Merge branch 'dma-buf-merge' of git://people.freedesktop.org/~airlied/linux
[platform/adaptation/renesas_rcar/renesas_kernel.git] / fs / exec.c
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats. 
23  */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/security.h>
47 #include <linux/syscalls.h>
48 #include <linux/tsacct_kern.h>
49 #include <linux/cn_proc.h>
50 #include <linux/audit.h>
51 #include <linux/tracehook.h>
52 #include <linux/kmod.h>
53 #include <linux/fsnotify.h>
54 #include <linux/fs_struct.h>
55 #include <linux/pipe_fs_i.h>
56 #include <linux/oom.h>
57 #include <linux/compat.h>
58
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/tlb.h>
62 #include "internal.h"
63
64 int core_uses_pid;
65 char core_pattern[CORENAME_MAX_SIZE] = "core";
66 unsigned int core_pipe_limit;
67 int suid_dumpable = 0;
68
69 struct core_name {
70         char *corename;
71         int used, size;
72 };
73 static atomic_t call_count = ATOMIC_INIT(1);
74
75 /* The maximal length of core_pattern is also specified in sysctl.c */
76
77 static LIST_HEAD(formats);
78 static DEFINE_RWLOCK(binfmt_lock);
79
80 int __register_binfmt(struct linux_binfmt * fmt, int insert)
81 {
82         if (!fmt)
83                 return -EINVAL;
84         write_lock(&binfmt_lock);
85         insert ? list_add(&fmt->lh, &formats) :
86                  list_add_tail(&fmt->lh, &formats);
87         write_unlock(&binfmt_lock);
88         return 0;       
89 }
90
91 EXPORT_SYMBOL(__register_binfmt);
92
93 void unregister_binfmt(struct linux_binfmt * fmt)
94 {
95         write_lock(&binfmt_lock);
96         list_del(&fmt->lh);
97         write_unlock(&binfmt_lock);
98 }
99
100 EXPORT_SYMBOL(unregister_binfmt);
101
102 static inline void put_binfmt(struct linux_binfmt * fmt)
103 {
104         module_put(fmt->module);
105 }
106
107 /*
108  * Note that a shared library must be both readable and executable due to
109  * security reasons.
110  *
111  * Also note that we take the address to load from from the file itself.
112  */
113 SYSCALL_DEFINE1(uselib, const char __user *, library)
114 {
115         struct file *file;
116         char *tmp = getname(library);
117         int error = PTR_ERR(tmp);
118         static const struct open_flags uselib_flags = {
119                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
120                 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
121                 .intent = LOOKUP_OPEN
122         };
123
124         if (IS_ERR(tmp))
125                 goto out;
126
127         file = do_filp_open(AT_FDCWD, tmp, &uselib_flags, LOOKUP_FOLLOW);
128         putname(tmp);
129         error = PTR_ERR(file);
130         if (IS_ERR(file))
131                 goto out;
132
133         error = -EINVAL;
134         if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
135                 goto exit;
136
137         error = -EACCES;
138         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
139                 goto exit;
140
141         fsnotify_open(file);
142
143         error = -ENOEXEC;
144         if(file->f_op) {
145                 struct linux_binfmt * fmt;
146
147                 read_lock(&binfmt_lock);
148                 list_for_each_entry(fmt, &formats, lh) {
149                         if (!fmt->load_shlib)
150                                 continue;
151                         if (!try_module_get(fmt->module))
152                                 continue;
153                         read_unlock(&binfmt_lock);
154                         error = fmt->load_shlib(file);
155                         read_lock(&binfmt_lock);
156                         put_binfmt(fmt);
157                         if (error != -ENOEXEC)
158                                 break;
159                 }
160                 read_unlock(&binfmt_lock);
161         }
162 exit:
163         fput(file);
164 out:
165         return error;
166 }
167
168 #ifdef CONFIG_MMU
169 /*
170  * The nascent bprm->mm is not visible until exec_mmap() but it can
171  * use a lot of memory, account these pages in current->mm temporary
172  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
173  * change the counter back via acct_arg_size(0).
174  */
175 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
176 {
177         struct mm_struct *mm = current->mm;
178         long diff = (long)(pages - bprm->vma_pages);
179
180         if (!mm || !diff)
181                 return;
182
183         bprm->vma_pages = pages;
184         add_mm_counter(mm, MM_ANONPAGES, diff);
185 }
186
187 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
188                 int write)
189 {
190         struct page *page;
191         int ret;
192
193 #ifdef CONFIG_STACK_GROWSUP
194         if (write) {
195                 ret = expand_downwards(bprm->vma, pos);
196                 if (ret < 0)
197                         return NULL;
198         }
199 #endif
200         ret = get_user_pages(current, bprm->mm, pos,
201                         1, write, 1, &page, NULL);
202         if (ret <= 0)
203                 return NULL;
204
205         if (write) {
206                 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
207                 struct rlimit *rlim;
208
209                 acct_arg_size(bprm, size / PAGE_SIZE);
210
211                 /*
212                  * We've historically supported up to 32 pages (ARG_MAX)
213                  * of argument strings even with small stacks
214                  */
215                 if (size <= ARG_MAX)
216                         return page;
217
218                 /*
219                  * Limit to 1/4-th the stack size for the argv+env strings.
220                  * This ensures that:
221                  *  - the remaining binfmt code will not run out of stack space,
222                  *  - the program will have a reasonable amount of stack left
223                  *    to work from.
224                  */
225                 rlim = current->signal->rlim;
226                 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
227                         put_page(page);
228                         return NULL;
229                 }
230         }
231
232         return page;
233 }
234
235 static void put_arg_page(struct page *page)
236 {
237         put_page(page);
238 }
239
240 static void free_arg_page(struct linux_binprm *bprm, int i)
241 {
242 }
243
244 static void free_arg_pages(struct linux_binprm *bprm)
245 {
246 }
247
248 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
249                 struct page *page)
250 {
251         flush_cache_page(bprm->vma, pos, page_to_pfn(page));
252 }
253
254 static int __bprm_mm_init(struct linux_binprm *bprm)
255 {
256         int err;
257         struct vm_area_struct *vma = NULL;
258         struct mm_struct *mm = bprm->mm;
259
260         bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
261         if (!vma)
262                 return -ENOMEM;
263
264         down_write(&mm->mmap_sem);
265         vma->vm_mm = mm;
266
267         /*
268          * Place the stack at the largest stack address the architecture
269          * supports. Later, we'll move this to an appropriate place. We don't
270          * use STACK_TOP because that can depend on attributes which aren't
271          * configured yet.
272          */
273         BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
274         vma->vm_end = STACK_TOP_MAX;
275         vma->vm_start = vma->vm_end - PAGE_SIZE;
276         vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
277         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
278         INIT_LIST_HEAD(&vma->anon_vma_chain);
279
280         err = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
281         if (err)
282                 goto err;
283
284         err = insert_vm_struct(mm, vma);
285         if (err)
286                 goto err;
287
288         mm->stack_vm = mm->total_vm = 1;
289         up_write(&mm->mmap_sem);
290         bprm->p = vma->vm_end - sizeof(void *);
291         return 0;
292 err:
293         up_write(&mm->mmap_sem);
294         bprm->vma = NULL;
295         kmem_cache_free(vm_area_cachep, vma);
296         return err;
297 }
298
299 static bool valid_arg_len(struct linux_binprm *bprm, long len)
300 {
301         return len <= MAX_ARG_STRLEN;
302 }
303
304 #else
305
306 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
307 {
308 }
309
310 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
311                 int write)
312 {
313         struct page *page;
314
315         page = bprm->page[pos / PAGE_SIZE];
316         if (!page && write) {
317                 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
318                 if (!page)
319                         return NULL;
320                 bprm->page[pos / PAGE_SIZE] = page;
321         }
322
323         return page;
324 }
325
326 static void put_arg_page(struct page *page)
327 {
328 }
329
330 static void free_arg_page(struct linux_binprm *bprm, int i)
331 {
332         if (bprm->page[i]) {
333                 __free_page(bprm->page[i]);
334                 bprm->page[i] = NULL;
335         }
336 }
337
338 static void free_arg_pages(struct linux_binprm *bprm)
339 {
340         int i;
341
342         for (i = 0; i < MAX_ARG_PAGES; i++)
343                 free_arg_page(bprm, i);
344 }
345
346 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
347                 struct page *page)
348 {
349 }
350
351 static int __bprm_mm_init(struct linux_binprm *bprm)
352 {
353         bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
354         return 0;
355 }
356
357 static bool valid_arg_len(struct linux_binprm *bprm, long len)
358 {
359         return len <= bprm->p;
360 }
361
362 #endif /* CONFIG_MMU */
363
364 /*
365  * Create a new mm_struct and populate it with a temporary stack
366  * vm_area_struct.  We don't have enough context at this point to set the stack
367  * flags, permissions, and offset, so we use temporary values.  We'll update
368  * them later in setup_arg_pages().
369  */
370 int bprm_mm_init(struct linux_binprm *bprm)
371 {
372         int err;
373         struct mm_struct *mm = NULL;
374
375         bprm->mm = mm = mm_alloc();
376         err = -ENOMEM;
377         if (!mm)
378                 goto err;
379
380         err = init_new_context(current, mm);
381         if (err)
382                 goto err;
383
384         err = __bprm_mm_init(bprm);
385         if (err)
386                 goto err;
387
388         return 0;
389
390 err:
391         if (mm) {
392                 bprm->mm = NULL;
393                 mmdrop(mm);
394         }
395
396         return err;
397 }
398
399 struct user_arg_ptr {
400 #ifdef CONFIG_COMPAT
401         bool is_compat;
402 #endif
403         union {
404                 const char __user *const __user *native;
405 #ifdef CONFIG_COMPAT
406                 compat_uptr_t __user *compat;
407 #endif
408         } ptr;
409 };
410
411 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
412 {
413         const char __user *native;
414
415 #ifdef CONFIG_COMPAT
416         if (unlikely(argv.is_compat)) {
417                 compat_uptr_t compat;
418
419                 if (get_user(compat, argv.ptr.compat + nr))
420                         return ERR_PTR(-EFAULT);
421
422                 return compat_ptr(compat);
423         }
424 #endif
425
426         if (get_user(native, argv.ptr.native + nr))
427                 return ERR_PTR(-EFAULT);
428
429         return native;
430 }
431
432 /*
433  * count() counts the number of strings in array ARGV.
434  */
435 static int count(struct user_arg_ptr argv, int max)
436 {
437         int i = 0;
438
439         if (argv.ptr.native != NULL) {
440                 for (;;) {
441                         const char __user *p = get_user_arg_ptr(argv, i);
442
443                         if (!p)
444                                 break;
445
446                         if (IS_ERR(p))
447                                 return -EFAULT;
448
449                         if (i++ >= max)
450                                 return -E2BIG;
451
452                         if (fatal_signal_pending(current))
453                                 return -ERESTARTNOHAND;
454                         cond_resched();
455                 }
456         }
457         return i;
458 }
459
460 /*
461  * 'copy_strings()' copies argument/environment strings from the old
462  * processes's memory to the new process's stack.  The call to get_user_pages()
463  * ensures the destination page is created and not swapped out.
464  */
465 static int copy_strings(int argc, struct user_arg_ptr argv,
466                         struct linux_binprm *bprm)
467 {
468         struct page *kmapped_page = NULL;
469         char *kaddr = NULL;
470         unsigned long kpos = 0;
471         int ret;
472
473         while (argc-- > 0) {
474                 const char __user *str;
475                 int len;
476                 unsigned long pos;
477
478                 ret = -EFAULT;
479                 str = get_user_arg_ptr(argv, argc);
480                 if (IS_ERR(str))
481                         goto out;
482
483                 len = strnlen_user(str, MAX_ARG_STRLEN);
484                 if (!len)
485                         goto out;
486
487                 ret = -E2BIG;
488                 if (!valid_arg_len(bprm, len))
489                         goto out;
490
491                 /* We're going to work our way backwords. */
492                 pos = bprm->p;
493                 str += len;
494                 bprm->p -= len;
495
496                 while (len > 0) {
497                         int offset, bytes_to_copy;
498
499                         if (fatal_signal_pending(current)) {
500                                 ret = -ERESTARTNOHAND;
501                                 goto out;
502                         }
503                         cond_resched();
504
505                         offset = pos % PAGE_SIZE;
506                         if (offset == 0)
507                                 offset = PAGE_SIZE;
508
509                         bytes_to_copy = offset;
510                         if (bytes_to_copy > len)
511                                 bytes_to_copy = len;
512
513                         offset -= bytes_to_copy;
514                         pos -= bytes_to_copy;
515                         str -= bytes_to_copy;
516                         len -= bytes_to_copy;
517
518                         if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
519                                 struct page *page;
520
521                                 page = get_arg_page(bprm, pos, 1);
522                                 if (!page) {
523                                         ret = -E2BIG;
524                                         goto out;
525                                 }
526
527                                 if (kmapped_page) {
528                                         flush_kernel_dcache_page(kmapped_page);
529                                         kunmap(kmapped_page);
530                                         put_arg_page(kmapped_page);
531                                 }
532                                 kmapped_page = page;
533                                 kaddr = kmap(kmapped_page);
534                                 kpos = pos & PAGE_MASK;
535                                 flush_arg_page(bprm, kpos, kmapped_page);
536                         }
537                         if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
538                                 ret = -EFAULT;
539                                 goto out;
540                         }
541                 }
542         }
543         ret = 0;
544 out:
545         if (kmapped_page) {
546                 flush_kernel_dcache_page(kmapped_page);
547                 kunmap(kmapped_page);
548                 put_arg_page(kmapped_page);
549         }
550         return ret;
551 }
552
553 /*
554  * Like copy_strings, but get argv and its values from kernel memory.
555  */
556 int copy_strings_kernel(int argc, const char *const *__argv,
557                         struct linux_binprm *bprm)
558 {
559         int r;
560         mm_segment_t oldfs = get_fs();
561         struct user_arg_ptr argv = {
562                 .ptr.native = (const char __user *const  __user *)__argv,
563         };
564
565         set_fs(KERNEL_DS);
566         r = copy_strings(argc, argv, bprm);
567         set_fs(oldfs);
568
569         return r;
570 }
571 EXPORT_SYMBOL(copy_strings_kernel);
572
573 #ifdef CONFIG_MMU
574
575 /*
576  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
577  * the binfmt code determines where the new stack should reside, we shift it to
578  * its final location.  The process proceeds as follows:
579  *
580  * 1) Use shift to calculate the new vma endpoints.
581  * 2) Extend vma to cover both the old and new ranges.  This ensures the
582  *    arguments passed to subsequent functions are consistent.
583  * 3) Move vma's page tables to the new range.
584  * 4) Free up any cleared pgd range.
585  * 5) Shrink the vma to cover only the new range.
586  */
587 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
588 {
589         struct mm_struct *mm = vma->vm_mm;
590         unsigned long old_start = vma->vm_start;
591         unsigned long old_end = vma->vm_end;
592         unsigned long length = old_end - old_start;
593         unsigned long new_start = old_start - shift;
594         unsigned long new_end = old_end - shift;
595         struct mmu_gather tlb;
596
597         BUG_ON(new_start > new_end);
598
599         /*
600          * ensure there are no vmas between where we want to go
601          * and where we are
602          */
603         if (vma != find_vma(mm, new_start))
604                 return -EFAULT;
605
606         /*
607          * cover the whole range: [new_start, old_end)
608          */
609         if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
610                 return -ENOMEM;
611
612         /*
613          * move the page tables downwards, on failure we rely on
614          * process cleanup to remove whatever mess we made.
615          */
616         if (length != move_page_tables(vma, old_start,
617                                        vma, new_start, length))
618                 return -ENOMEM;
619
620         lru_add_drain();
621         tlb_gather_mmu(&tlb, mm, 0);
622         if (new_end > old_start) {
623                 /*
624                  * when the old and new regions overlap clear from new_end.
625                  */
626                 free_pgd_range(&tlb, new_end, old_end, new_end,
627                         vma->vm_next ? vma->vm_next->vm_start : 0);
628         } else {
629                 /*
630                  * otherwise, clean from old_start; this is done to not touch
631                  * the address space in [new_end, old_start) some architectures
632                  * have constraints on va-space that make this illegal (IA64) -
633                  * for the others its just a little faster.
634                  */
635                 free_pgd_range(&tlb, old_start, old_end, new_end,
636                         vma->vm_next ? vma->vm_next->vm_start : 0);
637         }
638         tlb_finish_mmu(&tlb, new_end, old_end);
639
640         /*
641          * Shrink the vma to just the new range.  Always succeeds.
642          */
643         vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
644
645         return 0;
646 }
647
648 /*
649  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
650  * the stack is optionally relocated, and some extra space is added.
651  */
652 int setup_arg_pages(struct linux_binprm *bprm,
653                     unsigned long stack_top,
654                     int executable_stack)
655 {
656         unsigned long ret;
657         unsigned long stack_shift;
658         struct mm_struct *mm = current->mm;
659         struct vm_area_struct *vma = bprm->vma;
660         struct vm_area_struct *prev = NULL;
661         unsigned long vm_flags;
662         unsigned long stack_base;
663         unsigned long stack_size;
664         unsigned long stack_expand;
665         unsigned long rlim_stack;
666
667 #ifdef CONFIG_STACK_GROWSUP
668         /* Limit stack size to 1GB */
669         stack_base = rlimit_max(RLIMIT_STACK);
670         if (stack_base > (1 << 30))
671                 stack_base = 1 << 30;
672
673         /* Make sure we didn't let the argument array grow too large. */
674         if (vma->vm_end - vma->vm_start > stack_base)
675                 return -ENOMEM;
676
677         stack_base = PAGE_ALIGN(stack_top - stack_base);
678
679         stack_shift = vma->vm_start - stack_base;
680         mm->arg_start = bprm->p - stack_shift;
681         bprm->p = vma->vm_end - stack_shift;
682 #else
683         stack_top = arch_align_stack(stack_top);
684         stack_top = PAGE_ALIGN(stack_top);
685
686         if (unlikely(stack_top < mmap_min_addr) ||
687             unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
688                 return -ENOMEM;
689
690         stack_shift = vma->vm_end - stack_top;
691
692         bprm->p -= stack_shift;
693         mm->arg_start = bprm->p;
694 #endif
695
696         if (bprm->loader)
697                 bprm->loader -= stack_shift;
698         bprm->exec -= stack_shift;
699
700         down_write(&mm->mmap_sem);
701         vm_flags = VM_STACK_FLAGS;
702
703         /*
704          * Adjust stack execute permissions; explicitly enable for
705          * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
706          * (arch default) otherwise.
707          */
708         if (unlikely(executable_stack == EXSTACK_ENABLE_X))
709                 vm_flags |= VM_EXEC;
710         else if (executable_stack == EXSTACK_DISABLE_X)
711                 vm_flags &= ~VM_EXEC;
712         vm_flags |= mm->def_flags;
713         vm_flags |= VM_STACK_INCOMPLETE_SETUP;
714
715         ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
716                         vm_flags);
717         if (ret)
718                 goto out_unlock;
719         BUG_ON(prev != vma);
720
721         /* Move stack pages down in memory. */
722         if (stack_shift) {
723                 ret = shift_arg_pages(vma, stack_shift);
724                 if (ret)
725                         goto out_unlock;
726         }
727
728         /* mprotect_fixup is overkill to remove the temporary stack flags */
729         vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
730
731         stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
732         stack_size = vma->vm_end - vma->vm_start;
733         /*
734          * Align this down to a page boundary as expand_stack
735          * will align it up.
736          */
737         rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
738 #ifdef CONFIG_STACK_GROWSUP
739         if (stack_size + stack_expand > rlim_stack)
740                 stack_base = vma->vm_start + rlim_stack;
741         else
742                 stack_base = vma->vm_end + stack_expand;
743 #else
744         if (stack_size + stack_expand > rlim_stack)
745                 stack_base = vma->vm_end - rlim_stack;
746         else
747                 stack_base = vma->vm_start - stack_expand;
748 #endif
749         current->mm->start_stack = bprm->p;
750         ret = expand_stack(vma, stack_base);
751         if (ret)
752                 ret = -EFAULT;
753
754 out_unlock:
755         up_write(&mm->mmap_sem);
756         return ret;
757 }
758 EXPORT_SYMBOL(setup_arg_pages);
759
760 #endif /* CONFIG_MMU */
761
762 struct file *open_exec(const char *name)
763 {
764         struct file *file;
765         int err;
766         static const struct open_flags open_exec_flags = {
767                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
768                 .acc_mode = MAY_EXEC | MAY_OPEN,
769                 .intent = LOOKUP_OPEN
770         };
771
772         file = do_filp_open(AT_FDCWD, name, &open_exec_flags, LOOKUP_FOLLOW);
773         if (IS_ERR(file))
774                 goto out;
775
776         err = -EACCES;
777         if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
778                 goto exit;
779
780         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
781                 goto exit;
782
783         fsnotify_open(file);
784
785         err = deny_write_access(file);
786         if (err)
787                 goto exit;
788
789 out:
790         return file;
791
792 exit:
793         fput(file);
794         return ERR_PTR(err);
795 }
796 EXPORT_SYMBOL(open_exec);
797
798 int kernel_read(struct file *file, loff_t offset,
799                 char *addr, unsigned long count)
800 {
801         mm_segment_t old_fs;
802         loff_t pos = offset;
803         int result;
804
805         old_fs = get_fs();
806         set_fs(get_ds());
807         /* The cast to a user pointer is valid due to the set_fs() */
808         result = vfs_read(file, (void __user *)addr, count, &pos);
809         set_fs(old_fs);
810         return result;
811 }
812
813 EXPORT_SYMBOL(kernel_read);
814
815 static int exec_mmap(struct mm_struct *mm)
816 {
817         struct task_struct *tsk;
818         struct mm_struct * old_mm, *active_mm;
819
820         /* Notify parent that we're no longer interested in the old VM */
821         tsk = current;
822         old_mm = current->mm;
823         sync_mm_rss(tsk, old_mm);
824         mm_release(tsk, old_mm);
825
826         if (old_mm) {
827                 /*
828                  * Make sure that if there is a core dump in progress
829                  * for the old mm, we get out and die instead of going
830                  * through with the exec.  We must hold mmap_sem around
831                  * checking core_state and changing tsk->mm.
832                  */
833                 down_read(&old_mm->mmap_sem);
834                 if (unlikely(old_mm->core_state)) {
835                         up_read(&old_mm->mmap_sem);
836                         return -EINTR;
837                 }
838         }
839         task_lock(tsk);
840         active_mm = tsk->active_mm;
841         tsk->mm = mm;
842         tsk->active_mm = mm;
843         activate_mm(active_mm, mm);
844         task_unlock(tsk);
845         arch_pick_mmap_layout(mm);
846         if (old_mm) {
847                 up_read(&old_mm->mmap_sem);
848                 BUG_ON(active_mm != old_mm);
849                 mm_update_next_owner(old_mm);
850                 mmput(old_mm);
851                 return 0;
852         }
853         mmdrop(active_mm);
854         return 0;
855 }
856
857 /*
858  * This function makes sure the current process has its own signal table,
859  * so that flush_signal_handlers can later reset the handlers without
860  * disturbing other processes.  (Other processes might share the signal
861  * table via the CLONE_SIGHAND option to clone().)
862  */
863 static int de_thread(struct task_struct *tsk)
864 {
865         struct signal_struct *sig = tsk->signal;
866         struct sighand_struct *oldsighand = tsk->sighand;
867         spinlock_t *lock = &oldsighand->siglock;
868
869         if (thread_group_empty(tsk))
870                 goto no_thread_group;
871
872         /*
873          * Kill all other threads in the thread group.
874          */
875         spin_lock_irq(lock);
876         if (signal_group_exit(sig)) {
877                 /*
878                  * Another group action in progress, just
879                  * return so that the signal is processed.
880                  */
881                 spin_unlock_irq(lock);
882                 return -EAGAIN;
883         }
884
885         sig->group_exit_task = tsk;
886         sig->notify_count = zap_other_threads(tsk);
887         if (!thread_group_leader(tsk))
888                 sig->notify_count--;
889
890         while (sig->notify_count) {
891                 __set_current_state(TASK_UNINTERRUPTIBLE);
892                 spin_unlock_irq(lock);
893                 schedule();
894                 spin_lock_irq(lock);
895         }
896         spin_unlock_irq(lock);
897
898         /*
899          * At this point all other threads have exited, all we have to
900          * do is to wait for the thread group leader to become inactive,
901          * and to assume its PID:
902          */
903         if (!thread_group_leader(tsk)) {
904                 struct task_struct *leader = tsk->group_leader;
905
906                 sig->notify_count = -1; /* for exit_notify() */
907                 for (;;) {
908                         write_lock_irq(&tasklist_lock);
909                         if (likely(leader->exit_state))
910                                 break;
911                         __set_current_state(TASK_UNINTERRUPTIBLE);
912                         write_unlock_irq(&tasklist_lock);
913                         schedule();
914                 }
915
916                 /*
917                  * The only record we have of the real-time age of a
918                  * process, regardless of execs it's done, is start_time.
919                  * All the past CPU time is accumulated in signal_struct
920                  * from sister threads now dead.  But in this non-leader
921                  * exec, nothing survives from the original leader thread,
922                  * whose birth marks the true age of this process now.
923                  * When we take on its identity by switching to its PID, we
924                  * also take its birthdate (always earlier than our own).
925                  */
926                 tsk->start_time = leader->start_time;
927
928                 BUG_ON(!same_thread_group(leader, tsk));
929                 BUG_ON(has_group_leader_pid(tsk));
930                 /*
931                  * An exec() starts a new thread group with the
932                  * TGID of the previous thread group. Rehash the
933                  * two threads with a switched PID, and release
934                  * the former thread group leader:
935                  */
936
937                 /* Become a process group leader with the old leader's pid.
938                  * The old leader becomes a thread of the this thread group.
939                  * Note: The old leader also uses this pid until release_task
940                  *       is called.  Odd but simple and correct.
941                  */
942                 detach_pid(tsk, PIDTYPE_PID);
943                 tsk->pid = leader->pid;
944                 attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
945                 transfer_pid(leader, tsk, PIDTYPE_PGID);
946                 transfer_pid(leader, tsk, PIDTYPE_SID);
947
948                 list_replace_rcu(&leader->tasks, &tsk->tasks);
949                 list_replace_init(&leader->sibling, &tsk->sibling);
950
951                 tsk->group_leader = tsk;
952                 leader->group_leader = tsk;
953
954                 tsk->exit_signal = SIGCHLD;
955                 leader->exit_signal = -1;
956
957                 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
958                 leader->exit_state = EXIT_DEAD;
959
960                 /*
961                  * We are going to release_task()->ptrace_unlink() silently,
962                  * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
963                  * the tracer wont't block again waiting for this thread.
964                  */
965                 if (unlikely(leader->ptrace))
966                         __wake_up_parent(leader, leader->parent);
967                 write_unlock_irq(&tasklist_lock);
968
969                 release_task(leader);
970         }
971
972         sig->group_exit_task = NULL;
973         sig->notify_count = 0;
974
975 no_thread_group:
976         if (current->mm)
977                 setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
978
979         exit_itimers(sig);
980         flush_itimer_signals();
981
982         if (atomic_read(&oldsighand->count) != 1) {
983                 struct sighand_struct *newsighand;
984                 /*
985                  * This ->sighand is shared with the CLONE_SIGHAND
986                  * but not CLONE_THREAD task, switch to the new one.
987                  */
988                 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
989                 if (!newsighand)
990                         return -ENOMEM;
991
992                 atomic_set(&newsighand->count, 1);
993                 memcpy(newsighand->action, oldsighand->action,
994                        sizeof(newsighand->action));
995
996                 write_lock_irq(&tasklist_lock);
997                 spin_lock(&oldsighand->siglock);
998                 rcu_assign_pointer(tsk->sighand, newsighand);
999                 spin_unlock(&oldsighand->siglock);
1000                 write_unlock_irq(&tasklist_lock);
1001
1002                 __cleanup_sighand(oldsighand);
1003         }
1004
1005         BUG_ON(!thread_group_leader(tsk));
1006         return 0;
1007 }
1008
1009 /*
1010  * These functions flushes out all traces of the currently running executable
1011  * so that a new one can be started
1012  */
1013 static void flush_old_files(struct files_struct * files)
1014 {
1015         long j = -1;
1016         struct fdtable *fdt;
1017
1018         spin_lock(&files->file_lock);
1019         for (;;) {
1020                 unsigned long set, i;
1021
1022                 j++;
1023                 i = j * __NFDBITS;
1024                 fdt = files_fdtable(files);
1025                 if (i >= fdt->max_fds)
1026                         break;
1027                 set = fdt->close_on_exec->fds_bits[j];
1028                 if (!set)
1029                         continue;
1030                 fdt->close_on_exec->fds_bits[j] = 0;
1031                 spin_unlock(&files->file_lock);
1032                 for ( ; set ; i++,set >>= 1) {
1033                         if (set & 1) {
1034                                 sys_close(i);
1035                         }
1036                 }
1037                 spin_lock(&files->file_lock);
1038
1039         }
1040         spin_unlock(&files->file_lock);
1041 }
1042
1043 char *get_task_comm(char *buf, struct task_struct *tsk)
1044 {
1045         /* buf must be at least sizeof(tsk->comm) in size */
1046         task_lock(tsk);
1047         strncpy(buf, tsk->comm, sizeof(tsk->comm));
1048         task_unlock(tsk);
1049         return buf;
1050 }
1051 EXPORT_SYMBOL_GPL(get_task_comm);
1052
1053 void set_task_comm(struct task_struct *tsk, char *buf)
1054 {
1055         task_lock(tsk);
1056
1057         /*
1058          * Threads may access current->comm without holding
1059          * the task lock, so write the string carefully.
1060          * Readers without a lock may see incomplete new
1061          * names but are safe from non-terminating string reads.
1062          */
1063         memset(tsk->comm, 0, TASK_COMM_LEN);
1064         wmb();
1065         strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1066         task_unlock(tsk);
1067         perf_event_comm(tsk);
1068 }
1069
1070 int flush_old_exec(struct linux_binprm * bprm)
1071 {
1072         int retval;
1073
1074         /*
1075          * Make sure we have a private signal table and that
1076          * we are unassociated from the previous thread group.
1077          */
1078         retval = de_thread(current);
1079         if (retval)
1080                 goto out;
1081
1082         set_mm_exe_file(bprm->mm, bprm->file);
1083
1084         /*
1085          * Release all of the old mmap stuff
1086          */
1087         acct_arg_size(bprm, 0);
1088         retval = exec_mmap(bprm->mm);
1089         if (retval)
1090                 goto out;
1091
1092         bprm->mm = NULL;                /* We're using it now */
1093
1094         set_fs(USER_DS);
1095         current->flags &= ~(PF_RANDOMIZE | PF_KTHREAD);
1096         flush_thread();
1097         current->personality &= ~bprm->per_clear;
1098
1099         return 0;
1100
1101 out:
1102         return retval;
1103 }
1104 EXPORT_SYMBOL(flush_old_exec);
1105
1106 void would_dump(struct linux_binprm *bprm, struct file *file)
1107 {
1108         if (inode_permission(file->f_path.dentry->d_inode, MAY_READ) < 0)
1109                 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1110 }
1111 EXPORT_SYMBOL(would_dump);
1112
1113 void setup_new_exec(struct linux_binprm * bprm)
1114 {
1115         int i, ch;
1116         const char *name;
1117         char tcomm[sizeof(current->comm)];
1118
1119         arch_pick_mmap_layout(current->mm);
1120
1121         /* This is the point of no return */
1122         current->sas_ss_sp = current->sas_ss_size = 0;
1123
1124         if (current_euid() == current_uid() && current_egid() == current_gid())
1125                 set_dumpable(current->mm, 1);
1126         else
1127                 set_dumpable(current->mm, suid_dumpable);
1128
1129         name = bprm->filename;
1130
1131         /* Copies the binary name from after last slash */
1132         for (i=0; (ch = *(name++)) != '\0';) {
1133                 if (ch == '/')
1134                         i = 0; /* overwrite what we wrote */
1135                 else
1136                         if (i < (sizeof(tcomm) - 1))
1137                                 tcomm[i++] = ch;
1138         }
1139         tcomm[i] = '\0';
1140         set_task_comm(current, tcomm);
1141
1142         /* Set the new mm task size. We have to do that late because it may
1143          * depend on TIF_32BIT which is only updated in flush_thread() on
1144          * some architectures like powerpc
1145          */
1146         current->mm->task_size = TASK_SIZE;
1147
1148         /* install the new credentials */
1149         if (bprm->cred->uid != current_euid() ||
1150             bprm->cred->gid != current_egid()) {
1151                 current->pdeath_signal = 0;
1152         } else {
1153                 would_dump(bprm, bprm->file);
1154                 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1155                         set_dumpable(current->mm, suid_dumpable);
1156         }
1157
1158         /*
1159          * Flush performance counters when crossing a
1160          * security domain:
1161          */
1162         if (!get_dumpable(current->mm))
1163                 perf_event_exit_task(current);
1164
1165         /* An exec changes our domain. We are no longer part of the thread
1166            group */
1167
1168         current->self_exec_id++;
1169                         
1170         flush_signal_handlers(current, 0);
1171         flush_old_files(current->files);
1172 }
1173 EXPORT_SYMBOL(setup_new_exec);
1174
1175 /*
1176  * Prepare credentials and lock ->cred_guard_mutex.
1177  * install_exec_creds() commits the new creds and drops the lock.
1178  * Or, if exec fails before, free_bprm() should release ->cred and
1179  * and unlock.
1180  */
1181 int prepare_bprm_creds(struct linux_binprm *bprm)
1182 {
1183         if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1184                 return -ERESTARTNOINTR;
1185
1186         bprm->cred = prepare_exec_creds();
1187         if (likely(bprm->cred))
1188                 return 0;
1189
1190         mutex_unlock(&current->signal->cred_guard_mutex);
1191         return -ENOMEM;
1192 }
1193
1194 void free_bprm(struct linux_binprm *bprm)
1195 {
1196         free_arg_pages(bprm);
1197         if (bprm->cred) {
1198                 mutex_unlock(&current->signal->cred_guard_mutex);
1199                 abort_creds(bprm->cred);
1200         }
1201         kfree(bprm);
1202 }
1203
1204 /*
1205  * install the new credentials for this executable
1206  */
1207 void install_exec_creds(struct linux_binprm *bprm)
1208 {
1209         security_bprm_committing_creds(bprm);
1210
1211         commit_creds(bprm->cred);
1212         bprm->cred = NULL;
1213         /*
1214          * cred_guard_mutex must be held at least to this point to prevent
1215          * ptrace_attach() from altering our determination of the task's
1216          * credentials; any time after this it may be unlocked.
1217          */
1218         security_bprm_committed_creds(bprm);
1219         mutex_unlock(&current->signal->cred_guard_mutex);
1220 }
1221 EXPORT_SYMBOL(install_exec_creds);
1222
1223 /*
1224  * determine how safe it is to execute the proposed program
1225  * - the caller must hold ->cred_guard_mutex to protect against
1226  *   PTRACE_ATTACH
1227  */
1228 static int check_unsafe_exec(struct linux_binprm *bprm)
1229 {
1230         struct task_struct *p = current, *t;
1231         unsigned n_fs;
1232         int res = 0;
1233
1234         if (p->ptrace) {
1235                 if (p->ptrace & PT_PTRACE_CAP)
1236                         bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1237                 else
1238                         bprm->unsafe |= LSM_UNSAFE_PTRACE;
1239         }
1240
1241         n_fs = 1;
1242         spin_lock(&p->fs->lock);
1243         rcu_read_lock();
1244         for (t = next_thread(p); t != p; t = next_thread(t)) {
1245                 if (t->fs == p->fs)
1246                         n_fs++;
1247         }
1248         rcu_read_unlock();
1249
1250         if (p->fs->users > n_fs) {
1251                 bprm->unsafe |= LSM_UNSAFE_SHARE;
1252         } else {
1253                 res = -EAGAIN;
1254                 if (!p->fs->in_exec) {
1255                         p->fs->in_exec = 1;
1256                         res = 1;
1257                 }
1258         }
1259         spin_unlock(&p->fs->lock);
1260
1261         return res;
1262 }
1263
1264 /* 
1265  * Fill the binprm structure from the inode. 
1266  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1267  *
1268  * This may be called multiple times for binary chains (scripts for example).
1269  */
1270 int prepare_binprm(struct linux_binprm *bprm)
1271 {
1272         umode_t mode;
1273         struct inode * inode = bprm->file->f_path.dentry->d_inode;
1274         int retval;
1275
1276         mode = inode->i_mode;
1277         if (bprm->file->f_op == NULL)
1278                 return -EACCES;
1279
1280         /* clear any previous set[ug]id data from a previous binary */
1281         bprm->cred->euid = current_euid();
1282         bprm->cred->egid = current_egid();
1283
1284         if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1285                 /* Set-uid? */
1286                 if (mode & S_ISUID) {
1287                         bprm->per_clear |= PER_CLEAR_ON_SETID;
1288                         bprm->cred->euid = inode->i_uid;
1289                 }
1290
1291                 /* Set-gid? */
1292                 /*
1293                  * If setgid is set but no group execute bit then this
1294                  * is a candidate for mandatory locking, not a setgid
1295                  * executable.
1296                  */
1297                 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1298                         bprm->per_clear |= PER_CLEAR_ON_SETID;
1299                         bprm->cred->egid = inode->i_gid;
1300                 }
1301         }
1302
1303         /* fill in binprm security blob */
1304         retval = security_bprm_set_creds(bprm);
1305         if (retval)
1306                 return retval;
1307         bprm->cred_prepared = 1;
1308
1309         memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1310         return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1311 }
1312
1313 EXPORT_SYMBOL(prepare_binprm);
1314
1315 /*
1316  * Arguments are '\0' separated strings found at the location bprm->p
1317  * points to; chop off the first by relocating brpm->p to right after
1318  * the first '\0' encountered.
1319  */
1320 int remove_arg_zero(struct linux_binprm *bprm)
1321 {
1322         int ret = 0;
1323         unsigned long offset;
1324         char *kaddr;
1325         struct page *page;
1326
1327         if (!bprm->argc)
1328                 return 0;
1329
1330         do {
1331                 offset = bprm->p & ~PAGE_MASK;
1332                 page = get_arg_page(bprm, bprm->p, 0);
1333                 if (!page) {
1334                         ret = -EFAULT;
1335                         goto out;
1336                 }
1337                 kaddr = kmap_atomic(page, KM_USER0);
1338
1339                 for (; offset < PAGE_SIZE && kaddr[offset];
1340                                 offset++, bprm->p++)
1341                         ;
1342
1343                 kunmap_atomic(kaddr, KM_USER0);
1344                 put_arg_page(page);
1345
1346                 if (offset == PAGE_SIZE)
1347                         free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1348         } while (offset == PAGE_SIZE);
1349
1350         bprm->p++;
1351         bprm->argc--;
1352         ret = 0;
1353
1354 out:
1355         return ret;
1356 }
1357 EXPORT_SYMBOL(remove_arg_zero);
1358
1359 /*
1360  * cycle the list of binary formats handler, until one recognizes the image
1361  */
1362 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1363 {
1364         unsigned int depth = bprm->recursion_depth;
1365         int try,retval;
1366         struct linux_binfmt *fmt;
1367         pid_t old_pid;
1368
1369         retval = security_bprm_check(bprm);
1370         if (retval)
1371                 return retval;
1372
1373         retval = audit_bprm(bprm);
1374         if (retval)
1375                 return retval;
1376
1377         /* Need to fetch pid before load_binary changes it */
1378         rcu_read_lock();
1379         old_pid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1380         rcu_read_unlock();
1381
1382         retval = -ENOENT;
1383         for (try=0; try<2; try++) {
1384                 read_lock(&binfmt_lock);
1385                 list_for_each_entry(fmt, &formats, lh) {
1386                         int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1387                         if (!fn)
1388                                 continue;
1389                         if (!try_module_get(fmt->module))
1390                                 continue;
1391                         read_unlock(&binfmt_lock);
1392                         retval = fn(bprm, regs);
1393                         /*
1394                          * Restore the depth counter to its starting value
1395                          * in this call, so we don't have to rely on every
1396                          * load_binary function to restore it on return.
1397                          */
1398                         bprm->recursion_depth = depth;
1399                         if (retval >= 0) {
1400                                 if (depth == 0)
1401                                         ptrace_event(PTRACE_EVENT_EXEC,
1402                                                         old_pid);
1403                                 put_binfmt(fmt);
1404                                 allow_write_access(bprm->file);
1405                                 if (bprm->file)
1406                                         fput(bprm->file);
1407                                 bprm->file = NULL;
1408                                 current->did_exec = 1;
1409                                 proc_exec_connector(current);
1410                                 return retval;
1411                         }
1412                         read_lock(&binfmt_lock);
1413                         put_binfmt(fmt);
1414                         if (retval != -ENOEXEC || bprm->mm == NULL)
1415                                 break;
1416                         if (!bprm->file) {
1417                                 read_unlock(&binfmt_lock);
1418                                 return retval;
1419                         }
1420                 }
1421                 read_unlock(&binfmt_lock);
1422 #ifdef CONFIG_MODULES
1423                 if (retval != -ENOEXEC || bprm->mm == NULL) {
1424                         break;
1425                 } else {
1426 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1427                         if (printable(bprm->buf[0]) &&
1428                             printable(bprm->buf[1]) &&
1429                             printable(bprm->buf[2]) &&
1430                             printable(bprm->buf[3]))
1431                                 break; /* -ENOEXEC */
1432                         if (try)
1433                                 break; /* -ENOEXEC */
1434                         request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1435                 }
1436 #else
1437                 break;
1438 #endif
1439         }
1440         return retval;
1441 }
1442
1443 EXPORT_SYMBOL(search_binary_handler);
1444
1445 /*
1446  * sys_execve() executes a new program.
1447  */
1448 static int do_execve_common(const char *filename,
1449                                 struct user_arg_ptr argv,
1450                                 struct user_arg_ptr envp,
1451                                 struct pt_regs *regs)
1452 {
1453         struct linux_binprm *bprm;
1454         struct file *file;
1455         struct files_struct *displaced;
1456         bool clear_in_exec;
1457         int retval;
1458         const struct cred *cred = current_cred();
1459
1460         /*
1461          * We move the actual failure in case of RLIMIT_NPROC excess from
1462          * set*uid() to execve() because too many poorly written programs
1463          * don't check setuid() return code.  Here we additionally recheck
1464          * whether NPROC limit is still exceeded.
1465          */
1466         if ((current->flags & PF_NPROC_EXCEEDED) &&
1467             atomic_read(&cred->user->processes) > rlimit(RLIMIT_NPROC)) {
1468                 retval = -EAGAIN;
1469                 goto out_ret;
1470         }
1471
1472         /* We're below the limit (still or again), so we don't want to make
1473          * further execve() calls fail. */
1474         current->flags &= ~PF_NPROC_EXCEEDED;
1475
1476         retval = unshare_files(&displaced);
1477         if (retval)
1478                 goto out_ret;
1479
1480         retval = -ENOMEM;
1481         bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1482         if (!bprm)
1483                 goto out_files;
1484
1485         retval = prepare_bprm_creds(bprm);
1486         if (retval)
1487                 goto out_free;
1488
1489         retval = check_unsafe_exec(bprm);
1490         if (retval < 0)
1491                 goto out_free;
1492         clear_in_exec = retval;
1493         current->in_execve = 1;
1494
1495         file = open_exec(filename);
1496         retval = PTR_ERR(file);
1497         if (IS_ERR(file))
1498                 goto out_unmark;
1499
1500         sched_exec();
1501
1502         bprm->file = file;
1503         bprm->filename = filename;
1504         bprm->interp = filename;
1505
1506         retval = bprm_mm_init(bprm);
1507         if (retval)
1508                 goto out_file;
1509
1510         bprm->argc = count(argv, MAX_ARG_STRINGS);
1511         if ((retval = bprm->argc) < 0)
1512                 goto out;
1513
1514         bprm->envc = count(envp, MAX_ARG_STRINGS);
1515         if ((retval = bprm->envc) < 0)
1516                 goto out;
1517
1518         retval = prepare_binprm(bprm);
1519         if (retval < 0)
1520                 goto out;
1521
1522         retval = copy_strings_kernel(1, &bprm->filename, bprm);
1523         if (retval < 0)
1524                 goto out;
1525
1526         bprm->exec = bprm->p;
1527         retval = copy_strings(bprm->envc, envp, bprm);
1528         if (retval < 0)
1529                 goto out;
1530
1531         retval = copy_strings(bprm->argc, argv, bprm);
1532         if (retval < 0)
1533                 goto out;
1534
1535         retval = search_binary_handler(bprm,regs);
1536         if (retval < 0)
1537                 goto out;
1538
1539         /* execve succeeded */
1540         current->fs->in_exec = 0;
1541         current->in_execve = 0;
1542         acct_update_integrals(current);
1543         free_bprm(bprm);
1544         if (displaced)
1545                 put_files_struct(displaced);
1546         return retval;
1547
1548 out:
1549         if (bprm->mm) {
1550                 acct_arg_size(bprm, 0);
1551                 mmput(bprm->mm);
1552         }
1553
1554 out_file:
1555         if (bprm->file) {
1556                 allow_write_access(bprm->file);
1557                 fput(bprm->file);
1558         }
1559
1560 out_unmark:
1561         if (clear_in_exec)
1562                 current->fs->in_exec = 0;
1563         current->in_execve = 0;
1564
1565 out_free:
1566         free_bprm(bprm);
1567
1568 out_files:
1569         if (displaced)
1570                 reset_files_struct(displaced);
1571 out_ret:
1572         return retval;
1573 }
1574
1575 int do_execve(const char *filename,
1576         const char __user *const __user *__argv,
1577         const char __user *const __user *__envp,
1578         struct pt_regs *regs)
1579 {
1580         struct user_arg_ptr argv = { .ptr.native = __argv };
1581         struct user_arg_ptr envp = { .ptr.native = __envp };
1582         return do_execve_common(filename, argv, envp, regs);
1583 }
1584
1585 #ifdef CONFIG_COMPAT
1586 int compat_do_execve(char *filename,
1587         compat_uptr_t __user *__argv,
1588         compat_uptr_t __user *__envp,
1589         struct pt_regs *regs)
1590 {
1591         struct user_arg_ptr argv = {
1592                 .is_compat = true,
1593                 .ptr.compat = __argv,
1594         };
1595         struct user_arg_ptr envp = {
1596                 .is_compat = true,
1597                 .ptr.compat = __envp,
1598         };
1599         return do_execve_common(filename, argv, envp, regs);
1600 }
1601 #endif
1602
1603 void set_binfmt(struct linux_binfmt *new)
1604 {
1605         struct mm_struct *mm = current->mm;
1606
1607         if (mm->binfmt)
1608                 module_put(mm->binfmt->module);
1609
1610         mm->binfmt = new;
1611         if (new)
1612                 __module_get(new->module);
1613 }
1614
1615 EXPORT_SYMBOL(set_binfmt);
1616
1617 static int expand_corename(struct core_name *cn)
1618 {
1619         char *old_corename = cn->corename;
1620
1621         cn->size = CORENAME_MAX_SIZE * atomic_inc_return(&call_count);
1622         cn->corename = krealloc(old_corename, cn->size, GFP_KERNEL);
1623
1624         if (!cn->corename) {
1625                 kfree(old_corename);
1626                 return -ENOMEM;
1627         }
1628
1629         return 0;
1630 }
1631
1632 static int cn_printf(struct core_name *cn, const char *fmt, ...)
1633 {
1634         char *cur;
1635         int need;
1636         int ret;
1637         va_list arg;
1638
1639         va_start(arg, fmt);
1640         need = vsnprintf(NULL, 0, fmt, arg);
1641         va_end(arg);
1642
1643         if (likely(need < cn->size - cn->used - 1))
1644                 goto out_printf;
1645
1646         ret = expand_corename(cn);
1647         if (ret)
1648                 goto expand_fail;
1649
1650 out_printf:
1651         cur = cn->corename + cn->used;
1652         va_start(arg, fmt);
1653         vsnprintf(cur, need + 1, fmt, arg);
1654         va_end(arg);
1655         cn->used += need;
1656         return 0;
1657
1658 expand_fail:
1659         return ret;
1660 }
1661
1662 static void cn_escape(char *str)
1663 {
1664         for (; *str; str++)
1665                 if (*str == '/')
1666                         *str = '!';
1667 }
1668
1669 static int cn_print_exe_file(struct core_name *cn)
1670 {
1671         struct file *exe_file;
1672         char *pathbuf, *path;
1673         int ret;
1674
1675         exe_file = get_mm_exe_file(current->mm);
1676         if (!exe_file) {
1677                 char *commstart = cn->corename + cn->used;
1678                 ret = cn_printf(cn, "%s (path unknown)", current->comm);
1679                 cn_escape(commstart);
1680                 return ret;
1681         }
1682
1683         pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
1684         if (!pathbuf) {
1685                 ret = -ENOMEM;
1686                 goto put_exe_file;
1687         }
1688
1689         path = d_path(&exe_file->f_path, pathbuf, PATH_MAX);
1690         if (IS_ERR(path)) {
1691                 ret = PTR_ERR(path);
1692                 goto free_buf;
1693         }
1694
1695         cn_escape(path);
1696
1697         ret = cn_printf(cn, "%s", path);
1698
1699 free_buf:
1700         kfree(pathbuf);
1701 put_exe_file:
1702         fput(exe_file);
1703         return ret;
1704 }
1705
1706 /* format_corename will inspect the pattern parameter, and output a
1707  * name into corename, which must have space for at least
1708  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1709  */
1710 static int format_corename(struct core_name *cn, long signr)
1711 {
1712         const struct cred *cred = current_cred();
1713         const char *pat_ptr = core_pattern;
1714         int ispipe = (*pat_ptr == '|');
1715         int pid_in_pattern = 0;
1716         int err = 0;
1717
1718         cn->size = CORENAME_MAX_SIZE * atomic_read(&call_count);
1719         cn->corename = kmalloc(cn->size, GFP_KERNEL);
1720         cn->used = 0;
1721
1722         if (!cn->corename)
1723                 return -ENOMEM;
1724
1725         /* Repeat as long as we have more pattern to process and more output
1726            space */
1727         while (*pat_ptr) {
1728                 if (*pat_ptr != '%') {
1729                         if (*pat_ptr == 0)
1730                                 goto out;
1731                         err = cn_printf(cn, "%c", *pat_ptr++);
1732                 } else {
1733                         switch (*++pat_ptr) {
1734                         /* single % at the end, drop that */
1735                         case 0:
1736                                 goto out;
1737                         /* Double percent, output one percent */
1738                         case '%':
1739                                 err = cn_printf(cn, "%c", '%');
1740                                 break;
1741                         /* pid */
1742                         case 'p':
1743                                 pid_in_pattern = 1;
1744                                 err = cn_printf(cn, "%d",
1745                                               task_tgid_vnr(current));
1746                                 break;
1747                         /* uid */
1748                         case 'u':
1749                                 err = cn_printf(cn, "%d", cred->uid);
1750                                 break;
1751                         /* gid */
1752                         case 'g':
1753                                 err = cn_printf(cn, "%d", cred->gid);
1754                                 break;
1755                         /* signal that caused the coredump */
1756                         case 's':
1757                                 err = cn_printf(cn, "%ld", signr);
1758                                 break;
1759                         /* UNIX time of coredump */
1760                         case 't': {
1761                                 struct timeval tv;
1762                                 do_gettimeofday(&tv);
1763                                 err = cn_printf(cn, "%lu", tv.tv_sec);
1764                                 break;
1765                         }
1766                         /* hostname */
1767                         case 'h': {
1768                                 char *namestart = cn->corename + cn->used;
1769                                 down_read(&uts_sem);
1770                                 err = cn_printf(cn, "%s",
1771                                               utsname()->nodename);
1772                                 up_read(&uts_sem);
1773                                 cn_escape(namestart);
1774                                 break;
1775                         }
1776                         /* executable */
1777                         case 'e': {
1778                                 char *commstart = cn->corename + cn->used;
1779                                 err = cn_printf(cn, "%s", current->comm);
1780                                 cn_escape(commstart);
1781                                 break;
1782                         }
1783                         case 'E':
1784                                 err = cn_print_exe_file(cn);
1785                                 break;
1786                         /* core limit size */
1787                         case 'c':
1788                                 err = cn_printf(cn, "%lu",
1789                                               rlimit(RLIMIT_CORE));
1790                                 break;
1791                         default:
1792                                 break;
1793                         }
1794                         ++pat_ptr;
1795                 }
1796
1797                 if (err)
1798                         return err;
1799         }
1800
1801         /* Backward compatibility with core_uses_pid:
1802          *
1803          * If core_pattern does not include a %p (as is the default)
1804          * and core_uses_pid is set, then .%pid will be appended to
1805          * the filename. Do not do this for piped commands. */
1806         if (!ispipe && !pid_in_pattern && core_uses_pid) {
1807                 err = cn_printf(cn, ".%d", task_tgid_vnr(current));
1808                 if (err)
1809                         return err;
1810         }
1811 out:
1812         return ispipe;
1813 }
1814
1815 static int zap_process(struct task_struct *start, int exit_code)
1816 {
1817         struct task_struct *t;
1818         int nr = 0;
1819
1820         start->signal->flags = SIGNAL_GROUP_EXIT;
1821         start->signal->group_exit_code = exit_code;
1822         start->signal->group_stop_count = 0;
1823
1824         t = start;
1825         do {
1826                 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1827                 if (t != current && t->mm) {
1828                         sigaddset(&t->pending.signal, SIGKILL);
1829                         signal_wake_up(t, 1);
1830                         nr++;
1831                 }
1832         } while_each_thread(start, t);
1833
1834         return nr;
1835 }
1836
1837 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1838                                 struct core_state *core_state, int exit_code)
1839 {
1840         struct task_struct *g, *p;
1841         unsigned long flags;
1842         int nr = -EAGAIN;
1843
1844         spin_lock_irq(&tsk->sighand->siglock);
1845         if (!signal_group_exit(tsk->signal)) {
1846                 mm->core_state = core_state;
1847                 nr = zap_process(tsk, exit_code);
1848         }
1849         spin_unlock_irq(&tsk->sighand->siglock);
1850         if (unlikely(nr < 0))
1851                 return nr;
1852
1853         if (atomic_read(&mm->mm_users) == nr + 1)
1854                 goto done;
1855         /*
1856          * We should find and kill all tasks which use this mm, and we should
1857          * count them correctly into ->nr_threads. We don't take tasklist
1858          * lock, but this is safe wrt:
1859          *
1860          * fork:
1861          *      None of sub-threads can fork after zap_process(leader). All
1862          *      processes which were created before this point should be
1863          *      visible to zap_threads() because copy_process() adds the new
1864          *      process to the tail of init_task.tasks list, and lock/unlock
1865          *      of ->siglock provides a memory barrier.
1866          *
1867          * do_exit:
1868          *      The caller holds mm->mmap_sem. This means that the task which
1869          *      uses this mm can't pass exit_mm(), so it can't exit or clear
1870          *      its ->mm.
1871          *
1872          * de_thread:
1873          *      It does list_replace_rcu(&leader->tasks, &current->tasks),
1874          *      we must see either old or new leader, this does not matter.
1875          *      However, it can change p->sighand, so lock_task_sighand(p)
1876          *      must be used. Since p->mm != NULL and we hold ->mmap_sem
1877          *      it can't fail.
1878          *
1879          *      Note also that "g" can be the old leader with ->mm == NULL
1880          *      and already unhashed and thus removed from ->thread_group.
1881          *      This is OK, __unhash_process()->list_del_rcu() does not
1882          *      clear the ->next pointer, we will find the new leader via
1883          *      next_thread().
1884          */
1885         rcu_read_lock();
1886         for_each_process(g) {
1887                 if (g == tsk->group_leader)
1888                         continue;
1889                 if (g->flags & PF_KTHREAD)
1890                         continue;
1891                 p = g;
1892                 do {
1893                         if (p->mm) {
1894                                 if (unlikely(p->mm == mm)) {
1895                                         lock_task_sighand(p, &flags);
1896                                         nr += zap_process(p, exit_code);
1897                                         unlock_task_sighand(p, &flags);
1898                                 }
1899                                 break;
1900                         }
1901                 } while_each_thread(g, p);
1902         }
1903         rcu_read_unlock();
1904 done:
1905         atomic_set(&core_state->nr_threads, nr);
1906         return nr;
1907 }
1908
1909 static int coredump_wait(int exit_code, struct core_state *core_state)
1910 {
1911         struct task_struct *tsk = current;
1912         struct mm_struct *mm = tsk->mm;
1913         struct completion *vfork_done;
1914         int core_waiters = -EBUSY;
1915
1916         init_completion(&core_state->startup);
1917         core_state->dumper.task = tsk;
1918         core_state->dumper.next = NULL;
1919
1920         down_write(&mm->mmap_sem);
1921         if (!mm->core_state)
1922                 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1923         up_write(&mm->mmap_sem);
1924
1925         if (unlikely(core_waiters < 0))
1926                 goto fail;
1927
1928         /*
1929          * Make sure nobody is waiting for us to release the VM,
1930          * otherwise we can deadlock when we wait on each other
1931          */
1932         vfork_done = tsk->vfork_done;
1933         if (vfork_done) {
1934                 tsk->vfork_done = NULL;
1935                 complete(vfork_done);
1936         }
1937
1938         if (core_waiters)
1939                 wait_for_completion(&core_state->startup);
1940 fail:
1941         return core_waiters;
1942 }
1943
1944 static void coredump_finish(struct mm_struct *mm)
1945 {
1946         struct core_thread *curr, *next;
1947         struct task_struct *task;
1948
1949         next = mm->core_state->dumper.next;
1950         while ((curr = next) != NULL) {
1951                 next = curr->next;
1952                 task = curr->task;
1953                 /*
1954                  * see exit_mm(), curr->task must not see
1955                  * ->task == NULL before we read ->next.
1956                  */
1957                 smp_mb();
1958                 curr->task = NULL;
1959                 wake_up_process(task);
1960         }
1961
1962         mm->core_state = NULL;
1963 }
1964
1965 /*
1966  * set_dumpable converts traditional three-value dumpable to two flags and
1967  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1968  * these bits are not changed atomically.  So get_dumpable can observe the
1969  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1970  * return either old dumpable or new one by paying attention to the order of
1971  * modifying the bits.
1972  *
1973  * dumpable |   mm->flags (binary)
1974  * old  new | initial interim  final
1975  * ---------+-----------------------
1976  *  0    1  |   00      01      01
1977  *  0    2  |   00      10(*)   11
1978  *  1    0  |   01      00      00
1979  *  1    2  |   01      11      11
1980  *  2    0  |   11      10(*)   00
1981  *  2    1  |   11      11      01
1982  *
1983  * (*) get_dumpable regards interim value of 10 as 11.
1984  */
1985 void set_dumpable(struct mm_struct *mm, int value)
1986 {
1987         switch (value) {
1988         case 0:
1989                 clear_bit(MMF_DUMPABLE, &mm->flags);
1990                 smp_wmb();
1991                 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1992                 break;
1993         case 1:
1994                 set_bit(MMF_DUMPABLE, &mm->flags);
1995                 smp_wmb();
1996                 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1997                 break;
1998         case 2:
1999                 set_bit(MMF_DUMP_SECURELY, &mm->flags);
2000                 smp_wmb();
2001                 set_bit(MMF_DUMPABLE, &mm->flags);
2002                 break;
2003         }
2004 }
2005
2006 static int __get_dumpable(unsigned long mm_flags)
2007 {
2008         int ret;
2009
2010         ret = mm_flags & MMF_DUMPABLE_MASK;
2011         return (ret >= 2) ? 2 : ret;
2012 }
2013
2014 int get_dumpable(struct mm_struct *mm)
2015 {
2016         return __get_dumpable(mm->flags);
2017 }
2018
2019 static void wait_for_dump_helpers(struct file *file)
2020 {
2021         struct pipe_inode_info *pipe;
2022
2023         pipe = file->f_path.dentry->d_inode->i_pipe;
2024
2025         pipe_lock(pipe);
2026         pipe->readers++;
2027         pipe->writers--;
2028
2029         while ((pipe->readers > 1) && (!signal_pending(current))) {
2030                 wake_up_interruptible_sync(&pipe->wait);
2031                 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
2032                 pipe_wait(pipe);
2033         }
2034
2035         pipe->readers--;
2036         pipe->writers++;
2037         pipe_unlock(pipe);
2038
2039 }
2040
2041
2042 /*
2043  * umh_pipe_setup
2044  * helper function to customize the process used
2045  * to collect the core in userspace.  Specifically
2046  * it sets up a pipe and installs it as fd 0 (stdin)
2047  * for the process.  Returns 0 on success, or
2048  * PTR_ERR on failure.
2049  * Note that it also sets the core limit to 1.  This
2050  * is a special value that we use to trap recursive
2051  * core dumps
2052  */
2053 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
2054 {
2055         struct file *rp, *wp;
2056         struct fdtable *fdt;
2057         struct coredump_params *cp = (struct coredump_params *)info->data;
2058         struct files_struct *cf = current->files;
2059
2060         wp = create_write_pipe(0);
2061         if (IS_ERR(wp))
2062                 return PTR_ERR(wp);
2063
2064         rp = create_read_pipe(wp, 0);
2065         if (IS_ERR(rp)) {
2066                 free_write_pipe(wp);
2067                 return PTR_ERR(rp);
2068         }
2069
2070         cp->file = wp;
2071
2072         sys_close(0);
2073         fd_install(0, rp);
2074         spin_lock(&cf->file_lock);
2075         fdt = files_fdtable(cf);
2076         FD_SET(0, fdt->open_fds);
2077         FD_CLR(0, fdt->close_on_exec);
2078         spin_unlock(&cf->file_lock);
2079
2080         /* and disallow core files too */
2081         current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
2082
2083         return 0;
2084 }
2085
2086 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
2087 {
2088         struct core_state core_state;
2089         struct core_name cn;
2090         struct mm_struct *mm = current->mm;
2091         struct linux_binfmt * binfmt;
2092         const struct cred *old_cred;
2093         struct cred *cred;
2094         int retval = 0;
2095         int flag = 0;
2096         int ispipe;
2097         static atomic_t core_dump_count = ATOMIC_INIT(0);
2098         struct coredump_params cprm = {
2099                 .signr = signr,
2100                 .regs = regs,
2101                 .limit = rlimit(RLIMIT_CORE),
2102                 /*
2103                  * We must use the same mm->flags while dumping core to avoid
2104                  * inconsistency of bit flags, since this flag is not protected
2105                  * by any locks.
2106                  */
2107                 .mm_flags = mm->flags,
2108         };
2109
2110         audit_core_dumps(signr);
2111
2112         binfmt = mm->binfmt;
2113         if (!binfmt || !binfmt->core_dump)
2114                 goto fail;
2115         if (!__get_dumpable(cprm.mm_flags))
2116                 goto fail;
2117
2118         cred = prepare_creds();
2119         if (!cred)
2120                 goto fail;
2121         /*
2122          *      We cannot trust fsuid as being the "true" uid of the
2123          *      process nor do we know its entire history. We only know it
2124          *      was tainted so we dump it as root in mode 2.
2125          */
2126         if (__get_dumpable(cprm.mm_flags) == 2) {
2127                 /* Setuid core dump mode */
2128                 flag = O_EXCL;          /* Stop rewrite attacks */
2129                 cred->fsuid = 0;        /* Dump root private */
2130         }
2131
2132         retval = coredump_wait(exit_code, &core_state);
2133         if (retval < 0)
2134                 goto fail_creds;
2135
2136         old_cred = override_creds(cred);
2137
2138         /*
2139          * Clear any false indication of pending signals that might
2140          * be seen by the filesystem code called to write the core file.
2141          */
2142         clear_thread_flag(TIF_SIGPENDING);
2143
2144         ispipe = format_corename(&cn, signr);
2145
2146         if (ispipe) {
2147                 int dump_count;
2148                 char **helper_argv;
2149
2150                 if (ispipe < 0) {
2151                         printk(KERN_WARNING "format_corename failed\n");
2152                         printk(KERN_WARNING "Aborting core\n");
2153                         goto fail_corename;
2154                 }
2155
2156                 if (cprm.limit == 1) {
2157                         /*
2158                          * Normally core limits are irrelevant to pipes, since
2159                          * we're not writing to the file system, but we use
2160                          * cprm.limit of 1 here as a speacial value. Any
2161                          * non-1 limit gets set to RLIM_INFINITY below, but
2162                          * a limit of 0 skips the dump.  This is a consistent
2163                          * way to catch recursive crashes.  We can still crash
2164                          * if the core_pattern binary sets RLIM_CORE =  !1
2165                          * but it runs as root, and can do lots of stupid things
2166                          * Note that we use task_tgid_vnr here to grab the pid
2167                          * of the process group leader.  That way we get the
2168                          * right pid if a thread in a multi-threaded
2169                          * core_pattern process dies.
2170                          */
2171                         printk(KERN_WARNING
2172                                 "Process %d(%s) has RLIMIT_CORE set to 1\n",
2173                                 task_tgid_vnr(current), current->comm);
2174                         printk(KERN_WARNING "Aborting core\n");
2175                         goto fail_unlock;
2176                 }
2177                 cprm.limit = RLIM_INFINITY;
2178
2179                 dump_count = atomic_inc_return(&core_dump_count);
2180                 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
2181                         printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
2182                                task_tgid_vnr(current), current->comm);
2183                         printk(KERN_WARNING "Skipping core dump\n");
2184                         goto fail_dropcount;
2185                 }
2186
2187                 helper_argv = argv_split(GFP_KERNEL, cn.corename+1, NULL);
2188                 if (!helper_argv) {
2189                         printk(KERN_WARNING "%s failed to allocate memory\n",
2190                                __func__);
2191                         goto fail_dropcount;
2192                 }
2193
2194                 retval = call_usermodehelper_fns(helper_argv[0], helper_argv,
2195                                         NULL, UMH_WAIT_EXEC, umh_pipe_setup,
2196                                         NULL, &cprm);
2197                 argv_free(helper_argv);
2198                 if (retval) {
2199                         printk(KERN_INFO "Core dump to %s pipe failed\n",
2200                                cn.corename);
2201                         goto close_fail;
2202                 }
2203         } else {
2204                 struct inode *inode;
2205
2206                 if (cprm.limit < binfmt->min_coredump)
2207                         goto fail_unlock;
2208
2209                 cprm.file = filp_open(cn.corename,
2210                                  O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
2211                                  0600);
2212                 if (IS_ERR(cprm.file))
2213                         goto fail_unlock;
2214
2215                 inode = cprm.file->f_path.dentry->d_inode;
2216                 if (inode->i_nlink > 1)
2217                         goto close_fail;
2218                 if (d_unhashed(cprm.file->f_path.dentry))
2219                         goto close_fail;
2220                 /*
2221                  * AK: actually i see no reason to not allow this for named
2222                  * pipes etc, but keep the previous behaviour for now.
2223                  */
2224                 if (!S_ISREG(inode->i_mode))
2225                         goto close_fail;
2226                 /*
2227                  * Dont allow local users get cute and trick others to coredump
2228                  * into their pre-created files.
2229                  */
2230                 if (inode->i_uid != current_fsuid())
2231                         goto close_fail;
2232                 if (!cprm.file->f_op || !cprm.file->f_op->write)
2233                         goto close_fail;
2234                 if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
2235                         goto close_fail;
2236         }
2237
2238         retval = binfmt->core_dump(&cprm);
2239         if (retval)
2240                 current->signal->group_exit_code |= 0x80;
2241
2242         if (ispipe && core_pipe_limit)
2243                 wait_for_dump_helpers(cprm.file);
2244 close_fail:
2245         if (cprm.file)
2246                 filp_close(cprm.file, NULL);
2247 fail_dropcount:
2248         if (ispipe)
2249                 atomic_dec(&core_dump_count);
2250 fail_unlock:
2251         kfree(cn.corename);
2252 fail_corename:
2253         coredump_finish(mm);
2254         revert_creds(old_cred);
2255 fail_creds:
2256         put_cred(cred);
2257 fail:
2258         return;
2259 }
2260
2261 /*
2262  * Core dumping helper functions.  These are the only things you should
2263  * do on a core-file: use only these functions to write out all the
2264  * necessary info.
2265  */
2266 int dump_write(struct file *file, const void *addr, int nr)
2267 {
2268         return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr;
2269 }
2270 EXPORT_SYMBOL(dump_write);
2271
2272 int dump_seek(struct file *file, loff_t off)
2273 {
2274         int ret = 1;
2275
2276         if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
2277                 if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
2278                         return 0;
2279         } else {
2280                 char *buf = (char *)get_zeroed_page(GFP_KERNEL);
2281
2282                 if (!buf)
2283                         return 0;
2284                 while (off > 0) {
2285                         unsigned long n = off;
2286
2287                         if (n > PAGE_SIZE)
2288                                 n = PAGE_SIZE;
2289                         if (!dump_write(file, buf, n)) {
2290                                 ret = 0;
2291                                 break;
2292                         }
2293                         off -= n;
2294                 }
2295                 free_page((unsigned long)buf);
2296         }
2297         return ret;
2298 }
2299 EXPORT_SYMBOL(dump_seek);