4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/proc_fs.h>
47 #include <linux/mount.h>
48 #include <linux/security.h>
49 #include <linux/syscalls.h>
50 #include <linux/tsacct_kern.h>
51 #include <linux/cn_proc.h>
52 #include <linux/audit.h>
53 #include <linux/tracehook.h>
54 #include <linux/kmod.h>
55 #include <linux/fsnotify.h>
56 #include <linux/fs_struct.h>
57 #include <linux/pipe_fs_i.h>
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
65 char core_pattern[CORENAME_MAX_SIZE] = "core";
66 unsigned int core_pipe_limit;
67 int suid_dumpable = 0;
69 /* The maximal length of core_pattern is also specified in sysctl.c */
71 static LIST_HEAD(formats);
72 static DEFINE_RWLOCK(binfmt_lock);
74 int __register_binfmt(struct linux_binfmt * fmt, int insert)
78 write_lock(&binfmt_lock);
79 insert ? list_add(&fmt->lh, &formats) :
80 list_add_tail(&fmt->lh, &formats);
81 write_unlock(&binfmt_lock);
85 EXPORT_SYMBOL(__register_binfmt);
87 void unregister_binfmt(struct linux_binfmt * fmt)
89 write_lock(&binfmt_lock);
91 write_unlock(&binfmt_lock);
94 EXPORT_SYMBOL(unregister_binfmt);
96 static inline void put_binfmt(struct linux_binfmt * fmt)
98 module_put(fmt->module);
102 * Note that a shared library must be both readable and executable due to
105 * Also note that we take the address to load from from the file itself.
107 SYSCALL_DEFINE1(uselib, const char __user *, library)
110 char *tmp = getname(library);
111 int error = PTR_ERR(tmp);
116 file = do_filp_open(AT_FDCWD, tmp,
117 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
118 MAY_READ | MAY_EXEC | MAY_OPEN);
120 error = PTR_ERR(file);
125 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
129 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
132 fsnotify_open(file->f_path.dentry);
136 struct linux_binfmt * fmt;
138 read_lock(&binfmt_lock);
139 list_for_each_entry(fmt, &formats, lh) {
140 if (!fmt->load_shlib)
142 if (!try_module_get(fmt->module))
144 read_unlock(&binfmt_lock);
145 error = fmt->load_shlib(file);
146 read_lock(&binfmt_lock);
148 if (error != -ENOEXEC)
151 read_unlock(&binfmt_lock);
161 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
167 #ifdef CONFIG_STACK_GROWSUP
169 ret = expand_stack_downwards(bprm->vma, pos);
174 ret = get_user_pages(current, bprm->mm, pos,
175 1, write, 1, &page, NULL);
180 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
184 * We've historically supported up to 32 pages (ARG_MAX)
185 * of argument strings even with small stacks
191 * Limit to 1/4-th the stack size for the argv+env strings.
193 * - the remaining binfmt code will not run out of stack space,
194 * - the program will have a reasonable amount of stack left
197 rlim = current->signal->rlim;
198 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
207 static void put_arg_page(struct page *page)
212 static void free_arg_page(struct linux_binprm *bprm, int i)
216 static void free_arg_pages(struct linux_binprm *bprm)
220 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
223 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
226 static int __bprm_mm_init(struct linux_binprm *bprm)
229 struct vm_area_struct *vma = NULL;
230 struct mm_struct *mm = bprm->mm;
232 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
236 down_write(&mm->mmap_sem);
240 * Place the stack at the largest stack address the architecture
241 * supports. Later, we'll move this to an appropriate place. We don't
242 * use STACK_TOP because that can depend on attributes which aren't
245 vma->vm_end = STACK_TOP_MAX;
246 vma->vm_start = vma->vm_end - PAGE_SIZE;
247 vma->vm_flags = VM_STACK_FLAGS;
248 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
249 INIT_LIST_HEAD(&vma->anon_vma_chain);
250 err = insert_vm_struct(mm, vma);
254 mm->stack_vm = mm->total_vm = 1;
255 up_write(&mm->mmap_sem);
256 bprm->p = vma->vm_end - sizeof(void *);
259 up_write(&mm->mmap_sem);
261 kmem_cache_free(vm_area_cachep, vma);
265 static bool valid_arg_len(struct linux_binprm *bprm, long len)
267 return len <= MAX_ARG_STRLEN;
272 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
277 page = bprm->page[pos / PAGE_SIZE];
278 if (!page && write) {
279 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
282 bprm->page[pos / PAGE_SIZE] = page;
288 static void put_arg_page(struct page *page)
292 static void free_arg_page(struct linux_binprm *bprm, int i)
295 __free_page(bprm->page[i]);
296 bprm->page[i] = NULL;
300 static void free_arg_pages(struct linux_binprm *bprm)
304 for (i = 0; i < MAX_ARG_PAGES; i++)
305 free_arg_page(bprm, i);
308 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
313 static int __bprm_mm_init(struct linux_binprm *bprm)
315 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
319 static bool valid_arg_len(struct linux_binprm *bprm, long len)
321 return len <= bprm->p;
324 #endif /* CONFIG_MMU */
327 * Create a new mm_struct and populate it with a temporary stack
328 * vm_area_struct. We don't have enough context at this point to set the stack
329 * flags, permissions, and offset, so we use temporary values. We'll update
330 * them later in setup_arg_pages().
332 int bprm_mm_init(struct linux_binprm *bprm)
335 struct mm_struct *mm = NULL;
337 bprm->mm = mm = mm_alloc();
342 err = init_new_context(current, mm);
346 err = __bprm_mm_init(bprm);
362 * count() counts the number of strings in array ARGV.
364 static int count(char __user * __user * argv, int max)
372 if (get_user(p, argv))
386 * 'copy_strings()' copies argument/environment strings from the old
387 * processes's memory to the new process's stack. The call to get_user_pages()
388 * ensures the destination page is created and not swapped out.
390 static int copy_strings(int argc, char __user * __user * argv,
391 struct linux_binprm *bprm)
393 struct page *kmapped_page = NULL;
395 unsigned long kpos = 0;
403 if (get_user(str, argv+argc) ||
404 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
409 if (!valid_arg_len(bprm, len)) {
414 /* We're going to work our way backwords. */
420 int offset, bytes_to_copy;
422 offset = pos % PAGE_SIZE;
426 bytes_to_copy = offset;
427 if (bytes_to_copy > len)
430 offset -= bytes_to_copy;
431 pos -= bytes_to_copy;
432 str -= bytes_to_copy;
433 len -= bytes_to_copy;
435 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
438 page = get_arg_page(bprm, pos, 1);
445 flush_kernel_dcache_page(kmapped_page);
446 kunmap(kmapped_page);
447 put_arg_page(kmapped_page);
450 kaddr = kmap(kmapped_page);
451 kpos = pos & PAGE_MASK;
452 flush_arg_page(bprm, kpos, kmapped_page);
454 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
463 flush_kernel_dcache_page(kmapped_page);
464 kunmap(kmapped_page);
465 put_arg_page(kmapped_page);
471 * Like copy_strings, but get argv and its values from kernel memory.
473 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
476 mm_segment_t oldfs = get_fs();
478 r = copy_strings(argc, (char __user * __user *)argv, bprm);
482 EXPORT_SYMBOL(copy_strings_kernel);
487 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
488 * the binfmt code determines where the new stack should reside, we shift it to
489 * its final location. The process proceeds as follows:
491 * 1) Use shift to calculate the new vma endpoints.
492 * 2) Extend vma to cover both the old and new ranges. This ensures the
493 * arguments passed to subsequent functions are consistent.
494 * 3) Move vma's page tables to the new range.
495 * 4) Free up any cleared pgd range.
496 * 5) Shrink the vma to cover only the new range.
498 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
500 struct mm_struct *mm = vma->vm_mm;
501 unsigned long old_start = vma->vm_start;
502 unsigned long old_end = vma->vm_end;
503 unsigned long length = old_end - old_start;
504 unsigned long new_start = old_start - shift;
505 unsigned long new_end = old_end - shift;
506 struct mmu_gather *tlb;
508 BUG_ON(new_start > new_end);
511 * ensure there are no vmas between where we want to go
514 if (vma != find_vma(mm, new_start))
518 * cover the whole range: [new_start, old_end)
520 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
524 * move the page tables downwards, on failure we rely on
525 * process cleanup to remove whatever mess we made.
527 if (length != move_page_tables(vma, old_start,
528 vma, new_start, length))
532 tlb = tlb_gather_mmu(mm, 0);
533 if (new_end > old_start) {
535 * when the old and new regions overlap clear from new_end.
537 free_pgd_range(tlb, new_end, old_end, new_end,
538 vma->vm_next ? vma->vm_next->vm_start : 0);
541 * otherwise, clean from old_start; this is done to not touch
542 * the address space in [new_end, old_start) some architectures
543 * have constraints on va-space that make this illegal (IA64) -
544 * for the others its just a little faster.
546 free_pgd_range(tlb, old_start, old_end, new_end,
547 vma->vm_next ? vma->vm_next->vm_start : 0);
549 tlb_finish_mmu(tlb, new_end, old_end);
552 * Shrink the vma to just the new range. Always succeeds.
554 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
560 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
561 * the stack is optionally relocated, and some extra space is added.
563 int setup_arg_pages(struct linux_binprm *bprm,
564 unsigned long stack_top,
565 int executable_stack)
568 unsigned long stack_shift;
569 struct mm_struct *mm = current->mm;
570 struct vm_area_struct *vma = bprm->vma;
571 struct vm_area_struct *prev = NULL;
572 unsigned long vm_flags;
573 unsigned long stack_base;
574 unsigned long stack_size;
575 unsigned long stack_expand;
576 unsigned long rlim_stack;
578 #ifdef CONFIG_STACK_GROWSUP
579 /* Limit stack size to 1GB */
580 stack_base = rlimit_max(RLIMIT_STACK);
581 if (stack_base > (1 << 30))
582 stack_base = 1 << 30;
584 /* Make sure we didn't let the argument array grow too large. */
585 if (vma->vm_end - vma->vm_start > stack_base)
588 stack_base = PAGE_ALIGN(stack_top - stack_base);
590 stack_shift = vma->vm_start - stack_base;
591 mm->arg_start = bprm->p - stack_shift;
592 bprm->p = vma->vm_end - stack_shift;
594 stack_top = arch_align_stack(stack_top);
595 stack_top = PAGE_ALIGN(stack_top);
596 stack_shift = vma->vm_end - stack_top;
598 bprm->p -= stack_shift;
599 mm->arg_start = bprm->p;
603 bprm->loader -= stack_shift;
604 bprm->exec -= stack_shift;
606 down_write(&mm->mmap_sem);
607 vm_flags = VM_STACK_FLAGS;
610 * Adjust stack execute permissions; explicitly enable for
611 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
612 * (arch default) otherwise.
614 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
616 else if (executable_stack == EXSTACK_DISABLE_X)
617 vm_flags &= ~VM_EXEC;
618 vm_flags |= mm->def_flags;
620 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
626 /* Move stack pages down in memory. */
628 ret = shift_arg_pages(vma, stack_shift);
633 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
634 stack_size = vma->vm_end - vma->vm_start;
636 * Align this down to a page boundary as expand_stack
639 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
640 #ifdef CONFIG_STACK_GROWSUP
641 if (stack_size + stack_expand > rlim_stack)
642 stack_base = vma->vm_start + rlim_stack;
644 stack_base = vma->vm_end + stack_expand;
646 if (stack_size + stack_expand > rlim_stack)
647 stack_base = vma->vm_end - rlim_stack;
649 stack_base = vma->vm_start - stack_expand;
651 ret = expand_stack(vma, stack_base);
656 up_write(&mm->mmap_sem);
659 EXPORT_SYMBOL(setup_arg_pages);
661 #endif /* CONFIG_MMU */
663 struct file *open_exec(const char *name)
668 file = do_filp_open(AT_FDCWD, name,
669 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
670 MAY_EXEC | MAY_OPEN);
675 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
678 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
681 fsnotify_open(file->f_path.dentry);
683 err = deny_write_access(file);
694 EXPORT_SYMBOL(open_exec);
696 int kernel_read(struct file *file, loff_t offset,
697 char *addr, unsigned long count)
705 /* The cast to a user pointer is valid due to the set_fs() */
706 result = vfs_read(file, (void __user *)addr, count, &pos);
711 EXPORT_SYMBOL(kernel_read);
713 static int exec_mmap(struct mm_struct *mm)
715 struct task_struct *tsk;
716 struct mm_struct * old_mm, *active_mm;
718 /* Notify parent that we're no longer interested in the old VM */
720 old_mm = current->mm;
721 sync_mm_rss(tsk, old_mm);
722 mm_release(tsk, old_mm);
726 * Make sure that if there is a core dump in progress
727 * for the old mm, we get out and die instead of going
728 * through with the exec. We must hold mmap_sem around
729 * checking core_state and changing tsk->mm.
731 down_read(&old_mm->mmap_sem);
732 if (unlikely(old_mm->core_state)) {
733 up_read(&old_mm->mmap_sem);
738 active_mm = tsk->active_mm;
741 activate_mm(active_mm, mm);
743 arch_pick_mmap_layout(mm);
745 up_read(&old_mm->mmap_sem);
746 BUG_ON(active_mm != old_mm);
747 mm_update_next_owner(old_mm);
756 * This function makes sure the current process has its own signal table,
757 * so that flush_signal_handlers can later reset the handlers without
758 * disturbing other processes. (Other processes might share the signal
759 * table via the CLONE_SIGHAND option to clone().)
761 static int de_thread(struct task_struct *tsk)
763 struct signal_struct *sig = tsk->signal;
764 struct sighand_struct *oldsighand = tsk->sighand;
765 spinlock_t *lock = &oldsighand->siglock;
768 if (thread_group_empty(tsk))
769 goto no_thread_group;
772 * Kill all other threads in the thread group.
775 if (signal_group_exit(sig)) {
777 * Another group action in progress, just
778 * return so that the signal is processed.
780 spin_unlock_irq(lock);
783 sig->group_exit_task = tsk;
784 zap_other_threads(tsk);
786 /* Account for the thread group leader hanging around: */
787 count = thread_group_leader(tsk) ? 1 : 2;
788 sig->notify_count = count;
789 while (atomic_read(&sig->count) > count) {
790 __set_current_state(TASK_UNINTERRUPTIBLE);
791 spin_unlock_irq(lock);
795 spin_unlock_irq(lock);
798 * At this point all other threads have exited, all we have to
799 * do is to wait for the thread group leader to become inactive,
800 * and to assume its PID:
802 if (!thread_group_leader(tsk)) {
803 struct task_struct *leader = tsk->group_leader;
805 sig->notify_count = -1; /* for exit_notify() */
807 write_lock_irq(&tasklist_lock);
808 if (likely(leader->exit_state))
810 __set_current_state(TASK_UNINTERRUPTIBLE);
811 write_unlock_irq(&tasklist_lock);
816 * The only record we have of the real-time age of a
817 * process, regardless of execs it's done, is start_time.
818 * All the past CPU time is accumulated in signal_struct
819 * from sister threads now dead. But in this non-leader
820 * exec, nothing survives from the original leader thread,
821 * whose birth marks the true age of this process now.
822 * When we take on its identity by switching to its PID, we
823 * also take its birthdate (always earlier than our own).
825 tsk->start_time = leader->start_time;
827 BUG_ON(!same_thread_group(leader, tsk));
828 BUG_ON(has_group_leader_pid(tsk));
830 * An exec() starts a new thread group with the
831 * TGID of the previous thread group. Rehash the
832 * two threads with a switched PID, and release
833 * the former thread group leader:
836 /* Become a process group leader with the old leader's pid.
837 * The old leader becomes a thread of the this thread group.
838 * Note: The old leader also uses this pid until release_task
839 * is called. Odd but simple and correct.
841 detach_pid(tsk, PIDTYPE_PID);
842 tsk->pid = leader->pid;
843 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
844 transfer_pid(leader, tsk, PIDTYPE_PGID);
845 transfer_pid(leader, tsk, PIDTYPE_SID);
847 list_replace_rcu(&leader->tasks, &tsk->tasks);
848 list_replace_init(&leader->sibling, &tsk->sibling);
850 tsk->group_leader = tsk;
851 leader->group_leader = tsk;
853 tsk->exit_signal = SIGCHLD;
855 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
856 leader->exit_state = EXIT_DEAD;
857 write_unlock_irq(&tasklist_lock);
859 release_task(leader);
862 sig->group_exit_task = NULL;
863 sig->notify_count = 0;
867 setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
870 flush_itimer_signals();
872 if (atomic_read(&oldsighand->count) != 1) {
873 struct sighand_struct *newsighand;
875 * This ->sighand is shared with the CLONE_SIGHAND
876 * but not CLONE_THREAD task, switch to the new one.
878 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
882 atomic_set(&newsighand->count, 1);
883 memcpy(newsighand->action, oldsighand->action,
884 sizeof(newsighand->action));
886 write_lock_irq(&tasklist_lock);
887 spin_lock(&oldsighand->siglock);
888 rcu_assign_pointer(tsk->sighand, newsighand);
889 spin_unlock(&oldsighand->siglock);
890 write_unlock_irq(&tasklist_lock);
892 __cleanup_sighand(oldsighand);
895 BUG_ON(!thread_group_leader(tsk));
900 * These functions flushes out all traces of the currently running executable
901 * so that a new one can be started
903 static void flush_old_files(struct files_struct * files)
908 spin_lock(&files->file_lock);
910 unsigned long set, i;
914 fdt = files_fdtable(files);
915 if (i >= fdt->max_fds)
917 set = fdt->close_on_exec->fds_bits[j];
920 fdt->close_on_exec->fds_bits[j] = 0;
921 spin_unlock(&files->file_lock);
922 for ( ; set ; i++,set >>= 1) {
927 spin_lock(&files->file_lock);
930 spin_unlock(&files->file_lock);
933 char *get_task_comm(char *buf, struct task_struct *tsk)
935 /* buf must be at least sizeof(tsk->comm) in size */
937 strncpy(buf, tsk->comm, sizeof(tsk->comm));
942 void set_task_comm(struct task_struct *tsk, char *buf)
947 * Threads may access current->comm without holding
948 * the task lock, so write the string carefully.
949 * Readers without a lock may see incomplete new
950 * names but are safe from non-terminating string reads.
952 memset(tsk->comm, 0, TASK_COMM_LEN);
954 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
956 perf_event_comm(tsk);
959 int flush_old_exec(struct linux_binprm * bprm)
964 * Make sure we have a private signal table and that
965 * we are unassociated from the previous thread group.
967 retval = de_thread(current);
971 set_mm_exe_file(bprm->mm, bprm->file);
974 * Release all of the old mmap stuff
976 retval = exec_mmap(bprm->mm);
980 bprm->mm = NULL; /* We're using it now */
982 current->flags &= ~PF_RANDOMIZE;
984 current->personality &= ~bprm->per_clear;
991 EXPORT_SYMBOL(flush_old_exec);
993 void setup_new_exec(struct linux_binprm * bprm)
997 char tcomm[sizeof(current->comm)];
999 arch_pick_mmap_layout(current->mm);
1001 /* This is the point of no return */
1002 current->sas_ss_sp = current->sas_ss_size = 0;
1004 if (current_euid() == current_uid() && current_egid() == current_gid())
1005 set_dumpable(current->mm, 1);
1007 set_dumpable(current->mm, suid_dumpable);
1009 name = bprm->filename;
1011 /* Copies the binary name from after last slash */
1012 for (i=0; (ch = *(name++)) != '\0';) {
1014 i = 0; /* overwrite what we wrote */
1016 if (i < (sizeof(tcomm) - 1))
1020 set_task_comm(current, tcomm);
1022 /* Set the new mm task size. We have to do that late because it may
1023 * depend on TIF_32BIT which is only updated in flush_thread() on
1024 * some architectures like powerpc
1026 current->mm->task_size = TASK_SIZE;
1028 /* install the new credentials */
1029 if (bprm->cred->uid != current_euid() ||
1030 bprm->cred->gid != current_egid()) {
1031 current->pdeath_signal = 0;
1032 } else if (file_permission(bprm->file, MAY_READ) ||
1033 bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
1034 set_dumpable(current->mm, suid_dumpable);
1038 * Flush performance counters when crossing a
1041 if (!get_dumpable(current->mm))
1042 perf_event_exit_task(current);
1044 /* An exec changes our domain. We are no longer part of the thread
1047 current->self_exec_id++;
1049 flush_signal_handlers(current, 0);
1050 flush_old_files(current->files);
1052 EXPORT_SYMBOL(setup_new_exec);
1055 * Prepare credentials and lock ->cred_guard_mutex.
1056 * install_exec_creds() commits the new creds and drops the lock.
1057 * Or, if exec fails before, free_bprm() should release ->cred and
1060 int prepare_bprm_creds(struct linux_binprm *bprm)
1062 if (mutex_lock_interruptible(¤t->cred_guard_mutex))
1063 return -ERESTARTNOINTR;
1065 bprm->cred = prepare_exec_creds();
1066 if (likely(bprm->cred))
1069 mutex_unlock(¤t->cred_guard_mutex);
1073 void free_bprm(struct linux_binprm *bprm)
1075 free_arg_pages(bprm);
1077 mutex_unlock(¤t->cred_guard_mutex);
1078 abort_creds(bprm->cred);
1084 * install the new credentials for this executable
1086 void install_exec_creds(struct linux_binprm *bprm)
1088 security_bprm_committing_creds(bprm);
1090 commit_creds(bprm->cred);
1093 * cred_guard_mutex must be held at least to this point to prevent
1094 * ptrace_attach() from altering our determination of the task's
1095 * credentials; any time after this it may be unlocked.
1097 security_bprm_committed_creds(bprm);
1098 mutex_unlock(¤t->cred_guard_mutex);
1100 EXPORT_SYMBOL(install_exec_creds);
1103 * determine how safe it is to execute the proposed program
1104 * - the caller must hold current->cred_guard_mutex to protect against
1107 int check_unsafe_exec(struct linux_binprm *bprm)
1109 struct task_struct *p = current, *t;
1113 bprm->unsafe = tracehook_unsafe_exec(p);
1116 write_lock(&p->fs->lock);
1118 for (t = next_thread(p); t != p; t = next_thread(t)) {
1124 if (p->fs->users > n_fs) {
1125 bprm->unsafe |= LSM_UNSAFE_SHARE;
1128 if (!p->fs->in_exec) {
1133 write_unlock(&p->fs->lock);
1139 * Fill the binprm structure from the inode.
1140 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1142 * This may be called multiple times for binary chains (scripts for example).
1144 int prepare_binprm(struct linux_binprm *bprm)
1147 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1150 mode = inode->i_mode;
1151 if (bprm->file->f_op == NULL)
1154 /* clear any previous set[ug]id data from a previous binary */
1155 bprm->cred->euid = current_euid();
1156 bprm->cred->egid = current_egid();
1158 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1160 if (mode & S_ISUID) {
1161 bprm->per_clear |= PER_CLEAR_ON_SETID;
1162 bprm->cred->euid = inode->i_uid;
1167 * If setgid is set but no group execute bit then this
1168 * is a candidate for mandatory locking, not a setgid
1171 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1172 bprm->per_clear |= PER_CLEAR_ON_SETID;
1173 bprm->cred->egid = inode->i_gid;
1177 /* fill in binprm security blob */
1178 retval = security_bprm_set_creds(bprm);
1181 bprm->cred_prepared = 1;
1183 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1184 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1187 EXPORT_SYMBOL(prepare_binprm);
1190 * Arguments are '\0' separated strings found at the location bprm->p
1191 * points to; chop off the first by relocating brpm->p to right after
1192 * the first '\0' encountered.
1194 int remove_arg_zero(struct linux_binprm *bprm)
1197 unsigned long offset;
1205 offset = bprm->p & ~PAGE_MASK;
1206 page = get_arg_page(bprm, bprm->p, 0);
1211 kaddr = kmap_atomic(page, KM_USER0);
1213 for (; offset < PAGE_SIZE && kaddr[offset];
1214 offset++, bprm->p++)
1217 kunmap_atomic(kaddr, KM_USER0);
1220 if (offset == PAGE_SIZE)
1221 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1222 } while (offset == PAGE_SIZE);
1231 EXPORT_SYMBOL(remove_arg_zero);
1234 * cycle the list of binary formats handler, until one recognizes the image
1236 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1238 unsigned int depth = bprm->recursion_depth;
1240 struct linux_binfmt *fmt;
1242 retval = security_bprm_check(bprm);
1246 /* kernel module loader fixup */
1247 /* so we don't try to load run modprobe in kernel space. */
1250 retval = audit_bprm(bprm);
1255 for (try=0; try<2; try++) {
1256 read_lock(&binfmt_lock);
1257 list_for_each_entry(fmt, &formats, lh) {
1258 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1261 if (!try_module_get(fmt->module))
1263 read_unlock(&binfmt_lock);
1264 retval = fn(bprm, regs);
1266 * Restore the depth counter to its starting value
1267 * in this call, so we don't have to rely on every
1268 * load_binary function to restore it on return.
1270 bprm->recursion_depth = depth;
1273 tracehook_report_exec(fmt, bprm, regs);
1275 allow_write_access(bprm->file);
1279 current->did_exec = 1;
1280 proc_exec_connector(current);
1283 read_lock(&binfmt_lock);
1285 if (retval != -ENOEXEC || bprm->mm == NULL)
1288 read_unlock(&binfmt_lock);
1292 read_unlock(&binfmt_lock);
1293 if (retval != -ENOEXEC || bprm->mm == NULL) {
1295 #ifdef CONFIG_MODULES
1297 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1298 if (printable(bprm->buf[0]) &&
1299 printable(bprm->buf[1]) &&
1300 printable(bprm->buf[2]) &&
1301 printable(bprm->buf[3]))
1302 break; /* -ENOEXEC */
1303 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1310 EXPORT_SYMBOL(search_binary_handler);
1313 * sys_execve() executes a new program.
1315 int do_execve(char * filename,
1316 char __user *__user *argv,
1317 char __user *__user *envp,
1318 struct pt_regs * regs)
1320 struct linux_binprm *bprm;
1322 struct files_struct *displaced;
1326 retval = unshare_files(&displaced);
1331 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1335 retval = prepare_bprm_creds(bprm);
1339 retval = check_unsafe_exec(bprm);
1342 clear_in_exec = retval;
1343 current->in_execve = 1;
1345 file = open_exec(filename);
1346 retval = PTR_ERR(file);
1353 bprm->filename = filename;
1354 bprm->interp = filename;
1356 retval = bprm_mm_init(bprm);
1360 bprm->argc = count(argv, MAX_ARG_STRINGS);
1361 if ((retval = bprm->argc) < 0)
1364 bprm->envc = count(envp, MAX_ARG_STRINGS);
1365 if ((retval = bprm->envc) < 0)
1368 retval = prepare_binprm(bprm);
1372 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1376 bprm->exec = bprm->p;
1377 retval = copy_strings(bprm->envc, envp, bprm);
1381 retval = copy_strings(bprm->argc, argv, bprm);
1385 current->flags &= ~PF_KTHREAD;
1386 retval = search_binary_handler(bprm,regs);
1390 current->stack_start = current->mm->start_stack;
1392 /* execve succeeded */
1393 current->fs->in_exec = 0;
1394 current->in_execve = 0;
1395 acct_update_integrals(current);
1398 put_files_struct(displaced);
1407 allow_write_access(bprm->file);
1413 current->fs->in_exec = 0;
1414 current->in_execve = 0;
1421 reset_files_struct(displaced);
1426 void set_binfmt(struct linux_binfmt *new)
1428 struct mm_struct *mm = current->mm;
1431 module_put(mm->binfmt->module);
1435 __module_get(new->module);
1438 EXPORT_SYMBOL(set_binfmt);
1440 /* format_corename will inspect the pattern parameter, and output a
1441 * name into corename, which must have space for at least
1442 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1444 static int format_corename(char *corename, long signr)
1446 const struct cred *cred = current_cred();
1447 const char *pat_ptr = core_pattern;
1448 int ispipe = (*pat_ptr == '|');
1449 char *out_ptr = corename;
1450 char *const out_end = corename + CORENAME_MAX_SIZE;
1452 int pid_in_pattern = 0;
1454 /* Repeat as long as we have more pattern to process and more output
1457 if (*pat_ptr != '%') {
1458 if (out_ptr == out_end)
1460 *out_ptr++ = *pat_ptr++;
1462 switch (*++pat_ptr) {
1465 /* Double percent, output one percent */
1467 if (out_ptr == out_end)
1474 rc = snprintf(out_ptr, out_end - out_ptr,
1475 "%d", task_tgid_vnr(current));
1476 if (rc > out_end - out_ptr)
1482 rc = snprintf(out_ptr, out_end - out_ptr,
1484 if (rc > out_end - out_ptr)
1490 rc = snprintf(out_ptr, out_end - out_ptr,
1492 if (rc > out_end - out_ptr)
1496 /* signal that caused the coredump */
1498 rc = snprintf(out_ptr, out_end - out_ptr,
1500 if (rc > out_end - out_ptr)
1504 /* UNIX time of coredump */
1507 do_gettimeofday(&tv);
1508 rc = snprintf(out_ptr, out_end - out_ptr,
1510 if (rc > out_end - out_ptr)
1517 down_read(&uts_sem);
1518 rc = snprintf(out_ptr, out_end - out_ptr,
1519 "%s", utsname()->nodename);
1521 if (rc > out_end - out_ptr)
1527 rc = snprintf(out_ptr, out_end - out_ptr,
1528 "%s", current->comm);
1529 if (rc > out_end - out_ptr)
1533 /* core limit size */
1535 rc = snprintf(out_ptr, out_end - out_ptr,
1536 "%lu", rlimit(RLIMIT_CORE));
1537 if (rc > out_end - out_ptr)
1547 /* Backward compatibility with core_uses_pid:
1549 * If core_pattern does not include a %p (as is the default)
1550 * and core_uses_pid is set, then .%pid will be appended to
1551 * the filename. Do not do this for piped commands. */
1552 if (!ispipe && !pid_in_pattern && core_uses_pid) {
1553 rc = snprintf(out_ptr, out_end - out_ptr,
1554 ".%d", task_tgid_vnr(current));
1555 if (rc > out_end - out_ptr)
1564 static int zap_process(struct task_struct *start, int exit_code)
1566 struct task_struct *t;
1569 start->signal->flags = SIGNAL_GROUP_EXIT;
1570 start->signal->group_exit_code = exit_code;
1571 start->signal->group_stop_count = 0;
1575 if (t != current && t->mm) {
1576 sigaddset(&t->pending.signal, SIGKILL);
1577 signal_wake_up(t, 1);
1580 } while_each_thread(start, t);
1585 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1586 struct core_state *core_state, int exit_code)
1588 struct task_struct *g, *p;
1589 unsigned long flags;
1592 spin_lock_irq(&tsk->sighand->siglock);
1593 if (!signal_group_exit(tsk->signal)) {
1594 mm->core_state = core_state;
1595 nr = zap_process(tsk, exit_code);
1597 spin_unlock_irq(&tsk->sighand->siglock);
1598 if (unlikely(nr < 0))
1601 if (atomic_read(&mm->mm_users) == nr + 1)
1604 * We should find and kill all tasks which use this mm, and we should
1605 * count them correctly into ->nr_threads. We don't take tasklist
1606 * lock, but this is safe wrt:
1609 * None of sub-threads can fork after zap_process(leader). All
1610 * processes which were created before this point should be
1611 * visible to zap_threads() because copy_process() adds the new
1612 * process to the tail of init_task.tasks list, and lock/unlock
1613 * of ->siglock provides a memory barrier.
1616 * The caller holds mm->mmap_sem. This means that the task which
1617 * uses this mm can't pass exit_mm(), so it can't exit or clear
1621 * It does list_replace_rcu(&leader->tasks, ¤t->tasks),
1622 * we must see either old or new leader, this does not matter.
1623 * However, it can change p->sighand, so lock_task_sighand(p)
1624 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1627 * Note also that "g" can be the old leader with ->mm == NULL
1628 * and already unhashed and thus removed from ->thread_group.
1629 * This is OK, __unhash_process()->list_del_rcu() does not
1630 * clear the ->next pointer, we will find the new leader via
1634 for_each_process(g) {
1635 if (g == tsk->group_leader)
1637 if (g->flags & PF_KTHREAD)
1642 if (unlikely(p->mm == mm)) {
1643 lock_task_sighand(p, &flags);
1644 nr += zap_process(p, exit_code);
1645 unlock_task_sighand(p, &flags);
1649 } while_each_thread(g, p);
1653 atomic_set(&core_state->nr_threads, nr);
1657 static int coredump_wait(int exit_code, struct core_state *core_state)
1659 struct task_struct *tsk = current;
1660 struct mm_struct *mm = tsk->mm;
1661 struct completion *vfork_done;
1664 init_completion(&core_state->startup);
1665 core_state->dumper.task = tsk;
1666 core_state->dumper.next = NULL;
1667 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1668 up_write(&mm->mmap_sem);
1670 if (unlikely(core_waiters < 0))
1674 * Make sure nobody is waiting for us to release the VM,
1675 * otherwise we can deadlock when we wait on each other
1677 vfork_done = tsk->vfork_done;
1679 tsk->vfork_done = NULL;
1680 complete(vfork_done);
1684 wait_for_completion(&core_state->startup);
1686 return core_waiters;
1689 static void coredump_finish(struct mm_struct *mm)
1691 struct core_thread *curr, *next;
1692 struct task_struct *task;
1694 next = mm->core_state->dumper.next;
1695 while ((curr = next) != NULL) {
1699 * see exit_mm(), curr->task must not see
1700 * ->task == NULL before we read ->next.
1704 wake_up_process(task);
1707 mm->core_state = NULL;
1711 * set_dumpable converts traditional three-value dumpable to two flags and
1712 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1713 * these bits are not changed atomically. So get_dumpable can observe the
1714 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1715 * return either old dumpable or new one by paying attention to the order of
1716 * modifying the bits.
1718 * dumpable | mm->flags (binary)
1719 * old new | initial interim final
1720 * ---------+-----------------------
1728 * (*) get_dumpable regards interim value of 10 as 11.
1730 void set_dumpable(struct mm_struct *mm, int value)
1734 clear_bit(MMF_DUMPABLE, &mm->flags);
1736 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1739 set_bit(MMF_DUMPABLE, &mm->flags);
1741 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1744 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1746 set_bit(MMF_DUMPABLE, &mm->flags);
1751 static int __get_dumpable(unsigned long mm_flags)
1755 ret = mm_flags & MMF_DUMPABLE_MASK;
1756 return (ret >= 2) ? 2 : ret;
1759 int get_dumpable(struct mm_struct *mm)
1761 return __get_dumpable(mm->flags);
1764 static void wait_for_dump_helpers(struct file *file)
1766 struct pipe_inode_info *pipe;
1768 pipe = file->f_path.dentry->d_inode->i_pipe;
1774 while ((pipe->readers > 1) && (!signal_pending(current))) {
1775 wake_up_interruptible_sync(&pipe->wait);
1776 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
1787 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1789 struct core_state core_state;
1790 char corename[CORENAME_MAX_SIZE + 1];
1791 struct mm_struct *mm = current->mm;
1792 struct linux_binfmt * binfmt;
1793 struct inode * inode;
1794 const struct cred *old_cred;
1799 char **helper_argv = NULL;
1800 int helper_argc = 0;
1802 static atomic_t core_dump_count = ATOMIC_INIT(0);
1803 struct coredump_params cprm = {
1806 .limit = rlimit(RLIMIT_CORE),
1808 * We must use the same mm->flags while dumping core to avoid
1809 * inconsistency of bit flags, since this flag is not protected
1812 .mm_flags = mm->flags,
1815 audit_core_dumps(signr);
1817 binfmt = mm->binfmt;
1818 if (!binfmt || !binfmt->core_dump)
1821 cred = prepare_creds();
1827 down_write(&mm->mmap_sem);
1829 * If another thread got here first, or we are not dumpable, bail out.
1831 if (mm->core_state || !__get_dumpable(cprm.mm_flags)) {
1832 up_write(&mm->mmap_sem);
1838 * We cannot trust fsuid as being the "true" uid of the
1839 * process nor do we know its entire history. We only know it
1840 * was tainted so we dump it as root in mode 2.
1842 if (__get_dumpable(cprm.mm_flags) == 2) {
1843 /* Setuid core dump mode */
1844 flag = O_EXCL; /* Stop rewrite attacks */
1845 cred->fsuid = 0; /* Dump root private */
1848 retval = coredump_wait(exit_code, &core_state);
1854 old_cred = override_creds(cred);
1857 * Clear any false indication of pending signals that might
1858 * be seen by the filesystem code called to write the core file.
1860 clear_thread_flag(TIF_SIGPENDING);
1863 * lock_kernel() because format_corename() is controlled by sysctl, which
1864 * uses lock_kernel()
1867 ispipe = format_corename(corename, signr);
1870 if ((!ispipe) && (cprm.limit < binfmt->min_coredump))
1874 if (cprm.limit == 0) {
1876 * Normally core limits are irrelevant to pipes, since
1877 * we're not writing to the file system, but we use
1878 * cprm.limit of 0 here as a speacial value. Any
1879 * non-zero limit gets set to RLIM_INFINITY below, but
1880 * a limit of 0 skips the dump. This is a consistent
1881 * way to catch recursive crashes. We can still crash
1882 * if the core_pattern binary sets RLIM_CORE = !0
1883 * but it runs as root, and can do lots of stupid things
1884 * Note that we use task_tgid_vnr here to grab the pid
1885 * of the process group leader. That way we get the
1886 * right pid if a thread in a multi-threaded
1887 * core_pattern process dies.
1890 "Process %d(%s) has RLIMIT_CORE set to 0\n",
1891 task_tgid_vnr(current), current->comm);
1892 printk(KERN_WARNING "Aborting core\n");
1896 dump_count = atomic_inc_return(&core_dump_count);
1897 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
1898 printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
1899 task_tgid_vnr(current), current->comm);
1900 printk(KERN_WARNING "Skipping core dump\n");
1901 goto fail_dropcount;
1904 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1906 printk(KERN_WARNING "%s failed to allocate memory\n",
1908 goto fail_dropcount;
1911 cprm.limit = RLIM_INFINITY;
1913 /* SIGPIPE can happen, but it's just never processed */
1914 if (call_usermodehelper_pipe(helper_argv[0], helper_argv, NULL,
1916 printk(KERN_INFO "Core dump to %s pipe failed\n",
1918 goto fail_dropcount;
1921 cprm.file = filp_open(corename,
1922 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1924 if (IS_ERR(cprm.file))
1925 goto fail_dropcount;
1926 inode = cprm.file->f_path.dentry->d_inode;
1927 if (inode->i_nlink > 1)
1928 goto close_fail; /* multiple links - don't dump */
1929 if (!ispipe && d_unhashed(cprm.file->f_path.dentry))
1932 /* AK: actually i see no reason to not allow this for named pipes etc.,
1933 but keep the previous behaviour for now. */
1934 if (!ispipe && !S_ISREG(inode->i_mode))
1937 * Dont allow local users get cute and trick others to coredump
1938 * into their pre-created files:
1939 * Note, this is not relevant for pipes
1941 if (!ispipe && (inode->i_uid != current_fsuid()))
1943 if (!cprm.file->f_op)
1945 if (!cprm.file->f_op->write)
1948 do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file) != 0)
1951 retval = binfmt->core_dump(&cprm);
1954 current->signal->group_exit_code |= 0x80;
1956 if (ispipe && core_pipe_limit)
1957 wait_for_dump_helpers(cprm.file);
1958 filp_close(cprm.file, NULL);
1961 atomic_dec(&core_dump_count);
1964 argv_free(helper_argv);
1966 revert_creds(old_cred);
1968 coredump_finish(mm);