mm/mempolicy: check hugepage migration is supported by arch in vma_migratable()
[platform/kernel/linux-starfive.git] / fs / exec.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/exec.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 /*
9  * #!-checking implemented by tytso.
10  */
11 /*
12  * Demand-loading implemented 01.12.91 - no need to read anything but
13  * the header into memory. The inode of the executable is put into
14  * "current->executable", and page faults do the actual loading. Clean.
15  *
16  * Once more I can proudly say that linux stood up to being changed: it
17  * was less than 2 hours work to get demand-loading completely implemented.
18  *
19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20  * current->executable is only used by the procfs.  This allows a dispatch
21  * table to check for several different types  of binary formats.  We keep
22  * trying until we recognize the file or we run out of supported binary
23  * formats.
24  */
25
26 #include <linux/slab.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/mm.h>
30 #include <linux/vmacache.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/tracehook.h>
59 #include <linux/kmod.h>
60 #include <linux/fsnotify.h>
61 #include <linux/fs_struct.h>
62 #include <linux/oom.h>
63 #include <linux/compat.h>
64 #include <linux/vmalloc.h>
65
66 #include <linux/uaccess.h>
67 #include <asm/mmu_context.h>
68 #include <asm/tlb.h>
69
70 #include <trace/events/task.h>
71 #include "internal.h"
72
73 #include <trace/events/sched.h>
74
75 int suid_dumpable = 0;
76
77 static LIST_HEAD(formats);
78 static DEFINE_RWLOCK(binfmt_lock);
79
80 void __register_binfmt(struct linux_binfmt * fmt, int insert)
81 {
82         BUG_ON(!fmt);
83         if (WARN_ON(!fmt->load_binary))
84                 return;
85         write_lock(&binfmt_lock);
86         insert ? list_add(&fmt->lh, &formats) :
87                  list_add_tail(&fmt->lh, &formats);
88         write_unlock(&binfmt_lock);
89 }
90
91 EXPORT_SYMBOL(__register_binfmt);
92
93 void unregister_binfmt(struct linux_binfmt * fmt)
94 {
95         write_lock(&binfmt_lock);
96         list_del(&fmt->lh);
97         write_unlock(&binfmt_lock);
98 }
99
100 EXPORT_SYMBOL(unregister_binfmt);
101
102 static inline void put_binfmt(struct linux_binfmt * fmt)
103 {
104         module_put(fmt->module);
105 }
106
107 bool path_noexec(const struct path *path)
108 {
109         return (path->mnt->mnt_flags & MNT_NOEXEC) ||
110                (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
111 }
112
113 #ifdef CONFIG_USELIB
114 /*
115  * Note that a shared library must be both readable and executable due to
116  * security reasons.
117  *
118  * Also note that we take the address to load from from the file itself.
119  */
120 SYSCALL_DEFINE1(uselib, const char __user *, library)
121 {
122         struct linux_binfmt *fmt;
123         struct file *file;
124         struct filename *tmp = getname(library);
125         int error = PTR_ERR(tmp);
126         static const struct open_flags uselib_flags = {
127                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
128                 .acc_mode = MAY_READ | MAY_EXEC,
129                 .intent = LOOKUP_OPEN,
130                 .lookup_flags = LOOKUP_FOLLOW,
131         };
132
133         if (IS_ERR(tmp))
134                 goto out;
135
136         file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
137         putname(tmp);
138         error = PTR_ERR(file);
139         if (IS_ERR(file))
140                 goto out;
141
142         error = -EINVAL;
143         if (!S_ISREG(file_inode(file)->i_mode))
144                 goto exit;
145
146         error = -EACCES;
147         if (path_noexec(&file->f_path))
148                 goto exit;
149
150         fsnotify_open(file);
151
152         error = -ENOEXEC;
153
154         read_lock(&binfmt_lock);
155         list_for_each_entry(fmt, &formats, lh) {
156                 if (!fmt->load_shlib)
157                         continue;
158                 if (!try_module_get(fmt->module))
159                         continue;
160                 read_unlock(&binfmt_lock);
161                 error = fmt->load_shlib(file);
162                 read_lock(&binfmt_lock);
163                 put_binfmt(fmt);
164                 if (error != -ENOEXEC)
165                         break;
166         }
167         read_unlock(&binfmt_lock);
168 exit:
169         fput(file);
170 out:
171         return error;
172 }
173 #endif /* #ifdef CONFIG_USELIB */
174
175 #ifdef CONFIG_MMU
176 /*
177  * The nascent bprm->mm is not visible until exec_mmap() but it can
178  * use a lot of memory, account these pages in current->mm temporary
179  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
180  * change the counter back via acct_arg_size(0).
181  */
182 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
183 {
184         struct mm_struct *mm = current->mm;
185         long diff = (long)(pages - bprm->vma_pages);
186
187         if (!mm || !diff)
188                 return;
189
190         bprm->vma_pages = pages;
191         add_mm_counter(mm, MM_ANONPAGES, diff);
192 }
193
194 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
195                 int write)
196 {
197         struct page *page;
198         int ret;
199         unsigned int gup_flags = FOLL_FORCE;
200
201 #ifdef CONFIG_STACK_GROWSUP
202         if (write) {
203                 ret = expand_downwards(bprm->vma, pos);
204                 if (ret < 0)
205                         return NULL;
206         }
207 #endif
208
209         if (write)
210                 gup_flags |= FOLL_WRITE;
211
212         /*
213          * We are doing an exec().  'current' is the process
214          * doing the exec and bprm->mm is the new process's mm.
215          */
216         ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
217                         &page, NULL, NULL);
218         if (ret <= 0)
219                 return NULL;
220
221         if (write)
222                 acct_arg_size(bprm, vma_pages(bprm->vma));
223
224         return page;
225 }
226
227 static void put_arg_page(struct page *page)
228 {
229         put_page(page);
230 }
231
232 static void free_arg_pages(struct linux_binprm *bprm)
233 {
234 }
235
236 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
237                 struct page *page)
238 {
239         flush_cache_page(bprm->vma, pos, page_to_pfn(page));
240 }
241
242 static int __bprm_mm_init(struct linux_binprm *bprm)
243 {
244         int err;
245         struct vm_area_struct *vma = NULL;
246         struct mm_struct *mm = bprm->mm;
247
248         bprm->vma = vma = vm_area_alloc(mm);
249         if (!vma)
250                 return -ENOMEM;
251         vma_set_anonymous(vma);
252
253         if (down_write_killable(&mm->mmap_sem)) {
254                 err = -EINTR;
255                 goto err_free;
256         }
257
258         /*
259          * Place the stack at the largest stack address the architecture
260          * supports. Later, we'll move this to an appropriate place. We don't
261          * use STACK_TOP because that can depend on attributes which aren't
262          * configured yet.
263          */
264         BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
265         vma->vm_end = STACK_TOP_MAX;
266         vma->vm_start = vma->vm_end - PAGE_SIZE;
267         vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
268         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
269
270         err = insert_vm_struct(mm, vma);
271         if (err)
272                 goto err;
273
274         mm->stack_vm = mm->total_vm = 1;
275         up_write(&mm->mmap_sem);
276         bprm->p = vma->vm_end - sizeof(void *);
277         return 0;
278 err:
279         up_write(&mm->mmap_sem);
280 err_free:
281         bprm->vma = NULL;
282         vm_area_free(vma);
283         return err;
284 }
285
286 static bool valid_arg_len(struct linux_binprm *bprm, long len)
287 {
288         return len <= MAX_ARG_STRLEN;
289 }
290
291 #else
292
293 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
294 {
295 }
296
297 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
298                 int write)
299 {
300         struct page *page;
301
302         page = bprm->page[pos / PAGE_SIZE];
303         if (!page && write) {
304                 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
305                 if (!page)
306                         return NULL;
307                 bprm->page[pos / PAGE_SIZE] = page;
308         }
309
310         return page;
311 }
312
313 static void put_arg_page(struct page *page)
314 {
315 }
316
317 static void free_arg_page(struct linux_binprm *bprm, int i)
318 {
319         if (bprm->page[i]) {
320                 __free_page(bprm->page[i]);
321                 bprm->page[i] = NULL;
322         }
323 }
324
325 static void free_arg_pages(struct linux_binprm *bprm)
326 {
327         int i;
328
329         for (i = 0; i < MAX_ARG_PAGES; i++)
330                 free_arg_page(bprm, i);
331 }
332
333 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
334                 struct page *page)
335 {
336 }
337
338 static int __bprm_mm_init(struct linux_binprm *bprm)
339 {
340         bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
341         return 0;
342 }
343
344 static bool valid_arg_len(struct linux_binprm *bprm, long len)
345 {
346         return len <= bprm->p;
347 }
348
349 #endif /* CONFIG_MMU */
350
351 /*
352  * Create a new mm_struct and populate it with a temporary stack
353  * vm_area_struct.  We don't have enough context at this point to set the stack
354  * flags, permissions, and offset, so we use temporary values.  We'll update
355  * them later in setup_arg_pages().
356  */
357 static int bprm_mm_init(struct linux_binprm *bprm)
358 {
359         int err;
360         struct mm_struct *mm = NULL;
361
362         bprm->mm = mm = mm_alloc();
363         err = -ENOMEM;
364         if (!mm)
365                 goto err;
366
367         /* Save current stack limit for all calculations made during exec. */
368         task_lock(current->group_leader);
369         bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
370         task_unlock(current->group_leader);
371
372         err = __bprm_mm_init(bprm);
373         if (err)
374                 goto err;
375
376         return 0;
377
378 err:
379         if (mm) {
380                 bprm->mm = NULL;
381                 mmdrop(mm);
382         }
383
384         return err;
385 }
386
387 struct user_arg_ptr {
388 #ifdef CONFIG_COMPAT
389         bool is_compat;
390 #endif
391         union {
392                 const char __user *const __user *native;
393 #ifdef CONFIG_COMPAT
394                 const compat_uptr_t __user *compat;
395 #endif
396         } ptr;
397 };
398
399 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
400 {
401         const char __user *native;
402
403 #ifdef CONFIG_COMPAT
404         if (unlikely(argv.is_compat)) {
405                 compat_uptr_t compat;
406
407                 if (get_user(compat, argv.ptr.compat + nr))
408                         return ERR_PTR(-EFAULT);
409
410                 return compat_ptr(compat);
411         }
412 #endif
413
414         if (get_user(native, argv.ptr.native + nr))
415                 return ERR_PTR(-EFAULT);
416
417         return native;
418 }
419
420 /*
421  * count() counts the number of strings in array ARGV.
422  */
423 static int count(struct user_arg_ptr argv, int max)
424 {
425         int i = 0;
426
427         if (argv.ptr.native != NULL) {
428                 for (;;) {
429                         const char __user *p = get_user_arg_ptr(argv, i);
430
431                         if (!p)
432                                 break;
433
434                         if (IS_ERR(p))
435                                 return -EFAULT;
436
437                         if (i >= max)
438                                 return -E2BIG;
439                         ++i;
440
441                         if (fatal_signal_pending(current))
442                                 return -ERESTARTNOHAND;
443                         cond_resched();
444                 }
445         }
446         return i;
447 }
448
449 static int prepare_arg_pages(struct linux_binprm *bprm,
450                         struct user_arg_ptr argv, struct user_arg_ptr envp)
451 {
452         unsigned long limit, ptr_size;
453
454         bprm->argc = count(argv, MAX_ARG_STRINGS);
455         if (bprm->argc < 0)
456                 return bprm->argc;
457
458         bprm->envc = count(envp, MAX_ARG_STRINGS);
459         if (bprm->envc < 0)
460                 return bprm->envc;
461
462         /*
463          * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
464          * (whichever is smaller) for the argv+env strings.
465          * This ensures that:
466          *  - the remaining binfmt code will not run out of stack space,
467          *  - the program will have a reasonable amount of stack left
468          *    to work from.
469          */
470         limit = _STK_LIM / 4 * 3;
471         limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
472         /*
473          * We've historically supported up to 32 pages (ARG_MAX)
474          * of argument strings even with small stacks
475          */
476         limit = max_t(unsigned long, limit, ARG_MAX);
477         /*
478          * We must account for the size of all the argv and envp pointers to
479          * the argv and envp strings, since they will also take up space in
480          * the stack. They aren't stored until much later when we can't
481          * signal to the parent that the child has run out of stack space.
482          * Instead, calculate it here so it's possible to fail gracefully.
483          */
484         ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
485         if (limit <= ptr_size)
486                 return -E2BIG;
487         limit -= ptr_size;
488
489         bprm->argmin = bprm->p - limit;
490         return 0;
491 }
492
493 /*
494  * 'copy_strings()' copies argument/environment strings from the old
495  * processes's memory to the new process's stack.  The call to get_user_pages()
496  * ensures the destination page is created and not swapped out.
497  */
498 static int copy_strings(int argc, struct user_arg_ptr argv,
499                         struct linux_binprm *bprm)
500 {
501         struct page *kmapped_page = NULL;
502         char *kaddr = NULL;
503         unsigned long kpos = 0;
504         int ret;
505
506         while (argc-- > 0) {
507                 const char __user *str;
508                 int len;
509                 unsigned long pos;
510
511                 ret = -EFAULT;
512                 str = get_user_arg_ptr(argv, argc);
513                 if (IS_ERR(str))
514                         goto out;
515
516                 len = strnlen_user(str, MAX_ARG_STRLEN);
517                 if (!len)
518                         goto out;
519
520                 ret = -E2BIG;
521                 if (!valid_arg_len(bprm, len))
522                         goto out;
523
524                 /* We're going to work our way backwords. */
525                 pos = bprm->p;
526                 str += len;
527                 bprm->p -= len;
528 #ifdef CONFIG_MMU
529                 if (bprm->p < bprm->argmin)
530                         goto out;
531 #endif
532
533                 while (len > 0) {
534                         int offset, bytes_to_copy;
535
536                         if (fatal_signal_pending(current)) {
537                                 ret = -ERESTARTNOHAND;
538                                 goto out;
539                         }
540                         cond_resched();
541
542                         offset = pos % PAGE_SIZE;
543                         if (offset == 0)
544                                 offset = PAGE_SIZE;
545
546                         bytes_to_copy = offset;
547                         if (bytes_to_copy > len)
548                                 bytes_to_copy = len;
549
550                         offset -= bytes_to_copy;
551                         pos -= bytes_to_copy;
552                         str -= bytes_to_copy;
553                         len -= bytes_to_copy;
554
555                         if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
556                                 struct page *page;
557
558                                 page = get_arg_page(bprm, pos, 1);
559                                 if (!page) {
560                                         ret = -E2BIG;
561                                         goto out;
562                                 }
563
564                                 if (kmapped_page) {
565                                         flush_kernel_dcache_page(kmapped_page);
566                                         kunmap(kmapped_page);
567                                         put_arg_page(kmapped_page);
568                                 }
569                                 kmapped_page = page;
570                                 kaddr = kmap(kmapped_page);
571                                 kpos = pos & PAGE_MASK;
572                                 flush_arg_page(bprm, kpos, kmapped_page);
573                         }
574                         if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
575                                 ret = -EFAULT;
576                                 goto out;
577                         }
578                 }
579         }
580         ret = 0;
581 out:
582         if (kmapped_page) {
583                 flush_kernel_dcache_page(kmapped_page);
584                 kunmap(kmapped_page);
585                 put_arg_page(kmapped_page);
586         }
587         return ret;
588 }
589
590 /*
591  * Like copy_strings, but get argv and its values from kernel memory.
592  */
593 int copy_strings_kernel(int argc, const char *const *__argv,
594                         struct linux_binprm *bprm)
595 {
596         int r;
597         mm_segment_t oldfs = get_fs();
598         struct user_arg_ptr argv = {
599                 .ptr.native = (const char __user *const  __user *)__argv,
600         };
601
602         set_fs(KERNEL_DS);
603         r = copy_strings(argc, argv, bprm);
604         set_fs(oldfs);
605
606         return r;
607 }
608 EXPORT_SYMBOL(copy_strings_kernel);
609
610 #ifdef CONFIG_MMU
611
612 /*
613  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
614  * the binfmt code determines where the new stack should reside, we shift it to
615  * its final location.  The process proceeds as follows:
616  *
617  * 1) Use shift to calculate the new vma endpoints.
618  * 2) Extend vma to cover both the old and new ranges.  This ensures the
619  *    arguments passed to subsequent functions are consistent.
620  * 3) Move vma's page tables to the new range.
621  * 4) Free up any cleared pgd range.
622  * 5) Shrink the vma to cover only the new range.
623  */
624 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
625 {
626         struct mm_struct *mm = vma->vm_mm;
627         unsigned long old_start = vma->vm_start;
628         unsigned long old_end = vma->vm_end;
629         unsigned long length = old_end - old_start;
630         unsigned long new_start = old_start - shift;
631         unsigned long new_end = old_end - shift;
632         struct mmu_gather tlb;
633
634         BUG_ON(new_start > new_end);
635
636         /*
637          * ensure there are no vmas between where we want to go
638          * and where we are
639          */
640         if (vma != find_vma(mm, new_start))
641                 return -EFAULT;
642
643         /*
644          * cover the whole range: [new_start, old_end)
645          */
646         if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
647                 return -ENOMEM;
648
649         /*
650          * move the page tables downwards, on failure we rely on
651          * process cleanup to remove whatever mess we made.
652          */
653         if (length != move_page_tables(vma, old_start,
654                                        vma, new_start, length, false))
655                 return -ENOMEM;
656
657         lru_add_drain();
658         tlb_gather_mmu(&tlb, mm, old_start, old_end);
659         if (new_end > old_start) {
660                 /*
661                  * when the old and new regions overlap clear from new_end.
662                  */
663                 free_pgd_range(&tlb, new_end, old_end, new_end,
664                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
665         } else {
666                 /*
667                  * otherwise, clean from old_start; this is done to not touch
668                  * the address space in [new_end, old_start) some architectures
669                  * have constraints on va-space that make this illegal (IA64) -
670                  * for the others its just a little faster.
671                  */
672                 free_pgd_range(&tlb, old_start, old_end, new_end,
673                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
674         }
675         tlb_finish_mmu(&tlb, old_start, old_end);
676
677         /*
678          * Shrink the vma to just the new range.  Always succeeds.
679          */
680         vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
681
682         return 0;
683 }
684
685 /*
686  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
687  * the stack is optionally relocated, and some extra space is added.
688  */
689 int setup_arg_pages(struct linux_binprm *bprm,
690                     unsigned long stack_top,
691                     int executable_stack)
692 {
693         unsigned long ret;
694         unsigned long stack_shift;
695         struct mm_struct *mm = current->mm;
696         struct vm_area_struct *vma = bprm->vma;
697         struct vm_area_struct *prev = NULL;
698         unsigned long vm_flags;
699         unsigned long stack_base;
700         unsigned long stack_size;
701         unsigned long stack_expand;
702         unsigned long rlim_stack;
703
704 #ifdef CONFIG_STACK_GROWSUP
705         /* Limit stack size */
706         stack_base = bprm->rlim_stack.rlim_max;
707         if (stack_base > STACK_SIZE_MAX)
708                 stack_base = STACK_SIZE_MAX;
709
710         /* Add space for stack randomization. */
711         stack_base += (STACK_RND_MASK << PAGE_SHIFT);
712
713         /* Make sure we didn't let the argument array grow too large. */
714         if (vma->vm_end - vma->vm_start > stack_base)
715                 return -ENOMEM;
716
717         stack_base = PAGE_ALIGN(stack_top - stack_base);
718
719         stack_shift = vma->vm_start - stack_base;
720         mm->arg_start = bprm->p - stack_shift;
721         bprm->p = vma->vm_end - stack_shift;
722 #else
723         stack_top = arch_align_stack(stack_top);
724         stack_top = PAGE_ALIGN(stack_top);
725
726         if (unlikely(stack_top < mmap_min_addr) ||
727             unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
728                 return -ENOMEM;
729
730         stack_shift = vma->vm_end - stack_top;
731
732         bprm->p -= stack_shift;
733         mm->arg_start = bprm->p;
734 #endif
735
736         if (bprm->loader)
737                 bprm->loader -= stack_shift;
738         bprm->exec -= stack_shift;
739
740         if (down_write_killable(&mm->mmap_sem))
741                 return -EINTR;
742
743         vm_flags = VM_STACK_FLAGS;
744
745         /*
746          * Adjust stack execute permissions; explicitly enable for
747          * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
748          * (arch default) otherwise.
749          */
750         if (unlikely(executable_stack == EXSTACK_ENABLE_X))
751                 vm_flags |= VM_EXEC;
752         else if (executable_stack == EXSTACK_DISABLE_X)
753                 vm_flags &= ~VM_EXEC;
754         vm_flags |= mm->def_flags;
755         vm_flags |= VM_STACK_INCOMPLETE_SETUP;
756
757         ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
758                         vm_flags);
759         if (ret)
760                 goto out_unlock;
761         BUG_ON(prev != vma);
762
763         if (unlikely(vm_flags & VM_EXEC)) {
764                 pr_warn_once("process '%pD4' started with executable stack\n",
765                              bprm->file);
766         }
767
768         /* Move stack pages down in memory. */
769         if (stack_shift) {
770                 ret = shift_arg_pages(vma, stack_shift);
771                 if (ret)
772                         goto out_unlock;
773         }
774
775         /* mprotect_fixup is overkill to remove the temporary stack flags */
776         vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
777
778         stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
779         stack_size = vma->vm_end - vma->vm_start;
780         /*
781          * Align this down to a page boundary as expand_stack
782          * will align it up.
783          */
784         rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
785 #ifdef CONFIG_STACK_GROWSUP
786         if (stack_size + stack_expand > rlim_stack)
787                 stack_base = vma->vm_start + rlim_stack;
788         else
789                 stack_base = vma->vm_end + stack_expand;
790 #else
791         if (stack_size + stack_expand > rlim_stack)
792                 stack_base = vma->vm_end - rlim_stack;
793         else
794                 stack_base = vma->vm_start - stack_expand;
795 #endif
796         current->mm->start_stack = bprm->p;
797         ret = expand_stack(vma, stack_base);
798         if (ret)
799                 ret = -EFAULT;
800
801 out_unlock:
802         up_write(&mm->mmap_sem);
803         return ret;
804 }
805 EXPORT_SYMBOL(setup_arg_pages);
806
807 #else
808
809 /*
810  * Transfer the program arguments and environment from the holding pages
811  * onto the stack. The provided stack pointer is adjusted accordingly.
812  */
813 int transfer_args_to_stack(struct linux_binprm *bprm,
814                            unsigned long *sp_location)
815 {
816         unsigned long index, stop, sp;
817         int ret = 0;
818
819         stop = bprm->p >> PAGE_SHIFT;
820         sp = *sp_location;
821
822         for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
823                 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
824                 char *src = kmap(bprm->page[index]) + offset;
825                 sp -= PAGE_SIZE - offset;
826                 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
827                         ret = -EFAULT;
828                 kunmap(bprm->page[index]);
829                 if (ret)
830                         goto out;
831         }
832
833         *sp_location = sp;
834
835 out:
836         return ret;
837 }
838 EXPORT_SYMBOL(transfer_args_to_stack);
839
840 #endif /* CONFIG_MMU */
841
842 static struct file *do_open_execat(int fd, struct filename *name, int flags)
843 {
844         struct file *file;
845         int err;
846         struct open_flags open_exec_flags = {
847                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
848                 .acc_mode = MAY_EXEC,
849                 .intent = LOOKUP_OPEN,
850                 .lookup_flags = LOOKUP_FOLLOW,
851         };
852
853         if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
854                 return ERR_PTR(-EINVAL);
855         if (flags & AT_SYMLINK_NOFOLLOW)
856                 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
857         if (flags & AT_EMPTY_PATH)
858                 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
859
860         file = do_filp_open(fd, name, &open_exec_flags);
861         if (IS_ERR(file))
862                 goto out;
863
864         err = -EACCES;
865         if (!S_ISREG(file_inode(file)->i_mode))
866                 goto exit;
867
868         if (path_noexec(&file->f_path))
869                 goto exit;
870
871         err = deny_write_access(file);
872         if (err)
873                 goto exit;
874
875         if (name->name[0] != '\0')
876                 fsnotify_open(file);
877
878 out:
879         return file;
880
881 exit:
882         fput(file);
883         return ERR_PTR(err);
884 }
885
886 struct file *open_exec(const char *name)
887 {
888         struct filename *filename = getname_kernel(name);
889         struct file *f = ERR_CAST(filename);
890
891         if (!IS_ERR(filename)) {
892                 f = do_open_execat(AT_FDCWD, filename, 0);
893                 putname(filename);
894         }
895         return f;
896 }
897 EXPORT_SYMBOL(open_exec);
898
899 int kernel_read_file(struct file *file, void **buf, loff_t *size,
900                      loff_t max_size, enum kernel_read_file_id id)
901 {
902         loff_t i_size, pos;
903         ssize_t bytes = 0;
904         int ret;
905
906         if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
907                 return -EINVAL;
908
909         ret = deny_write_access(file);
910         if (ret)
911                 return ret;
912
913         ret = security_kernel_read_file(file, id);
914         if (ret)
915                 goto out;
916
917         i_size = i_size_read(file_inode(file));
918         if (i_size <= 0) {
919                 ret = -EINVAL;
920                 goto out;
921         }
922         if (i_size > SIZE_MAX || (max_size > 0 && i_size > max_size)) {
923                 ret = -EFBIG;
924                 goto out;
925         }
926
927         if (id != READING_FIRMWARE_PREALLOC_BUFFER)
928                 *buf = vmalloc(i_size);
929         if (!*buf) {
930                 ret = -ENOMEM;
931                 goto out;
932         }
933
934         pos = 0;
935         while (pos < i_size) {
936                 bytes = kernel_read(file, *buf + pos, i_size - pos, &pos);
937                 if (bytes < 0) {
938                         ret = bytes;
939                         goto out_free;
940                 }
941
942                 if (bytes == 0)
943                         break;
944         }
945
946         if (pos != i_size) {
947                 ret = -EIO;
948                 goto out_free;
949         }
950
951         ret = security_kernel_post_read_file(file, *buf, i_size, id);
952         if (!ret)
953                 *size = pos;
954
955 out_free:
956         if (ret < 0) {
957                 if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
958                         vfree(*buf);
959                         *buf = NULL;
960                 }
961         }
962
963 out:
964         allow_write_access(file);
965         return ret;
966 }
967 EXPORT_SYMBOL_GPL(kernel_read_file);
968
969 int kernel_read_file_from_path(const char *path, void **buf, loff_t *size,
970                                loff_t max_size, enum kernel_read_file_id id)
971 {
972         struct file *file;
973         int ret;
974
975         if (!path || !*path)
976                 return -EINVAL;
977
978         file = filp_open(path, O_RDONLY, 0);
979         if (IS_ERR(file))
980                 return PTR_ERR(file);
981
982         ret = kernel_read_file(file, buf, size, max_size, id);
983         fput(file);
984         return ret;
985 }
986 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
987
988 int kernel_read_file_from_path_initns(const char *path, void **buf,
989                                       loff_t *size, loff_t max_size,
990                                       enum kernel_read_file_id id)
991 {
992         struct file *file;
993         struct path root;
994         int ret;
995
996         if (!path || !*path)
997                 return -EINVAL;
998
999         task_lock(&init_task);
1000         get_fs_root(init_task.fs, &root);
1001         task_unlock(&init_task);
1002
1003         file = file_open_root(root.dentry, root.mnt, path, O_RDONLY, 0);
1004         path_put(&root);
1005         if (IS_ERR(file))
1006                 return PTR_ERR(file);
1007
1008         ret = kernel_read_file(file, buf, size, max_size, id);
1009         fput(file);
1010         return ret;
1011 }
1012 EXPORT_SYMBOL_GPL(kernel_read_file_from_path_initns);
1013
1014 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
1015                              enum kernel_read_file_id id)
1016 {
1017         struct fd f = fdget(fd);
1018         int ret = -EBADF;
1019
1020         if (!f.file)
1021                 goto out;
1022
1023         ret = kernel_read_file(f.file, buf, size, max_size, id);
1024 out:
1025         fdput(f);
1026         return ret;
1027 }
1028 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
1029
1030 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
1031 {
1032         ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1033         if (res > 0)
1034                 flush_icache_range(addr, addr + len);
1035         return res;
1036 }
1037 EXPORT_SYMBOL(read_code);
1038
1039 static int exec_mmap(struct mm_struct *mm)
1040 {
1041         struct task_struct *tsk;
1042         struct mm_struct *old_mm, *active_mm;
1043
1044         /* Notify parent that we're no longer interested in the old VM */
1045         tsk = current;
1046         old_mm = current->mm;
1047         exec_mm_release(tsk, old_mm);
1048
1049         if (old_mm) {
1050                 sync_mm_rss(old_mm);
1051                 /*
1052                  * Make sure that if there is a core dump in progress
1053                  * for the old mm, we get out and die instead of going
1054                  * through with the exec.  We must hold mmap_sem around
1055                  * checking core_state and changing tsk->mm.
1056                  */
1057                 down_read(&old_mm->mmap_sem);
1058                 if (unlikely(old_mm->core_state)) {
1059                         up_read(&old_mm->mmap_sem);
1060                         return -EINTR;
1061                 }
1062         }
1063         task_lock(tsk);
1064         active_mm = tsk->active_mm;
1065         membarrier_exec_mmap(mm);
1066         tsk->mm = mm;
1067         tsk->active_mm = mm;
1068         activate_mm(active_mm, mm);
1069         tsk->mm->vmacache_seqnum = 0;
1070         vmacache_flush(tsk);
1071         task_unlock(tsk);
1072         if (old_mm) {
1073                 up_read(&old_mm->mmap_sem);
1074                 BUG_ON(active_mm != old_mm);
1075                 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1076                 mm_update_next_owner(old_mm);
1077                 mmput(old_mm);
1078                 return 0;
1079         }
1080         mmdrop(active_mm);
1081         return 0;
1082 }
1083
1084 /*
1085  * This function makes sure the current process has its own signal table,
1086  * so that flush_signal_handlers can later reset the handlers without
1087  * disturbing other processes.  (Other processes might share the signal
1088  * table via the CLONE_SIGHAND option to clone().)
1089  */
1090 static int de_thread(struct task_struct *tsk)
1091 {
1092         struct signal_struct *sig = tsk->signal;
1093         struct sighand_struct *oldsighand = tsk->sighand;
1094         spinlock_t *lock = &oldsighand->siglock;
1095
1096         if (thread_group_empty(tsk))
1097                 goto no_thread_group;
1098
1099         /*
1100          * Kill all other threads in the thread group.
1101          */
1102         spin_lock_irq(lock);
1103         if (signal_group_exit(sig)) {
1104                 /*
1105                  * Another group action in progress, just
1106                  * return so that the signal is processed.
1107                  */
1108                 spin_unlock_irq(lock);
1109                 return -EAGAIN;
1110         }
1111
1112         sig->group_exit_task = tsk;
1113         sig->notify_count = zap_other_threads(tsk);
1114         if (!thread_group_leader(tsk))
1115                 sig->notify_count--;
1116
1117         while (sig->notify_count) {
1118                 __set_current_state(TASK_KILLABLE);
1119                 spin_unlock_irq(lock);
1120                 schedule();
1121                 if (__fatal_signal_pending(tsk))
1122                         goto killed;
1123                 spin_lock_irq(lock);
1124         }
1125         spin_unlock_irq(lock);
1126
1127         /*
1128          * At this point all other threads have exited, all we have to
1129          * do is to wait for the thread group leader to become inactive,
1130          * and to assume its PID:
1131          */
1132         if (!thread_group_leader(tsk)) {
1133                 struct task_struct *leader = tsk->group_leader;
1134
1135                 for (;;) {
1136                         cgroup_threadgroup_change_begin(tsk);
1137                         write_lock_irq(&tasklist_lock);
1138                         /*
1139                          * Do this under tasklist_lock to ensure that
1140                          * exit_notify() can't miss ->group_exit_task
1141                          */
1142                         sig->notify_count = -1;
1143                         if (likely(leader->exit_state))
1144                                 break;
1145                         __set_current_state(TASK_KILLABLE);
1146                         write_unlock_irq(&tasklist_lock);
1147                         cgroup_threadgroup_change_end(tsk);
1148                         schedule();
1149                         if (__fatal_signal_pending(tsk))
1150                                 goto killed;
1151                 }
1152
1153                 /*
1154                  * The only record we have of the real-time age of a
1155                  * process, regardless of execs it's done, is start_time.
1156                  * All the past CPU time is accumulated in signal_struct
1157                  * from sister threads now dead.  But in this non-leader
1158                  * exec, nothing survives from the original leader thread,
1159                  * whose birth marks the true age of this process now.
1160                  * When we take on its identity by switching to its PID, we
1161                  * also take its birthdate (always earlier than our own).
1162                  */
1163                 tsk->start_time = leader->start_time;
1164                 tsk->start_boottime = leader->start_boottime;
1165
1166                 BUG_ON(!same_thread_group(leader, tsk));
1167                 BUG_ON(has_group_leader_pid(tsk));
1168                 /*
1169                  * An exec() starts a new thread group with the
1170                  * TGID of the previous thread group. Rehash the
1171                  * two threads with a switched PID, and release
1172                  * the former thread group leader:
1173                  */
1174
1175                 /* Become a process group leader with the old leader's pid.
1176                  * The old leader becomes a thread of the this thread group.
1177                  * Note: The old leader also uses this pid until release_task
1178                  *       is called.  Odd but simple and correct.
1179                  */
1180                 tsk->pid = leader->pid;
1181                 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1182                 transfer_pid(leader, tsk, PIDTYPE_TGID);
1183                 transfer_pid(leader, tsk, PIDTYPE_PGID);
1184                 transfer_pid(leader, tsk, PIDTYPE_SID);
1185
1186                 list_replace_rcu(&leader->tasks, &tsk->tasks);
1187                 list_replace_init(&leader->sibling, &tsk->sibling);
1188
1189                 tsk->group_leader = tsk;
1190                 leader->group_leader = tsk;
1191
1192                 tsk->exit_signal = SIGCHLD;
1193                 leader->exit_signal = -1;
1194
1195                 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1196                 leader->exit_state = EXIT_DEAD;
1197
1198                 /*
1199                  * We are going to release_task()->ptrace_unlink() silently,
1200                  * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1201                  * the tracer wont't block again waiting for this thread.
1202                  */
1203                 if (unlikely(leader->ptrace))
1204                         __wake_up_parent(leader, leader->parent);
1205                 write_unlock_irq(&tasklist_lock);
1206                 cgroup_threadgroup_change_end(tsk);
1207
1208                 release_task(leader);
1209         }
1210
1211         sig->group_exit_task = NULL;
1212         sig->notify_count = 0;
1213
1214 no_thread_group:
1215         /* we have changed execution domain */
1216         tsk->exit_signal = SIGCHLD;
1217
1218 #ifdef CONFIG_POSIX_TIMERS
1219         exit_itimers(sig);
1220         flush_itimer_signals();
1221 #endif
1222
1223         if (refcount_read(&oldsighand->count) != 1) {
1224                 struct sighand_struct *newsighand;
1225                 /*
1226                  * This ->sighand is shared with the CLONE_SIGHAND
1227                  * but not CLONE_THREAD task, switch to the new one.
1228                  */
1229                 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1230                 if (!newsighand)
1231                         return -ENOMEM;
1232
1233                 refcount_set(&newsighand->count, 1);
1234                 memcpy(newsighand->action, oldsighand->action,
1235                        sizeof(newsighand->action));
1236
1237                 write_lock_irq(&tasklist_lock);
1238                 spin_lock(&oldsighand->siglock);
1239                 rcu_assign_pointer(tsk->sighand, newsighand);
1240                 spin_unlock(&oldsighand->siglock);
1241                 write_unlock_irq(&tasklist_lock);
1242
1243                 __cleanup_sighand(oldsighand);
1244         }
1245
1246         BUG_ON(!thread_group_leader(tsk));
1247         return 0;
1248
1249 killed:
1250         /* protects against exit_notify() and __exit_signal() */
1251         read_lock(&tasklist_lock);
1252         sig->group_exit_task = NULL;
1253         sig->notify_count = 0;
1254         read_unlock(&tasklist_lock);
1255         return -EAGAIN;
1256 }
1257
1258 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1259 {
1260         task_lock(tsk);
1261         strncpy(buf, tsk->comm, buf_size);
1262         task_unlock(tsk);
1263         return buf;
1264 }
1265 EXPORT_SYMBOL_GPL(__get_task_comm);
1266
1267 /*
1268  * These functions flushes out all traces of the currently running executable
1269  * so that a new one can be started
1270  */
1271
1272 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1273 {
1274         task_lock(tsk);
1275         trace_task_rename(tsk, buf);
1276         strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1277         task_unlock(tsk);
1278         perf_event_comm(tsk, exec);
1279 }
1280
1281 /*
1282  * Calling this is the point of no return. None of the failures will be
1283  * seen by userspace since either the process is already taking a fatal
1284  * signal (via de_thread() or coredump), or will have SEGV raised
1285  * (after exec_mmap()) by search_binary_handlers (see below).
1286  */
1287 int flush_old_exec(struct linux_binprm * bprm)
1288 {
1289         int retval;
1290
1291         /*
1292          * Make sure we have a private signal table and that
1293          * we are unassociated from the previous thread group.
1294          */
1295         retval = de_thread(current);
1296         if (retval)
1297                 goto out;
1298
1299         /*
1300          * Must be called _before_ exec_mmap() as bprm->mm is
1301          * not visibile until then. This also enables the update
1302          * to be lockless.
1303          */
1304         set_mm_exe_file(bprm->mm, bprm->file);
1305
1306         /*
1307          * Release all of the old mmap stuff
1308          */
1309         acct_arg_size(bprm, 0);
1310         retval = exec_mmap(bprm->mm);
1311         if (retval)
1312                 goto out;
1313
1314         /*
1315          * After clearing bprm->mm (to mark that current is using the
1316          * prepared mm now), we have nothing left of the original
1317          * process. If anything from here on returns an error, the check
1318          * in search_binary_handler() will SEGV current.
1319          */
1320         bprm->mm = NULL;
1321
1322         set_fs(USER_DS);
1323         current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1324                                         PF_NOFREEZE | PF_NO_SETAFFINITY);
1325         flush_thread();
1326         current->personality &= ~bprm->per_clear;
1327
1328         /*
1329          * We have to apply CLOEXEC before we change whether the process is
1330          * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1331          * trying to access the should-be-closed file descriptors of a process
1332          * undergoing exec(2).
1333          */
1334         do_close_on_exec(current->files);
1335         return 0;
1336
1337 out:
1338         return retval;
1339 }
1340 EXPORT_SYMBOL(flush_old_exec);
1341
1342 void would_dump(struct linux_binprm *bprm, struct file *file)
1343 {
1344         struct inode *inode = file_inode(file);
1345         if (inode_permission(inode, MAY_READ) < 0) {
1346                 struct user_namespace *old, *user_ns;
1347                 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1348
1349                 /* Ensure mm->user_ns contains the executable */
1350                 user_ns = old = bprm->mm->user_ns;
1351                 while ((user_ns != &init_user_ns) &&
1352                        !privileged_wrt_inode_uidgid(user_ns, inode))
1353                         user_ns = user_ns->parent;
1354
1355                 if (old != user_ns) {
1356                         bprm->mm->user_ns = get_user_ns(user_ns);
1357                         put_user_ns(old);
1358                 }
1359         }
1360 }
1361 EXPORT_SYMBOL(would_dump);
1362
1363 void setup_new_exec(struct linux_binprm * bprm)
1364 {
1365         /*
1366          * Once here, prepare_binrpm() will not be called any more, so
1367          * the final state of setuid/setgid/fscaps can be merged into the
1368          * secureexec flag.
1369          */
1370         bprm->secureexec |= bprm->cap_elevated;
1371
1372         if (bprm->secureexec) {
1373                 /* Make sure parent cannot signal privileged process. */
1374                 current->pdeath_signal = 0;
1375
1376                 /*
1377                  * For secureexec, reset the stack limit to sane default to
1378                  * avoid bad behavior from the prior rlimits. This has to
1379                  * happen before arch_pick_mmap_layout(), which examines
1380                  * RLIMIT_STACK, but after the point of no return to avoid
1381                  * needing to clean up the change on failure.
1382                  */
1383                 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1384                         bprm->rlim_stack.rlim_cur = _STK_LIM;
1385         }
1386
1387         arch_pick_mmap_layout(current->mm, &bprm->rlim_stack);
1388
1389         current->sas_ss_sp = current->sas_ss_size = 0;
1390
1391         /*
1392          * Figure out dumpability. Note that this checking only of current
1393          * is wrong, but userspace depends on it. This should be testing
1394          * bprm->secureexec instead.
1395          */
1396         if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1397             !(uid_eq(current_euid(), current_uid()) &&
1398               gid_eq(current_egid(), current_gid())))
1399                 set_dumpable(current->mm, suid_dumpable);
1400         else
1401                 set_dumpable(current->mm, SUID_DUMP_USER);
1402
1403         arch_setup_new_exec();
1404         perf_event_exec();
1405         __set_task_comm(current, kbasename(bprm->filename), true);
1406
1407         /* Set the new mm task size. We have to do that late because it may
1408          * depend on TIF_32BIT which is only updated in flush_thread() on
1409          * some architectures like powerpc
1410          */
1411         current->mm->task_size = TASK_SIZE;
1412
1413         /* An exec changes our domain. We are no longer part of the thread
1414            group */
1415         current->self_exec_id++;
1416         flush_signal_handlers(current, 0);
1417 }
1418 EXPORT_SYMBOL(setup_new_exec);
1419
1420 /* Runs immediately before start_thread() takes over. */
1421 void finalize_exec(struct linux_binprm *bprm)
1422 {
1423         /* Store any stack rlimit changes before starting thread. */
1424         task_lock(current->group_leader);
1425         current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1426         task_unlock(current->group_leader);
1427 }
1428 EXPORT_SYMBOL(finalize_exec);
1429
1430 /*
1431  * Prepare credentials and lock ->cred_guard_mutex.
1432  * install_exec_creds() commits the new creds and drops the lock.
1433  * Or, if exec fails before, free_bprm() should release ->cred and
1434  * and unlock.
1435  */
1436 static int prepare_bprm_creds(struct linux_binprm *bprm)
1437 {
1438         if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1439                 return -ERESTARTNOINTR;
1440
1441         bprm->cred = prepare_exec_creds();
1442         if (likely(bprm->cred))
1443                 return 0;
1444
1445         mutex_unlock(&current->signal->cred_guard_mutex);
1446         return -ENOMEM;
1447 }
1448
1449 static void free_bprm(struct linux_binprm *bprm)
1450 {
1451         free_arg_pages(bprm);
1452         if (bprm->cred) {
1453                 mutex_unlock(&current->signal->cred_guard_mutex);
1454                 abort_creds(bprm->cred);
1455         }
1456         if (bprm->file) {
1457                 allow_write_access(bprm->file);
1458                 fput(bprm->file);
1459         }
1460         /* If a binfmt changed the interp, free it. */
1461         if (bprm->interp != bprm->filename)
1462                 kfree(bprm->interp);
1463         kfree(bprm);
1464 }
1465
1466 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1467 {
1468         /* If a binfmt changed the interp, free it first. */
1469         if (bprm->interp != bprm->filename)
1470                 kfree(bprm->interp);
1471         bprm->interp = kstrdup(interp, GFP_KERNEL);
1472         if (!bprm->interp)
1473                 return -ENOMEM;
1474         return 0;
1475 }
1476 EXPORT_SYMBOL(bprm_change_interp);
1477
1478 /*
1479  * install the new credentials for this executable
1480  */
1481 void install_exec_creds(struct linux_binprm *bprm)
1482 {
1483         security_bprm_committing_creds(bprm);
1484
1485         commit_creds(bprm->cred);
1486         bprm->cred = NULL;
1487
1488         /*
1489          * Disable monitoring for regular users
1490          * when executing setuid binaries. Must
1491          * wait until new credentials are committed
1492          * by commit_creds() above
1493          */
1494         if (get_dumpable(current->mm) != SUID_DUMP_USER)
1495                 perf_event_exit_task(current);
1496         /*
1497          * cred_guard_mutex must be held at least to this point to prevent
1498          * ptrace_attach() from altering our determination of the task's
1499          * credentials; any time after this it may be unlocked.
1500          */
1501         security_bprm_committed_creds(bprm);
1502         mutex_unlock(&current->signal->cred_guard_mutex);
1503 }
1504 EXPORT_SYMBOL(install_exec_creds);
1505
1506 /*
1507  * determine how safe it is to execute the proposed program
1508  * - the caller must hold ->cred_guard_mutex to protect against
1509  *   PTRACE_ATTACH or seccomp thread-sync
1510  */
1511 static void check_unsafe_exec(struct linux_binprm *bprm)
1512 {
1513         struct task_struct *p = current, *t;
1514         unsigned n_fs;
1515
1516         if (p->ptrace)
1517                 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1518
1519         /*
1520          * This isn't strictly necessary, but it makes it harder for LSMs to
1521          * mess up.
1522          */
1523         if (task_no_new_privs(current))
1524                 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1525
1526         t = p;
1527         n_fs = 1;
1528         spin_lock(&p->fs->lock);
1529         rcu_read_lock();
1530         while_each_thread(p, t) {
1531                 if (t->fs == p->fs)
1532                         n_fs++;
1533         }
1534         rcu_read_unlock();
1535
1536         if (p->fs->users > n_fs)
1537                 bprm->unsafe |= LSM_UNSAFE_SHARE;
1538         else
1539                 p->fs->in_exec = 1;
1540         spin_unlock(&p->fs->lock);
1541 }
1542
1543 static void bprm_fill_uid(struct linux_binprm *bprm)
1544 {
1545         struct inode *inode;
1546         unsigned int mode;
1547         kuid_t uid;
1548         kgid_t gid;
1549
1550         /*
1551          * Since this can be called multiple times (via prepare_binprm),
1552          * we must clear any previous work done when setting set[ug]id
1553          * bits from any earlier bprm->file uses (for example when run
1554          * first for a setuid script then again for its interpreter).
1555          */
1556         bprm->cred->euid = current_euid();
1557         bprm->cred->egid = current_egid();
1558
1559         if (!mnt_may_suid(bprm->file->f_path.mnt))
1560                 return;
1561
1562         if (task_no_new_privs(current))
1563                 return;
1564
1565         inode = bprm->file->f_path.dentry->d_inode;
1566         mode = READ_ONCE(inode->i_mode);
1567         if (!(mode & (S_ISUID|S_ISGID)))
1568                 return;
1569
1570         /* Be careful if suid/sgid is set */
1571         inode_lock(inode);
1572
1573         /* reload atomically mode/uid/gid now that lock held */
1574         mode = inode->i_mode;
1575         uid = inode->i_uid;
1576         gid = inode->i_gid;
1577         inode_unlock(inode);
1578
1579         /* We ignore suid/sgid if there are no mappings for them in the ns */
1580         if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1581                  !kgid_has_mapping(bprm->cred->user_ns, gid))
1582                 return;
1583
1584         if (mode & S_ISUID) {
1585                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1586                 bprm->cred->euid = uid;
1587         }
1588
1589         if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1590                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1591                 bprm->cred->egid = gid;
1592         }
1593 }
1594
1595 /*
1596  * Fill the binprm structure from the inode.
1597  * Check permissions, then read the first BINPRM_BUF_SIZE bytes
1598  *
1599  * This may be called multiple times for binary chains (scripts for example).
1600  */
1601 int prepare_binprm(struct linux_binprm *bprm)
1602 {
1603         int retval;
1604         loff_t pos = 0;
1605
1606         bprm_fill_uid(bprm);
1607
1608         /* fill in binprm security blob */
1609         retval = security_bprm_set_creds(bprm);
1610         if (retval)
1611                 return retval;
1612         bprm->called_set_creds = 1;
1613
1614         memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1615         return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1616 }
1617
1618 EXPORT_SYMBOL(prepare_binprm);
1619
1620 /*
1621  * Arguments are '\0' separated strings found at the location bprm->p
1622  * points to; chop off the first by relocating brpm->p to right after
1623  * the first '\0' encountered.
1624  */
1625 int remove_arg_zero(struct linux_binprm *bprm)
1626 {
1627         int ret = 0;
1628         unsigned long offset;
1629         char *kaddr;
1630         struct page *page;
1631
1632         if (!bprm->argc)
1633                 return 0;
1634
1635         do {
1636                 offset = bprm->p & ~PAGE_MASK;
1637                 page = get_arg_page(bprm, bprm->p, 0);
1638                 if (!page) {
1639                         ret = -EFAULT;
1640                         goto out;
1641                 }
1642                 kaddr = kmap_atomic(page);
1643
1644                 for (; offset < PAGE_SIZE && kaddr[offset];
1645                                 offset++, bprm->p++)
1646                         ;
1647
1648                 kunmap_atomic(kaddr);
1649                 put_arg_page(page);
1650         } while (offset == PAGE_SIZE);
1651
1652         bprm->p++;
1653         bprm->argc--;
1654         ret = 0;
1655
1656 out:
1657         return ret;
1658 }
1659 EXPORT_SYMBOL(remove_arg_zero);
1660
1661 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1662 /*
1663  * cycle the list of binary formats handler, until one recognizes the image
1664  */
1665 int search_binary_handler(struct linux_binprm *bprm)
1666 {
1667         bool need_retry = IS_ENABLED(CONFIG_MODULES);
1668         struct linux_binfmt *fmt;
1669         int retval;
1670
1671         /* This allows 4 levels of binfmt rewrites before failing hard. */
1672         if (bprm->recursion_depth > 5)
1673                 return -ELOOP;
1674
1675         retval = security_bprm_check(bprm);
1676         if (retval)
1677                 return retval;
1678
1679         retval = -ENOENT;
1680  retry:
1681         read_lock(&binfmt_lock);
1682         list_for_each_entry(fmt, &formats, lh) {
1683                 if (!try_module_get(fmt->module))
1684                         continue;
1685                 read_unlock(&binfmt_lock);
1686
1687                 bprm->recursion_depth++;
1688                 retval = fmt->load_binary(bprm);
1689                 bprm->recursion_depth--;
1690
1691                 read_lock(&binfmt_lock);
1692                 put_binfmt(fmt);
1693                 if (retval < 0 && !bprm->mm) {
1694                         /* we got to flush_old_exec() and failed after it */
1695                         read_unlock(&binfmt_lock);
1696                         force_sigsegv(SIGSEGV);
1697                         return retval;
1698                 }
1699                 if (retval != -ENOEXEC || !bprm->file) {
1700                         read_unlock(&binfmt_lock);
1701                         return retval;
1702                 }
1703         }
1704         read_unlock(&binfmt_lock);
1705
1706         if (need_retry) {
1707                 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1708                     printable(bprm->buf[2]) && printable(bprm->buf[3]))
1709                         return retval;
1710                 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1711                         return retval;
1712                 need_retry = false;
1713                 goto retry;
1714         }
1715
1716         return retval;
1717 }
1718 EXPORT_SYMBOL(search_binary_handler);
1719
1720 static int exec_binprm(struct linux_binprm *bprm)
1721 {
1722         pid_t old_pid, old_vpid;
1723         int ret;
1724
1725         /* Need to fetch pid before load_binary changes it */
1726         old_pid = current->pid;
1727         rcu_read_lock();
1728         old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1729         rcu_read_unlock();
1730
1731         ret = search_binary_handler(bprm);
1732         if (ret >= 0) {
1733                 audit_bprm(bprm);
1734                 trace_sched_process_exec(current, old_pid, bprm);
1735                 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1736                 proc_exec_connector(current);
1737         }
1738
1739         return ret;
1740 }
1741
1742 /*
1743  * sys_execve() executes a new program.
1744  */
1745 static int __do_execve_file(int fd, struct filename *filename,
1746                             struct user_arg_ptr argv,
1747                             struct user_arg_ptr envp,
1748                             int flags, struct file *file)
1749 {
1750         char *pathbuf = NULL;
1751         struct linux_binprm *bprm;
1752         struct files_struct *displaced;
1753         int retval;
1754
1755         if (IS_ERR(filename))
1756                 return PTR_ERR(filename);
1757
1758         /*
1759          * We move the actual failure in case of RLIMIT_NPROC excess from
1760          * set*uid() to execve() because too many poorly written programs
1761          * don't check setuid() return code.  Here we additionally recheck
1762          * whether NPROC limit is still exceeded.
1763          */
1764         if ((current->flags & PF_NPROC_EXCEEDED) &&
1765             atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1766                 retval = -EAGAIN;
1767                 goto out_ret;
1768         }
1769
1770         /* We're below the limit (still or again), so we don't want to make
1771          * further execve() calls fail. */
1772         current->flags &= ~PF_NPROC_EXCEEDED;
1773
1774         retval = unshare_files(&displaced);
1775         if (retval)
1776                 goto out_ret;
1777
1778         retval = -ENOMEM;
1779         bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1780         if (!bprm)
1781                 goto out_files;
1782
1783         retval = prepare_bprm_creds(bprm);
1784         if (retval)
1785                 goto out_free;
1786
1787         check_unsafe_exec(bprm);
1788         current->in_execve = 1;
1789
1790         if (!file)
1791                 file = do_open_execat(fd, filename, flags);
1792         retval = PTR_ERR(file);
1793         if (IS_ERR(file))
1794                 goto out_unmark;
1795
1796         sched_exec();
1797
1798         bprm->file = file;
1799         if (!filename) {
1800                 bprm->filename = "none";
1801         } else if (fd == AT_FDCWD || filename->name[0] == '/') {
1802                 bprm->filename = filename->name;
1803         } else {
1804                 if (filename->name[0] == '\0')
1805                         pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1806                 else
1807                         pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1808                                             fd, filename->name);
1809                 if (!pathbuf) {
1810                         retval = -ENOMEM;
1811                         goto out_unmark;
1812                 }
1813                 /*
1814                  * Record that a name derived from an O_CLOEXEC fd will be
1815                  * inaccessible after exec. Relies on having exclusive access to
1816                  * current->files (due to unshare_files above).
1817                  */
1818                 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1819                         bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1820                 bprm->filename = pathbuf;
1821         }
1822         bprm->interp = bprm->filename;
1823
1824         retval = bprm_mm_init(bprm);
1825         if (retval)
1826                 goto out_unmark;
1827
1828         retval = prepare_arg_pages(bprm, argv, envp);
1829         if (retval < 0)
1830                 goto out;
1831
1832         retval = prepare_binprm(bprm);
1833         if (retval < 0)
1834                 goto out;
1835
1836         retval = copy_strings_kernel(1, &bprm->filename, bprm);
1837         if (retval < 0)
1838                 goto out;
1839
1840         bprm->exec = bprm->p;
1841         retval = copy_strings(bprm->envc, envp, bprm);
1842         if (retval < 0)
1843                 goto out;
1844
1845         retval = copy_strings(bprm->argc, argv, bprm);
1846         if (retval < 0)
1847                 goto out;
1848
1849         would_dump(bprm, bprm->file);
1850
1851         retval = exec_binprm(bprm);
1852         if (retval < 0)
1853                 goto out;
1854
1855         /* execve succeeded */
1856         current->fs->in_exec = 0;
1857         current->in_execve = 0;
1858         rseq_execve(current);
1859         acct_update_integrals(current);
1860         task_numa_free(current, false);
1861         free_bprm(bprm);
1862         kfree(pathbuf);
1863         if (filename)
1864                 putname(filename);
1865         if (displaced)
1866                 put_files_struct(displaced);
1867         return retval;
1868
1869 out:
1870         if (bprm->mm) {
1871                 acct_arg_size(bprm, 0);
1872                 mmput(bprm->mm);
1873         }
1874
1875 out_unmark:
1876         current->fs->in_exec = 0;
1877         current->in_execve = 0;
1878
1879 out_free:
1880         free_bprm(bprm);
1881         kfree(pathbuf);
1882
1883 out_files:
1884         if (displaced)
1885                 reset_files_struct(displaced);
1886 out_ret:
1887         if (filename)
1888                 putname(filename);
1889         return retval;
1890 }
1891
1892 static int do_execveat_common(int fd, struct filename *filename,
1893                               struct user_arg_ptr argv,
1894                               struct user_arg_ptr envp,
1895                               int flags)
1896 {
1897         return __do_execve_file(fd, filename, argv, envp, flags, NULL);
1898 }
1899
1900 int do_execve_file(struct file *file, void *__argv, void *__envp)
1901 {
1902         struct user_arg_ptr argv = { .ptr.native = __argv };
1903         struct user_arg_ptr envp = { .ptr.native = __envp };
1904
1905         return __do_execve_file(AT_FDCWD, NULL, argv, envp, 0, file);
1906 }
1907
1908 int do_execve(struct filename *filename,
1909         const char __user *const __user *__argv,
1910         const char __user *const __user *__envp)
1911 {
1912         struct user_arg_ptr argv = { .ptr.native = __argv };
1913         struct user_arg_ptr envp = { .ptr.native = __envp };
1914         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1915 }
1916
1917 int do_execveat(int fd, struct filename *filename,
1918                 const char __user *const __user *__argv,
1919                 const char __user *const __user *__envp,
1920                 int flags)
1921 {
1922         struct user_arg_ptr argv = { .ptr.native = __argv };
1923         struct user_arg_ptr envp = { .ptr.native = __envp };
1924
1925         return do_execveat_common(fd, filename, argv, envp, flags);
1926 }
1927
1928 #ifdef CONFIG_COMPAT
1929 static int compat_do_execve(struct filename *filename,
1930         const compat_uptr_t __user *__argv,
1931         const compat_uptr_t __user *__envp)
1932 {
1933         struct user_arg_ptr argv = {
1934                 .is_compat = true,
1935                 .ptr.compat = __argv,
1936         };
1937         struct user_arg_ptr envp = {
1938                 .is_compat = true,
1939                 .ptr.compat = __envp,
1940         };
1941         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1942 }
1943
1944 static int compat_do_execveat(int fd, struct filename *filename,
1945                               const compat_uptr_t __user *__argv,
1946                               const compat_uptr_t __user *__envp,
1947                               int flags)
1948 {
1949         struct user_arg_ptr argv = {
1950                 .is_compat = true,
1951                 .ptr.compat = __argv,
1952         };
1953         struct user_arg_ptr envp = {
1954                 .is_compat = true,
1955                 .ptr.compat = __envp,
1956         };
1957         return do_execveat_common(fd, filename, argv, envp, flags);
1958 }
1959 #endif
1960
1961 void set_binfmt(struct linux_binfmt *new)
1962 {
1963         struct mm_struct *mm = current->mm;
1964
1965         if (mm->binfmt)
1966                 module_put(mm->binfmt->module);
1967
1968         mm->binfmt = new;
1969         if (new)
1970                 __module_get(new->module);
1971 }
1972 EXPORT_SYMBOL(set_binfmt);
1973
1974 /*
1975  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1976  */
1977 void set_dumpable(struct mm_struct *mm, int value)
1978 {
1979         if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1980                 return;
1981
1982         set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
1983 }
1984
1985 SYSCALL_DEFINE3(execve,
1986                 const char __user *, filename,
1987                 const char __user *const __user *, argv,
1988                 const char __user *const __user *, envp)
1989 {
1990         return do_execve(getname(filename), argv, envp);
1991 }
1992
1993 SYSCALL_DEFINE5(execveat,
1994                 int, fd, const char __user *, filename,
1995                 const char __user *const __user *, argv,
1996                 const char __user *const __user *, envp,
1997                 int, flags)
1998 {
1999         int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2000
2001         return do_execveat(fd,
2002                            getname_flags(filename, lookup_flags, NULL),
2003                            argv, envp, flags);
2004 }
2005
2006 #ifdef CONFIG_COMPAT
2007 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2008         const compat_uptr_t __user *, argv,
2009         const compat_uptr_t __user *, envp)
2010 {
2011         return compat_do_execve(getname(filename), argv, envp);
2012 }
2013
2014 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2015                        const char __user *, filename,
2016                        const compat_uptr_t __user *, argv,
2017                        const compat_uptr_t __user *, envp,
2018                        int,  flags)
2019 {
2020         int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2021
2022         return compat_do_execveat(fd,
2023                                   getname_flags(filename, lookup_flags, NULL),
2024                                   argv, envp, flags);
2025 }
2026 #endif