_base = vma->vm_start + rlim_stack;
730         else
731                 stack_base = vma->vm_end + stack_expand;
732 #else
733         if (stack_size + stack_expand > rlim_stack)
734                 stack_base = vma->vm_end - rlim_stack;
735         else
736                 stack_base = vma->vm_start - stack_expand;
737 #endif
738         current->mm->start_stack = bprm->p;
739         ret = expand_stack(vma, stack_base);
740         if (ret)
741                 ret = -EFAULT;
742
743 out_unlock:
744         up_write(&mm->mmap_sem);
745         return ret;
746 }
747 EXPORT_SYMBOL(setup_arg_pages);
748
749 #endif /* CONFIG_MMU */
750
751 struct file *open_exec(const char *name)
752 {
753         struct file *file;
754         int err;
755         struct filename tmp = { .name = name };
756         static const struct open_flags open_exec_flags = {
757                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
758                 .acc_mode = MAY_EXEC | MAY_OPEN,
759                 .intent = LOOKUP_OPEN,
760                 .lookup_flags = LOOKUP_FOLLOW,
761         };
762
763         file = do_filp_open(AT_FDCWD, &tmp, &open_exec_flags);
764         if (IS_ERR(file))
765                 goto out;
766
767         err = -EACCES;
768         if (!S_ISREG(file_inode(file)->i_mode))
769                 goto exit;
770
771         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
772                 goto exit;
773
774         fsnotify_open(file);
775
776         err = deny_write_access(file);
777         if (err)
778                 goto exit;
779
780 out:
781         return file;
782
783 exit:
784         fput(file);
785         return ERR_PTR(err);
786 }
787 EXPORT_SYMBOL(open_exec);
788
789 int kernel_read(struct file *file, loff_t offset,
790                 char *addr, unsigned long count)
791 {
792         mm_segment_t old_fs;
793         loff_t pos = offset;
794         int result;
795
796         old_fs = get_fs();
797         set_fs(get_ds());
798         /* The cast to a user pointer is valid due to the set_fs() */
799         result = vfs_read(file, (void __user *)addr, count, &pos);
800         set_fs(old_fs);
801         return result;
802 }
803
804 EXPORT_SYMBOL(kernel_read);
805
806 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
807 {
808         ssize_t res = file->f_op->read(file, (void __user *)addr, len, &pos);
809         if (res > 0)
810                 flush_icache_range(addr, addr + len);
811         return res;
812 }
813 EXPORT_SYMBOL(read_code);
814
815 static int exec_mmap(struct mm_struct *mm)
816 {
817         struct task_struct *tsk;
818         struct mm_struct * old_mm, *active_mm;
819
820         /* Notify parent that we're no longer interested in the old VM */
821         tsk = current;
822         old_mm = current->mm;
823         mm_release(tsk, old_mm);
824
825         if (old_mm) {
826                 sync_mm_rss(old_mm);
827                 /*
828                  * Make sure that if there is a core dump in progress
829                  * for the old mm, we get out and die instead of going
830                  * through with the exec.  We must hold mmap_sem around
831                  * checking core_state and changing tsk->mm.
832                  */
833                 down_read(&old_mm->mmap_sem);
834                 if (unlikely(old_mm->core_state)) {
835                         up_read(&old_mm->mmap_sem);
836                         return -EINTR;
837                 }
838         }
839         task_lock(tsk);
840         active_mm = tsk->active_mm;
841         tsk->mm = mm;
842         tsk->active_mm = mm;
843         activate_mm(active_mm, mm);
844         task_unlock(tsk);
845         if (old_mm) {
846                 up_read(&old_mm->mmap_sem);
847                 BUG_ON(active_mm != old_mm);
848                 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
849                 mm_update_next_owner(old_mm);
850                 mmput(old_mm);
851                 return 0;
852         }
853         mmdrop(active_mm);
854         return 0;
855 }
856
857 /*
858  * This function makes sure the current process has its own signal table,
859  * so that flush_signal_handlers can later reset the handlers without
860  * disturbing other processes.  (Other processes might share the signal
861  * table via the CLONE_SIGHAND option to clone().)
862  */
863 static int de_thread(struct task_struct *tsk)
864 {
865         struct signal_struct *sig = tsk->signal;
866         struct sighand_struct *oldsighand = tsk->sighand;
867         spinlock_t *lock = &oldsighand->siglock;
868
869         if (thread_group_empty(tsk))
870                 goto no_thread_group;
871
872         /*
873          * Kill all other threads in the thread group.
874          */
875         spin_lock_irq(lock);
876         if (signal_group_exit(sig)) {
877                 /*
878                  * Another group action in progress, just
879                  * return so that the signal is processed.
880                  */
881                 spin_unlock_irq(lock);
882                 return -EAGAIN;
883         }
884
885         sig->group_exit_task = tsk;
886         sig->notify_count = zap_other_threads(tsk);
887         if (!thread_group_leader(tsk))
888                 sig->notify_count--;
889
890         while (sig->notify_count) {
891                 __set_current_state(TASK_KILLABLE);
892                 spin_unlock_irq(lock);
893                 schedule();
894                 if (unlikely(__fatal_signal_pending(tsk)))
895                         goto killed;
896                 spin_lock_irq(lock);
897         }
898         spin_unlock_irq(lock);
899
900         /*
901          * At this point all other threads have exited, all we have to
902          * do is to wait for the thread group leader to become inactive,
903          * and to assume its PID:
904          */
905         if (!thread_group_leader(tsk)) {
906                 struct task_struct *leader = tsk->group_leader;
907
908                 sig->notify_count = -1; /* for exit_notify() */
909                 for (;;) {
910                         threadgroup_change_begin(tsk);
911                         write_lock_irq(&tasklist_lock);
912                         if (likely(leader->exit_state))
913                                 break;
914                         __set_current_state(TASK_KILLABLE);
915                         write_unlock_irq(&tasklist_lock);
916                         threadgroup_change_end(tsk);
917                         schedule();
918                         if (unlikely(__fatal_signal_pending(tsk)))
919                                 goto killed;
920                 }
921
922                 /*
923                  * The only record we have of the real-time age of a
924                  * process, regardless of execs it's done, is start_time.
925                  * All the past CPU time is accumulated in signal_struct
926                  * from sister threads now dead.  But in this non-leader
927                  * exec, nothing survives from the original leader thread,
928                  * whose birth marks the true age of this process now.
929                  * When we take on its identity by switching to its PID, we
930                  * also take its birthdate (always earlier than our own).
931                  */
932                 tsk->start_time = leader->start_time;
933                 tsk->real_start_time = leader->real_start_time;
934
935                 BUG_ON(!same_thread_group(leader, tsk));
936                 BUG_ON(has_group_leader_pid(tsk));
937                 /*
938                  * An exec() starts a new thread group with the
939                  * TGID of the previous thread group. Rehash the
940                  * two threads with a switched PID, and release
941                  * the former thread group leader:
942                  */
943
944                 /* Become a process group leader with the old leader's pid.
945                  * The old leader becomes a thread of the this thread group.
946                  * Note: The old leader also uses this pid until release_task
947                  *       is called.  Odd but simple and correct.
948                  */
949                 tsk->pid = leader->pid;
950                 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
951                 transfer_pid(leader, tsk, PIDTYPE_PGID);
952                 transfer_pid(leader, tsk, PIDTYPE_SID);
953
954                 list_replace_rcu(&leader->tasks, &tsk->tasks);
955                 list_replace_init(&leader->sibling, &tsk->sibling);
956
957                 tsk->group_leader = tsk;
958                 leader->group_leader = tsk;
959
960                 tsk->exit_signal = SIGCHLD;
961                 leader->exit_signal = -1;
962
963                 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
964                 leader->exit_state = EXIT_DEAD;
965
966                 /*
967                  * We are going to release_task()->ptrace_unlink() silently,
968                  * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
969                  * the tracer wont't block again waiting for this thread.
970                  */
971                 if (unlikely(leader->ptrace))
972                         __wake_up_parent(leader, leader->parent);
973                 write_unlock_irq(&tasklist_lock);
974                 threadgroup_change_end(tsk);
975
976                 release_task(leader);
977         }
978
979         sig->group_exit_task = NULL;
980         sig->notify_count = 0;
981
982 no_thread_group:
983         /* we have changed execution domain */
984         tsk->exit_signal = SIGCHLD;
985
986         exit_itimers(sig);
987         flush_itimer_signals();
988
989         if (atomic_read(&oldsighand->count) != 1) {
990                 struct sighand_struct *newsighand;
991                 /*
992                  * This ->sighand is shared with the CLONE_SIGHAND
993                  * but not CLONE_THREAD task, switch to the new one.
994                  */
995                 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
996                 if (!newsighand)
997                         return -ENOMEM;
998
999                 atomic_set(&newsighand->count, 1);
1000                 memcpy(newsighand->action, oldsighand->action,
1001                        sizeof(newsighand->action));
1002
1003                 write_lock_irq(&tasklist_lock);
1004                 spin_lock(&oldsighand->siglock);
1005                 rcu_assign_pointer(tsk->sighand, newsighand);
1006                 spin_unlock(&oldsighand->siglock);
1007                 write_unlock_irq(&tasklist_lock);
1008
1009                 __cleanup_sighand(oldsighand);
1010         }
1011
1012         BUG_ON(!thread_group_leader(tsk));
1013         return 0;
1014
1015 killed:
1016         /* protects against exit_notify() and __exit_signal() */
1017         read_lock(&tasklist_lock);
1018         sig->group_exit_task = NULL;
1019         sig->notify_count = 0;
1020         read_unlock(&tasklist_lock);
1021         return -EAGAIN;
1022 }
1023
1024 char *get_task_comm(char *buf, struct task_struct *tsk)
1025 {
1026         /* buf must be at least sizeof(tsk->comm) in size */
1027         task_lock(tsk);
1028         strncpy(buf, tsk->comm, sizeof(tsk->comm));
1029         task_unlock(tsk);
1030         return buf;
1031 }
1032 EXPORT_SYMBOL_GPL(get_task_comm);
1033
1034 /*
1035  * These functions flushes out all traces of the currently running executable
1036  * so that a new one can be started
1037  */
1038
1039 void set_task_comm(struct task_struct *tsk, char *buf)
1040 {
1041         task_lock(tsk);
1042         trace_task_rename(tsk, buf);
1043         strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1044         task_unlock(tsk);
1045         perf_event_comm(tsk);
1046 }
1047
1048 static void filename_to_taskname(char *tcomm, const char *fn, unsigned int len)
1049 {
1050         int i, ch;
1051
1052         /* Copies the binary name from after last slash */
1053         for (i = 0; (ch = *(fn++)) != '\0';) {
1054                 if (ch == '/')
1055                         i = 0; /* overwrite what we wrote */
1056                 else
1057                         if (i < len - 1)
1058                                 tcomm[i++] = ch;
1059         }
1060         tcomm[i] = '\0';
1061 }
1062
1063 int flush_old_exec(struct linux_binprm * bprm)
1064 {
1065         int retval;
1066
1067         /*
1068          * Make sure we have a private signal table and that
1069          * we are unassociated from the previous thread group.
1070          */
1071         retval = de_thread(current);
1072         if (retval)
1073                 goto out;
1074
1075         set_mm_exe_file(bprm->mm, bprm->file);
1076
1077         filename_to_taskname(bprm->tcomm, bprm->filename, sizeof(bprm->tcomm));
1078         /*
1079          * Release all of the old mmap stuff
1080          */
1081         acct_arg_size(bprm, 0);
1082         retval = exec_mmap(bprm->mm);
1083         if (retval)
1084                 goto out;
1085
1086         bprm->mm = NULL;                /* We're using it now */
1087
1088         set_fs(USER_DS);
1089         current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1090                                         PF_NOFREEZE | PF_NO_SETAFFINITY);
1091         flush_thread();
1092         current->personality &= ~bprm->per_clear;
1093
1094         return 0;
1095
1096 out:
1097         return retval;
1098 }
1099 EXPORT_SYMBOL(flush_old_exec);
1100
1101 void would_dump(struct linux_binprm *bprm, struct file *file)
1102 {
1103         if (inode_permission(file_inode(file), MAY_READ) < 0)
1104                 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1105 }
1106 EXPORT_SYMBOL(would_dump);
1107
1108 void setup_new_exec(struct linux_binprm * bprm)
1109 {
1110         arch_pick_mmap_layout(current->mm);
1111
1112         /* This is the point of no return */
1113         current->sas_ss_sp = current->sas_ss_size = 0;
1114
1115         if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1116                 set_dumpable(current->mm, SUID_DUMP_USER);
1117         else
1118                 set_dumpable(current->mm, suid_dumpable);
1119
1120         set_task_comm(current, bprm->tcomm);
1121
1122         /* Set the new mm task size. We have to do that late because it may
1123          * depend on TIF_32BIT which is only updated in flush_thread() on
1124          * some architectures like powerpc
1125          */
1126         current->mm->task_size = TASK_SIZE;
1127
1128         /* install the new credentials */
1129         if (!uid_eq(bprm->cred->uid, current_euid()) ||
1130             !gid_eq(bprm->cred->gid, current_egid())) {
1131                 current->pdeath_signal = 0;
1132         } else {
1133                 would_dump(bprm, bprm->file);
1134                 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1135                         set_dumpable(current->mm, suid_dumpable);
1136         }
1137
1138         /* An exec changes our domain. We are no longer part of the thread
1139            group */
1140         current->self_exec_id++;
1141         flush_signal_handlers(current, 0);
1142         do_close_on_exec(current->files);
1143 }
1144 EXPORT_SYMBOL(setup_new_exec);
1145
1146 /*
1147  * Prepare credentials and lock ->cred_guard_mutex.
1148  * install_exec_creds() commits the new creds and drops the lock.
1149  * Or, if exec fails before, free_bprm() should release ->cred and
1150  * and unlock.
1151  */
1152 int prepare_bprm_creds(struct linux_binprm *bprm)
1153 {
1154         if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1155                 return -ERESTARTNOINTR;
1156
1157         bprm->cred = prepare_exec_creds();
1158         if (likely(bprm->cred))
1159                 return 0;
1160
1161         mutex_unlock(&current->signal->cred_guard_mutex);
1162         return -ENOMEM;
1163 }
1164
1165 void free_bprm(struct linux_binprm *bprm)
1166 {
1167         free_arg_pages(bprm);
1168         if (bprm->cred) {
1169                 mutex_unlock(&current->signal->cred_guard_mutex);
1170                 abort_creds(bprm->cred);
1171         }
1172         if (bprm->file) {
1173                 allow_write_access(bprm->file);
1174                 fput(bprm->file);
1175         }
1176         /* If a binfmt changed the interp, free it. */
1177         if (bprm->interp != bprm->filename)
1178                 kfree(bprm->interp);
1179         kfree(bprm);
1180 }
1181
1182 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1183 {
1184         /* If a binfmt changed the interp, free it first. */
1185         if (bprm->interp != bprm->filename)
1186                 kfree(bprm->interp);
1187         bprm->interp = kstrdup(interp, GFP_KERNEL);
1188         if (!bprm->interp)
1189                 return -ENOMEM;
1190         return 0;
1191 }
1192 EXPORT_SYMBOL(bprm_change_interp);
1193
1194 /*
1195  * install the new credentials for this executable
1196  */
1197 void install_exec_creds(struct linux_binprm *bprm)
1198 {
1199         security_bprm_committing_creds(bprm);
1200
1201         commit_creds(bprm->cred);
1202         bprm->cred = NULL;
1203
1204         /*
1205          * Disable monitoring for regular users
1206          * when executing setuid binaries. Must
1207          * wait until new credentials are committed
1208          * by commit_creds() above
1209          */
1210         if (get_dumpable(current->mm) != SUID_DUMP_USER)
1211                 perf_event_exit_task(current);
1212         /*
1213          * cred_guard_mutex must be held at least to this point to prevent
1214          * ptrace_attach() from altering our determination of the task's
1215          * credentials; any time after this it may be unlocked.
1216          */
1217         security_bprm_committed_creds(bprm);
1218         mutex_unlock(&current->signal->cred_guard_mutex);
1219 }
1220 EXPORT_SYMBOL(install_exec_creds);
1221
1222 /*
1223  * determine how safe it is to execute the proposed program
1224  * - the caller must hold ->cred_guard_mutex to protect against
1225  *   PTRACE_ATTACH
1226  */
1227 static void check_unsafe_exec(struct linux_binprm *bprm)
1228 {
1229         struct task_struct *p = current, *t;
1230         unsigned n_fs;
1231
1232         if (p->ptrace) {
1233                 if (p->ptrace & PT_PTRACE_CAP)
1234                         bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1235                 else
1236                         bprm->unsafe |= LSM_UNSAFE_PTRACE;
1237         }
1238
1239         /*
1240          * This isn't strictly necessary, but it makes it harder for LSMs to
1241          * mess up.
1242          */
1243         if (current->no_new_privs)
1244                 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1245
1246         t = p;
1247         n_fs = 1;
1248         spin_lock(&p->fs->lock);
1249         rcu_read_lock();
1250         while_each_thread(p, t) {
1251                 if (t->fs == p->fs)
1252                         n_fs++;
1253         }
1254         rcu_read_unlock();
1255
1256         if (p->fs->users > n_fs)
1257                 bprm->unsafe |= LSM_UNSAFE_SHARE;
1258         else
1259                 p->fs->in_exec = 1;
1260         spin_unlock(&p->fs->lock);
1261 }
1262
1263 /*
1264  * Fill the binprm structure from the inode.
1265  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1266  *
1267  * This may be called multiple times for binary chains (scripts for example).
1268  */
1269 int prepare_binprm(struct linux_binprm *bprm)
1270 {
1271         struct inode *inode = file_inode(bprm->file);
1272         umode_t mode = inode->i_mode;
1273         int retval;
1274
1275
1276         /* clear any previous set[ug]id data from a previous binary */
1277         bprm->cred->euid = current_euid();
1278         bprm->cred->egid = current_egid();
1279
1280         if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) &&
1281             !current->no_new_privs &&
1282             kuid_has_mapping(bprm->cred->user_ns, inode->i_uid) &&
1283             kgid_has_mapping(bprm->cred->user_ns, inode->i_gid)) {
1284                 /* Set-uid? */
1285                 if (mode & S_ISUID) {
1286                         bprm->per_clear |= PER_CLEAR_ON_SETID;
1287                         bprm->cred->euid = inode->i_uid;
1288                 }
1289
1290                 /* Set-gid? */
1291                 /*
1292                  * If setgid is set but no group execute bit then this
1293                  * is a candidate for mandatory locking, not a setgid
1294                  * executable.
1295                  */
1296                 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1297                         bprm->per_clear |= PER_CLEAR_ON_SETID;
1298                         bprm->cred->egid = inode->i_gid;
1299                 }
1300         }
1301
1302         /* fill in binprm security blob */
1303         retval = security_bprm_set_creds(bprm);
1304         if (retval)
1305                 return retval;
1306         bprm->cred_prepared = 1;
1307
1308         memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1309         return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1310 }
1311
1312 EXPORT_SYMBOL(prepare_binprm);
1313
1314 /*
1315  * Arguments are '\0' separated strings found at the location bprm->p
1316  * points to; chop off the first by relocating brpm->p to right after
1317  * the first '\0' encountered.
1318  */
1319 int remove_arg_zero(struct linux_binprm *bprm)
1320 {
1321         int ret = 0;
1322         unsigned long offset;
1323         char *kaddr;
1324         struct page *page;
1325
1326         if (!bprm->argc)
1327                 return 0;
1328
1329         do {
1330                 offset = bprm->p & ~PAGE_MASK;
1331                 page = get_arg_page(bprm, bprm->p, 0);
1332                 if (!page) {
1333                         ret = -EFAULT;
1334                         goto out;
1335                 }
1336                 kaddr = kmap_atomic(page);
1337
1338                 for (; offset < PAGE_SIZE && kaddr[offset];
1339                                 offset++, bprm->p++)
1340                         ;
1341
1342                 kunmap_atomic(kaddr);
1343                 put_arg_page(page);
1344
1345                 if (offset == PAGE_SIZE)
1346                         free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1347         } while (offset == PAGE_SIZE);
1348
1349         bprm->p++;
1350         bprm->argc--;
1351         ret = 0;
1352
1353 out:
1354         return ret;
1355 }
1356 EXPORT_SYMBOL(remove_arg_zero);
1357
1358 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1359 /*
1360  * cycle the list of binary formats handler, until one recognizes the image
1361  */
1362 int search_binary_handler(struct linux_binprm *bprm)
1363 {
1364         bool need_retry = IS_ENABLED(CONFIG_MODULES);
1365         struct linux_binfmt *fmt;
1366         int retval;
1367
1368         /* This allows 4 levels of binfmt rewrites before failing hard. */
1369         if (bprm->recursion_depth > 5)
1370                 return -ELOOP;
1371
1372         retval = security_bprm_check(bprm);
1373         if (retval)
1374                 return retval;
1375
1376         retval = -ENOENT;
1377  retry:
1378         read_lock(&binfmt_lock);
1379         list_for_each_entry(fmt, &formats, lh) {
1380                 if (!try_module_get(fmt->module))
1381                         continue;
1382                 read_unlock(&binfmt_lock);
1383                 bprm->recursion_depth++;
1384                 retval = fmt->load_binary(bprm);
1385                 bprm->recursion_depth--;
1386                 if (retval >= 0 || retval != -ENOEXEC ||
1387                     bprm->mm == NULL || bprm->file == NULL) {
1388                         put_binfmt(fmt);
1389                         return retval;
1390                 }
1391                 read_lock(&binfmt_lock);
1392                 put_binfmt(fmt);
1393         }
1394         read_unlock(&binfmt_lock);
1395
1396         if (need_retry && retval == -ENOEXEC) {
1397                 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1398                     printable(bprm->buf[2]) && printable(bprm->buf[3]))
1399                         return retval;
1400                 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1401                         return retval;
1402                 need_retry = false;
1403                 goto retry;
1404         }
1405
1406         return retval;
1407 }
1408 EXPORT_SYMBOL(search_binary_handler);
1409
1410 static int exec_binprm(struct linux_binprm *bprm)
1411 {
1412         pid_t old_pid, old_vpid;
1413         int ret;
1414
1415         /* Need to fetch pid before load_binary changes it */
1416         old_pid = current->pid;
1417         rcu_read_lock();
1418         old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1419         rcu_read_unlock();
1420
1421         ret = search_binary_handler(bprm);
1422         if (ret >= 0) {
1423                 audit_bprm(bprm);
1424                 trace_sched_process_exec(current, old_pid, bprm);
1425                 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1426                 proc_exec_connector(current);
1427         }
1428
1429         return ret;
1430 }
1431
1432 /*
1433  * sys_execve() executes a new program.
1434  */
1435 static int do_execve_common(const char *filename,
1436                                 struct user_arg_ptr argv,
1437                                 struct user_arg_ptr envp)
1438 {
1439         struct linux_binprm *bprm;
1440         struct file *file;
1441         struct files_struct *displaced;
1442         int retval;
1443
1444         /*
1445          * We move the actual failure in case of RLIMIT_NPROC excess from
1446          * set*uid() to execve() because too many poorly written programs
1447          * don't check setuid() return code.  Here we additionally recheck
1448          * whether NPROC limit is still exceeded.
1449          */
1450         if ((current->flags & PF_NPROC_EXCEEDED) &&
1451             atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1452                 retval = -EAGAIN;
1453                 goto out_ret;
1454         }
1455
1456         /* We're below the limit (still or again), so we don't want to make
1457          * further execve() calls fail. */
1458         current->flags &= ~PF_NPROC_EXCEEDED;
1459
1460         retval = unshare_files(&displaced);
1461         if (retval)
1462                 goto out_ret;
1463
1464         retval = -ENOMEM;
1465         bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1466         if (!bprm)
1467                 goto out_files;
1468
1469         retval = prepare_bprm_creds(bprm);
1470         if (retval)
1471                 goto out_free;
1472
1473         check_unsafe_exec(bprm);
1474         current->in_execve = 1;
1475
1476         file = open_exec(filename);
1477         retval = PTR_ERR(file);
1478         if (IS_ERR(file))
1479                 goto out_unmark;
1480
1481         sched_exec();
1482
1483         bprm->file = file;
1484         bprm->filename = filename;
1485         bprm->interp = filename;
1486
1487         retval = bprm_mm_init(bprm);
1488         if (retval)
1489                 goto out_unmark;
1490
1491         bprm->argc = count(argv, MAX_ARG_STRINGS);
1492         if ((retval = bprm->argc) < 0)
1493                 goto out;
1494
1495         bprm->envc = count(envp, MAX_ARG_STRINGS);
1496         if ((retval = bprm->envc) < 0)
1497                 goto out;
1498
1499         retval = prepare_binprm(bprm);
1500         if (retval < 0)
1501                 goto out;
1502
1503         retval = copy_strings_kernel(1, &bprm->filename, bprm);
1504         if (retval < 0)
1505                 goto out;
1506
1507         bprm->exec = bprm->p;
1508         retval = copy_strings(bprm->envc, envp, bprm);
1509         if (retval < 0)
1510                 goto out;
1511
1512         retval = copy_strings(bprm->argc, argv, bprm);
1513         if (retval < 0)
1514                 goto out;
1515
1516         retval = exec_binprm(bprm);
1517         if (retval < 0)
1518                 goto out;
1519
1520         /* execve succeeded */
1521         current->fs->in_exec = 0;
1522         current->in_execve = 0;
1523         acct_update_integrals(current);
1524         task_numa_free(current);
1525         free_bprm(bprm);
1526         if (displaced)
1527                 put_files_struct(displaced);
1528         return retval;
1529
1530 out:
1531         if (bprm->mm) {
1532                 acct_arg_size(bprm, 0);
1533                 mmput(bprm->mm);
1534         }
1535
1536 out_unmark:
1537         current->fs->in_exec = 0;
1538         current->in_execve = 0;
1539
1540 out_free:
1541         free_bprm(bprm);
1542
1543 out_files:
1544         if (displaced)
1545                 reset_files_struct(displaced);
1546 out_ret:
1547         return retval;
1548 }
1549
1550 int do_execve(const char *filename,
1551         const char __user *const __user *__argv,
1552         const char __user *const __user *__envp)
1553 {
1554         struct user_arg_ptr argv = { .ptr.native = __argv };
1555         struct user_arg_ptr envp = { .ptr.native = __envp };
1556         return do_execve_common(filename, argv, envp);
1557 }
1558
1559 #ifdef CONFIG_COMPAT
1560 static int compat_do_execve(const char *filename,
1561         const compat_uptr_t __user *__argv,
1562         const compat_uptr_t __user *__envp)
1563 {
1564         struct user_arg_ptr argv = {
1565                 .is_compat = true,
1566                 .ptr.compat = __argv,
1567         };
1568         struct user_arg_ptr envp = {
1569                 .is_compat = true,
1570                 .ptr.compat = __envp,
1571         };
1572         return do_execve_common(filename, argv, envp);
1573 }
1574 #endif
1575
1576 void set_binfmt(struct linux_binfmt *new)
1577 {
1578         struct mm_struct *mm = current->mm;
1579
1580         if (mm->binfmt)
1581                 module_put(mm->binfmt->module);
1582
1583         mm->binfmt = new;
1584         if (new)
1585                 __module_get(new->module);
1586 }
1587 EXPORT_SYMBOL(set_binfmt);
1588
1589 /*
1590  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1591  */
1592 void set_dumpable(struct mm_struct *mm, int value)
1593 {
1594         unsigned long old, new;
1595
1596         if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1597                 return;
1598
1599         do {
1600                 old = ACCESS_ONCE(mm->flags);
1601                 new = (old & ~MMF_DUMPABLE_MASK) | value;
1602         } while (cmpxchg(&mm->flags, old, new) != old);
1603 }
1604
1605 SYSCALL_DEFINE3(execve,
1606                 const char __user *, filename,
1607                 const char __user *const __user *, argv,
1608                 const char __user *const __user *, envp)
1609 {
1610         struct filename *path = getname(filename);
1611         int error = PTR_ERR(path);
1612         if (!IS_ERR(path)) {
1613                 error = do_execve(path->name, argv, envp);
1614                 putname(path);
1615         }
1616         return error;
1617 }
1618 #ifdef CONFIG_COMPAT
1619 asmlinkage long compat_sys_execve(const char __user * filename,
1620         const compat_uptr_t __user * argv,
1621         const compat_uptr_t __user * envp)
1622 {
1623         struct filename *path = getname(filename);
1624         int error = PTR_ERR(path);
1625         if (!IS_ERR(path)) {
1626                 error = compat_do_execve(path->name, argv, envp);
1627                 putname(path);
1628         }
1629         return error;
1630 }
1631 #endif