4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/coredump.h>
37 #include <linux/sched/signal.h>
38 #include <linux/sched/numa_balancing.h>
39 #include <linux/sched/task.h>
40 #include <linux/pagemap.h>
41 #include <linux/perf_event.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/key.h>
45 #include <linux/personality.h>
46 #include <linux/binfmts.h>
47 #include <linux/utsname.h>
48 #include <linux/pid_namespace.h>
49 #include <linux/module.h>
50 #include <linux/namei.h>
51 #include <linux/mount.h>
52 #include <linux/security.h>
53 #include <linux/syscalls.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/audit.h>
57 #include <linux/tracehook.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/pipe_fs_i.h>
62 #include <linux/oom.h>
63 #include <linux/compat.h>
64 #include <linux/vmalloc.h>
66 #include <linux/uaccess.h>
67 #include <asm/mmu_context.h>
70 #include <trace/events/task.h>
73 #include <trace/events/sched.h>
75 int suid_dumpable = 0;
77 static LIST_HEAD(formats);
78 static DEFINE_RWLOCK(binfmt_lock);
80 void __register_binfmt(struct linux_binfmt * fmt, int insert)
83 if (WARN_ON(!fmt->load_binary))
85 write_lock(&binfmt_lock);
86 insert ? list_add(&fmt->lh, &formats) :
87 list_add_tail(&fmt->lh, &formats);
88 write_unlock(&binfmt_lock);
91 EXPORT_SYMBOL(__register_binfmt);
93 void unregister_binfmt(struct linux_binfmt * fmt)
95 write_lock(&binfmt_lock);
97 write_unlock(&binfmt_lock);
100 EXPORT_SYMBOL(unregister_binfmt);
102 static inline void put_binfmt(struct linux_binfmt * fmt)
104 module_put(fmt->module);
107 bool path_noexec(const struct path *path)
109 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
110 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
115 * Note that a shared library must be both readable and executable due to
118 * Also note that we take the address to load from from the file itself.
120 SYSCALL_DEFINE1(uselib, const char __user *, library)
122 struct linux_binfmt *fmt;
124 struct filename *tmp = getname(library);
125 int error = PTR_ERR(tmp);
126 static const struct open_flags uselib_flags = {
127 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
128 .acc_mode = MAY_READ | MAY_EXEC,
129 .intent = LOOKUP_OPEN,
130 .lookup_flags = LOOKUP_FOLLOW,
136 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
138 error = PTR_ERR(file);
143 if (!S_ISREG(file_inode(file)->i_mode))
147 if (path_noexec(&file->f_path))
154 read_lock(&binfmt_lock);
155 list_for_each_entry(fmt, &formats, lh) {
156 if (!fmt->load_shlib)
158 if (!try_module_get(fmt->module))
160 read_unlock(&binfmt_lock);
161 error = fmt->load_shlib(file);
162 read_lock(&binfmt_lock);
164 if (error != -ENOEXEC)
167 read_unlock(&binfmt_lock);
173 #endif /* #ifdef CONFIG_USELIB */
177 * The nascent bprm->mm is not visible until exec_mmap() but it can
178 * use a lot of memory, account these pages in current->mm temporary
179 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
180 * change the counter back via acct_arg_size(0).
182 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
184 struct mm_struct *mm = current->mm;
185 long diff = (long)(pages - bprm->vma_pages);
190 bprm->vma_pages = pages;
191 add_mm_counter(mm, MM_ANONPAGES, diff);
194 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
199 unsigned int gup_flags = FOLL_FORCE;
201 #ifdef CONFIG_STACK_GROWSUP
203 ret = expand_downwards(bprm->vma, pos);
210 gup_flags |= FOLL_WRITE;
213 * We are doing an exec(). 'current' is the process
214 * doing the exec and bprm->mm is the new process's mm.
216 ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
222 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
223 unsigned long ptr_size, limit;
226 * Since the stack will hold pointers to the strings, we
227 * must account for them as well.
229 * The size calculation is the entire vma while each arg page is
230 * built, so each time we get here it's calculating how far it
231 * is currently (rather than each call being just the newly
232 * added size from the arg page). As a result, we need to
233 * always add the entire size of the pointers, so that on the
234 * last call to get_arg_page() we'll actually have the entire
237 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
238 if (ptr_size > ULONG_MAX - size)
242 acct_arg_size(bprm, size / PAGE_SIZE);
245 * We've historically supported up to 32 pages (ARG_MAX)
246 * of argument strings even with small stacks
252 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
253 * (whichever is smaller) for the argv+env strings.
255 * - the remaining binfmt code will not run out of stack space,
256 * - the program will have a reasonable amount of stack left
259 limit = _STK_LIM / 4 * 3;
260 limit = min(limit, rlimit(RLIMIT_STACK) / 4);
272 static void put_arg_page(struct page *page)
277 static void free_arg_pages(struct linux_binprm *bprm)
281 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
284 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
287 static int __bprm_mm_init(struct linux_binprm *bprm)
290 struct vm_area_struct *vma = NULL;
291 struct mm_struct *mm = bprm->mm;
293 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
297 if (down_write_killable(&mm->mmap_sem)) {
304 * Place the stack at the largest stack address the architecture
305 * supports. Later, we'll move this to an appropriate place. We don't
306 * use STACK_TOP because that can depend on attributes which aren't
309 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
310 vma->vm_end = STACK_TOP_MAX;
311 vma->vm_start = vma->vm_end - PAGE_SIZE;
312 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
313 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
314 INIT_LIST_HEAD(&vma->anon_vma_chain);
316 err = insert_vm_struct(mm, vma);
320 mm->stack_vm = mm->total_vm = 1;
321 arch_bprm_mm_init(mm, vma);
322 up_write(&mm->mmap_sem);
323 bprm->p = vma->vm_end - sizeof(void *);
326 up_write(&mm->mmap_sem);
329 kmem_cache_free(vm_area_cachep, vma);
333 static bool valid_arg_len(struct linux_binprm *bprm, long len)
335 return len <= MAX_ARG_STRLEN;
340 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
344 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
349 page = bprm->page[pos / PAGE_SIZE];
350 if (!page && write) {
351 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
354 bprm->page[pos / PAGE_SIZE] = page;
360 static void put_arg_page(struct page *page)
364 static void free_arg_page(struct linux_binprm *bprm, int i)
367 __free_page(bprm->page[i]);
368 bprm->page[i] = NULL;
372 static void free_arg_pages(struct linux_binprm *bprm)
376 for (i = 0; i < MAX_ARG_PAGES; i++)
377 free_arg_page(bprm, i);
380 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
385 static int __bprm_mm_init(struct linux_binprm *bprm)
387 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
391 static bool valid_arg_len(struct linux_binprm *bprm, long len)
393 return len <= bprm->p;
396 #endif /* CONFIG_MMU */
399 * Create a new mm_struct and populate it with a temporary stack
400 * vm_area_struct. We don't have enough context at this point to set the stack
401 * flags, permissions, and offset, so we use temporary values. We'll update
402 * them later in setup_arg_pages().
404 static int bprm_mm_init(struct linux_binprm *bprm)
407 struct mm_struct *mm = NULL;
409 bprm->mm = mm = mm_alloc();
414 err = __bprm_mm_init(bprm);
429 struct user_arg_ptr {
434 const char __user *const __user *native;
436 const compat_uptr_t __user *compat;
441 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
443 const char __user *native;
446 if (unlikely(argv.is_compat)) {
447 compat_uptr_t compat;
449 if (get_user(compat, argv.ptr.compat + nr))
450 return ERR_PTR(-EFAULT);
452 return compat_ptr(compat);
456 if (get_user(native, argv.ptr.native + nr))
457 return ERR_PTR(-EFAULT);
463 * count() counts the number of strings in array ARGV.
465 static int count(struct user_arg_ptr argv, int max)
469 if (argv.ptr.native != NULL) {
471 const char __user *p = get_user_arg_ptr(argv, i);
483 if (fatal_signal_pending(current))
484 return -ERESTARTNOHAND;
492 * 'copy_strings()' copies argument/environment strings from the old
493 * processes's memory to the new process's stack. The call to get_user_pages()
494 * ensures the destination page is created and not swapped out.
496 static int copy_strings(int argc, struct user_arg_ptr argv,
497 struct linux_binprm *bprm)
499 struct page *kmapped_page = NULL;
501 unsigned long kpos = 0;
505 const char __user *str;
510 str = get_user_arg_ptr(argv, argc);
514 len = strnlen_user(str, MAX_ARG_STRLEN);
519 if (!valid_arg_len(bprm, len))
522 /* We're going to work our way backwords. */
528 int offset, bytes_to_copy;
530 if (fatal_signal_pending(current)) {
531 ret = -ERESTARTNOHAND;
536 offset = pos % PAGE_SIZE;
540 bytes_to_copy = offset;
541 if (bytes_to_copy > len)
544 offset -= bytes_to_copy;
545 pos -= bytes_to_copy;
546 str -= bytes_to_copy;
547 len -= bytes_to_copy;
549 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
552 page = get_arg_page(bprm, pos, 1);
559 flush_kernel_dcache_page(kmapped_page);
560 kunmap(kmapped_page);
561 put_arg_page(kmapped_page);
564 kaddr = kmap(kmapped_page);
565 kpos = pos & PAGE_MASK;
566 flush_arg_page(bprm, kpos, kmapped_page);
568 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
577 flush_kernel_dcache_page(kmapped_page);
578 kunmap(kmapped_page);
579 put_arg_page(kmapped_page);
585 * Like copy_strings, but get argv and its values from kernel memory.
587 int copy_strings_kernel(int argc, const char *const *__argv,
588 struct linux_binprm *bprm)
591 mm_segment_t oldfs = get_fs();
592 struct user_arg_ptr argv = {
593 .ptr.native = (const char __user *const __user *)__argv,
597 r = copy_strings(argc, argv, bprm);
602 EXPORT_SYMBOL(copy_strings_kernel);
607 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
608 * the binfmt code determines where the new stack should reside, we shift it to
609 * its final location. The process proceeds as follows:
611 * 1) Use shift to calculate the new vma endpoints.
612 * 2) Extend vma to cover both the old and new ranges. This ensures the
613 * arguments passed to subsequent functions are consistent.
614 * 3) Move vma's page tables to the new range.
615 * 4) Free up any cleared pgd range.
616 * 5) Shrink the vma to cover only the new range.
618 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
620 struct mm_struct *mm = vma->vm_mm;
621 unsigned long old_start = vma->vm_start;
622 unsigned long old_end = vma->vm_end;
623 unsigned long length = old_end - old_start;
624 unsigned long new_start = old_start - shift;
625 unsigned long new_end = old_end - shift;
626 struct mmu_gather tlb;
628 BUG_ON(new_start > new_end);
631 * ensure there are no vmas between where we want to go
634 if (vma != find_vma(mm, new_start))
638 * cover the whole range: [new_start, old_end)
640 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
644 * move the page tables downwards, on failure we rely on
645 * process cleanup to remove whatever mess we made.
647 if (length != move_page_tables(vma, old_start,
648 vma, new_start, length, false))
652 tlb_gather_mmu(&tlb, mm, old_start, old_end);
653 if (new_end > old_start) {
655 * when the old and new regions overlap clear from new_end.
657 free_pgd_range(&tlb, new_end, old_end, new_end,
658 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
661 * otherwise, clean from old_start; this is done to not touch
662 * the address space in [new_end, old_start) some architectures
663 * have constraints on va-space that make this illegal (IA64) -
664 * for the others its just a little faster.
666 free_pgd_range(&tlb, old_start, old_end, new_end,
667 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
669 tlb_finish_mmu(&tlb, old_start, old_end);
672 * Shrink the vma to just the new range. Always succeeds.
674 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
680 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
681 * the stack is optionally relocated, and some extra space is added.
683 int setup_arg_pages(struct linux_binprm *bprm,
684 unsigned long stack_top,
685 int executable_stack)
688 unsigned long stack_shift;
689 struct mm_struct *mm = current->mm;
690 struct vm_area_struct *vma = bprm->vma;
691 struct vm_area_struct *prev = NULL;
692 unsigned long vm_flags;
693 unsigned long stack_base;
694 unsigned long stack_size;
695 unsigned long stack_expand;
696 unsigned long rlim_stack;
698 #ifdef CONFIG_STACK_GROWSUP
699 /* Limit stack size */
700 stack_base = rlimit_max(RLIMIT_STACK);
701 if (stack_base > STACK_SIZE_MAX)
702 stack_base = STACK_SIZE_MAX;
704 /* Add space for stack randomization. */
705 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
707 /* Make sure we didn't let the argument array grow too large. */
708 if (vma->vm_end - vma->vm_start > stack_base)
711 stack_base = PAGE_ALIGN(stack_top - stack_base);
713 stack_shift = vma->vm_start - stack_base;
714 mm->arg_start = bprm->p - stack_shift;
715 bprm->p = vma->vm_end - stack_shift;
717 stack_top = arch_align_stack(stack_top);
718 stack_top = PAGE_ALIGN(stack_top);
720 if (unlikely(stack_top < mmap_min_addr) ||
721 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
724 stack_shift = vma->vm_end - stack_top;
726 bprm->p -= stack_shift;
727 mm->arg_start = bprm->p;
731 bprm->loader -= stack_shift;
732 bprm->exec -= stack_shift;
734 if (down_write_killable(&mm->mmap_sem))
737 vm_flags = VM_STACK_FLAGS;
740 * Adjust stack execute permissions; explicitly enable for
741 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
742 * (arch default) otherwise.
744 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
746 else if (executable_stack == EXSTACK_DISABLE_X)
747 vm_flags &= ~VM_EXEC;
748 vm_flags |= mm->def_flags;
749 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
751 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
757 /* Move stack pages down in memory. */
759 ret = shift_arg_pages(vma, stack_shift);
764 /* mprotect_fixup is overkill to remove the temporary stack flags */
765 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
767 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
768 stack_size = vma->vm_end - vma->vm_start;
770 * Align this down to a page boundary as expand_stack
773 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
774 #ifdef CONFIG_STACK_GROWSUP
775 if (stack_size + stack_expand > rlim_stack)
776 stack_base = vma->vm_start + rlim_stack;
778 stack_base = vma->vm_end + stack_expand;
780 if (stack_size + stack_expand > rlim_stack)
781 stack_base = vma->vm_end - rlim_stack;
783 stack_base = vma->vm_start - stack_expand;
785 current->mm->start_stack = bprm->p;
786 ret = expand_stack(vma, stack_base);
791 up_write(&mm->mmap_sem);
794 EXPORT_SYMBOL(setup_arg_pages);
799 * Transfer the program arguments and environment from the holding pages
800 * onto the stack. The provided stack pointer is adjusted accordingly.
802 int transfer_args_to_stack(struct linux_binprm *bprm,
803 unsigned long *sp_location)
805 unsigned long index, stop, sp;
808 stop = bprm->p >> PAGE_SHIFT;
811 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
812 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
813 char *src = kmap(bprm->page[index]) + offset;
814 sp -= PAGE_SIZE - offset;
815 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
817 kunmap(bprm->page[index]);
827 EXPORT_SYMBOL(transfer_args_to_stack);
829 #endif /* CONFIG_MMU */
831 static struct file *do_open_execat(int fd, struct filename *name, int flags)
835 struct open_flags open_exec_flags = {
836 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
837 .acc_mode = MAY_EXEC,
838 .intent = LOOKUP_OPEN,
839 .lookup_flags = LOOKUP_FOLLOW,
842 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
843 return ERR_PTR(-EINVAL);
844 if (flags & AT_SYMLINK_NOFOLLOW)
845 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
846 if (flags & AT_EMPTY_PATH)
847 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
849 file = do_filp_open(fd, name, &open_exec_flags);
854 if (!S_ISREG(file_inode(file)->i_mode))
857 if (path_noexec(&file->f_path))
860 err = deny_write_access(file);
864 if (name->name[0] != '\0')
875 struct file *open_exec(const char *name)
877 struct filename *filename = getname_kernel(name);
878 struct file *f = ERR_CAST(filename);
880 if (!IS_ERR(filename)) {
881 f = do_open_execat(AT_FDCWD, filename, 0);
886 EXPORT_SYMBOL(open_exec);
888 int kernel_read_file(struct file *file, void **buf, loff_t *size,
889 loff_t max_size, enum kernel_read_file_id id)
895 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
898 ret = security_kernel_read_file(file, id);
902 ret = deny_write_access(file);
906 i_size = i_size_read(file_inode(file));
907 if (max_size > 0 && i_size > max_size) {
916 if (id != READING_FIRMWARE_PREALLOC_BUFFER)
917 *buf = vmalloc(i_size);
924 while (pos < i_size) {
925 bytes = kernel_read(file, *buf + pos, i_size - pos, &pos);
940 ret = security_kernel_post_read_file(file, *buf, i_size, id);
946 if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
953 allow_write_access(file);
956 EXPORT_SYMBOL_GPL(kernel_read_file);
958 int kernel_read_file_from_path(const char *path, void **buf, loff_t *size,
959 loff_t max_size, enum kernel_read_file_id id)
967 file = filp_open(path, O_RDONLY, 0);
969 return PTR_ERR(file);
971 ret = kernel_read_file(file, buf, size, max_size, id);
975 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
977 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
978 enum kernel_read_file_id id)
980 struct fd f = fdget(fd);
986 ret = kernel_read_file(f.file, buf, size, max_size, id);
991 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
993 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
995 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
997 flush_icache_range(addr, addr + len);
1000 EXPORT_SYMBOL(read_code);
1002 static int exec_mmap(struct mm_struct *mm)
1004 struct task_struct *tsk;
1005 struct mm_struct *old_mm, *active_mm;
1007 /* Notify parent that we're no longer interested in the old VM */
1009 old_mm = current->mm;
1010 mm_release(tsk, old_mm);
1013 sync_mm_rss(old_mm);
1015 * Make sure that if there is a core dump in progress
1016 * for the old mm, we get out and die instead of going
1017 * through with the exec. We must hold mmap_sem around
1018 * checking core_state and changing tsk->mm.
1020 down_read(&old_mm->mmap_sem);
1021 if (unlikely(old_mm->core_state)) {
1022 up_read(&old_mm->mmap_sem);
1027 active_mm = tsk->active_mm;
1029 tsk->active_mm = mm;
1030 activate_mm(active_mm, mm);
1031 tsk->mm->vmacache_seqnum = 0;
1032 vmacache_flush(tsk);
1035 up_read(&old_mm->mmap_sem);
1036 BUG_ON(active_mm != old_mm);
1037 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1038 mm_update_next_owner(old_mm);
1047 * This function makes sure the current process has its own signal table,
1048 * so that flush_signal_handlers can later reset the handlers without
1049 * disturbing other processes. (Other processes might share the signal
1050 * table via the CLONE_SIGHAND option to clone().)
1052 static int de_thread(struct task_struct *tsk)
1054 struct signal_struct *sig = tsk->signal;
1055 struct sighand_struct *oldsighand = tsk->sighand;
1056 spinlock_t *lock = &oldsighand->siglock;
1058 if (thread_group_empty(tsk))
1059 goto no_thread_group;
1062 * Kill all other threads in the thread group.
1064 spin_lock_irq(lock);
1065 if (signal_group_exit(sig)) {
1067 * Another group action in progress, just
1068 * return so that the signal is processed.
1070 spin_unlock_irq(lock);
1074 sig->group_exit_task = tsk;
1075 sig->notify_count = zap_other_threads(tsk);
1076 if (!thread_group_leader(tsk))
1077 sig->notify_count--;
1079 while (sig->notify_count) {
1080 __set_current_state(TASK_KILLABLE);
1081 spin_unlock_irq(lock);
1083 if (unlikely(__fatal_signal_pending(tsk)))
1085 spin_lock_irq(lock);
1087 spin_unlock_irq(lock);
1090 * At this point all other threads have exited, all we have to
1091 * do is to wait for the thread group leader to become inactive,
1092 * and to assume its PID:
1094 if (!thread_group_leader(tsk)) {
1095 struct task_struct *leader = tsk->group_leader;
1098 cgroup_threadgroup_change_begin(tsk);
1099 write_lock_irq(&tasklist_lock);
1101 * Do this under tasklist_lock to ensure that
1102 * exit_notify() can't miss ->group_exit_task
1104 sig->notify_count = -1;
1105 if (likely(leader->exit_state))
1107 __set_current_state(TASK_KILLABLE);
1108 write_unlock_irq(&tasklist_lock);
1109 cgroup_threadgroup_change_end(tsk);
1111 if (unlikely(__fatal_signal_pending(tsk)))
1116 * The only record we have of the real-time age of a
1117 * process, regardless of execs it's done, is start_time.
1118 * All the past CPU time is accumulated in signal_struct
1119 * from sister threads now dead. But in this non-leader
1120 * exec, nothing survives from the original leader thread,
1121 * whose birth marks the true age of this process now.
1122 * When we take on its identity by switching to its PID, we
1123 * also take its birthdate (always earlier than our own).
1125 tsk->start_time = leader->start_time;
1126 tsk->real_start_time = leader->real_start_time;
1128 BUG_ON(!same_thread_group(leader, tsk));
1129 BUG_ON(has_group_leader_pid(tsk));
1131 * An exec() starts a new thread group with the
1132 * TGID of the previous thread group. Rehash the
1133 * two threads with a switched PID, and release
1134 * the former thread group leader:
1137 /* Become a process group leader with the old leader's pid.
1138 * The old leader becomes a thread of the this thread group.
1139 * Note: The old leader also uses this pid until release_task
1140 * is called. Odd but simple and correct.
1142 tsk->pid = leader->pid;
1143 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1144 transfer_pid(leader, tsk, PIDTYPE_PGID);
1145 transfer_pid(leader, tsk, PIDTYPE_SID);
1147 list_replace_rcu(&leader->tasks, &tsk->tasks);
1148 list_replace_init(&leader->sibling, &tsk->sibling);
1150 tsk->group_leader = tsk;
1151 leader->group_leader = tsk;
1153 tsk->exit_signal = SIGCHLD;
1154 leader->exit_signal = -1;
1156 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1157 leader->exit_state = EXIT_DEAD;
1160 * We are going to release_task()->ptrace_unlink() silently,
1161 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1162 * the tracer wont't block again waiting for this thread.
1164 if (unlikely(leader->ptrace))
1165 __wake_up_parent(leader, leader->parent);
1166 write_unlock_irq(&tasklist_lock);
1167 cgroup_threadgroup_change_end(tsk);
1169 release_task(leader);
1172 sig->group_exit_task = NULL;
1173 sig->notify_count = 0;
1176 /* we have changed execution domain */
1177 tsk->exit_signal = SIGCHLD;
1179 #ifdef CONFIG_POSIX_TIMERS
1181 flush_itimer_signals();
1184 if (atomic_read(&oldsighand->count) != 1) {
1185 struct sighand_struct *newsighand;
1187 * This ->sighand is shared with the CLONE_SIGHAND
1188 * but not CLONE_THREAD task, switch to the new one.
1190 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1194 atomic_set(&newsighand->count, 1);
1195 memcpy(newsighand->action, oldsighand->action,
1196 sizeof(newsighand->action));
1198 write_lock_irq(&tasklist_lock);
1199 spin_lock(&oldsighand->siglock);
1200 rcu_assign_pointer(tsk->sighand, newsighand);
1201 spin_unlock(&oldsighand->siglock);
1202 write_unlock_irq(&tasklist_lock);
1204 __cleanup_sighand(oldsighand);
1207 BUG_ON(!thread_group_leader(tsk));
1211 /* protects against exit_notify() and __exit_signal() */
1212 read_lock(&tasklist_lock);
1213 sig->group_exit_task = NULL;
1214 sig->notify_count = 0;
1215 read_unlock(&tasklist_lock);
1219 char *get_task_comm(char *buf, struct task_struct *tsk)
1221 /* buf must be at least sizeof(tsk->comm) in size */
1223 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1227 EXPORT_SYMBOL_GPL(get_task_comm);
1230 * These functions flushes out all traces of the currently running executable
1231 * so that a new one can be started
1234 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1237 trace_task_rename(tsk, buf);
1238 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1240 perf_event_comm(tsk, exec);
1244 * Calling this is the point of no return. None of the failures will be
1245 * seen by userspace since either the process is already taking a fatal
1246 * signal (via de_thread() or coredump), or will have SEGV raised
1247 * (after exec_mmap()) by search_binary_handlers (see below).
1249 int flush_old_exec(struct linux_binprm * bprm)
1254 * Make sure we have a private signal table and that
1255 * we are unassociated from the previous thread group.
1257 retval = de_thread(current);
1262 * Must be called _before_ exec_mmap() as bprm->mm is
1263 * not visibile until then. This also enables the update
1266 set_mm_exe_file(bprm->mm, bprm->file);
1269 * Release all of the old mmap stuff
1271 acct_arg_size(bprm, 0);
1272 retval = exec_mmap(bprm->mm);
1277 * After clearing bprm->mm (to mark that current is using the
1278 * prepared mm now), we have nothing left of the original
1279 * process. If anything from here on returns an error, the check
1280 * in search_binary_handler() will SEGV current.
1285 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1286 PF_NOFREEZE | PF_NO_SETAFFINITY);
1288 current->personality &= ~bprm->per_clear;
1291 * We have to apply CLOEXEC before we change whether the process is
1292 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1293 * trying to access the should-be-closed file descriptors of a process
1294 * undergoing exec(2).
1296 do_close_on_exec(current->files);
1302 EXPORT_SYMBOL(flush_old_exec);
1304 void would_dump(struct linux_binprm *bprm, struct file *file)
1306 struct inode *inode = file_inode(file);
1307 if (inode_permission(inode, MAY_READ) < 0) {
1308 struct user_namespace *old, *user_ns;
1309 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1311 /* Ensure mm->user_ns contains the executable */
1312 user_ns = old = bprm->mm->user_ns;
1313 while ((user_ns != &init_user_ns) &&
1314 !privileged_wrt_inode_uidgid(user_ns, inode))
1315 user_ns = user_ns->parent;
1317 if (old != user_ns) {
1318 bprm->mm->user_ns = get_user_ns(user_ns);
1323 EXPORT_SYMBOL(would_dump);
1325 void setup_new_exec(struct linux_binprm * bprm)
1328 * Once here, prepare_binrpm() will not be called any more, so
1329 * the final state of setuid/setgid/fscaps can be merged into the
1332 bprm->secureexec |= bprm->cap_elevated;
1334 if (bprm->secureexec) {
1335 /* Make sure parent cannot signal privileged process. */
1336 current->pdeath_signal = 0;
1339 * For secureexec, reset the stack limit to sane default to
1340 * avoid bad behavior from the prior rlimits. This has to
1341 * happen before arch_pick_mmap_layout(), which examines
1342 * RLIMIT_STACK, but after the point of no return to avoid
1343 * needing to clean up the change on failure.
1345 if (current->signal->rlim[RLIMIT_STACK].rlim_cur > _STK_LIM)
1346 current->signal->rlim[RLIMIT_STACK].rlim_cur = _STK_LIM;
1349 arch_pick_mmap_layout(current->mm);
1351 current->sas_ss_sp = current->sas_ss_size = 0;
1353 /* Figure out dumpability. */
1354 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1356 set_dumpable(current->mm, suid_dumpable);
1358 set_dumpable(current->mm, SUID_DUMP_USER);
1360 arch_setup_new_exec();
1362 __set_task_comm(current, kbasename(bprm->filename), true);
1364 /* Set the new mm task size. We have to do that late because it may
1365 * depend on TIF_32BIT which is only updated in flush_thread() on
1366 * some architectures like powerpc
1368 current->mm->task_size = TASK_SIZE;
1370 /* An exec changes our domain. We are no longer part of the thread
1372 current->self_exec_id++;
1373 flush_signal_handlers(current, 0);
1375 EXPORT_SYMBOL(setup_new_exec);
1378 * Prepare credentials and lock ->cred_guard_mutex.
1379 * install_exec_creds() commits the new creds and drops the lock.
1380 * Or, if exec fails before, free_bprm() should release ->cred and
1383 int prepare_bprm_creds(struct linux_binprm *bprm)
1385 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex))
1386 return -ERESTARTNOINTR;
1388 bprm->cred = prepare_exec_creds();
1389 if (likely(bprm->cred))
1392 mutex_unlock(¤t->signal->cred_guard_mutex);
1396 static void free_bprm(struct linux_binprm *bprm)
1398 free_arg_pages(bprm);
1400 mutex_unlock(¤t->signal->cred_guard_mutex);
1401 abort_creds(bprm->cred);
1404 allow_write_access(bprm->file);
1407 /* If a binfmt changed the interp, free it. */
1408 if (bprm->interp != bprm->filename)
1409 kfree(bprm->interp);
1413 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1415 /* If a binfmt changed the interp, free it first. */
1416 if (bprm->interp != bprm->filename)
1417 kfree(bprm->interp);
1418 bprm->interp = kstrdup(interp, GFP_KERNEL);
1423 EXPORT_SYMBOL(bprm_change_interp);
1426 * install the new credentials for this executable
1428 void install_exec_creds(struct linux_binprm *bprm)
1430 security_bprm_committing_creds(bprm);
1432 commit_creds(bprm->cred);
1436 * Disable monitoring for regular users
1437 * when executing setuid binaries. Must
1438 * wait until new credentials are committed
1439 * by commit_creds() above
1441 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1442 perf_event_exit_task(current);
1444 * cred_guard_mutex must be held at least to this point to prevent
1445 * ptrace_attach() from altering our determination of the task's
1446 * credentials; any time after this it may be unlocked.
1448 security_bprm_committed_creds(bprm);
1449 mutex_unlock(¤t->signal->cred_guard_mutex);
1451 EXPORT_SYMBOL(install_exec_creds);
1454 * determine how safe it is to execute the proposed program
1455 * - the caller must hold ->cred_guard_mutex to protect against
1456 * PTRACE_ATTACH or seccomp thread-sync
1458 static void check_unsafe_exec(struct linux_binprm *bprm)
1460 struct task_struct *p = current, *t;
1464 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1467 * This isn't strictly necessary, but it makes it harder for LSMs to
1470 if (task_no_new_privs(current))
1471 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1475 spin_lock(&p->fs->lock);
1477 while_each_thread(p, t) {
1483 if (p->fs->users > n_fs)
1484 bprm->unsafe |= LSM_UNSAFE_SHARE;
1487 spin_unlock(&p->fs->lock);
1490 static void bprm_fill_uid(struct linux_binprm *bprm)
1492 struct inode *inode;
1498 * Since this can be called multiple times (via prepare_binprm),
1499 * we must clear any previous work done when setting set[ug]id
1500 * bits from any earlier bprm->file uses (for example when run
1501 * first for a setuid script then again for its interpreter).
1503 bprm->cred->euid = current_euid();
1504 bprm->cred->egid = current_egid();
1506 if (!mnt_may_suid(bprm->file->f_path.mnt))
1509 if (task_no_new_privs(current))
1512 inode = bprm->file->f_path.dentry->d_inode;
1513 mode = READ_ONCE(inode->i_mode);
1514 if (!(mode & (S_ISUID|S_ISGID)))
1517 /* Be careful if suid/sgid is set */
1520 /* reload atomically mode/uid/gid now that lock held */
1521 mode = inode->i_mode;
1524 inode_unlock(inode);
1526 /* We ignore suid/sgid if there are no mappings for them in the ns */
1527 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1528 !kgid_has_mapping(bprm->cred->user_ns, gid))
1531 if (mode & S_ISUID) {
1532 bprm->per_clear |= PER_CLEAR_ON_SETID;
1533 bprm->cred->euid = uid;
1536 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1537 bprm->per_clear |= PER_CLEAR_ON_SETID;
1538 bprm->cred->egid = gid;
1543 * Fill the binprm structure from the inode.
1544 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1546 * This may be called multiple times for binary chains (scripts for example).
1548 int prepare_binprm(struct linux_binprm *bprm)
1553 bprm_fill_uid(bprm);
1555 /* fill in binprm security blob */
1556 retval = security_bprm_set_creds(bprm);
1559 bprm->called_set_creds = 1;
1561 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1562 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1565 EXPORT_SYMBOL(prepare_binprm);
1568 * Arguments are '\0' separated strings found at the location bprm->p
1569 * points to; chop off the first by relocating brpm->p to right after
1570 * the first '\0' encountered.
1572 int remove_arg_zero(struct linux_binprm *bprm)
1575 unsigned long offset;
1583 offset = bprm->p & ~PAGE_MASK;
1584 page = get_arg_page(bprm, bprm->p, 0);
1589 kaddr = kmap_atomic(page);
1591 for (; offset < PAGE_SIZE && kaddr[offset];
1592 offset++, bprm->p++)
1595 kunmap_atomic(kaddr);
1597 } while (offset == PAGE_SIZE);
1606 EXPORT_SYMBOL(remove_arg_zero);
1608 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1610 * cycle the list of binary formats handler, until one recognizes the image
1612 int search_binary_handler(struct linux_binprm *bprm)
1614 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1615 struct linux_binfmt *fmt;
1618 /* This allows 4 levels of binfmt rewrites before failing hard. */
1619 if (bprm->recursion_depth > 5)
1622 retval = security_bprm_check(bprm);
1628 read_lock(&binfmt_lock);
1629 list_for_each_entry(fmt, &formats, lh) {
1630 if (!try_module_get(fmt->module))
1632 read_unlock(&binfmt_lock);
1633 bprm->recursion_depth++;
1634 retval = fmt->load_binary(bprm);
1635 read_lock(&binfmt_lock);
1637 bprm->recursion_depth--;
1638 if (retval < 0 && !bprm->mm) {
1639 /* we got to flush_old_exec() and failed after it */
1640 read_unlock(&binfmt_lock);
1641 force_sigsegv(SIGSEGV, current);
1644 if (retval != -ENOEXEC || !bprm->file) {
1645 read_unlock(&binfmt_lock);
1649 read_unlock(&binfmt_lock);
1652 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1653 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1655 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1663 EXPORT_SYMBOL(search_binary_handler);
1665 static int exec_binprm(struct linux_binprm *bprm)
1667 pid_t old_pid, old_vpid;
1670 /* Need to fetch pid before load_binary changes it */
1671 old_pid = current->pid;
1673 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1676 ret = search_binary_handler(bprm);
1679 trace_sched_process_exec(current, old_pid, bprm);
1680 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1681 proc_exec_connector(current);
1688 * sys_execve() executes a new program.
1690 static int do_execveat_common(int fd, struct filename *filename,
1691 struct user_arg_ptr argv,
1692 struct user_arg_ptr envp,
1695 char *pathbuf = NULL;
1696 struct linux_binprm *bprm;
1698 struct files_struct *displaced;
1701 if (IS_ERR(filename))
1702 return PTR_ERR(filename);
1705 * We move the actual failure in case of RLIMIT_NPROC excess from
1706 * set*uid() to execve() because too many poorly written programs
1707 * don't check setuid() return code. Here we additionally recheck
1708 * whether NPROC limit is still exceeded.
1710 if ((current->flags & PF_NPROC_EXCEEDED) &&
1711 atomic_read(¤t_user()->processes) > rlimit(RLIMIT_NPROC)) {
1716 /* We're below the limit (still or again), so we don't want to make
1717 * further execve() calls fail. */
1718 current->flags &= ~PF_NPROC_EXCEEDED;
1720 retval = unshare_files(&displaced);
1725 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1729 retval = prepare_bprm_creds(bprm);
1733 check_unsafe_exec(bprm);
1734 current->in_execve = 1;
1736 file = do_open_execat(fd, filename, flags);
1737 retval = PTR_ERR(file);
1744 if (fd == AT_FDCWD || filename->name[0] == '/') {
1745 bprm->filename = filename->name;
1747 if (filename->name[0] == '\0')
1748 pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1750 pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1751 fd, filename->name);
1757 * Record that a name derived from an O_CLOEXEC fd will be
1758 * inaccessible after exec. Relies on having exclusive access to
1759 * current->files (due to unshare_files above).
1761 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1762 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1763 bprm->filename = pathbuf;
1765 bprm->interp = bprm->filename;
1767 retval = bprm_mm_init(bprm);
1771 bprm->argc = count(argv, MAX_ARG_STRINGS);
1772 if ((retval = bprm->argc) < 0)
1775 bprm->envc = count(envp, MAX_ARG_STRINGS);
1776 if ((retval = bprm->envc) < 0)
1779 retval = prepare_binprm(bprm);
1783 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1787 bprm->exec = bprm->p;
1788 retval = copy_strings(bprm->envc, envp, bprm);
1792 retval = copy_strings(bprm->argc, argv, bprm);
1796 would_dump(bprm, bprm->file);
1798 retval = exec_binprm(bprm);
1802 /* execve succeeded */
1803 current->fs->in_exec = 0;
1804 current->in_execve = 0;
1805 membarrier_execve(current);
1806 acct_update_integrals(current);
1807 task_numa_free(current);
1812 put_files_struct(displaced);
1817 acct_arg_size(bprm, 0);
1822 current->fs->in_exec = 0;
1823 current->in_execve = 0;
1831 reset_files_struct(displaced);
1837 int do_execve(struct filename *filename,
1838 const char __user *const __user *__argv,
1839 const char __user *const __user *__envp)
1841 struct user_arg_ptr argv = { .ptr.native = __argv };
1842 struct user_arg_ptr envp = { .ptr.native = __envp };
1843 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1846 int do_execveat(int fd, struct filename *filename,
1847 const char __user *const __user *__argv,
1848 const char __user *const __user *__envp,
1851 struct user_arg_ptr argv = { .ptr.native = __argv };
1852 struct user_arg_ptr envp = { .ptr.native = __envp };
1854 return do_execveat_common(fd, filename, argv, envp, flags);
1857 #ifdef CONFIG_COMPAT
1858 static int compat_do_execve(struct filename *filename,
1859 const compat_uptr_t __user *__argv,
1860 const compat_uptr_t __user *__envp)
1862 struct user_arg_ptr argv = {
1864 .ptr.compat = __argv,
1866 struct user_arg_ptr envp = {
1868 .ptr.compat = __envp,
1870 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1873 static int compat_do_execveat(int fd, struct filename *filename,
1874 const compat_uptr_t __user *__argv,
1875 const compat_uptr_t __user *__envp,
1878 struct user_arg_ptr argv = {
1880 .ptr.compat = __argv,
1882 struct user_arg_ptr envp = {
1884 .ptr.compat = __envp,
1886 return do_execveat_common(fd, filename, argv, envp, flags);
1890 void set_binfmt(struct linux_binfmt *new)
1892 struct mm_struct *mm = current->mm;
1895 module_put(mm->binfmt->module);
1899 __module_get(new->module);
1901 EXPORT_SYMBOL(set_binfmt);
1904 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1906 void set_dumpable(struct mm_struct *mm, int value)
1908 unsigned long old, new;
1910 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1914 old = ACCESS_ONCE(mm->flags);
1915 new = (old & ~MMF_DUMPABLE_MASK) | value;
1916 } while (cmpxchg(&mm->flags, old, new) != old);
1919 SYSCALL_DEFINE3(execve,
1920 const char __user *, filename,
1921 const char __user *const __user *, argv,
1922 const char __user *const __user *, envp)
1924 return do_execve(getname(filename), argv, envp);
1927 SYSCALL_DEFINE5(execveat,
1928 int, fd, const char __user *, filename,
1929 const char __user *const __user *, argv,
1930 const char __user *const __user *, envp,
1933 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1935 return do_execveat(fd,
1936 getname_flags(filename, lookup_flags, NULL),
1940 #ifdef CONFIG_COMPAT
1941 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1942 const compat_uptr_t __user *, argv,
1943 const compat_uptr_t __user *, envp)
1945 return compat_do_execve(getname(filename), argv, envp);
1948 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1949 const char __user *, filename,
1950 const compat_uptr_t __user *, argv,
1951 const compat_uptr_t __user *, envp,
1954 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1956 return compat_do_execveat(fd,
1957 getname_flags(filename, lookup_flags, NULL),