f2fs: fix dereference of stale list iterator after loop body
[platform/kernel/linux-rpi.git] / fs / exec.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/exec.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 /*
9  * #!-checking implemented by tytso.
10  */
11 /*
12  * Demand-loading implemented 01.12.91 - no need to read anything but
13  * the header into memory. The inode of the executable is put into
14  * "current->executable", and page faults do the actual loading. Clean.
15  *
16  * Once more I can proudly say that linux stood up to being changed: it
17  * was less than 2 hours work to get demand-loading completely implemented.
18  *
19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20  * current->executable is only used by the procfs.  This allows a dispatch
21  * table to check for several different types  of binary formats.  We keep
22  * trying until we recognize the file or we run out of supported binary
23  * formats.
24  */
25
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/vmacache.h>
32 #include <linux/stat.h>
33 #include <linux/fcntl.h>
34 #include <linux/swap.h>
35 #include <linux/string.h>
36 #include <linux/init.h>
37 #include <linux/sched/mm.h>
38 #include <linux/sched/coredump.h>
39 #include <linux/sched/signal.h>
40 #include <linux/sched/numa_balancing.h>
41 #include <linux/sched/task.h>
42 #include <linux/pagemap.h>
43 #include <linux/perf_event.h>
44 #include <linux/highmem.h>
45 #include <linux/spinlock.h>
46 #include <linux/key.h>
47 #include <linux/personality.h>
48 #include <linux/binfmts.h>
49 #include <linux/utsname.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/module.h>
52 #include <linux/namei.h>
53 #include <linux/mount.h>
54 #include <linux/security.h>
55 #include <linux/syscalls.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/audit.h>
59 #include <linux/tracehook.h>
60 #include <linux/kmod.h>
61 #include <linux/fsnotify.h>
62 #include <linux/fs_struct.h>
63 #include <linux/oom.h>
64 #include <linux/compat.h>
65 #include <linux/vmalloc.h>
66 #include <linux/io_uring.h>
67 #include <linux/syscall_user_dispatch.h>
68
69 #include <linux/uaccess.h>
70 #include <asm/mmu_context.h>
71 #include <asm/tlb.h>
72
73 #include <trace/events/task.h>
74 #include "internal.h"
75
76 #include <trace/events/sched.h>
77
78 static int bprm_creds_from_file(struct linux_binprm *bprm);
79
80 int suid_dumpable = 0;
81
82 static LIST_HEAD(formats);
83 static DEFINE_RWLOCK(binfmt_lock);
84
85 void __register_binfmt(struct linux_binfmt * fmt, int insert)
86 {
87         write_lock(&binfmt_lock);
88         insert ? list_add(&fmt->lh, &formats) :
89                  list_add_tail(&fmt->lh, &formats);
90         write_unlock(&binfmt_lock);
91 }
92
93 EXPORT_SYMBOL(__register_binfmt);
94
95 void unregister_binfmt(struct linux_binfmt * fmt)
96 {
97         write_lock(&binfmt_lock);
98         list_del(&fmt->lh);
99         write_unlock(&binfmt_lock);
100 }
101
102 EXPORT_SYMBOL(unregister_binfmt);
103
104 static inline void put_binfmt(struct linux_binfmt * fmt)
105 {
106         module_put(fmt->module);
107 }
108
109 bool path_noexec(const struct path *path)
110 {
111         return (path->mnt->mnt_flags & MNT_NOEXEC) ||
112                (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
113 }
114
115 #ifdef CONFIG_USELIB
116 /*
117  * Note that a shared library must be both readable and executable due to
118  * security reasons.
119  *
120  * Also note that we take the address to load from from the file itself.
121  */
122 SYSCALL_DEFINE1(uselib, const char __user *, library)
123 {
124         struct linux_binfmt *fmt;
125         struct file *file;
126         struct filename *tmp = getname(library);
127         int error = PTR_ERR(tmp);
128         static const struct open_flags uselib_flags = {
129                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
130                 .acc_mode = MAY_READ | MAY_EXEC,
131                 .intent = LOOKUP_OPEN,
132                 .lookup_flags = LOOKUP_FOLLOW,
133         };
134
135         if (IS_ERR(tmp))
136                 goto out;
137
138         file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
139         putname(tmp);
140         error = PTR_ERR(file);
141         if (IS_ERR(file))
142                 goto out;
143
144         /*
145          * may_open() has already checked for this, so it should be
146          * impossible to trip now. But we need to be extra cautious
147          * and check again at the very end too.
148          */
149         error = -EACCES;
150         if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
151                          path_noexec(&file->f_path)))
152                 goto exit;
153
154         fsnotify_open(file);
155
156         error = -ENOEXEC;
157
158         read_lock(&binfmt_lock);
159         list_for_each_entry(fmt, &formats, lh) {
160                 if (!fmt->load_shlib)
161                         continue;
162                 if (!try_module_get(fmt->module))
163                         continue;
164                 read_unlock(&binfmt_lock);
165                 error = fmt->load_shlib(file);
166                 read_lock(&binfmt_lock);
167                 put_binfmt(fmt);
168                 if (error != -ENOEXEC)
169                         break;
170         }
171         read_unlock(&binfmt_lock);
172 exit:
173         fput(file);
174 out:
175         return error;
176 }
177 #endif /* #ifdef CONFIG_USELIB */
178
179 #ifdef CONFIG_MMU
180 /*
181  * The nascent bprm->mm is not visible until exec_mmap() but it can
182  * use a lot of memory, account these pages in current->mm temporary
183  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
184  * change the counter back via acct_arg_size(0).
185  */
186 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
187 {
188         struct mm_struct *mm = current->mm;
189         long diff = (long)(pages - bprm->vma_pages);
190
191         if (!mm || !diff)
192                 return;
193
194         bprm->vma_pages = pages;
195         add_mm_counter(mm, MM_ANONPAGES, diff);
196 }
197
198 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
199                 int write)
200 {
201         struct page *page;
202         int ret;
203         unsigned int gup_flags = FOLL_FORCE;
204
205 #ifdef CONFIG_STACK_GROWSUP
206         if (write) {
207                 ret = expand_downwards(bprm->vma, pos);
208                 if (ret < 0)
209                         return NULL;
210         }
211 #endif
212
213         if (write)
214                 gup_flags |= FOLL_WRITE;
215
216         /*
217          * We are doing an exec().  'current' is the process
218          * doing the exec and bprm->mm is the new process's mm.
219          */
220         mmap_read_lock(bprm->mm);
221         ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags,
222                         &page, NULL, NULL);
223         mmap_read_unlock(bprm->mm);
224         if (ret <= 0)
225                 return NULL;
226
227         if (write)
228                 acct_arg_size(bprm, vma_pages(bprm->vma));
229
230         return page;
231 }
232
233 static void put_arg_page(struct page *page)
234 {
235         put_page(page);
236 }
237
238 static void free_arg_pages(struct linux_binprm *bprm)
239 {
240 }
241
242 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
243                 struct page *page)
244 {
245         flush_cache_page(bprm->vma, pos, page_to_pfn(page));
246 }
247
248 static int __bprm_mm_init(struct linux_binprm *bprm)
249 {
250         int err;
251         struct vm_area_struct *vma = NULL;
252         struct mm_struct *mm = bprm->mm;
253
254         bprm->vma = vma = vm_area_alloc(mm);
255         if (!vma)
256                 return -ENOMEM;
257         vma_set_anonymous(vma);
258
259         if (mmap_write_lock_killable(mm)) {
260                 err = -EINTR;
261                 goto err_free;
262         }
263
264         /*
265          * Place the stack at the largest stack address the architecture
266          * supports. Later, we'll move this to an appropriate place. We don't
267          * use STACK_TOP because that can depend on attributes which aren't
268          * configured yet.
269          */
270         BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
271         vma->vm_end = STACK_TOP_MAX;
272         vma->vm_start = vma->vm_end - PAGE_SIZE;
273         vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
274         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
275
276         err = insert_vm_struct(mm, vma);
277         if (err)
278                 goto err;
279
280         mm->stack_vm = mm->total_vm = 1;
281         mmap_write_unlock(mm);
282         bprm->p = vma->vm_end - sizeof(void *);
283         return 0;
284 err:
285         mmap_write_unlock(mm);
286 err_free:
287         bprm->vma = NULL;
288         vm_area_free(vma);
289         return err;
290 }
291
292 static bool valid_arg_len(struct linux_binprm *bprm, long len)
293 {
294         return len <= MAX_ARG_STRLEN;
295 }
296
297 #else
298
299 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
300 {
301 }
302
303 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
304                 int write)
305 {
306         struct page *page;
307
308         page = bprm->page[pos / PAGE_SIZE];
309         if (!page && write) {
310                 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
311                 if (!page)
312                         return NULL;
313                 bprm->page[pos / PAGE_SIZE] = page;
314         }
315
316         return page;
317 }
318
319 static void put_arg_page(struct page *page)
320 {
321 }
322
323 static void free_arg_page(struct linux_binprm *bprm, int i)
324 {
325         if (bprm->page[i]) {
326                 __free_page(bprm->page[i]);
327                 bprm->page[i] = NULL;
328         }
329 }
330
331 static void free_arg_pages(struct linux_binprm *bprm)
332 {
333         int i;
334
335         for (i = 0; i < MAX_ARG_PAGES; i++)
336                 free_arg_page(bprm, i);
337 }
338
339 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
340                 struct page *page)
341 {
342 }
343
344 static int __bprm_mm_init(struct linux_binprm *bprm)
345 {
346         bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
347         return 0;
348 }
349
350 static bool valid_arg_len(struct linux_binprm *bprm, long len)
351 {
352         return len <= bprm->p;
353 }
354
355 #endif /* CONFIG_MMU */
356
357 /*
358  * Create a new mm_struct and populate it with a temporary stack
359  * vm_area_struct.  We don't have enough context at this point to set the stack
360  * flags, permissions, and offset, so we use temporary values.  We'll update
361  * them later in setup_arg_pages().
362  */
363 static int bprm_mm_init(struct linux_binprm *bprm)
364 {
365         int err;
366         struct mm_struct *mm = NULL;
367
368         bprm->mm = mm = mm_alloc();
369         err = -ENOMEM;
370         if (!mm)
371                 goto err;
372
373         /* Save current stack limit for all calculations made during exec. */
374         task_lock(current->group_leader);
375         bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
376         task_unlock(current->group_leader);
377
378         err = __bprm_mm_init(bprm);
379         if (err)
380                 goto err;
381
382         return 0;
383
384 err:
385         if (mm) {
386                 bprm->mm = NULL;
387                 mmdrop(mm);
388         }
389
390         return err;
391 }
392
393 struct user_arg_ptr {
394 #ifdef CONFIG_COMPAT
395         bool is_compat;
396 #endif
397         union {
398                 const char __user *const __user *native;
399 #ifdef CONFIG_COMPAT
400                 const compat_uptr_t __user *compat;
401 #endif
402         } ptr;
403 };
404
405 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
406 {
407         const char __user *native;
408
409 #ifdef CONFIG_COMPAT
410         if (unlikely(argv.is_compat)) {
411                 compat_uptr_t compat;
412
413                 if (get_user(compat, argv.ptr.compat + nr))
414                         return ERR_PTR(-EFAULT);
415
416                 return compat_ptr(compat);
417         }
418 #endif
419
420         if (get_user(native, argv.ptr.native + nr))
421                 return ERR_PTR(-EFAULT);
422
423         return native;
424 }
425
426 /*
427  * count() counts the number of strings in array ARGV.
428  */
429 static int count(struct user_arg_ptr argv, int max)
430 {
431         int i = 0;
432
433         if (argv.ptr.native != NULL) {
434                 for (;;) {
435                         const char __user *p = get_user_arg_ptr(argv, i);
436
437                         if (!p)
438                                 break;
439
440                         if (IS_ERR(p))
441                                 return -EFAULT;
442
443                         if (i >= max)
444                                 return -E2BIG;
445                         ++i;
446
447                         if (fatal_signal_pending(current))
448                                 return -ERESTARTNOHAND;
449                         cond_resched();
450                 }
451         }
452         return i;
453 }
454
455 static int count_strings_kernel(const char *const *argv)
456 {
457         int i;
458
459         if (!argv)
460                 return 0;
461
462         for (i = 0; argv[i]; ++i) {
463                 if (i >= MAX_ARG_STRINGS)
464                         return -E2BIG;
465                 if (fatal_signal_pending(current))
466                         return -ERESTARTNOHAND;
467                 cond_resched();
468         }
469         return i;
470 }
471
472 static int bprm_stack_limits(struct linux_binprm *bprm)
473 {
474         unsigned long limit, ptr_size;
475
476         /*
477          * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
478          * (whichever is smaller) for the argv+env strings.
479          * This ensures that:
480          *  - the remaining binfmt code will not run out of stack space,
481          *  - the program will have a reasonable amount of stack left
482          *    to work from.
483          */
484         limit = _STK_LIM / 4 * 3;
485         limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
486         /*
487          * We've historically supported up to 32 pages (ARG_MAX)
488          * of argument strings even with small stacks
489          */
490         limit = max_t(unsigned long, limit, ARG_MAX);
491         /*
492          * We must account for the size of all the argv and envp pointers to
493          * the argv and envp strings, since they will also take up space in
494          * the stack. They aren't stored until much later when we can't
495          * signal to the parent that the child has run out of stack space.
496          * Instead, calculate it here so it's possible to fail gracefully.
497          *
498          * In the case of argc = 0, make sure there is space for adding a
499          * empty string (which will bump argc to 1), to ensure confused
500          * userspace programs don't start processing from argv[1], thinking
501          * argc can never be 0, to keep them from walking envp by accident.
502          * See do_execveat_common().
503          */
504         ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
505         if (limit <= ptr_size)
506                 return -E2BIG;
507         limit -= ptr_size;
508
509         bprm->argmin = bprm->p - limit;
510         return 0;
511 }
512
513 /*
514  * 'copy_strings()' copies argument/environment strings from the old
515  * processes's memory to the new process's stack.  The call to get_user_pages()
516  * ensures the destination page is created and not swapped out.
517  */
518 static int copy_strings(int argc, struct user_arg_ptr argv,
519                         struct linux_binprm *bprm)
520 {
521         struct page *kmapped_page = NULL;
522         char *kaddr = NULL;
523         unsigned long kpos = 0;
524         int ret;
525
526         while (argc-- > 0) {
527                 const char __user *str;
528                 int len;
529                 unsigned long pos;
530
531                 ret = -EFAULT;
532                 str = get_user_arg_ptr(argv, argc);
533                 if (IS_ERR(str))
534                         goto out;
535
536                 len = strnlen_user(str, MAX_ARG_STRLEN);
537                 if (!len)
538                         goto out;
539
540                 ret = -E2BIG;
541                 if (!valid_arg_len(bprm, len))
542                         goto out;
543
544                 /* We're going to work our way backwords. */
545                 pos = bprm->p;
546                 str += len;
547                 bprm->p -= len;
548 #ifdef CONFIG_MMU
549                 if (bprm->p < bprm->argmin)
550                         goto out;
551 #endif
552
553                 while (len > 0) {
554                         int offset, bytes_to_copy;
555
556                         if (fatal_signal_pending(current)) {
557                                 ret = -ERESTARTNOHAND;
558                                 goto out;
559                         }
560                         cond_resched();
561
562                         offset = pos % PAGE_SIZE;
563                         if (offset == 0)
564                                 offset = PAGE_SIZE;
565
566                         bytes_to_copy = offset;
567                         if (bytes_to_copy > len)
568                                 bytes_to_copy = len;
569
570                         offset -= bytes_to_copy;
571                         pos -= bytes_to_copy;
572                         str -= bytes_to_copy;
573                         len -= bytes_to_copy;
574
575                         if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
576                                 struct page *page;
577
578                                 page = get_arg_page(bprm, pos, 1);
579                                 if (!page) {
580                                         ret = -E2BIG;
581                                         goto out;
582                                 }
583
584                                 if (kmapped_page) {
585                                         flush_dcache_page(kmapped_page);
586                                         kunmap(kmapped_page);
587                                         put_arg_page(kmapped_page);
588                                 }
589                                 kmapped_page = page;
590                                 kaddr = kmap(kmapped_page);
591                                 kpos = pos & PAGE_MASK;
592                                 flush_arg_page(bprm, kpos, kmapped_page);
593                         }
594                         if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
595                                 ret = -EFAULT;
596                                 goto out;
597                         }
598                 }
599         }
600         ret = 0;
601 out:
602         if (kmapped_page) {
603                 flush_dcache_page(kmapped_page);
604                 kunmap(kmapped_page);
605                 put_arg_page(kmapped_page);
606         }
607         return ret;
608 }
609
610 /*
611  * Copy and argument/environment string from the kernel to the processes stack.
612  */
613 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
614 {
615         int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
616         unsigned long pos = bprm->p;
617
618         if (len == 0)
619                 return -EFAULT;
620         if (!valid_arg_len(bprm, len))
621                 return -E2BIG;
622
623         /* We're going to work our way backwards. */
624         arg += len;
625         bprm->p -= len;
626         if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
627                 return -E2BIG;
628
629         while (len > 0) {
630                 unsigned int bytes_to_copy = min_t(unsigned int, len,
631                                 min_not_zero(offset_in_page(pos), PAGE_SIZE));
632                 struct page *page;
633                 char *kaddr;
634
635                 pos -= bytes_to_copy;
636                 arg -= bytes_to_copy;
637                 len -= bytes_to_copy;
638
639                 page = get_arg_page(bprm, pos, 1);
640                 if (!page)
641                         return -E2BIG;
642                 kaddr = kmap_atomic(page);
643                 flush_arg_page(bprm, pos & PAGE_MASK, page);
644                 memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy);
645                 flush_dcache_page(page);
646                 kunmap_atomic(kaddr);
647                 put_arg_page(page);
648         }
649
650         return 0;
651 }
652 EXPORT_SYMBOL(copy_string_kernel);
653
654 static int copy_strings_kernel(int argc, const char *const *argv,
655                                struct linux_binprm *bprm)
656 {
657         while (argc-- > 0) {
658                 int ret = copy_string_kernel(argv[argc], bprm);
659                 if (ret < 0)
660                         return ret;
661                 if (fatal_signal_pending(current))
662                         return -ERESTARTNOHAND;
663                 cond_resched();
664         }
665         return 0;
666 }
667
668 #ifdef CONFIG_MMU
669
670 /*
671  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
672  * the binfmt code determines where the new stack should reside, we shift it to
673  * its final location.  The process proceeds as follows:
674  *
675  * 1) Use shift to calculate the new vma endpoints.
676  * 2) Extend vma to cover both the old and new ranges.  This ensures the
677  *    arguments passed to subsequent functions are consistent.
678  * 3) Move vma's page tables to the new range.
679  * 4) Free up any cleared pgd range.
680  * 5) Shrink the vma to cover only the new range.
681  */
682 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
683 {
684         struct mm_struct *mm = vma->vm_mm;
685         unsigned long old_start = vma->vm_start;
686         unsigned long old_end = vma->vm_end;
687         unsigned long length = old_end - old_start;
688         unsigned long new_start = old_start - shift;
689         unsigned long new_end = old_end - shift;
690         struct mmu_gather tlb;
691
692         BUG_ON(new_start > new_end);
693
694         /*
695          * ensure there are no vmas between where we want to go
696          * and where we are
697          */
698         if (vma != find_vma(mm, new_start))
699                 return -EFAULT;
700
701         /*
702          * cover the whole range: [new_start, old_end)
703          */
704         if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
705                 return -ENOMEM;
706
707         /*
708          * move the page tables downwards, on failure we rely on
709          * process cleanup to remove whatever mess we made.
710          */
711         if (length != move_page_tables(vma, old_start,
712                                        vma, new_start, length, false))
713                 return -ENOMEM;
714
715         lru_add_drain();
716         tlb_gather_mmu(&tlb, mm);
717         if (new_end > old_start) {
718                 /*
719                  * when the old and new regions overlap clear from new_end.
720                  */
721                 free_pgd_range(&tlb, new_end, old_end, new_end,
722                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
723         } else {
724                 /*
725                  * otherwise, clean from old_start; this is done to not touch
726                  * the address space in [new_end, old_start) some architectures
727                  * have constraints on va-space that make this illegal (IA64) -
728                  * for the others its just a little faster.
729                  */
730                 free_pgd_range(&tlb, old_start, old_end, new_end,
731                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
732         }
733         tlb_finish_mmu(&tlb);
734
735         /*
736          * Shrink the vma to just the new range.  Always succeeds.
737          */
738         vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
739
740         return 0;
741 }
742
743 /*
744  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
745  * the stack is optionally relocated, and some extra space is added.
746  */
747 int setup_arg_pages(struct linux_binprm *bprm,
748                     unsigned long stack_top,
749                     int executable_stack)
750 {
751         unsigned long ret;
752         unsigned long stack_shift;
753         struct mm_struct *mm = current->mm;
754         struct vm_area_struct *vma = bprm->vma;
755         struct vm_area_struct *prev = NULL;
756         unsigned long vm_flags;
757         unsigned long stack_base;
758         unsigned long stack_size;
759         unsigned long stack_expand;
760         unsigned long rlim_stack;
761
762 #ifdef CONFIG_STACK_GROWSUP
763         /* Limit stack size */
764         stack_base = bprm->rlim_stack.rlim_max;
765
766         stack_base = calc_max_stack_size(stack_base);
767
768         /* Add space for stack randomization. */
769         stack_base += (STACK_RND_MASK << PAGE_SHIFT);
770
771         /* Make sure we didn't let the argument array grow too large. */
772         if (vma->vm_end - vma->vm_start > stack_base)
773                 return -ENOMEM;
774
775         stack_base = PAGE_ALIGN(stack_top - stack_base);
776
777         stack_shift = vma->vm_start - stack_base;
778         mm->arg_start = bprm->p - stack_shift;
779         bprm->p = vma->vm_end - stack_shift;
780 #else
781         stack_top = arch_align_stack(stack_top);
782         stack_top = PAGE_ALIGN(stack_top);
783
784         if (unlikely(stack_top < mmap_min_addr) ||
785             unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
786                 return -ENOMEM;
787
788         stack_shift = vma->vm_end - stack_top;
789
790         bprm->p -= stack_shift;
791         mm->arg_start = bprm->p;
792 #endif
793
794         if (bprm->loader)
795                 bprm->loader -= stack_shift;
796         bprm->exec -= stack_shift;
797
798         if (mmap_write_lock_killable(mm))
799                 return -EINTR;
800
801         vm_flags = VM_STACK_FLAGS;
802
803         /*
804          * Adjust stack execute permissions; explicitly enable for
805          * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
806          * (arch default) otherwise.
807          */
808         if (unlikely(executable_stack == EXSTACK_ENABLE_X))
809                 vm_flags |= VM_EXEC;
810         else if (executable_stack == EXSTACK_DISABLE_X)
811                 vm_flags &= ~VM_EXEC;
812         vm_flags |= mm->def_flags;
813         vm_flags |= VM_STACK_INCOMPLETE_SETUP;
814
815         ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
816                         vm_flags);
817         if (ret)
818                 goto out_unlock;
819         BUG_ON(prev != vma);
820
821         if (unlikely(vm_flags & VM_EXEC)) {
822                 pr_warn_once("process '%pD4' started with executable stack\n",
823                              bprm->file);
824         }
825
826         /* Move stack pages down in memory. */
827         if (stack_shift) {
828                 ret = shift_arg_pages(vma, stack_shift);
829                 if (ret)
830                         goto out_unlock;
831         }
832
833         /* mprotect_fixup is overkill to remove the temporary stack flags */
834         vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
835
836         stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
837         stack_size = vma->vm_end - vma->vm_start;
838         /*
839          * Align this down to a page boundary as expand_stack
840          * will align it up.
841          */
842         rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
843 #ifdef CONFIG_STACK_GROWSUP
844         if (stack_size + stack_expand > rlim_stack)
845                 stack_base = vma->vm_start + rlim_stack;
846         else
847                 stack_base = vma->vm_end + stack_expand;
848 #else
849         if (stack_size + stack_expand > rlim_stack)
850                 stack_base = vma->vm_end - rlim_stack;
851         else
852                 stack_base = vma->vm_start - stack_expand;
853 #endif
854         current->mm->start_stack = bprm->p;
855         ret = expand_stack(vma, stack_base);
856         if (ret)
857                 ret = -EFAULT;
858
859 out_unlock:
860         mmap_write_unlock(mm);
861         return ret;
862 }
863 EXPORT_SYMBOL(setup_arg_pages);
864
865 #else
866
867 /*
868  * Transfer the program arguments and environment from the holding pages
869  * onto the stack. The provided stack pointer is adjusted accordingly.
870  */
871 int transfer_args_to_stack(struct linux_binprm *bprm,
872                            unsigned long *sp_location)
873 {
874         unsigned long index, stop, sp;
875         int ret = 0;
876
877         stop = bprm->p >> PAGE_SHIFT;
878         sp = *sp_location;
879
880         for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
881                 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
882                 char *src = kmap(bprm->page[index]) + offset;
883                 sp -= PAGE_SIZE - offset;
884                 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
885                         ret = -EFAULT;
886                 kunmap(bprm->page[index]);
887                 if (ret)
888                         goto out;
889         }
890
891         *sp_location = sp;
892
893 out:
894         return ret;
895 }
896 EXPORT_SYMBOL(transfer_args_to_stack);
897
898 #endif /* CONFIG_MMU */
899
900 static struct file *do_open_execat(int fd, struct filename *name, int flags)
901 {
902         struct file *file;
903         int err;
904         struct open_flags open_exec_flags = {
905                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
906                 .acc_mode = MAY_EXEC,
907                 .intent = LOOKUP_OPEN,
908                 .lookup_flags = LOOKUP_FOLLOW,
909         };
910
911         if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
912                 return ERR_PTR(-EINVAL);
913         if (flags & AT_SYMLINK_NOFOLLOW)
914                 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
915         if (flags & AT_EMPTY_PATH)
916                 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
917
918         file = do_filp_open(fd, name, &open_exec_flags);
919         if (IS_ERR(file))
920                 goto out;
921
922         /*
923          * may_open() has already checked for this, so it should be
924          * impossible to trip now. But we need to be extra cautious
925          * and check again at the very end too.
926          */
927         err = -EACCES;
928         if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
929                          path_noexec(&file->f_path)))
930                 goto exit;
931
932         err = deny_write_access(file);
933         if (err)
934                 goto exit;
935
936         if (name->name[0] != '\0')
937                 fsnotify_open(file);
938
939 out:
940         return file;
941
942 exit:
943         fput(file);
944         return ERR_PTR(err);
945 }
946
947 struct file *open_exec(const char *name)
948 {
949         struct filename *filename = getname_kernel(name);
950         struct file *f = ERR_CAST(filename);
951
952         if (!IS_ERR(filename)) {
953                 f = do_open_execat(AT_FDCWD, filename, 0);
954                 putname(filename);
955         }
956         return f;
957 }
958 EXPORT_SYMBOL(open_exec);
959
960 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \
961     defined(CONFIG_BINFMT_ELF_FDPIC)
962 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
963 {
964         ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
965         if (res > 0)
966                 flush_icache_user_range(addr, addr + len);
967         return res;
968 }
969 EXPORT_SYMBOL(read_code);
970 #endif
971
972 /*
973  * Maps the mm_struct mm into the current task struct.
974  * On success, this function returns with exec_update_lock
975  * held for writing.
976  */
977 static int exec_mmap(struct mm_struct *mm)
978 {
979         struct task_struct *tsk;
980         struct mm_struct *old_mm, *active_mm;
981         int ret;
982
983         /* Notify parent that we're no longer interested in the old VM */
984         tsk = current;
985         old_mm = current->mm;
986         exec_mm_release(tsk, old_mm);
987         if (old_mm)
988                 sync_mm_rss(old_mm);
989
990         ret = down_write_killable(&tsk->signal->exec_update_lock);
991         if (ret)
992                 return ret;
993
994         if (old_mm) {
995                 /*
996                  * Make sure that if there is a core dump in progress
997                  * for the old mm, we get out and die instead of going
998                  * through with the exec.  We must hold mmap_lock around
999                  * checking core_state and changing tsk->mm.
1000                  */
1001                 mmap_read_lock(old_mm);
1002                 if (unlikely(old_mm->core_state)) {
1003                         mmap_read_unlock(old_mm);
1004                         up_write(&tsk->signal->exec_update_lock);
1005                         return -EINTR;
1006                 }
1007         }
1008
1009         task_lock(tsk);
1010         membarrier_exec_mmap(mm);
1011
1012         local_irq_disable();
1013         active_mm = tsk->active_mm;
1014         tsk->active_mm = mm;
1015         tsk->mm = mm;
1016         /*
1017          * This prevents preemption while active_mm is being loaded and
1018          * it and mm are being updated, which could cause problems for
1019          * lazy tlb mm refcounting when these are updated by context
1020          * switches. Not all architectures can handle irqs off over
1021          * activate_mm yet.
1022          */
1023         if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1024                 local_irq_enable();
1025         activate_mm(active_mm, mm);
1026         if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1027                 local_irq_enable();
1028         tsk->mm->vmacache_seqnum = 0;
1029         vmacache_flush(tsk);
1030         task_unlock(tsk);
1031         if (old_mm) {
1032                 mmap_read_unlock(old_mm);
1033                 BUG_ON(active_mm != old_mm);
1034                 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1035                 mm_update_next_owner(old_mm);
1036                 mmput(old_mm);
1037                 return 0;
1038         }
1039         mmdrop(active_mm);
1040         return 0;
1041 }
1042
1043 static int de_thread(struct task_struct *tsk)
1044 {
1045         struct signal_struct *sig = tsk->signal;
1046         struct sighand_struct *oldsighand = tsk->sighand;
1047         spinlock_t *lock = &oldsighand->siglock;
1048
1049         if (thread_group_empty(tsk))
1050                 goto no_thread_group;
1051
1052         /*
1053          * Kill all other threads in the thread group.
1054          */
1055         spin_lock_irq(lock);
1056         if (signal_group_exit(sig)) {
1057                 /*
1058                  * Another group action in progress, just
1059                  * return so that the signal is processed.
1060                  */
1061                 spin_unlock_irq(lock);
1062                 return -EAGAIN;
1063         }
1064
1065         sig->group_exit_task = tsk;
1066         sig->notify_count = zap_other_threads(tsk);
1067         if (!thread_group_leader(tsk))
1068                 sig->notify_count--;
1069
1070         while (sig->notify_count) {
1071                 __set_current_state(TASK_KILLABLE);
1072                 spin_unlock_irq(lock);
1073                 schedule();
1074                 if (__fatal_signal_pending(tsk))
1075                         goto killed;
1076                 spin_lock_irq(lock);
1077         }
1078         spin_unlock_irq(lock);
1079
1080         /*
1081          * At this point all other threads have exited, all we have to
1082          * do is to wait for the thread group leader to become inactive,
1083          * and to assume its PID:
1084          */
1085         if (!thread_group_leader(tsk)) {
1086                 struct task_struct *leader = tsk->group_leader;
1087
1088                 for (;;) {
1089                         cgroup_threadgroup_change_begin(tsk);
1090                         write_lock_irq(&tasklist_lock);
1091                         /*
1092                          * Do this under tasklist_lock to ensure that
1093                          * exit_notify() can't miss ->group_exit_task
1094                          */
1095                         sig->notify_count = -1;
1096                         if (likely(leader->exit_state))
1097                                 break;
1098                         __set_current_state(TASK_KILLABLE);
1099                         write_unlock_irq(&tasklist_lock);
1100                         cgroup_threadgroup_change_end(tsk);
1101                         schedule();
1102                         if (__fatal_signal_pending(tsk))
1103                                 goto killed;
1104                 }
1105
1106                 /*
1107                  * The only record we have of the real-time age of a
1108                  * process, regardless of execs it's done, is start_time.
1109                  * All the past CPU time is accumulated in signal_struct
1110                  * from sister threads now dead.  But in this non-leader
1111                  * exec, nothing survives from the original leader thread,
1112                  * whose birth marks the true age of this process now.
1113                  * When we take on its identity by switching to its PID, we
1114                  * also take its birthdate (always earlier than our own).
1115                  */
1116                 tsk->start_time = leader->start_time;
1117                 tsk->start_boottime = leader->start_boottime;
1118
1119                 BUG_ON(!same_thread_group(leader, tsk));
1120                 /*
1121                  * An exec() starts a new thread group with the
1122                  * TGID of the previous thread group. Rehash the
1123                  * two threads with a switched PID, and release
1124                  * the former thread group leader:
1125                  */
1126
1127                 /* Become a process group leader with the old leader's pid.
1128                  * The old leader becomes a thread of the this thread group.
1129                  */
1130                 exchange_tids(tsk, leader);
1131                 transfer_pid(leader, tsk, PIDTYPE_TGID);
1132                 transfer_pid(leader, tsk, PIDTYPE_PGID);
1133                 transfer_pid(leader, tsk, PIDTYPE_SID);
1134
1135                 list_replace_rcu(&leader->tasks, &tsk->tasks);
1136                 list_replace_init(&leader->sibling, &tsk->sibling);
1137
1138                 tsk->group_leader = tsk;
1139                 leader->group_leader = tsk;
1140
1141                 tsk->exit_signal = SIGCHLD;
1142                 leader->exit_signal = -1;
1143
1144                 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1145                 leader->exit_state = EXIT_DEAD;
1146
1147                 /*
1148                  * We are going to release_task()->ptrace_unlink() silently,
1149                  * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1150                  * the tracer wont't block again waiting for this thread.
1151                  */
1152                 if (unlikely(leader->ptrace))
1153                         __wake_up_parent(leader, leader->parent);
1154                 write_unlock_irq(&tasklist_lock);
1155                 cgroup_threadgroup_change_end(tsk);
1156
1157                 release_task(leader);
1158         }
1159
1160         sig->group_exit_task = NULL;
1161         sig->notify_count = 0;
1162
1163 no_thread_group:
1164         /* we have changed execution domain */
1165         tsk->exit_signal = SIGCHLD;
1166
1167         BUG_ON(!thread_group_leader(tsk));
1168         return 0;
1169
1170 killed:
1171         /* protects against exit_notify() and __exit_signal() */
1172         read_lock(&tasklist_lock);
1173         sig->group_exit_task = NULL;
1174         sig->notify_count = 0;
1175         read_unlock(&tasklist_lock);
1176         return -EAGAIN;
1177 }
1178
1179
1180 /*
1181  * This function makes sure the current process has its own signal table,
1182  * so that flush_signal_handlers can later reset the handlers without
1183  * disturbing other processes.  (Other processes might share the signal
1184  * table via the CLONE_SIGHAND option to clone().)
1185  */
1186 static int unshare_sighand(struct task_struct *me)
1187 {
1188         struct sighand_struct *oldsighand = me->sighand;
1189
1190         if (refcount_read(&oldsighand->count) != 1) {
1191                 struct sighand_struct *newsighand;
1192                 /*
1193                  * This ->sighand is shared with the CLONE_SIGHAND
1194                  * but not CLONE_THREAD task, switch to the new one.
1195                  */
1196                 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1197                 if (!newsighand)
1198                         return -ENOMEM;
1199
1200                 refcount_set(&newsighand->count, 1);
1201                 memcpy(newsighand->action, oldsighand->action,
1202                        sizeof(newsighand->action));
1203
1204                 write_lock_irq(&tasklist_lock);
1205                 spin_lock(&oldsighand->siglock);
1206                 rcu_assign_pointer(me->sighand, newsighand);
1207                 spin_unlock(&oldsighand->siglock);
1208                 write_unlock_irq(&tasklist_lock);
1209
1210                 __cleanup_sighand(oldsighand);
1211         }
1212         return 0;
1213 }
1214
1215 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1216 {
1217         task_lock(tsk);
1218         strncpy(buf, tsk->comm, buf_size);
1219         task_unlock(tsk);
1220         return buf;
1221 }
1222 EXPORT_SYMBOL_GPL(__get_task_comm);
1223
1224 /*
1225  * These functions flushes out all traces of the currently running executable
1226  * so that a new one can be started
1227  */
1228
1229 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1230 {
1231         task_lock(tsk);
1232         trace_task_rename(tsk, buf);
1233         strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1234         task_unlock(tsk);
1235         perf_event_comm(tsk, exec);
1236 }
1237
1238 /*
1239  * Calling this is the point of no return. None of the failures will be
1240  * seen by userspace since either the process is already taking a fatal
1241  * signal (via de_thread() or coredump), or will have SEGV raised
1242  * (after exec_mmap()) by search_binary_handler (see below).
1243  */
1244 int begin_new_exec(struct linux_binprm * bprm)
1245 {
1246         struct task_struct *me = current;
1247         int retval;
1248
1249         /* Once we are committed compute the creds */
1250         retval = bprm_creds_from_file(bprm);
1251         if (retval)
1252                 return retval;
1253
1254         /*
1255          * Ensure all future errors are fatal.
1256          */
1257         bprm->point_of_no_return = true;
1258
1259         /*
1260          * Make this the only thread in the thread group.
1261          */
1262         retval = de_thread(me);
1263         if (retval)
1264                 goto out;
1265
1266         /*
1267          * Cancel any io_uring activity across execve
1268          */
1269         io_uring_task_cancel();
1270
1271         /* Ensure the files table is not shared. */
1272         retval = unshare_files();
1273         if (retval)
1274                 goto out;
1275
1276         /*
1277          * Must be called _before_ exec_mmap() as bprm->mm is
1278          * not visibile until then. This also enables the update
1279          * to be lockless.
1280          */
1281         retval = set_mm_exe_file(bprm->mm, bprm->file);
1282         if (retval)
1283                 goto out;
1284
1285         /* If the binary is not readable then enforce mm->dumpable=0 */
1286         would_dump(bprm, bprm->file);
1287         if (bprm->have_execfd)
1288                 would_dump(bprm, bprm->executable);
1289
1290         /*
1291          * Release all of the old mmap stuff
1292          */
1293         acct_arg_size(bprm, 0);
1294         retval = exec_mmap(bprm->mm);
1295         if (retval)
1296                 goto out;
1297
1298         bprm->mm = NULL;
1299
1300 #ifdef CONFIG_POSIX_TIMERS
1301         exit_itimers(me->signal);
1302         flush_itimer_signals();
1303 #endif
1304
1305         /*
1306          * Make the signal table private.
1307          */
1308         retval = unshare_sighand(me);
1309         if (retval)
1310                 goto out_unlock;
1311
1312         /*
1313          * Ensure that the uaccess routines can actually operate on userspace
1314          * pointers:
1315          */
1316         force_uaccess_begin();
1317
1318         me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1319                                         PF_NOFREEZE | PF_NO_SETAFFINITY);
1320         flush_thread();
1321         me->personality &= ~bprm->per_clear;
1322
1323         clear_syscall_work_syscall_user_dispatch(me);
1324
1325         /*
1326          * We have to apply CLOEXEC before we change whether the process is
1327          * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1328          * trying to access the should-be-closed file descriptors of a process
1329          * undergoing exec(2).
1330          */
1331         do_close_on_exec(me->files);
1332
1333         if (bprm->secureexec) {
1334                 /* Make sure parent cannot signal privileged process. */
1335                 me->pdeath_signal = 0;
1336
1337                 /*
1338                  * For secureexec, reset the stack limit to sane default to
1339                  * avoid bad behavior from the prior rlimits. This has to
1340                  * happen before arch_pick_mmap_layout(), which examines
1341                  * RLIMIT_STACK, but after the point of no return to avoid
1342                  * needing to clean up the change on failure.
1343                  */
1344                 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1345                         bprm->rlim_stack.rlim_cur = _STK_LIM;
1346         }
1347
1348         me->sas_ss_sp = me->sas_ss_size = 0;
1349
1350         /*
1351          * Figure out dumpability. Note that this checking only of current
1352          * is wrong, but userspace depends on it. This should be testing
1353          * bprm->secureexec instead.
1354          */
1355         if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1356             !(uid_eq(current_euid(), current_uid()) &&
1357               gid_eq(current_egid(), current_gid())))
1358                 set_dumpable(current->mm, suid_dumpable);
1359         else
1360                 set_dumpable(current->mm, SUID_DUMP_USER);
1361
1362         perf_event_exec();
1363         __set_task_comm(me, kbasename(bprm->filename), true);
1364
1365         /* An exec changes our domain. We are no longer part of the thread
1366            group */
1367         WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1368         flush_signal_handlers(me, 0);
1369
1370         retval = set_cred_ucounts(bprm->cred);
1371         if (retval < 0)
1372                 goto out_unlock;
1373
1374         /*
1375          * install the new credentials for this executable
1376          */
1377         security_bprm_committing_creds(bprm);
1378
1379         commit_creds(bprm->cred);
1380         bprm->cred = NULL;
1381
1382         /*
1383          * Disable monitoring for regular users
1384          * when executing setuid binaries. Must
1385          * wait until new credentials are committed
1386          * by commit_creds() above
1387          */
1388         if (get_dumpable(me->mm) != SUID_DUMP_USER)
1389                 perf_event_exit_task(me);
1390         /*
1391          * cred_guard_mutex must be held at least to this point to prevent
1392          * ptrace_attach() from altering our determination of the task's
1393          * credentials; any time after this it may be unlocked.
1394          */
1395         security_bprm_committed_creds(bprm);
1396
1397         /* Pass the opened binary to the interpreter. */
1398         if (bprm->have_execfd) {
1399                 retval = get_unused_fd_flags(0);
1400                 if (retval < 0)
1401                         goto out_unlock;
1402                 fd_install(retval, bprm->executable);
1403                 bprm->executable = NULL;
1404                 bprm->execfd = retval;
1405         }
1406         return 0;
1407
1408 out_unlock:
1409         up_write(&me->signal->exec_update_lock);
1410 out:
1411         return retval;
1412 }
1413 EXPORT_SYMBOL(begin_new_exec);
1414
1415 void would_dump(struct linux_binprm *bprm, struct file *file)
1416 {
1417         struct inode *inode = file_inode(file);
1418         struct user_namespace *mnt_userns = file_mnt_user_ns(file);
1419         if (inode_permission(mnt_userns, inode, MAY_READ) < 0) {
1420                 struct user_namespace *old, *user_ns;
1421                 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1422
1423                 /* Ensure mm->user_ns contains the executable */
1424                 user_ns = old = bprm->mm->user_ns;
1425                 while ((user_ns != &init_user_ns) &&
1426                        !privileged_wrt_inode_uidgid(user_ns, mnt_userns, inode))
1427                         user_ns = user_ns->parent;
1428
1429                 if (old != user_ns) {
1430                         bprm->mm->user_ns = get_user_ns(user_ns);
1431                         put_user_ns(old);
1432                 }
1433         }
1434 }
1435 EXPORT_SYMBOL(would_dump);
1436
1437 void setup_new_exec(struct linux_binprm * bprm)
1438 {
1439         /* Setup things that can depend upon the personality */
1440         struct task_struct *me = current;
1441
1442         arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1443
1444         arch_setup_new_exec();
1445
1446         /* Set the new mm task size. We have to do that late because it may
1447          * depend on TIF_32BIT which is only updated in flush_thread() on
1448          * some architectures like powerpc
1449          */
1450         me->mm->task_size = TASK_SIZE;
1451         up_write(&me->signal->exec_update_lock);
1452         mutex_unlock(&me->signal->cred_guard_mutex);
1453 }
1454 EXPORT_SYMBOL(setup_new_exec);
1455
1456 /* Runs immediately before start_thread() takes over. */
1457 void finalize_exec(struct linux_binprm *bprm)
1458 {
1459         /* Store any stack rlimit changes before starting thread. */
1460         task_lock(current->group_leader);
1461         current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1462         task_unlock(current->group_leader);
1463 }
1464 EXPORT_SYMBOL(finalize_exec);
1465
1466 /*
1467  * Prepare credentials and lock ->cred_guard_mutex.
1468  * setup_new_exec() commits the new creds and drops the lock.
1469  * Or, if exec fails before, free_bprm() should release ->cred
1470  * and unlock.
1471  */
1472 static int prepare_bprm_creds(struct linux_binprm *bprm)
1473 {
1474         if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1475                 return -ERESTARTNOINTR;
1476
1477         bprm->cred = prepare_exec_creds();
1478         if (likely(bprm->cred))
1479                 return 0;
1480
1481         mutex_unlock(&current->signal->cred_guard_mutex);
1482         return -ENOMEM;
1483 }
1484
1485 static void free_bprm(struct linux_binprm *bprm)
1486 {
1487         if (bprm->mm) {
1488                 acct_arg_size(bprm, 0);
1489                 mmput(bprm->mm);
1490         }
1491         free_arg_pages(bprm);
1492         if (bprm->cred) {
1493                 mutex_unlock(&current->signal->cred_guard_mutex);
1494                 abort_creds(bprm->cred);
1495         }
1496         if (bprm->file) {
1497                 allow_write_access(bprm->file);
1498                 fput(bprm->file);
1499         }
1500         if (bprm->executable)
1501                 fput(bprm->executable);
1502         /* If a binfmt changed the interp, free it. */
1503         if (bprm->interp != bprm->filename)
1504                 kfree(bprm->interp);
1505         kfree(bprm->fdpath);
1506         kfree(bprm);
1507 }
1508
1509 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1510 {
1511         struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1512         int retval = -ENOMEM;
1513         if (!bprm)
1514                 goto out;
1515
1516         if (fd == AT_FDCWD || filename->name[0] == '/') {
1517                 bprm->filename = filename->name;
1518         } else {
1519                 if (filename->name[0] == '\0')
1520                         bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1521                 else
1522                         bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1523                                                   fd, filename->name);
1524                 if (!bprm->fdpath)
1525                         goto out_free;
1526
1527                 bprm->filename = bprm->fdpath;
1528         }
1529         bprm->interp = bprm->filename;
1530
1531         retval = bprm_mm_init(bprm);
1532         if (retval)
1533                 goto out_free;
1534         return bprm;
1535
1536 out_free:
1537         free_bprm(bprm);
1538 out:
1539         return ERR_PTR(retval);
1540 }
1541
1542 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1543 {
1544         /* If a binfmt changed the interp, free it first. */
1545         if (bprm->interp != bprm->filename)
1546                 kfree(bprm->interp);
1547         bprm->interp = kstrdup(interp, GFP_KERNEL);
1548         if (!bprm->interp)
1549                 return -ENOMEM;
1550         return 0;
1551 }
1552 EXPORT_SYMBOL(bprm_change_interp);
1553
1554 /*
1555  * determine how safe it is to execute the proposed program
1556  * - the caller must hold ->cred_guard_mutex to protect against
1557  *   PTRACE_ATTACH or seccomp thread-sync
1558  */
1559 static void check_unsafe_exec(struct linux_binprm *bprm)
1560 {
1561         struct task_struct *p = current, *t;
1562         unsigned n_fs;
1563
1564         if (p->ptrace)
1565                 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1566
1567         /*
1568          * This isn't strictly necessary, but it makes it harder for LSMs to
1569          * mess up.
1570          */
1571         if (task_no_new_privs(current))
1572                 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1573
1574         t = p;
1575         n_fs = 1;
1576         spin_lock(&p->fs->lock);
1577         rcu_read_lock();
1578         while_each_thread(p, t) {
1579                 if (t->fs == p->fs)
1580                         n_fs++;
1581         }
1582         rcu_read_unlock();
1583
1584         if (p->fs->users > n_fs)
1585                 bprm->unsafe |= LSM_UNSAFE_SHARE;
1586         else
1587                 p->fs->in_exec = 1;
1588         spin_unlock(&p->fs->lock);
1589 }
1590
1591 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1592 {
1593         /* Handle suid and sgid on files */
1594         struct user_namespace *mnt_userns;
1595         struct inode *inode;
1596         unsigned int mode;
1597         kuid_t uid;
1598         kgid_t gid;
1599
1600         if (!mnt_may_suid(file->f_path.mnt))
1601                 return;
1602
1603         if (task_no_new_privs(current))
1604                 return;
1605
1606         inode = file->f_path.dentry->d_inode;
1607         mode = READ_ONCE(inode->i_mode);
1608         if (!(mode & (S_ISUID|S_ISGID)))
1609                 return;
1610
1611         mnt_userns = file_mnt_user_ns(file);
1612
1613         /* Be careful if suid/sgid is set */
1614         inode_lock(inode);
1615
1616         /* reload atomically mode/uid/gid now that lock held */
1617         mode = inode->i_mode;
1618         uid = i_uid_into_mnt(mnt_userns, inode);
1619         gid = i_gid_into_mnt(mnt_userns, inode);
1620         inode_unlock(inode);
1621
1622         /* We ignore suid/sgid if there are no mappings for them in the ns */
1623         if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1624                  !kgid_has_mapping(bprm->cred->user_ns, gid))
1625                 return;
1626
1627         if (mode & S_ISUID) {
1628                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1629                 bprm->cred->euid = uid;
1630         }
1631
1632         if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1633                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1634                 bprm->cred->egid = gid;
1635         }
1636 }
1637
1638 /*
1639  * Compute brpm->cred based upon the final binary.
1640  */
1641 static int bprm_creds_from_file(struct linux_binprm *bprm)
1642 {
1643         /* Compute creds based on which file? */
1644         struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1645
1646         bprm_fill_uid(bprm, file);
1647         return security_bprm_creds_from_file(bprm, file);
1648 }
1649
1650 /*
1651  * Fill the binprm structure from the inode.
1652  * Read the first BINPRM_BUF_SIZE bytes
1653  *
1654  * This may be called multiple times for binary chains (scripts for example).
1655  */
1656 static int prepare_binprm(struct linux_binprm *bprm)
1657 {
1658         loff_t pos = 0;
1659
1660         memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1661         return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1662 }
1663
1664 /*
1665  * Arguments are '\0' separated strings found at the location bprm->p
1666  * points to; chop off the first by relocating brpm->p to right after
1667  * the first '\0' encountered.
1668  */
1669 int remove_arg_zero(struct linux_binprm *bprm)
1670 {
1671         int ret = 0;
1672         unsigned long offset;
1673         char *kaddr;
1674         struct page *page;
1675
1676         if (!bprm->argc)
1677                 return 0;
1678
1679         do {
1680                 offset = bprm->p & ~PAGE_MASK;
1681                 page = get_arg_page(bprm, bprm->p, 0);
1682                 if (!page) {
1683                         ret = -EFAULT;
1684                         goto out;
1685                 }
1686                 kaddr = kmap_atomic(page);
1687
1688                 for (; offset < PAGE_SIZE && kaddr[offset];
1689                                 offset++, bprm->p++)
1690                         ;
1691
1692                 kunmap_atomic(kaddr);
1693                 put_arg_page(page);
1694         } while (offset == PAGE_SIZE);
1695
1696         bprm->p++;
1697         bprm->argc--;
1698         ret = 0;
1699
1700 out:
1701         return ret;
1702 }
1703 EXPORT_SYMBOL(remove_arg_zero);
1704
1705 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1706 /*
1707  * cycle the list of binary formats handler, until one recognizes the image
1708  */
1709 static int search_binary_handler(struct linux_binprm *bprm)
1710 {
1711         bool need_retry = IS_ENABLED(CONFIG_MODULES);
1712         struct linux_binfmt *fmt;
1713         int retval;
1714
1715         retval = prepare_binprm(bprm);
1716         if (retval < 0)
1717                 return retval;
1718
1719         retval = security_bprm_check(bprm);
1720         if (retval)
1721                 return retval;
1722
1723         retval = -ENOENT;
1724  retry:
1725         read_lock(&binfmt_lock);
1726         list_for_each_entry(fmt, &formats, lh) {
1727                 if (!try_module_get(fmt->module))
1728                         continue;
1729                 read_unlock(&binfmt_lock);
1730
1731                 retval = fmt->load_binary(bprm);
1732
1733                 read_lock(&binfmt_lock);
1734                 put_binfmt(fmt);
1735                 if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1736                         read_unlock(&binfmt_lock);
1737                         return retval;
1738                 }
1739         }
1740         read_unlock(&binfmt_lock);
1741
1742         if (need_retry) {
1743                 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1744                     printable(bprm->buf[2]) && printable(bprm->buf[3]))
1745                         return retval;
1746                 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1747                         return retval;
1748                 need_retry = false;
1749                 goto retry;
1750         }
1751
1752         return retval;
1753 }
1754
1755 static int exec_binprm(struct linux_binprm *bprm)
1756 {
1757         pid_t old_pid, old_vpid;
1758         int ret, depth;
1759
1760         /* Need to fetch pid before load_binary changes it */
1761         old_pid = current->pid;
1762         rcu_read_lock();
1763         old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1764         rcu_read_unlock();
1765
1766         /* This allows 4 levels of binfmt rewrites before failing hard. */
1767         for (depth = 0;; depth++) {
1768                 struct file *exec;
1769                 if (depth > 5)
1770                         return -ELOOP;
1771
1772                 ret = search_binary_handler(bprm);
1773                 if (ret < 0)
1774                         return ret;
1775                 if (!bprm->interpreter)
1776                         break;
1777
1778                 exec = bprm->file;
1779                 bprm->file = bprm->interpreter;
1780                 bprm->interpreter = NULL;
1781
1782                 allow_write_access(exec);
1783                 if (unlikely(bprm->have_execfd)) {
1784                         if (bprm->executable) {
1785                                 fput(exec);
1786                                 return -ENOEXEC;
1787                         }
1788                         bprm->executable = exec;
1789                 } else
1790                         fput(exec);
1791         }
1792
1793         audit_bprm(bprm);
1794         trace_sched_process_exec(current, old_pid, bprm);
1795         ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1796         proc_exec_connector(current);
1797         return 0;
1798 }
1799
1800 /*
1801  * sys_execve() executes a new program.
1802  */
1803 static int bprm_execve(struct linux_binprm *bprm,
1804                        int fd, struct filename *filename, int flags)
1805 {
1806         struct file *file;
1807         int retval;
1808
1809         retval = prepare_bprm_creds(bprm);
1810         if (retval)
1811                 return retval;
1812
1813         check_unsafe_exec(bprm);
1814         current->in_execve = 1;
1815
1816         file = do_open_execat(fd, filename, flags);
1817         retval = PTR_ERR(file);
1818         if (IS_ERR(file))
1819                 goto out_unmark;
1820
1821         sched_exec();
1822
1823         bprm->file = file;
1824         /*
1825          * Record that a name derived from an O_CLOEXEC fd will be
1826          * inaccessible after exec.  This allows the code in exec to
1827          * choose to fail when the executable is not mmaped into the
1828          * interpreter and an open file descriptor is not passed to
1829          * the interpreter.  This makes for a better user experience
1830          * than having the interpreter start and then immediately fail
1831          * when it finds the executable is inaccessible.
1832          */
1833         if (bprm->fdpath && get_close_on_exec(fd))
1834                 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1835
1836         /* Set the unchanging part of bprm->cred */
1837         retval = security_bprm_creds_for_exec(bprm);
1838         if (retval)
1839                 goto out;
1840
1841         retval = exec_binprm(bprm);
1842         if (retval < 0)
1843                 goto out;
1844
1845         /* execve succeeded */
1846         current->fs->in_exec = 0;
1847         current->in_execve = 0;
1848         rseq_execve(current);
1849         acct_update_integrals(current);
1850         task_numa_free(current, false);
1851         return retval;
1852
1853 out:
1854         /*
1855          * If past the point of no return ensure the code never
1856          * returns to the userspace process.  Use an existing fatal
1857          * signal if present otherwise terminate the process with
1858          * SIGSEGV.
1859          */
1860         if (bprm->point_of_no_return && !fatal_signal_pending(current))
1861                 force_fatal_sig(SIGSEGV);
1862
1863 out_unmark:
1864         current->fs->in_exec = 0;
1865         current->in_execve = 0;
1866
1867         return retval;
1868 }
1869
1870 static int do_execveat_common(int fd, struct filename *filename,
1871                               struct user_arg_ptr argv,
1872                               struct user_arg_ptr envp,
1873                               int flags)
1874 {
1875         struct linux_binprm *bprm;
1876         int retval;
1877
1878         if (IS_ERR(filename))
1879                 return PTR_ERR(filename);
1880
1881         /*
1882          * We move the actual failure in case of RLIMIT_NPROC excess from
1883          * set*uid() to execve() because too many poorly written programs
1884          * don't check setuid() return code.  Here we additionally recheck
1885          * whether NPROC limit is still exceeded.
1886          */
1887         if ((current->flags & PF_NPROC_EXCEEDED) &&
1888             is_ucounts_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1889                 retval = -EAGAIN;
1890                 goto out_ret;
1891         }
1892
1893         /* We're below the limit (still or again), so we don't want to make
1894          * further execve() calls fail. */
1895         current->flags &= ~PF_NPROC_EXCEEDED;
1896
1897         bprm = alloc_bprm(fd, filename);
1898         if (IS_ERR(bprm)) {
1899                 retval = PTR_ERR(bprm);
1900                 goto out_ret;
1901         }
1902
1903         retval = count(argv, MAX_ARG_STRINGS);
1904         if (retval == 0)
1905                 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1906                              current->comm, bprm->filename);
1907         if (retval < 0)
1908                 goto out_free;
1909         bprm->argc = retval;
1910
1911         retval = count(envp, MAX_ARG_STRINGS);
1912         if (retval < 0)
1913                 goto out_free;
1914         bprm->envc = retval;
1915
1916         retval = bprm_stack_limits(bprm);
1917         if (retval < 0)
1918                 goto out_free;
1919
1920         retval = copy_string_kernel(bprm->filename, bprm);
1921         if (retval < 0)
1922                 goto out_free;
1923         bprm->exec = bprm->p;
1924
1925         retval = copy_strings(bprm->envc, envp, bprm);
1926         if (retval < 0)
1927                 goto out_free;
1928
1929         retval = copy_strings(bprm->argc, argv, bprm);
1930         if (retval < 0)
1931                 goto out_free;
1932
1933         /*
1934          * When argv is empty, add an empty string ("") as argv[0] to
1935          * ensure confused userspace programs that start processing
1936          * from argv[1] won't end up walking envp. See also
1937          * bprm_stack_limits().
1938          */
1939         if (bprm->argc == 0) {
1940                 retval = copy_string_kernel("", bprm);
1941                 if (retval < 0)
1942                         goto out_free;
1943                 bprm->argc = 1;
1944         }
1945
1946         retval = bprm_execve(bprm, fd, filename, flags);
1947 out_free:
1948         free_bprm(bprm);
1949
1950 out_ret:
1951         putname(filename);
1952         return retval;
1953 }
1954
1955 int kernel_execve(const char *kernel_filename,
1956                   const char *const *argv, const char *const *envp)
1957 {
1958         struct filename *filename;
1959         struct linux_binprm *bprm;
1960         int fd = AT_FDCWD;
1961         int retval;
1962
1963         filename = getname_kernel(kernel_filename);
1964         if (IS_ERR(filename))
1965                 return PTR_ERR(filename);
1966
1967         bprm = alloc_bprm(fd, filename);
1968         if (IS_ERR(bprm)) {
1969                 retval = PTR_ERR(bprm);
1970                 goto out_ret;
1971         }
1972
1973         retval = count_strings_kernel(argv);
1974         if (WARN_ON_ONCE(retval == 0))
1975                 retval = -EINVAL;
1976         if (retval < 0)
1977                 goto out_free;
1978         bprm->argc = retval;
1979
1980         retval = count_strings_kernel(envp);
1981         if (retval < 0)
1982                 goto out_free;
1983         bprm->envc = retval;
1984
1985         retval = bprm_stack_limits(bprm);
1986         if (retval < 0)
1987                 goto out_free;
1988
1989         retval = copy_string_kernel(bprm->filename, bprm);
1990         if (retval < 0)
1991                 goto out_free;
1992         bprm->exec = bprm->p;
1993
1994         retval = copy_strings_kernel(bprm->envc, envp, bprm);
1995         if (retval < 0)
1996                 goto out_free;
1997
1998         retval = copy_strings_kernel(bprm->argc, argv, bprm);
1999         if (retval < 0)
2000                 goto out_free;
2001
2002         retval = bprm_execve(bprm, fd, filename, 0);
2003 out_free:
2004         free_bprm(bprm);
2005 out_ret:
2006         putname(filename);
2007         return retval;
2008 }
2009
2010 static int do_execve(struct filename *filename,
2011         const char __user *const __user *__argv,
2012         const char __user *const __user *__envp)
2013 {
2014         struct user_arg_ptr argv = { .ptr.native = __argv };
2015         struct user_arg_ptr envp = { .ptr.native = __envp };
2016         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2017 }
2018
2019 static int do_execveat(int fd, struct filename *filename,
2020                 const char __user *const __user *__argv,
2021                 const char __user *const __user *__envp,
2022                 int flags)
2023 {
2024         struct user_arg_ptr argv = { .ptr.native = __argv };
2025         struct user_arg_ptr envp = { .ptr.native = __envp };
2026
2027         return do_execveat_common(fd, filename, argv, envp, flags);
2028 }
2029
2030 #ifdef CONFIG_COMPAT
2031 static int compat_do_execve(struct filename *filename,
2032         const compat_uptr_t __user *__argv,
2033         const compat_uptr_t __user *__envp)
2034 {
2035         struct user_arg_ptr argv = {
2036                 .is_compat = true,
2037                 .ptr.compat = __argv,
2038         };
2039         struct user_arg_ptr envp = {
2040                 .is_compat = true,
2041                 .ptr.compat = __envp,
2042         };
2043         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2044 }
2045
2046 static int compat_do_execveat(int fd, struct filename *filename,
2047                               const compat_uptr_t __user *__argv,
2048                               const compat_uptr_t __user *__envp,
2049                               int flags)
2050 {
2051         struct user_arg_ptr argv = {
2052                 .is_compat = true,
2053                 .ptr.compat = __argv,
2054         };
2055         struct user_arg_ptr envp = {
2056                 .is_compat = true,
2057                 .ptr.compat = __envp,
2058         };
2059         return do_execveat_common(fd, filename, argv, envp, flags);
2060 }
2061 #endif
2062
2063 void set_binfmt(struct linux_binfmt *new)
2064 {
2065         struct mm_struct *mm = current->mm;
2066
2067         if (mm->binfmt)
2068                 module_put(mm->binfmt->module);
2069
2070         mm->binfmt = new;
2071         if (new)
2072                 __module_get(new->module);
2073 }
2074 EXPORT_SYMBOL(set_binfmt);
2075
2076 /*
2077  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2078  */
2079 void set_dumpable(struct mm_struct *mm, int value)
2080 {
2081         if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2082                 return;
2083
2084         set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2085 }
2086
2087 SYSCALL_DEFINE3(execve,
2088                 const char __user *, filename,
2089                 const char __user *const __user *, argv,
2090                 const char __user *const __user *, envp)
2091 {
2092         return do_execve(getname(filename), argv, envp);
2093 }
2094
2095 SYSCALL_DEFINE5(execveat,
2096                 int, fd, const char __user *, filename,
2097                 const char __user *const __user *, argv,
2098                 const char __user *const __user *, envp,
2099                 int, flags)
2100 {
2101         return do_execveat(fd,
2102                            getname_uflags(filename, flags),
2103                            argv, envp, flags);
2104 }
2105
2106 #ifdef CONFIG_COMPAT
2107 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2108         const compat_uptr_t __user *, argv,
2109         const compat_uptr_t __user *, envp)
2110 {
2111         return compat_do_execve(getname(filename), argv, envp);
2112 }
2113
2114 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2115                        const char __user *, filename,
2116                        const compat_uptr_t __user *, argv,
2117                        const compat_uptr_t __user *, envp,
2118                        int,  flags)
2119 {
2120         return compat_do_execveat(fd,
2121                                   getname_uflags(filename, flags),
2122                                   argv, envp, flags);
2123 }
2124 #endif