RCU pathwalk breakage when running into a symlink overmounting something
[platform/kernel/linux-starfive.git] / fs / exec.c
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats. 
23  */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
59
60 #include <asm/uaccess.h>
61 #include <asm/mmu_context.h>
62 #include <asm/tlb.h>
63
64 #include <trace/events/task.h>
65 #include "internal.h"
66
67 #include <trace/events/sched.h>
68
69 int suid_dumpable = 0;
70
71 static LIST_HEAD(formats);
72 static DEFINE_RWLOCK(binfmt_lock);
73
74 void __register_binfmt(struct linux_binfmt * fmt, int insert)
75 {
76         BUG_ON(!fmt);
77         if (WARN_ON(!fmt->load_binary))
78                 return;
79         write_lock(&binfmt_lock);
80         insert ? list_add(&fmt->lh, &formats) :
81                  list_add_tail(&fmt->lh, &formats);
82         write_unlock(&binfmt_lock);
83 }
84
85 EXPORT_SYMBOL(__register_binfmt);
86
87 void unregister_binfmt(struct linux_binfmt * fmt)
88 {
89         write_lock(&binfmt_lock);
90         list_del(&fmt->lh);
91         write_unlock(&binfmt_lock);
92 }
93
94 EXPORT_SYMBOL(unregister_binfmt);
95
96 static inline void put_binfmt(struct linux_binfmt * fmt)
97 {
98         module_put(fmt->module);
99 }
100
101 #ifdef CONFIG_USELIB
102 /*
103  * Note that a shared library must be both readable and executable due to
104  * security reasons.
105  *
106  * Also note that we take the address to load from from the file itself.
107  */
108 SYSCALL_DEFINE1(uselib, const char __user *, library)
109 {
110         struct linux_binfmt *fmt;
111         struct file *file;
112         struct filename *tmp = getname(library);
113         int error = PTR_ERR(tmp);
114         static const struct open_flags uselib_flags = {
115                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
116                 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
117                 .intent = LOOKUP_OPEN,
118                 .lookup_flags = LOOKUP_FOLLOW,
119         };
120
121         if (IS_ERR(tmp))
122                 goto out;
123
124         file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
125         putname(tmp);
126         error = PTR_ERR(file);
127         if (IS_ERR(file))
128                 goto out;
129
130         error = -EINVAL;
131         if (!S_ISREG(file_inode(file)->i_mode))
132                 goto exit;
133
134         error = -EACCES;
135         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
136                 goto exit;
137
138         fsnotify_open(file);
139
140         error = -ENOEXEC;
141
142         read_lock(&binfmt_lock);
143         list_for_each_entry(fmt, &formats, lh) {
144                 if (!fmt->load_shlib)
145                         continue;
146                 if (!try_module_get(fmt->module))
147                         continue;
148                 read_unlock(&binfmt_lock);
149                 error = fmt->load_shlib(file);
150                 read_lock(&binfmt_lock);
151                 put_binfmt(fmt);
152                 if (error != -ENOEXEC)
153                         break;
154         }
155         read_unlock(&binfmt_lock);
156 exit:
157         fput(file);
158 out:
159         return error;
160 }
161 #endif /* #ifdef CONFIG_USELIB */
162
163 #ifdef CONFIG_MMU
164 /*
165  * The nascent bprm->mm is not visible until exec_mmap() but it can
166  * use a lot of memory, account these pages in current->mm temporary
167  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
168  * change the counter back via acct_arg_size(0).
169  */
170 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
171 {
172         struct mm_struct *mm = current->mm;
173         long diff = (long)(pages - bprm->vma_pages);
174
175         if (!mm || !diff)
176                 return;
177
178         bprm->vma_pages = pages;
179         add_mm_counter(mm, MM_ANONPAGES, diff);
180 }
181
182 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
183                 int write)
184 {
185         struct page *page;
186         int ret;
187
188 #ifdef CONFIG_STACK_GROWSUP
189         if (write) {
190                 ret = expand_downwards(bprm->vma, pos);
191                 if (ret < 0)
192                         return NULL;
193         }
194 #endif
195         ret = get_user_pages(current, bprm->mm, pos,
196                         1, write, 1, &page, NULL);
197         if (ret <= 0)
198                 return NULL;
199
200         if (write) {
201                 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
202                 struct rlimit *rlim;
203
204                 acct_arg_size(bprm, size / PAGE_SIZE);
205
206                 /*
207                  * We've historically supported up to 32 pages (ARG_MAX)
208                  * of argument strings even with small stacks
209                  */
210                 if (size <= ARG_MAX)
211                         return page;
212
213                 /*
214                  * Limit to 1/4-th the stack size for the argv+env strings.
215                  * This ensures that:
216                  *  - the remaining binfmt code will not run out of stack space,
217                  *  - the program will have a reasonable amount of stack left
218                  *    to work from.
219                  */
220                 rlim = current->signal->rlim;
221                 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
222                         put_page(page);
223                         return NULL;
224                 }
225         }
226
227         return page;
228 }
229
230 static void put_arg_page(struct page *page)
231 {
232         put_page(page);
233 }
234
235 static void free_arg_page(struct linux_binprm *bprm, int i)
236 {
237 }
238
239 static void free_arg_pages(struct linux_binprm *bprm)
240 {
241 }
242
243 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
244                 struct page *page)
245 {
246         flush_cache_page(bprm->vma, pos, page_to_pfn(page));
247 }
248
249 static int __bprm_mm_init(struct linux_binprm *bprm)
250 {
251         int err;
252         struct vm_area_struct *vma = NULL;
253         struct mm_struct *mm = bprm->mm;
254
255         bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
256         if (!vma)
257                 return -ENOMEM;
258
259         down_write(&mm->mmap_sem);
260         vma->vm_mm = mm;
261
262         /*
263          * Place the stack at the largest stack address the architecture
264          * supports. Later, we'll move this to an appropriate place. We don't
265          * use STACK_TOP because that can depend on attributes which aren't
266          * configured yet.
267          */
268         BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
269         vma->vm_end = STACK_TOP_MAX;
270         vma->vm_start = vma->vm_end - PAGE_SIZE;
271         vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
272         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
273         INIT_LIST_HEAD(&vma->anon_vma_chain);
274
275         err = insert_vm_struct(mm, vma);
276         if (err)
277                 goto err;
278
279         mm->stack_vm = mm->total_vm = 1;
280         arch_bprm_mm_init(mm, vma);
281         up_write(&mm->mmap_sem);
282         bprm->p = vma->vm_end - sizeof(void *);
283         return 0;
284 err:
285         up_write(&mm->mmap_sem);
286         bprm->vma = NULL;
287         kmem_cache_free(vm_area_cachep, vma);
288         return err;
289 }
290
291 static bool valid_arg_len(struct linux_binprm *bprm, long len)
292 {
293         return len <= MAX_ARG_STRLEN;
294 }
295
296 #else
297
298 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
299 {
300 }
301
302 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
303                 int write)
304 {
305         struct page *page;
306
307         page = bprm->page[pos / PAGE_SIZE];
308         if (!page && write) {
309                 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
310                 if (!page)
311                         return NULL;
312                 bprm->page[pos / PAGE_SIZE] = page;
313         }
314
315         return page;
316 }
317
318 static void put_arg_page(struct page *page)
319 {
320 }
321
322 static void free_arg_page(struct linux_binprm *bprm, int i)
323 {
324         if (bprm->page[i]) {
325                 __free_page(bprm->page[i]);
326                 bprm->page[i] = NULL;
327         }
328 }
329
330 static void free_arg_pages(struct linux_binprm *bprm)
331 {
332         int i;
333
334         for (i = 0; i < MAX_ARG_PAGES; i++)
335                 free_arg_page(bprm, i);
336 }
337
338 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
339                 struct page *page)
340 {
341 }
342
343 static int __bprm_mm_init(struct linux_binprm *bprm)
344 {
345         bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
346         return 0;
347 }
348
349 static bool valid_arg_len(struct linux_binprm *bprm, long len)
350 {
351         return len <= bprm->p;
352 }
353
354 #endif /* CONFIG_MMU */
355
356 /*
357  * Create a new mm_struct and populate it with a temporary stack
358  * vm_area_struct.  We don't have enough context at this point to set the stack
359  * flags, permissions, and offset, so we use temporary values.  We'll update
360  * them later in setup_arg_pages().
361  */
362 static int bprm_mm_init(struct linux_binprm *bprm)
363 {
364         int err;
365         struct mm_struct *mm = NULL;
366
367         bprm->mm = mm = mm_alloc();
368         err = -ENOMEM;
369         if (!mm)
370                 goto err;
371
372         err = __bprm_mm_init(bprm);
373         if (err)
374                 goto err;
375
376         return 0;
377
378 err:
379         if (mm) {
380                 bprm->mm = NULL;
381                 mmdrop(mm);
382         }
383
384         return err;
385 }
386
387 struct user_arg_ptr {
388 #ifdef CONFIG_COMPAT
389         bool is_compat;
390 #endif
391         union {
392                 const char __user *const __user *native;
393 #ifdef CONFIG_COMPAT
394                 const compat_uptr_t __user *compat;
395 #endif
396         } ptr;
397 };
398
399 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
400 {
401         const char __user *native;
402
403 #ifdef CONFIG_COMPAT
404         if (unlikely(argv.is_compat)) {
405                 compat_uptr_t compat;
406
407                 if (get_user(compat, argv.ptr.compat + nr))
408                         return ERR_PTR(-EFAULT);
409
410                 return compat_ptr(compat);
411         }
412 #endif
413
414         if (get_user(native, argv.ptr.native + nr))
415                 return ERR_PTR(-EFAULT);
416
417         return native;
418 }
419
420 /*
421  * count() counts the number of strings in array ARGV.
422  */
423 static int count(struct user_arg_ptr argv, int max)
424 {
425         int i = 0;
426
427         if (argv.ptr.native != NULL) {
428                 for (;;) {
429                         const char __user *p = get_user_arg_ptr(argv, i);
430
431                         if (!p)
432                                 break;
433
434                         if (IS_ERR(p))
435                                 return -EFAULT;
436
437                         if (i >= max)
438                                 return -E2BIG;
439                         ++i;
440
441                         if (fatal_signal_pending(current))
442                                 return -ERESTARTNOHAND;
443                         cond_resched();
444                 }
445         }
446         return i;
447 }
448
449 /*
450  * 'copy_strings()' copies argument/environment strings from the old
451  * processes's memory to the new process's stack.  The call to get_user_pages()
452  * ensures the destination page is created and not swapped out.
453  */
454 static int copy_strings(int argc, struct user_arg_ptr argv,
455                         struct linux_binprm *bprm)
456 {
457         struct page *kmapped_page = NULL;
458         char *kaddr = NULL;
459         unsigned long kpos = 0;
460         int ret;
461
462         while (argc-- > 0) {
463                 const char __user *str;
464                 int len;
465                 unsigned long pos;
466
467                 ret = -EFAULT;
468                 str = get_user_arg_ptr(argv, argc);
469                 if (IS_ERR(str))
470                         goto out;
471
472                 len = strnlen_user(str, MAX_ARG_STRLEN);
473                 if (!len)
474                         goto out;
475
476                 ret = -E2BIG;
477                 if (!valid_arg_len(bprm, len))
478                         goto out;
479
480                 /* We're going to work our way backwords. */
481                 pos = bprm->p;
482                 str += len;
483                 bprm->p -= len;
484
485                 while (len > 0) {
486                         int offset, bytes_to_copy;
487
488                         if (fatal_signal_pending(current)) {
489                                 ret = -ERESTARTNOHAND;
490                                 goto out;
491                         }
492                         cond_resched();
493
494                         offset = pos % PAGE_SIZE;
495                         if (offset == 0)
496                                 offset = PAGE_SIZE;
497
498                         bytes_to_copy = offset;
499                         if (bytes_to_copy > len)
500                                 bytes_to_copy = len;
501
502                         offset -= bytes_to_copy;
503                         pos -= bytes_to_copy;
504                         str -= bytes_to_copy;
505                         len -= bytes_to_copy;
506
507                         if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
508                                 struct page *page;
509
510                                 page = get_arg_page(bprm, pos, 1);
511                                 if (!page) {
512                                         ret = -E2BIG;
513                                         goto out;
514                                 }
515
516                                 if (kmapped_page) {
517                                         flush_kernel_dcache_page(kmapped_page);
518                                         kunmap(kmapped_page);
519                                         put_arg_page(kmapped_page);
520                                 }
521                                 kmapped_page = page;
522                                 kaddr = kmap(kmapped_page);
523                                 kpos = pos & PAGE_MASK;
524                                 flush_arg_page(bprm, kpos, kmapped_page);
525                         }
526                         if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
527                                 ret = -EFAULT;
528                                 goto out;
529                         }
530                 }
531         }
532         ret = 0;
533 out:
534         if (kmapped_page) {
535                 flush_kernel_dcache_page(kmapped_page);
536                 kunmap(kmapped_page);
537                 put_arg_page(kmapped_page);
538         }
539         return ret;
540 }
541
542 /*
543  * Like copy_strings, but get argv and its values from kernel memory.
544  */
545 int copy_strings_kernel(int argc, const char *const *__argv,
546                         struct linux_binprm *bprm)
547 {
548         int r;
549         mm_segment_t oldfs = get_fs();
550         struct user_arg_ptr argv = {
551                 .ptr.native = (const char __user *const  __user *)__argv,
552         };
553
554         set_fs(KERNEL_DS);
555         r = copy_strings(argc, argv, bprm);
556         set_fs(oldfs);
557
558         return r;
559 }
560 EXPORT_SYMBOL(copy_strings_kernel);
561
562 #ifdef CONFIG_MMU
563
564 /*
565  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
566  * the binfmt code determines where the new stack should reside, we shift it to
567  * its final location.  The process proceeds as follows:
568  *
569  * 1) Use shift to calculate the new vma endpoints.
570  * 2) Extend vma to cover both the old and new ranges.  This ensures the
571  *    arguments passed to subsequent functions are consistent.
572  * 3) Move vma's page tables to the new range.
573  * 4) Free up any cleared pgd range.
574  * 5) Shrink the vma to cover only the new range.
575  */
576 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
577 {
578         struct mm_struct *mm = vma->vm_mm;
579         unsigned long old_start = vma->vm_start;
580         unsigned long old_end = vma->vm_end;
581         unsigned long length = old_end - old_start;
582         unsigned long new_start = old_start - shift;
583         unsigned long new_end = old_end - shift;
584         struct mmu_gather tlb;
585
586         BUG_ON(new_start > new_end);
587
588         /*
589          * ensure there are no vmas between where we want to go
590          * and where we are
591          */
592         if (vma != find_vma(mm, new_start))
593                 return -EFAULT;
594
595         /*
596          * cover the whole range: [new_start, old_end)
597          */
598         if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
599                 return -ENOMEM;
600
601         /*
602          * move the page tables downwards, on failure we rely on
603          * process cleanup to remove whatever mess we made.
604          */
605         if (length != move_page_tables(vma, old_start,
606                                        vma, new_start, length, false))
607                 return -ENOMEM;
608
609         lru_add_drain();
610         tlb_gather_mmu(&tlb, mm, old_start, old_end);
611         if (new_end > old_start) {
612                 /*
613                  * when the old and new regions overlap clear from new_end.
614                  */
615                 free_pgd_range(&tlb, new_end, old_end, new_end,
616                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
617         } else {
618                 /*
619                  * otherwise, clean from old_start; this is done to not touch
620                  * the address space in [new_end, old_start) some architectures
621                  * have constraints on va-space that make this illegal (IA64) -
622                  * for the others its just a little faster.
623                  */
624                 free_pgd_range(&tlb, old_start, old_end, new_end,
625                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
626         }
627         tlb_finish_mmu(&tlb, old_start, old_end);
628
629         /*
630          * Shrink the vma to just the new range.  Always succeeds.
631          */
632         vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
633
634         return 0;
635 }
636
637 /*
638  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
639  * the stack is optionally relocated, and some extra space is added.
640  */
641 int setup_arg_pages(struct linux_binprm *bprm,
642                     unsigned long stack_top,
643                     int executable_stack)
644 {
645         unsigned long ret;
646         unsigned long stack_shift;
647         struct mm_struct *mm = current->mm;
648         struct vm_area_struct *vma = bprm->vma;
649         struct vm_area_struct *prev = NULL;
650         unsigned long vm_flags;
651         unsigned long stack_base;
652         unsigned long stack_size;
653         unsigned long stack_expand;
654         unsigned long rlim_stack;
655
656 #ifdef CONFIG_STACK_GROWSUP
657         /* Limit stack size */
658         stack_base = rlimit_max(RLIMIT_STACK);
659         if (stack_base > STACK_SIZE_MAX)
660                 stack_base = STACK_SIZE_MAX;
661
662         /* Make sure we didn't let the argument array grow too large. */
663         if (vma->vm_end - vma->vm_start > stack_base)
664                 return -ENOMEM;
665
666         stack_base = PAGE_ALIGN(stack_top - stack_base);
667
668         stack_shift = vma->vm_start - stack_base;
669         mm->arg_start = bprm->p - stack_shift;
670         bprm->p = vma->vm_end - stack_shift;
671 #else
672         stack_top = arch_align_stack(stack_top);
673         stack_top = PAGE_ALIGN(stack_top);
674
675         if (unlikely(stack_top < mmap_min_addr) ||
676             unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
677                 return -ENOMEM;
678
679         stack_shift = vma->vm_end - stack_top;
680
681         bprm->p -= stack_shift;
682         mm->arg_start = bprm->p;
683 #endif
684
685         if (bprm->loader)
686                 bprm->loader -= stack_shift;
687         bprm->exec -= stack_shift;
688
689         down_write(&mm->mmap_sem);
690         vm_flags = VM_STACK_FLAGS;
691
692         /*
693          * Adjust stack execute permissions; explicitly enable for
694          * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
695          * (arch default) otherwise.
696          */
697         if (unlikely(executable_stack == EXSTACK_ENABLE_X))
698                 vm_flags |= VM_EXEC;
699         else if (executable_stack == EXSTACK_DISABLE_X)
700                 vm_flags &= ~VM_EXEC;
701         vm_flags |= mm->def_flags;
702         vm_flags |= VM_STACK_INCOMPLETE_SETUP;
703
704         ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
705                         vm_flags);
706         if (ret)
707                 goto out_unlock;
708         BUG_ON(prev != vma);
709
710         /* Move stack pages down in memory. */
711         if (stack_shift) {
712                 ret = shift_arg_pages(vma, stack_shift);
713                 if (ret)
714                         goto out_unlock;
715         }
716
717         /* mprotect_fixup is overkill to remove the temporary stack flags */
718         vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
719
720         stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
721         stack_size = vma->vm_end - vma->vm_start;
722         /*
723          * Align this down to a page boundary as expand_stack
724          * will align it up.
725          */
726         rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
727 #ifdef CONFIG_STACK_GROWSUP
728         if (stack_size + stack_expand > rlim_stack)
729                 stack_base = vma->vm_start + rlim_stack;
730         else
731                 stack_base = vma->vm_end + stack_expand;
732 #else
733         if (stack_size + stack_expand > rlim_stack)
734                 stack_base = vma->vm_end - rlim_stack;
735         else
736                 stack_base = vma->vm_start - stack_expand;
737 #endif
738         current->mm->start_stack = bprm->p;
739         ret = expand_stack(vma, stack_base);
740         if (ret)
741                 ret = -EFAULT;
742
743 out_unlock:
744         up_write(&mm->mmap_sem);
745         return ret;
746 }
747 EXPORT_SYMBOL(setup_arg_pages);
748
749 #endif /* CONFIG_MMU */
750
751 static struct file *do_open_execat(int fd, struct filename *name, int flags)
752 {
753         struct file *file;
754         int err;
755         struct open_flags open_exec_flags = {
756                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
757                 .acc_mode = MAY_EXEC | MAY_OPEN,
758                 .intent = LOOKUP_OPEN,
759                 .lookup_flags = LOOKUP_FOLLOW,
760         };
761
762         if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
763                 return ERR_PTR(-EINVAL);
764         if (flags & AT_SYMLINK_NOFOLLOW)
765                 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
766         if (flags & AT_EMPTY_PATH)
767                 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
768
769         file = do_filp_open(fd, name, &open_exec_flags);
770         if (IS_ERR(file))
771                 goto out;
772
773         err = -EACCES;
774         if (!S_ISREG(file_inode(file)->i_mode))
775                 goto exit;
776
777         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
778                 goto exit;
779
780         err = deny_write_access(file);
781         if (err)
782                 goto exit;
783
784         if (name->name[0] != '\0')
785                 fsnotify_open(file);
786
787 out:
788         return file;
789
790 exit:
791         fput(file);
792         return ERR_PTR(err);
793 }
794
795 struct file *open_exec(const char *name)
796 {
797         struct filename *filename = getname_kernel(name);
798         struct file *f = ERR_CAST(filename);
799
800         if (!IS_ERR(filename)) {
801                 f = do_open_execat(AT_FDCWD, filename, 0);
802                 putname(filename);
803         }
804         return f;
805 }
806 EXPORT_SYMBOL(open_exec);
807
808 int kernel_read(struct file *file, loff_t offset,
809                 char *addr, unsigned long count)
810 {
811         mm_segment_t old_fs;
812         loff_t pos = offset;
813         int result;
814
815         old_fs = get_fs();
816         set_fs(get_ds());
817         /* The cast to a user pointer is valid due to the set_fs() */
818         result = vfs_read(file, (void __user *)addr, count, &pos);
819         set_fs(old_fs);
820         return result;
821 }
822
823 EXPORT_SYMBOL(kernel_read);
824
825 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
826 {
827         ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
828         if (res > 0)
829                 flush_icache_range(addr, addr + len);
830         return res;
831 }
832 EXPORT_SYMBOL(read_code);
833
834 static int exec_mmap(struct mm_struct *mm)
835 {
836         struct task_struct *tsk;
837         struct mm_struct *old_mm, *active_mm;
838
839         /* Notify parent that we're no longer interested in the old VM */
840         tsk = current;
841         old_mm = current->mm;
842         mm_release(tsk, old_mm);
843
844         if (old_mm) {
845                 sync_mm_rss(old_mm);
846                 /*
847                  * Make sure that if there is a core dump in progress
848                  * for the old mm, we get out and die instead of going
849                  * through with the exec.  We must hold mmap_sem around
850                  * checking core_state and changing tsk->mm.
851                  */
852                 down_read(&old_mm->mmap_sem);
853                 if (unlikely(old_mm->core_state)) {
854                         up_read(&old_mm->mmap_sem);
855                         return -EINTR;
856                 }
857         }
858         task_lock(tsk);
859         active_mm = tsk->active_mm;
860         tsk->mm = mm;
861         tsk->active_mm = mm;
862         activate_mm(active_mm, mm);
863         tsk->mm->vmacache_seqnum = 0;
864         vmacache_flush(tsk);
865         task_unlock(tsk);
866         if (old_mm) {
867                 up_read(&old_mm->mmap_sem);
868                 BUG_ON(active_mm != old_mm);
869                 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
870                 mm_update_next_owner(old_mm);
871                 mmput(old_mm);
872                 return 0;
873         }
874         mmdrop(active_mm);
875         return 0;
876 }
877
878 /*
879  * This function makes sure the current process has its own signal table,
880  * so that flush_signal_handlers can later reset the handlers without
881  * disturbing other processes.  (Other processes might share the signal
882  * table via the CLONE_SIGHAND option to clone().)
883  */
884 static int de_thread(struct task_struct *tsk)
885 {
886         struct signal_struct *sig = tsk->signal;
887         struct sighand_struct *oldsighand = tsk->sighand;
888         spinlock_t *lock = &oldsighand->siglock;
889
890         if (thread_group_empty(tsk))
891                 goto no_thread_group;
892
893         /*
894          * Kill all other threads in the thread group.
895          */
896         spin_lock_irq(lock);
897         if (signal_group_exit(sig)) {
898                 /*
899                  * Another group action in progress, just
900                  * return so that the signal is processed.
901                  */
902                 spin_unlock_irq(lock);
903                 return -EAGAIN;
904         }
905
906         sig->group_exit_task = tsk;
907         sig->notify_count = zap_other_threads(tsk);
908         if (!thread_group_leader(tsk))
909                 sig->notify_count--;
910
911         while (sig->notify_count) {
912                 __set_current_state(TASK_KILLABLE);
913                 spin_unlock_irq(lock);
914                 schedule();
915                 if (unlikely(__fatal_signal_pending(tsk)))
916                         goto killed;
917                 spin_lock_irq(lock);
918         }
919         spin_unlock_irq(lock);
920
921         /*
922          * At this point all other threads have exited, all we have to
923          * do is to wait for the thread group leader to become inactive,
924          * and to assume its PID:
925          */
926         if (!thread_group_leader(tsk)) {
927                 struct task_struct *leader = tsk->group_leader;
928
929                 sig->notify_count = -1; /* for exit_notify() */
930                 for (;;) {
931                         threadgroup_change_begin(tsk);
932                         write_lock_irq(&tasklist_lock);
933                         if (likely(leader->exit_state))
934                                 break;
935                         __set_current_state(TASK_KILLABLE);
936                         write_unlock_irq(&tasklist_lock);
937                         threadgroup_change_end(tsk);
938                         schedule();
939                         if (unlikely(__fatal_signal_pending(tsk)))
940                                 goto killed;
941                 }
942
943                 /*
944                  * The only record we have of the real-time age of a
945                  * process, regardless of execs it's done, is start_time.
946                  * All the past CPU time is accumulated in signal_struct
947                  * from sister threads now dead.  But in this non-leader
948                  * exec, nothing survives from the original leader thread,
949                  * whose birth marks the true age of this process now.
950                  * When we take on its identity by switching to its PID, we
951                  * also take its birthdate (always earlier than our own).
952                  */
953                 tsk->start_time = leader->start_time;
954                 tsk->real_start_time = leader->real_start_time;
955
956                 BUG_ON(!same_thread_group(leader, tsk));
957                 BUG_ON(has_group_leader_pid(tsk));
958                 /*
959                  * An exec() starts a new thread group with the
960                  * TGID of the previous thread group. Rehash the
961                  * two threads with a switched PID, and release
962                  * the former thread group leader:
963                  */
964
965                 /* Become a process group leader with the old leader's pid.
966                  * The old leader becomes a thread of the this thread group.
967                  * Note: The old leader also uses this pid until release_task
968                  *       is called.  Odd but simple and correct.
969                  */
970                 tsk->pid = leader->pid;
971                 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
972                 transfer_pid(leader, tsk, PIDTYPE_PGID);
973                 transfer_pid(leader, tsk, PIDTYPE_SID);
974
975                 list_replace_rcu(&leader->tasks, &tsk->tasks);
976                 list_replace_init(&leader->sibling, &tsk->sibling);
977
978                 tsk->group_leader = tsk;
979                 leader->group_leader = tsk;
980
981                 tsk->exit_signal = SIGCHLD;
982                 leader->exit_signal = -1;
983
984                 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
985                 leader->exit_state = EXIT_DEAD;
986
987                 /*
988                  * We are going to release_task()->ptrace_unlink() silently,
989                  * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
990                  * the tracer wont't block again waiting for this thread.
991                  */
992                 if (unlikely(leader->ptrace))
993                         __wake_up_parent(leader, leader->parent);
994                 write_unlock_irq(&tasklist_lock);
995                 threadgroup_change_end(tsk);
996
997                 release_task(leader);
998         }
999
1000         sig->group_exit_task = NULL;
1001         sig->notify_count = 0;
1002
1003 no_thread_group:
1004         /* we have changed execution domain */
1005         tsk->exit_signal = SIGCHLD;
1006
1007         exit_itimers(sig);
1008         flush_itimer_signals();
1009
1010         if (atomic_read(&oldsighand->count) != 1) {
1011                 struct sighand_struct *newsighand;
1012                 /*
1013                  * This ->sighand is shared with the CLONE_SIGHAND
1014                  * but not CLONE_THREAD task, switch to the new one.
1015                  */
1016                 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1017                 if (!newsighand)
1018                         return -ENOMEM;
1019
1020                 atomic_set(&newsighand->count, 1);
1021                 memcpy(newsighand->action, oldsighand->action,
1022                        sizeof(newsighand->action));
1023
1024                 write_lock_irq(&tasklist_lock);
1025                 spin_lock(&oldsighand->siglock);
1026                 rcu_assign_pointer(tsk->sighand, newsighand);
1027                 spin_unlock(&oldsighand->siglock);
1028                 write_unlock_irq(&tasklist_lock);
1029
1030                 __cleanup_sighand(oldsighand);
1031         }
1032
1033         BUG_ON(!thread_group_leader(tsk));
1034         return 0;
1035
1036 killed:
1037         /* protects against exit_notify() and __exit_signal() */
1038         read_lock(&tasklist_lock);
1039         sig->group_exit_task = NULL;
1040         sig->notify_count = 0;
1041         read_unlock(&tasklist_lock);
1042         return -EAGAIN;
1043 }
1044
1045 char *get_task_comm(char *buf, struct task_struct *tsk)
1046 {
1047         /* buf must be at least sizeof(tsk->comm) in size */
1048         task_lock(tsk);
1049         strncpy(buf, tsk->comm, sizeof(tsk->comm));
1050         task_unlock(tsk);
1051         return buf;
1052 }
1053 EXPORT_SYMBOL_GPL(get_task_comm);
1054
1055 /*
1056  * These functions flushes out all traces of the currently running executable
1057  * so that a new one can be started
1058  */
1059
1060 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1061 {
1062         task_lock(tsk);
1063         trace_task_rename(tsk, buf);
1064         strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1065         task_unlock(tsk);
1066         perf_event_comm(tsk, exec);
1067 }
1068
1069 int flush_old_exec(struct linux_binprm * bprm)
1070 {
1071         int retval;
1072
1073         /*
1074          * Make sure we have a private signal table and that
1075          * we are unassociated from the previous thread group.
1076          */
1077         retval = de_thread(current);
1078         if (retval)
1079                 goto out;
1080
1081         set_mm_exe_file(bprm->mm, bprm->file);
1082         /*
1083          * Release all of the old mmap stuff
1084          */
1085         acct_arg_size(bprm, 0);
1086         retval = exec_mmap(bprm->mm);
1087         if (retval)
1088                 goto out;
1089
1090         bprm->mm = NULL;                /* We're using it now */
1091
1092         set_fs(USER_DS);
1093         current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1094                                         PF_NOFREEZE | PF_NO_SETAFFINITY);
1095         flush_thread();
1096         current->personality &= ~bprm->per_clear;
1097
1098         return 0;
1099
1100 out:
1101         return retval;
1102 }
1103 EXPORT_SYMBOL(flush_old_exec);
1104
1105 void would_dump(struct linux_binprm *bprm, struct file *file)
1106 {
1107         if (inode_permission(file_inode(file), MAY_READ) < 0)
1108                 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1109 }
1110 EXPORT_SYMBOL(would_dump);
1111
1112 void setup_new_exec(struct linux_binprm * bprm)
1113 {
1114         arch_pick_mmap_layout(current->mm);
1115
1116         /* This is the point of no return */
1117         current->sas_ss_sp = current->sas_ss_size = 0;
1118
1119         if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1120                 set_dumpable(current->mm, SUID_DUMP_USER);
1121         else
1122                 set_dumpable(current->mm, suid_dumpable);
1123
1124         perf_event_exec();
1125         __set_task_comm(current, kbasename(bprm->filename), true);
1126
1127         /* Set the new mm task size. We have to do that late because it may
1128          * depend on TIF_32BIT which is only updated in flush_thread() on
1129          * some architectures like powerpc
1130          */
1131         current->mm->task_size = TASK_SIZE;
1132
1133         /* install the new credentials */
1134         if (!uid_eq(bprm->cred->uid, current_euid()) ||
1135             !gid_eq(bprm->cred->gid, current_egid())) {
1136                 current->pdeath_signal = 0;
1137         } else {
1138                 would_dump(bprm, bprm->file);
1139                 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1140                         set_dumpable(current->mm, suid_dumpable);
1141         }
1142
1143         /* An exec changes our domain. We are no longer part of the thread
1144            group */
1145         current->self_exec_id++;
1146         flush_signal_handlers(current, 0);
1147         do_close_on_exec(current->files);
1148 }
1149 EXPORT_SYMBOL(setup_new_exec);
1150
1151 /*
1152  * Prepare credentials and lock ->cred_guard_mutex.
1153  * install_exec_creds() commits the new creds and drops the lock.
1154  * Or, if exec fails before, free_bprm() should release ->cred and
1155  * and unlock.
1156  */
1157 int prepare_bprm_creds(struct linux_binprm *bprm)
1158 {
1159         if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1160                 return -ERESTARTNOINTR;
1161
1162         bprm->cred = prepare_exec_creds();
1163         if (likely(bprm->cred))
1164                 return 0;
1165
1166         mutex_unlock(&current->signal->cred_guard_mutex);
1167         return -ENOMEM;
1168 }
1169
1170 static void free_bprm(struct linux_binprm *bprm)
1171 {
1172         free_arg_pages(bprm);
1173         if (bprm->cred) {
1174                 mutex_unlock(&current->signal->cred_guard_mutex);
1175                 abort_creds(bprm->cred);
1176         }
1177         if (bprm->file) {
1178                 allow_write_access(bprm->file);
1179                 fput(bprm->file);
1180         }
1181         /* If a binfmt changed the interp, free it. */
1182         if (bprm->interp != bprm->filename)
1183                 kfree(bprm->interp);
1184         kfree(bprm);
1185 }
1186
1187 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1188 {
1189         /* If a binfmt changed the interp, free it first. */
1190         if (bprm->interp != bprm->filename)
1191                 kfree(bprm->interp);
1192         bprm->interp = kstrdup(interp, GFP_KERNEL);
1193         if (!bprm->interp)
1194                 return -ENOMEM;
1195         return 0;
1196 }
1197 EXPORT_SYMBOL(bprm_change_interp);
1198
1199 /*
1200  * install the new credentials for this executable
1201  */
1202 void install_exec_creds(struct linux_binprm *bprm)
1203 {
1204         security_bprm_committing_creds(bprm);
1205
1206         commit_creds(bprm->cred);
1207         bprm->cred = NULL;
1208
1209         /*
1210          * Disable monitoring for regular users
1211          * when executing setuid binaries. Must
1212          * wait until new credentials are committed
1213          * by commit_creds() above
1214          */
1215         if (get_dumpable(current->mm) != SUID_DUMP_USER)
1216                 perf_event_exit_task(current);
1217         /*
1218          * cred_guard_mutex must be held at least to this point to prevent
1219          * ptrace_attach() from altering our determination of the task's
1220          * credentials; any time after this it may be unlocked.
1221          */
1222         security_bprm_committed_creds(bprm);
1223         mutex_unlock(&current->signal->cred_guard_mutex);
1224 }
1225 EXPORT_SYMBOL(install_exec_creds);
1226
1227 /*
1228  * determine how safe it is to execute the proposed program
1229  * - the caller must hold ->cred_guard_mutex to protect against
1230  *   PTRACE_ATTACH or seccomp thread-sync
1231  */
1232 static void check_unsafe_exec(struct linux_binprm *bprm)
1233 {
1234         struct task_struct *p = current, *t;
1235         unsigned n_fs;
1236
1237         if (p->ptrace) {
1238                 if (p->ptrace & PT_PTRACE_CAP)
1239                         bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1240                 else
1241                         bprm->unsafe |= LSM_UNSAFE_PTRACE;
1242         }
1243
1244         /*
1245          * This isn't strictly necessary, but it makes it harder for LSMs to
1246          * mess up.
1247          */
1248         if (task_no_new_privs(current))
1249                 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1250
1251         t = p;
1252         n_fs = 1;
1253         spin_lock(&p->fs->lock);
1254         rcu_read_lock();
1255         while_each_thread(p, t) {
1256                 if (t->fs == p->fs)
1257                         n_fs++;
1258         }
1259         rcu_read_unlock();
1260
1261         if (p->fs->users > n_fs)
1262                 bprm->unsafe |= LSM_UNSAFE_SHARE;
1263         else
1264                 p->fs->in_exec = 1;
1265         spin_unlock(&p->fs->lock);
1266 }
1267
1268 /*
1269  * Fill the binprm structure from the inode.
1270  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1271  *
1272  * This may be called multiple times for binary chains (scripts for example).
1273  */
1274 int prepare_binprm(struct linux_binprm *bprm)
1275 {
1276         struct inode *inode = file_inode(bprm->file);
1277         umode_t mode = inode->i_mode;
1278         int retval;
1279
1280
1281         /* clear any previous set[ug]id data from a previous binary */
1282         bprm->cred->euid = current_euid();
1283         bprm->cred->egid = current_egid();
1284
1285         if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) &&
1286             !task_no_new_privs(current) &&
1287             kuid_has_mapping(bprm->cred->user_ns, inode->i_uid) &&
1288             kgid_has_mapping(bprm->cred->user_ns, inode->i_gid)) {
1289                 /* Set-uid? */
1290                 if (mode & S_ISUID) {
1291                         bprm->per_clear |= PER_CLEAR_ON_SETID;
1292                         bprm->cred->euid = inode->i_uid;
1293                 }
1294
1295                 /* Set-gid? */
1296                 /*
1297                  * If setgid is set but no group execute bit then this
1298                  * is a candidate for mandatory locking, not a setgid
1299                  * executable.
1300                  */
1301                 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1302                         bprm->per_clear |= PER_CLEAR_ON_SETID;
1303                         bprm->cred->egid = inode->i_gid;
1304                 }
1305         }
1306
1307         /* fill in binprm security blob */
1308         retval = security_bprm_set_creds(bprm);
1309         if (retval)
1310                 return retval;
1311         bprm->cred_prepared = 1;
1312
1313         memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1314         return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1315 }
1316
1317 EXPORT_SYMBOL(prepare_binprm);
1318
1319 /*
1320  * Arguments are '\0' separated strings found at the location bprm->p
1321  * points to; chop off the first by relocating brpm->p to right after
1322  * the first '\0' encountered.
1323  */
1324 int remove_arg_zero(struct linux_binprm *bprm)
1325 {
1326         int ret = 0;
1327         unsigned long offset;
1328         char *kaddr;
1329         struct page *page;
1330
1331         if (!bprm->argc)
1332                 return 0;
1333
1334         do {
1335                 offset = bprm->p & ~PAGE_MASK;
1336                 page = get_arg_page(bprm, bprm->p, 0);
1337                 if (!page) {
1338                         ret = -EFAULT;
1339                         goto out;
1340                 }
1341                 kaddr = kmap_atomic(page);
1342
1343                 for (; offset < PAGE_SIZE && kaddr[offset];
1344                                 offset++, bprm->p++)
1345                         ;
1346
1347                 kunmap_atomic(kaddr);
1348                 put_arg_page(page);
1349
1350                 if (offset == PAGE_SIZE)
1351                         free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1352         } while (offset == PAGE_SIZE);
1353
1354         bprm->p++;
1355         bprm->argc--;
1356         ret = 0;
1357
1358 out:
1359         return ret;
1360 }
1361 EXPORT_SYMBOL(remove_arg_zero);
1362
1363 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1364 /*
1365  * cycle the list of binary formats handler, until one recognizes the image
1366  */
1367 int search_binary_handler(struct linux_binprm *bprm)
1368 {
1369         bool need_retry = IS_ENABLED(CONFIG_MODULES);
1370         struct linux_binfmt *fmt;
1371         int retval;
1372
1373         /* This allows 4 levels of binfmt rewrites before failing hard. */
1374         if (bprm->recursion_depth > 5)
1375                 return -ELOOP;
1376
1377         retval = security_bprm_check(bprm);
1378         if (retval)
1379                 return retval;
1380
1381         retval = -ENOENT;
1382  retry:
1383         read_lock(&binfmt_lock);
1384         list_for_each_entry(fmt, &formats, lh) {
1385                 if (!try_module_get(fmt->module))
1386                         continue;
1387                 read_unlock(&binfmt_lock);
1388                 bprm->recursion_depth++;
1389                 retval = fmt->load_binary(bprm);
1390                 read_lock(&binfmt_lock);
1391                 put_binfmt(fmt);
1392                 bprm->recursion_depth--;
1393                 if (retval < 0 && !bprm->mm) {
1394                         /* we got to flush_old_exec() and failed after it */
1395                         read_unlock(&binfmt_lock);
1396                         force_sigsegv(SIGSEGV, current);
1397                         return retval;
1398                 }
1399                 if (retval != -ENOEXEC || !bprm->file) {
1400                         read_unlock(&binfmt_lock);
1401                         return retval;
1402                 }
1403         }
1404         read_unlock(&binfmt_lock);
1405
1406         if (need_retry) {
1407                 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1408                     printable(bprm->buf[2]) && printable(bprm->buf[3]))
1409                         return retval;
1410                 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1411                         return retval;
1412                 need_retry = false;
1413                 goto retry;
1414         }
1415
1416         return retval;
1417 }
1418 EXPORT_SYMBOL(search_binary_handler);
1419
1420 static int exec_binprm(struct linux_binprm *bprm)
1421 {
1422         pid_t old_pid, old_vpid;
1423         int ret;
1424
1425         /* Need to fetch pid before load_binary changes it */
1426         old_pid = current->pid;
1427         rcu_read_lock();
1428         old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1429         rcu_read_unlock();
1430
1431         ret = search_binary_handler(bprm);
1432         if (ret >= 0) {
1433                 audit_bprm(bprm);
1434                 trace_sched_process_exec(current, old_pid, bprm);
1435                 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1436                 proc_exec_connector(current);
1437         }
1438
1439         return ret;
1440 }
1441
1442 /*
1443  * sys_execve() executes a new program.
1444  */
1445 static int do_execveat_common(int fd, struct filename *filename,
1446                               struct user_arg_ptr argv,
1447                               struct user_arg_ptr envp,
1448                               int flags)
1449 {
1450         char *pathbuf = NULL;
1451         struct linux_binprm *bprm;
1452         struct file *file;
1453         struct files_struct *displaced;
1454         int retval;
1455
1456         if (IS_ERR(filename))
1457                 return PTR_ERR(filename);
1458
1459         /*
1460          * We move the actual failure in case of RLIMIT_NPROC excess from
1461          * set*uid() to execve() because too many poorly written programs
1462          * don't check setuid() return code.  Here we additionally recheck
1463          * whether NPROC limit is still exceeded.
1464          */
1465         if ((current->flags & PF_NPROC_EXCEEDED) &&
1466             atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1467                 retval = -EAGAIN;
1468                 goto out_ret;
1469         }
1470
1471         /* We're below the limit (still or again), so we don't want to make
1472          * further execve() calls fail. */
1473         current->flags &= ~PF_NPROC_EXCEEDED;
1474
1475         retval = unshare_files(&displaced);
1476         if (retval)
1477                 goto out_ret;
1478
1479         retval = -ENOMEM;
1480         bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1481         if (!bprm)
1482                 goto out_files;
1483
1484         retval = prepare_bprm_creds(bprm);
1485         if (retval)
1486                 goto out_free;
1487
1488         check_unsafe_exec(bprm);
1489         current->in_execve = 1;
1490
1491         file = do_open_execat(fd, filename, flags);
1492         retval = PTR_ERR(file);
1493         if (IS_ERR(file))
1494                 goto out_unmark;
1495
1496         sched_exec();
1497
1498         bprm->file = file;
1499         if (fd == AT_FDCWD || filename->name[0] == '/') {
1500                 bprm->filename = filename->name;
1501         } else {
1502                 if (filename->name[0] == '\0')
1503                         pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1504                 else
1505                         pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1506                                             fd, filename->name);
1507                 if (!pathbuf) {
1508                         retval = -ENOMEM;
1509                         goto out_unmark;
1510                 }
1511                 /*
1512                  * Record that a name derived from an O_CLOEXEC fd will be
1513                  * inaccessible after exec. Relies on having exclusive access to
1514                  * current->files (due to unshare_files above).
1515                  */
1516                 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1517                         bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1518                 bprm->filename = pathbuf;
1519         }
1520         bprm->interp = bprm->filename;
1521
1522         retval = bprm_mm_init(bprm);
1523         if (retval)
1524                 goto out_unmark;
1525
1526         bprm->argc = count(argv, MAX_ARG_STRINGS);
1527         if ((retval = bprm->argc) < 0)
1528                 goto out;
1529
1530         bprm->envc = count(envp, MAX_ARG_STRINGS);
1531         if ((retval = bprm->envc) < 0)
1532                 goto out;
1533
1534         retval = prepare_binprm(bprm);
1535         if (retval < 0)
1536                 goto out;
1537
1538         retval = copy_strings_kernel(1, &bprm->filename, bprm);
1539         if (retval < 0)
1540                 goto out;
1541
1542         bprm->exec = bprm->p;
1543         retval = copy_strings(bprm->envc, envp, bprm);
1544         if (retval < 0)
1545                 goto out;
1546
1547         retval = copy_strings(bprm->argc, argv, bprm);
1548         if (retval < 0)
1549                 goto out;
1550
1551         retval = exec_binprm(bprm);
1552         if (retval < 0)
1553                 goto out;
1554
1555         /* execve succeeded */
1556         current->fs->in_exec = 0;
1557         current->in_execve = 0;
1558         acct_update_integrals(current);
1559         task_numa_free(current);
1560         free_bprm(bprm);
1561         kfree(pathbuf);
1562         putname(filename);
1563         if (displaced)
1564                 put_files_struct(displaced);
1565         return retval;
1566
1567 out:
1568         if (bprm->mm) {
1569                 acct_arg_size(bprm, 0);
1570                 mmput(bprm->mm);
1571         }
1572
1573 out_unmark:
1574         current->fs->in_exec = 0;
1575         current->in_execve = 0;
1576
1577 out_free:
1578         free_bprm(bprm);
1579         kfree(pathbuf);
1580
1581 out_files:
1582         if (displaced)
1583                 reset_files_struct(displaced);
1584 out_ret:
1585         putname(filename);
1586         return retval;
1587 }
1588
1589 int do_execve(struct filename *filename,
1590         const char __user *const __user *__argv,
1591         const char __user *const __user *__envp)
1592 {
1593         struct user_arg_ptr argv = { .ptr.native = __argv };
1594         struct user_arg_ptr envp = { .ptr.native = __envp };
1595         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1596 }
1597
1598 int do_execveat(int fd, struct filename *filename,
1599                 const char __user *const __user *__argv,
1600                 const char __user *const __user *__envp,
1601                 int flags)
1602 {
1603         struct user_arg_ptr argv = { .ptr.native = __argv };
1604         struct user_arg_ptr envp = { .ptr.native = __envp };
1605
1606         return do_execveat_common(fd, filename, argv, envp, flags);
1607 }
1608
1609 #ifdef CONFIG_COMPAT
1610 static int compat_do_execve(struct filename *filename,
1611         const compat_uptr_t __user *__argv,
1612         const compat_uptr_t __user *__envp)
1613 {
1614         struct user_arg_ptr argv = {
1615                 .is_compat = true,
1616                 .ptr.compat = __argv,
1617         };
1618         struct user_arg_ptr envp = {
1619                 .is_compat = true,
1620                 .ptr.compat = __envp,
1621         };
1622         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1623 }
1624
1625 static int compat_do_execveat(int fd, struct filename *filename,
1626                               const compat_uptr_t __user *__argv,
1627                               const compat_uptr_t __user *__envp,
1628                               int flags)
1629 {
1630         struct user_arg_ptr argv = {
1631                 .is_compat = true,
1632                 .ptr.compat = __argv,
1633         };
1634         struct user_arg_ptr envp = {
1635                 .is_compat = true,
1636                 .ptr.compat = __envp,
1637         };
1638         return do_execveat_common(fd, filename, argv, envp, flags);
1639 }
1640 #endif
1641
1642 void set_binfmt(struct linux_binfmt *new)
1643 {
1644         struct mm_struct *mm = current->mm;
1645
1646         if (mm->binfmt)
1647                 module_put(mm->binfmt->module);
1648
1649         mm->binfmt = new;
1650         if (new)
1651                 __module_get(new->module);
1652 }
1653 EXPORT_SYMBOL(set_binfmt);
1654
1655 /*
1656  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1657  */
1658 void set_dumpable(struct mm_struct *mm, int value)
1659 {
1660         unsigned long old, new;
1661
1662         if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1663                 return;
1664
1665         do {
1666                 old = ACCESS_ONCE(mm->flags);
1667                 new = (old & ~MMF_DUMPABLE_MASK) | value;
1668         } while (cmpxchg(&mm->flags, old, new) != old);
1669 }
1670
1671 SYSCALL_DEFINE3(execve,
1672                 const char __user *, filename,
1673                 const char __user *const __user *, argv,
1674                 const char __user *const __user *, envp)
1675 {
1676         return do_execve(getname(filename), argv, envp);
1677 }
1678
1679 SYSCALL_DEFINE5(execveat,
1680                 int, fd, const char __user *, filename,
1681                 const char __user *const __user *, argv,
1682                 const char __user *const __user *, envp,
1683                 int, flags)
1684 {
1685         int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1686
1687         return do_execveat(fd,
1688                            getname_flags(filename, lookup_flags, NULL),
1689                            argv, envp, flags);
1690 }
1691
1692 #ifdef CONFIG_COMPAT
1693 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1694         const compat_uptr_t __user *, argv,
1695         const compat_uptr_t __user *, envp)
1696 {
1697         return compat_do_execve(getname(filename), argv, envp);
1698 }
1699
1700 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1701                        const char __user *, filename,
1702                        const compat_uptr_t __user *, argv,
1703                        const compat_uptr_t __user *, envp,
1704                        int,  flags)
1705 {
1706         int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1707
1708         return compat_do_execveat(fd,
1709                                   getname_flags(filename, lookup_flags, NULL),
1710                                   argv, envp, flags);
1711 }
1712 #endif