WIP: update tizen_qemu_defconfig
[platform/kernel/linux-starfive.git] / fs / exec.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/exec.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 /*
9  * #!-checking implemented by tytso.
10  */
11 /*
12  * Demand-loading implemented 01.12.91 - no need to read anything but
13  * the header into memory. The inode of the executable is put into
14  * "current->executable", and page faults do the actual loading. Clean.
15  *
16  * Once more I can proudly say that linux stood up to being changed: it
17  * was less than 2 hours work to get demand-loading completely implemented.
18  *
19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20  * current->executable is only used by the procfs.  This allows a dispatch
21  * table to check for several different types  of binary formats.  We keep
22  * trying until we recognize the file or we run out of supported binary
23  * formats.
24  */
25
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/oom.h>
62 #include <linux/compat.h>
63 #include <linux/vmalloc.h>
64 #include <linux/io_uring.h>
65 #include <linux/syscall_user_dispatch.h>
66 #include <linux/coredump.h>
67
68 #include <linux/uaccess.h>
69 #include <asm/mmu_context.h>
70 #include <asm/tlb.h>
71
72 #include <trace/events/task.h>
73 #include "internal.h"
74
75 #include <trace/events/sched.h>
76
77 static int bprm_creds_from_file(struct linux_binprm *bprm);
78
79 int suid_dumpable = 0;
80
81 static LIST_HEAD(formats);
82 static DEFINE_RWLOCK(binfmt_lock);
83
84 void __register_binfmt(struct linux_binfmt * fmt, int insert)
85 {
86         write_lock(&binfmt_lock);
87         insert ? list_add(&fmt->lh, &formats) :
88                  list_add_tail(&fmt->lh, &formats);
89         write_unlock(&binfmt_lock);
90 }
91
92 EXPORT_SYMBOL(__register_binfmt);
93
94 void unregister_binfmt(struct linux_binfmt * fmt)
95 {
96         write_lock(&binfmt_lock);
97         list_del(&fmt->lh);
98         write_unlock(&binfmt_lock);
99 }
100
101 EXPORT_SYMBOL(unregister_binfmt);
102
103 static inline void put_binfmt(struct linux_binfmt * fmt)
104 {
105         module_put(fmt->module);
106 }
107
108 bool path_noexec(const struct path *path)
109 {
110         return (path->mnt->mnt_flags & MNT_NOEXEC) ||
111                (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
112 }
113
114 #ifdef CONFIG_USELIB
115 /*
116  * Note that a shared library must be both readable and executable due to
117  * security reasons.
118  *
119  * Also note that we take the address to load from the file itself.
120  */
121 SYSCALL_DEFINE1(uselib, const char __user *, library)
122 {
123         struct linux_binfmt *fmt;
124         struct file *file;
125         struct filename *tmp = getname(library);
126         int error = PTR_ERR(tmp);
127         static const struct open_flags uselib_flags = {
128                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
129                 .acc_mode = MAY_READ | MAY_EXEC,
130                 .intent = LOOKUP_OPEN,
131                 .lookup_flags = LOOKUP_FOLLOW,
132         };
133
134         if (IS_ERR(tmp))
135                 goto out;
136
137         file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
138         putname(tmp);
139         error = PTR_ERR(file);
140         if (IS_ERR(file))
141                 goto out;
142
143         /*
144          * may_open() has already checked for this, so it should be
145          * impossible to trip now. But we need to be extra cautious
146          * and check again at the very end too.
147          */
148         error = -EACCES;
149         if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
150                          path_noexec(&file->f_path)))
151                 goto exit;
152
153         fsnotify_open(file);
154
155         error = -ENOEXEC;
156
157         read_lock(&binfmt_lock);
158         list_for_each_entry(fmt, &formats, lh) {
159                 if (!fmt->load_shlib)
160                         continue;
161                 if (!try_module_get(fmt->module))
162                         continue;
163                 read_unlock(&binfmt_lock);
164                 error = fmt->load_shlib(file);
165                 read_lock(&binfmt_lock);
166                 put_binfmt(fmt);
167                 if (error != -ENOEXEC)
168                         break;
169         }
170         read_unlock(&binfmt_lock);
171 exit:
172         fput(file);
173 out:
174         return error;
175 }
176 #endif /* #ifdef CONFIG_USELIB */
177
178 #ifdef CONFIG_MMU
179 /*
180  * The nascent bprm->mm is not visible until exec_mmap() but it can
181  * use a lot of memory, account these pages in current->mm temporary
182  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
183  * change the counter back via acct_arg_size(0).
184  */
185 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
186 {
187         struct mm_struct *mm = current->mm;
188         long diff = (long)(pages - bprm->vma_pages);
189
190         if (!mm || !diff)
191                 return;
192
193         bprm->vma_pages = pages;
194         add_mm_counter(mm, MM_ANONPAGES, diff);
195 }
196
197 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
198                 int write)
199 {
200         struct page *page;
201         struct vm_area_struct *vma = bprm->vma;
202         struct mm_struct *mm = bprm->mm;
203         int ret;
204
205         /*
206          * Avoid relying on expanding the stack down in GUP (which
207          * does not work for STACK_GROWSUP anyway), and just do it
208          * by hand ahead of time.
209          */
210         if (write && pos < vma->vm_start) {
211                 mmap_write_lock(mm);
212                 ret = expand_downwards(vma, pos);
213                 if (unlikely(ret < 0)) {
214                         mmap_write_unlock(mm);
215                         return NULL;
216                 }
217                 mmap_write_downgrade(mm);
218         } else
219                 mmap_read_lock(mm);
220
221         /*
222          * We are doing an exec().  'current' is the process
223          * doing the exec and 'mm' is the new process's mm.
224          */
225         ret = get_user_pages_remote(mm, pos, 1,
226                         write ? FOLL_WRITE : 0,
227                         &page, NULL, NULL);
228         mmap_read_unlock(mm);
229         if (ret <= 0)
230                 return NULL;
231
232         if (write)
233                 acct_arg_size(bprm, vma_pages(vma));
234
235         return page;
236 }
237
238 static void put_arg_page(struct page *page)
239 {
240         put_page(page);
241 }
242
243 static void free_arg_pages(struct linux_binprm *bprm)
244 {
245 }
246
247 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
248                 struct page *page)
249 {
250         flush_cache_page(bprm->vma, pos, page_to_pfn(page));
251 }
252
253 static int __bprm_mm_init(struct linux_binprm *bprm)
254 {
255         int err;
256         struct vm_area_struct *vma = NULL;
257         struct mm_struct *mm = bprm->mm;
258
259         bprm->vma = vma = vm_area_alloc(mm);
260         if (!vma)
261                 return -ENOMEM;
262         vma_set_anonymous(vma);
263
264         if (mmap_write_lock_killable(mm)) {
265                 err = -EINTR;
266                 goto err_free;
267         }
268
269         /*
270          * Place the stack at the largest stack address the architecture
271          * supports. Later, we'll move this to an appropriate place. We don't
272          * use STACK_TOP because that can depend on attributes which aren't
273          * configured yet.
274          */
275         BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
276         vma->vm_end = STACK_TOP_MAX;
277         vma->vm_start = vma->vm_end - PAGE_SIZE;
278         vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
279         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
280
281         err = insert_vm_struct(mm, vma);
282         if (err)
283                 goto err;
284
285         mm->stack_vm = mm->total_vm = 1;
286         mmap_write_unlock(mm);
287         bprm->p = vma->vm_end - sizeof(void *);
288         return 0;
289 err:
290         mmap_write_unlock(mm);
291 err_free:
292         bprm->vma = NULL;
293         vm_area_free(vma);
294         return err;
295 }
296
297 static bool valid_arg_len(struct linux_binprm *bprm, long len)
298 {
299         return len <= MAX_ARG_STRLEN;
300 }
301
302 #else
303
304 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
305 {
306 }
307
308 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
309                 int write)
310 {
311         struct page *page;
312
313         page = bprm->page[pos / PAGE_SIZE];
314         if (!page && write) {
315                 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
316                 if (!page)
317                         return NULL;
318                 bprm->page[pos / PAGE_SIZE] = page;
319         }
320
321         return page;
322 }
323
324 static void put_arg_page(struct page *page)
325 {
326 }
327
328 static void free_arg_page(struct linux_binprm *bprm, int i)
329 {
330         if (bprm->page[i]) {
331                 __free_page(bprm->page[i]);
332                 bprm->page[i] = NULL;
333         }
334 }
335
336 static void free_arg_pages(struct linux_binprm *bprm)
337 {
338         int i;
339
340         for (i = 0; i < MAX_ARG_PAGES; i++)
341                 free_arg_page(bprm, i);
342 }
343
344 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
345                 struct page *page)
346 {
347 }
348
349 static int __bprm_mm_init(struct linux_binprm *bprm)
350 {
351         bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
352         return 0;
353 }
354
355 static bool valid_arg_len(struct linux_binprm *bprm, long len)
356 {
357         return len <= bprm->p;
358 }
359
360 #endif /* CONFIG_MMU */
361
362 /*
363  * Create a new mm_struct and populate it with a temporary stack
364  * vm_area_struct.  We don't have enough context at this point to set the stack
365  * flags, permissions, and offset, so we use temporary values.  We'll update
366  * them later in setup_arg_pages().
367  */
368 static int bprm_mm_init(struct linux_binprm *bprm)
369 {
370         int err;
371         struct mm_struct *mm = NULL;
372
373         bprm->mm = mm = mm_alloc();
374         err = -ENOMEM;
375         if (!mm)
376                 goto err;
377
378         /* Save current stack limit for all calculations made during exec. */
379         task_lock(current->group_leader);
380         bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
381         task_unlock(current->group_leader);
382
383         err = __bprm_mm_init(bprm);
384         if (err)
385                 goto err;
386
387         return 0;
388
389 err:
390         if (mm) {
391                 bprm->mm = NULL;
392                 mmdrop(mm);
393         }
394
395         return err;
396 }
397
398 struct user_arg_ptr {
399 #ifdef CONFIG_COMPAT
400         bool is_compat;
401 #endif
402         union {
403                 const char __user *const __user *native;
404 #ifdef CONFIG_COMPAT
405                 const compat_uptr_t __user *compat;
406 #endif
407         } ptr;
408 };
409
410 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
411 {
412         const char __user *native;
413
414 #ifdef CONFIG_COMPAT
415         if (unlikely(argv.is_compat)) {
416                 compat_uptr_t compat;
417
418                 if (get_user(compat, argv.ptr.compat + nr))
419                         return ERR_PTR(-EFAULT);
420
421                 return compat_ptr(compat);
422         }
423 #endif
424
425         if (get_user(native, argv.ptr.native + nr))
426                 return ERR_PTR(-EFAULT);
427
428         return native;
429 }
430
431 /*
432  * count() counts the number of strings in array ARGV.
433  */
434 static int count(struct user_arg_ptr argv, int max)
435 {
436         int i = 0;
437
438         if (argv.ptr.native != NULL) {
439                 for (;;) {
440                         const char __user *p = get_user_arg_ptr(argv, i);
441
442                         if (!p)
443                                 break;
444
445                         if (IS_ERR(p))
446                                 return -EFAULT;
447
448                         if (i >= max)
449                                 return -E2BIG;
450                         ++i;
451
452                         if (fatal_signal_pending(current))
453                                 return -ERESTARTNOHAND;
454                         cond_resched();
455                 }
456         }
457         return i;
458 }
459
460 static int count_strings_kernel(const char *const *argv)
461 {
462         int i;
463
464         if (!argv)
465                 return 0;
466
467         for (i = 0; argv[i]; ++i) {
468                 if (i >= MAX_ARG_STRINGS)
469                         return -E2BIG;
470                 if (fatal_signal_pending(current))
471                         return -ERESTARTNOHAND;
472                 cond_resched();
473         }
474         return i;
475 }
476
477 static int bprm_stack_limits(struct linux_binprm *bprm)
478 {
479         unsigned long limit, ptr_size;
480
481         /*
482          * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
483          * (whichever is smaller) for the argv+env strings.
484          * This ensures that:
485          *  - the remaining binfmt code will not run out of stack space,
486          *  - the program will have a reasonable amount of stack left
487          *    to work from.
488          */
489         limit = _STK_LIM / 4 * 3;
490         limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
491         /*
492          * We've historically supported up to 32 pages (ARG_MAX)
493          * of argument strings even with small stacks
494          */
495         limit = max_t(unsigned long, limit, ARG_MAX);
496         /*
497          * We must account for the size of all the argv and envp pointers to
498          * the argv and envp strings, since they will also take up space in
499          * the stack. They aren't stored until much later when we can't
500          * signal to the parent that the child has run out of stack space.
501          * Instead, calculate it here so it's possible to fail gracefully.
502          *
503          * In the case of argc = 0, make sure there is space for adding a
504          * empty string (which will bump argc to 1), to ensure confused
505          * userspace programs don't start processing from argv[1], thinking
506          * argc can never be 0, to keep them from walking envp by accident.
507          * See do_execveat_common().
508          */
509         ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
510         if (limit <= ptr_size)
511                 return -E2BIG;
512         limit -= ptr_size;
513
514         bprm->argmin = bprm->p - limit;
515         return 0;
516 }
517
518 /*
519  * 'copy_strings()' copies argument/environment strings from the old
520  * processes's memory to the new process's stack.  The call to get_user_pages()
521  * ensures the destination page is created and not swapped out.
522  */
523 static int copy_strings(int argc, struct user_arg_ptr argv,
524                         struct linux_binprm *bprm)
525 {
526         struct page *kmapped_page = NULL;
527         char *kaddr = NULL;
528         unsigned long kpos = 0;
529         int ret;
530
531         while (argc-- > 0) {
532                 const char __user *str;
533                 int len;
534                 unsigned long pos;
535
536                 ret = -EFAULT;
537                 str = get_user_arg_ptr(argv, argc);
538                 if (IS_ERR(str))
539                         goto out;
540
541                 len = strnlen_user(str, MAX_ARG_STRLEN);
542                 if (!len)
543                         goto out;
544
545                 ret = -E2BIG;
546                 if (!valid_arg_len(bprm, len))
547                         goto out;
548
549                 /* We're going to work our way backwards. */
550                 pos = bprm->p;
551                 str += len;
552                 bprm->p -= len;
553 #ifdef CONFIG_MMU
554                 if (bprm->p < bprm->argmin)
555                         goto out;
556 #endif
557
558                 while (len > 0) {
559                         int offset, bytes_to_copy;
560
561                         if (fatal_signal_pending(current)) {
562                                 ret = -ERESTARTNOHAND;
563                                 goto out;
564                         }
565                         cond_resched();
566
567                         offset = pos % PAGE_SIZE;
568                         if (offset == 0)
569                                 offset = PAGE_SIZE;
570
571                         bytes_to_copy = offset;
572                         if (bytes_to_copy > len)
573                                 bytes_to_copy = len;
574
575                         offset -= bytes_to_copy;
576                         pos -= bytes_to_copy;
577                         str -= bytes_to_copy;
578                         len -= bytes_to_copy;
579
580                         if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
581                                 struct page *page;
582
583                                 page = get_arg_page(bprm, pos, 1);
584                                 if (!page) {
585                                         ret = -E2BIG;
586                                         goto out;
587                                 }
588
589                                 if (kmapped_page) {
590                                         flush_dcache_page(kmapped_page);
591                                         kunmap_local(kaddr);
592                                         put_arg_page(kmapped_page);
593                                 }
594                                 kmapped_page = page;
595                                 kaddr = kmap_local_page(kmapped_page);
596                                 kpos = pos & PAGE_MASK;
597                                 flush_arg_page(bprm, kpos, kmapped_page);
598                         }
599                         if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
600                                 ret = -EFAULT;
601                                 goto out;
602                         }
603                 }
604         }
605         ret = 0;
606 out:
607         if (kmapped_page) {
608                 flush_dcache_page(kmapped_page);
609                 kunmap_local(kaddr);
610                 put_arg_page(kmapped_page);
611         }
612         return ret;
613 }
614
615 /*
616  * Copy and argument/environment string from the kernel to the processes stack.
617  */
618 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
619 {
620         int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
621         unsigned long pos = bprm->p;
622
623         if (len == 0)
624                 return -EFAULT;
625         if (!valid_arg_len(bprm, len))
626                 return -E2BIG;
627
628         /* We're going to work our way backwards. */
629         arg += len;
630         bprm->p -= len;
631         if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
632                 return -E2BIG;
633
634         while (len > 0) {
635                 unsigned int bytes_to_copy = min_t(unsigned int, len,
636                                 min_not_zero(offset_in_page(pos), PAGE_SIZE));
637                 struct page *page;
638
639                 pos -= bytes_to_copy;
640                 arg -= bytes_to_copy;
641                 len -= bytes_to_copy;
642
643                 page = get_arg_page(bprm, pos, 1);
644                 if (!page)
645                         return -E2BIG;
646                 flush_arg_page(bprm, pos & PAGE_MASK, page);
647                 memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
648                 put_arg_page(page);
649         }
650
651         return 0;
652 }
653 EXPORT_SYMBOL(copy_string_kernel);
654
655 static int copy_strings_kernel(int argc, const char *const *argv,
656                                struct linux_binprm *bprm)
657 {
658         while (argc-- > 0) {
659                 int ret = copy_string_kernel(argv[argc], bprm);
660                 if (ret < 0)
661                         return ret;
662                 if (fatal_signal_pending(current))
663                         return -ERESTARTNOHAND;
664                 cond_resched();
665         }
666         return 0;
667 }
668
669 #ifdef CONFIG_MMU
670
671 /*
672  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
673  * the binfmt code determines where the new stack should reside, we shift it to
674  * its final location.  The process proceeds as follows:
675  *
676  * 1) Use shift to calculate the new vma endpoints.
677  * 2) Extend vma to cover both the old and new ranges.  This ensures the
678  *    arguments passed to subsequent functions are consistent.
679  * 3) Move vma's page tables to the new range.
680  * 4) Free up any cleared pgd range.
681  * 5) Shrink the vma to cover only the new range.
682  */
683 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
684 {
685         struct mm_struct *mm = vma->vm_mm;
686         unsigned long old_start = vma->vm_start;
687         unsigned long old_end = vma->vm_end;
688         unsigned long length = old_end - old_start;
689         unsigned long new_start = old_start - shift;
690         unsigned long new_end = old_end - shift;
691         VMA_ITERATOR(vmi, mm, new_start);
692         struct vm_area_struct *next;
693         struct mmu_gather tlb;
694
695         BUG_ON(new_start > new_end);
696
697         /*
698          * ensure there are no vmas between where we want to go
699          * and where we are
700          */
701         if (vma != vma_next(&vmi))
702                 return -EFAULT;
703
704         /*
705          * cover the whole range: [new_start, old_end)
706          */
707         if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
708                 return -ENOMEM;
709
710         /*
711          * move the page tables downwards, on failure we rely on
712          * process cleanup to remove whatever mess we made.
713          */
714         if (length != move_page_tables(vma, old_start,
715                                        vma, new_start, length, false))
716                 return -ENOMEM;
717
718         lru_add_drain();
719         tlb_gather_mmu(&tlb, mm);
720         next = vma_next(&vmi);
721         if (new_end > old_start) {
722                 /*
723                  * when the old and new regions overlap clear from new_end.
724                  */
725                 free_pgd_range(&tlb, new_end, old_end, new_end,
726                         next ? next->vm_start : USER_PGTABLES_CEILING);
727         } else {
728                 /*
729                  * otherwise, clean from old_start; this is done to not touch
730                  * the address space in [new_end, old_start) some architectures
731                  * have constraints on va-space that make this illegal (IA64) -
732                  * for the others its just a little faster.
733                  */
734                 free_pgd_range(&tlb, old_start, old_end, new_end,
735                         next ? next->vm_start : USER_PGTABLES_CEILING);
736         }
737         tlb_finish_mmu(&tlb);
738
739         /*
740          * Shrink the vma to just the new range.  Always succeeds.
741          */
742         vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
743
744         return 0;
745 }
746
747 /*
748  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
749  * the stack is optionally relocated, and some extra space is added.
750  */
751 int setup_arg_pages(struct linux_binprm *bprm,
752                     unsigned long stack_top,
753                     int executable_stack)
754 {
755         unsigned long ret;
756         unsigned long stack_shift;
757         struct mm_struct *mm = current->mm;
758         struct vm_area_struct *vma = bprm->vma;
759         struct vm_area_struct *prev = NULL;
760         unsigned long vm_flags;
761         unsigned long stack_base;
762         unsigned long stack_size;
763         unsigned long stack_expand;
764         unsigned long rlim_stack;
765         struct mmu_gather tlb;
766
767 #ifdef CONFIG_STACK_GROWSUP
768         /* Limit stack size */
769         stack_base = bprm->rlim_stack.rlim_max;
770
771         stack_base = calc_max_stack_size(stack_base);
772
773         /* Add space for stack randomization. */
774         stack_base += (STACK_RND_MASK << PAGE_SHIFT);
775
776         /* Make sure we didn't let the argument array grow too large. */
777         if (vma->vm_end - vma->vm_start > stack_base)
778                 return -ENOMEM;
779
780         stack_base = PAGE_ALIGN(stack_top - stack_base);
781
782         stack_shift = vma->vm_start - stack_base;
783         mm->arg_start = bprm->p - stack_shift;
784         bprm->p = vma->vm_end - stack_shift;
785 #else
786         stack_top = arch_align_stack(stack_top);
787         stack_top = PAGE_ALIGN(stack_top);
788
789         if (unlikely(stack_top < mmap_min_addr) ||
790             unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
791                 return -ENOMEM;
792
793         stack_shift = vma->vm_end - stack_top;
794
795         bprm->p -= stack_shift;
796         mm->arg_start = bprm->p;
797 #endif
798
799         if (bprm->loader)
800                 bprm->loader -= stack_shift;
801         bprm->exec -= stack_shift;
802
803         if (mmap_write_lock_killable(mm))
804                 return -EINTR;
805
806         vm_flags = VM_STACK_FLAGS;
807
808         /*
809          * Adjust stack execute permissions; explicitly enable for
810          * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
811          * (arch default) otherwise.
812          */
813         if (unlikely(executable_stack == EXSTACK_ENABLE_X))
814                 vm_flags |= VM_EXEC;
815         else if (executable_stack == EXSTACK_DISABLE_X)
816                 vm_flags &= ~VM_EXEC;
817         vm_flags |= mm->def_flags;
818         vm_flags |= VM_STACK_INCOMPLETE_SETUP;
819
820         tlb_gather_mmu(&tlb, mm);
821         ret = mprotect_fixup(&tlb, vma, &prev, vma->vm_start, vma->vm_end,
822                         vm_flags);
823         tlb_finish_mmu(&tlb);
824
825         if (ret)
826                 goto out_unlock;
827         BUG_ON(prev != vma);
828
829         if (unlikely(vm_flags & VM_EXEC)) {
830                 pr_warn_once("process '%pD4' started with executable stack\n",
831                              bprm->file);
832         }
833
834         /* Move stack pages down in memory. */
835         if (stack_shift) {
836                 ret = shift_arg_pages(vma, stack_shift);
837                 if (ret)
838                         goto out_unlock;
839         }
840
841         /* mprotect_fixup is overkill to remove the temporary stack flags */
842         vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
843
844         stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
845         stack_size = vma->vm_end - vma->vm_start;
846         /*
847          * Align this down to a page boundary as expand_stack
848          * will align it up.
849          */
850         rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
851 #ifdef CONFIG_STACK_GROWSUP
852         if (stack_size + stack_expand > rlim_stack)
853                 stack_base = vma->vm_start + rlim_stack;
854         else
855                 stack_base = vma->vm_end + stack_expand;
856 #else
857         if (stack_size + stack_expand > rlim_stack)
858                 stack_base = vma->vm_end - rlim_stack;
859         else
860                 stack_base = vma->vm_start - stack_expand;
861 #endif
862         current->mm->start_stack = bprm->p;
863         ret = expand_stack_locked(vma, stack_base);
864         if (ret)
865                 ret = -EFAULT;
866
867 out_unlock:
868         mmap_write_unlock(mm);
869         return ret;
870 }
871 EXPORT_SYMBOL(setup_arg_pages);
872
873 #else
874
875 /*
876  * Transfer the program arguments and environment from the holding pages
877  * onto the stack. The provided stack pointer is adjusted accordingly.
878  */
879 int transfer_args_to_stack(struct linux_binprm *bprm,
880                            unsigned long *sp_location)
881 {
882         unsigned long index, stop, sp;
883         int ret = 0;
884
885         stop = bprm->p >> PAGE_SHIFT;
886         sp = *sp_location;
887
888         for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
889                 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
890                 char *src = kmap_local_page(bprm->page[index]) + offset;
891                 sp -= PAGE_SIZE - offset;
892                 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
893                         ret = -EFAULT;
894                 kunmap_local(src);
895                 if (ret)
896                         goto out;
897         }
898
899         *sp_location = sp;
900
901 out:
902         return ret;
903 }
904 EXPORT_SYMBOL(transfer_args_to_stack);
905
906 #endif /* CONFIG_MMU */
907
908 static struct file *do_open_execat(int fd, struct filename *name, int flags)
909 {
910         struct file *file;
911         int err;
912         struct open_flags open_exec_flags = {
913                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
914                 .acc_mode = MAY_EXEC,
915                 .intent = LOOKUP_OPEN,
916                 .lookup_flags = LOOKUP_FOLLOW,
917         };
918
919         if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
920                 return ERR_PTR(-EINVAL);
921         if (flags & AT_SYMLINK_NOFOLLOW)
922                 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
923         if (flags & AT_EMPTY_PATH)
924                 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
925
926         file = do_filp_open(fd, name, &open_exec_flags);
927         if (IS_ERR(file))
928                 goto out;
929
930         /*
931          * may_open() has already checked for this, so it should be
932          * impossible to trip now. But we need to be extra cautious
933          * and check again at the very end too.
934          */
935         err = -EACCES;
936         if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
937                          path_noexec(&file->f_path)))
938                 goto exit;
939
940         err = deny_write_access(file);
941         if (err)
942                 goto exit;
943
944         if (name->name[0] != '\0')
945                 fsnotify_open(file);
946
947 out:
948         return file;
949
950 exit:
951         fput(file);
952         return ERR_PTR(err);
953 }
954
955 struct file *open_exec(const char *name)
956 {
957         struct filename *filename = getname_kernel(name);
958         struct file *f = ERR_CAST(filename);
959
960         if (!IS_ERR(filename)) {
961                 f = do_open_execat(AT_FDCWD, filename, 0);
962                 putname(filename);
963         }
964         return f;
965 }
966 EXPORT_SYMBOL(open_exec);
967
968 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC)
969 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
970 {
971         ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
972         if (res > 0)
973                 flush_icache_user_range(addr, addr + len);
974         return res;
975 }
976 EXPORT_SYMBOL(read_code);
977 #endif
978
979 /*
980  * Maps the mm_struct mm into the current task struct.
981  * On success, this function returns with exec_update_lock
982  * held for writing.
983  */
984 static int exec_mmap(struct mm_struct *mm)
985 {
986         struct task_struct *tsk;
987         struct mm_struct *old_mm, *active_mm;
988         int ret;
989
990         /* Notify parent that we're no longer interested in the old VM */
991         tsk = current;
992         old_mm = current->mm;
993         exec_mm_release(tsk, old_mm);
994         if (old_mm)
995                 sync_mm_rss(old_mm);
996
997         ret = down_write_killable(&tsk->signal->exec_update_lock);
998         if (ret)
999                 return ret;
1000
1001         if (old_mm) {
1002                 /*
1003                  * If there is a pending fatal signal perhaps a signal
1004                  * whose default action is to create a coredump get
1005                  * out and die instead of going through with the exec.
1006                  */
1007                 ret = mmap_read_lock_killable(old_mm);
1008                 if (ret) {
1009                         up_write(&tsk->signal->exec_update_lock);
1010                         return ret;
1011                 }
1012         }
1013
1014         task_lock(tsk);
1015         membarrier_exec_mmap(mm);
1016
1017         local_irq_disable();
1018         active_mm = tsk->active_mm;
1019         tsk->active_mm = mm;
1020         tsk->mm = mm;
1021         /*
1022          * This prevents preemption while active_mm is being loaded and
1023          * it and mm are being updated, which could cause problems for
1024          * lazy tlb mm refcounting when these are updated by context
1025          * switches. Not all architectures can handle irqs off over
1026          * activate_mm yet.
1027          */
1028         if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1029                 local_irq_enable();
1030         activate_mm(active_mm, mm);
1031         if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1032                 local_irq_enable();
1033         lru_gen_add_mm(mm);
1034         task_unlock(tsk);
1035         lru_gen_use_mm(mm);
1036         if (old_mm) {
1037                 mmap_read_unlock(old_mm);
1038                 BUG_ON(active_mm != old_mm);
1039                 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1040                 mm_update_next_owner(old_mm);
1041                 mmput(old_mm);
1042                 return 0;
1043         }
1044         mmdrop(active_mm);
1045         return 0;
1046 }
1047
1048 static int de_thread(struct task_struct *tsk)
1049 {
1050         struct signal_struct *sig = tsk->signal;
1051         struct sighand_struct *oldsighand = tsk->sighand;
1052         spinlock_t *lock = &oldsighand->siglock;
1053
1054         if (thread_group_empty(tsk))
1055                 goto no_thread_group;
1056
1057         /*
1058          * Kill all other threads in the thread group.
1059          */
1060         spin_lock_irq(lock);
1061         if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1062                 /*
1063                  * Another group action in progress, just
1064                  * return so that the signal is processed.
1065                  */
1066                 spin_unlock_irq(lock);
1067                 return -EAGAIN;
1068         }
1069
1070         sig->group_exec_task = tsk;
1071         sig->notify_count = zap_other_threads(tsk);
1072         if (!thread_group_leader(tsk))
1073                 sig->notify_count--;
1074
1075         while (sig->notify_count) {
1076                 __set_current_state(TASK_KILLABLE);
1077                 spin_unlock_irq(lock);
1078                 schedule();
1079                 if (__fatal_signal_pending(tsk))
1080                         goto killed;
1081                 spin_lock_irq(lock);
1082         }
1083         spin_unlock_irq(lock);
1084
1085         /*
1086          * At this point all other threads have exited, all we have to
1087          * do is to wait for the thread group leader to become inactive,
1088          * and to assume its PID:
1089          */
1090         if (!thread_group_leader(tsk)) {
1091                 struct task_struct *leader = tsk->group_leader;
1092
1093                 for (;;) {
1094                         cgroup_threadgroup_change_begin(tsk);
1095                         write_lock_irq(&tasklist_lock);
1096                         /*
1097                          * Do this under tasklist_lock to ensure that
1098                          * exit_notify() can't miss ->group_exec_task
1099                          */
1100                         sig->notify_count = -1;
1101                         if (likely(leader->exit_state))
1102                                 break;
1103                         __set_current_state(TASK_KILLABLE);
1104                         write_unlock_irq(&tasklist_lock);
1105                         cgroup_threadgroup_change_end(tsk);
1106                         schedule();
1107                         if (__fatal_signal_pending(tsk))
1108                                 goto killed;
1109                 }
1110
1111                 /*
1112                  * The only record we have of the real-time age of a
1113                  * process, regardless of execs it's done, is start_time.
1114                  * All the past CPU time is accumulated in signal_struct
1115                  * from sister threads now dead.  But in this non-leader
1116                  * exec, nothing survives from the original leader thread,
1117                  * whose birth marks the true age of this process now.
1118                  * When we take on its identity by switching to its PID, we
1119                  * also take its birthdate (always earlier than our own).
1120                  */
1121                 tsk->start_time = leader->start_time;
1122                 tsk->start_boottime = leader->start_boottime;
1123
1124                 BUG_ON(!same_thread_group(leader, tsk));
1125                 /*
1126                  * An exec() starts a new thread group with the
1127                  * TGID of the previous thread group. Rehash the
1128                  * two threads with a switched PID, and release
1129                  * the former thread group leader:
1130                  */
1131
1132                 /* Become a process group leader with the old leader's pid.
1133                  * The old leader becomes a thread of the this thread group.
1134                  */
1135                 exchange_tids(tsk, leader);
1136                 transfer_pid(leader, tsk, PIDTYPE_TGID);
1137                 transfer_pid(leader, tsk, PIDTYPE_PGID);
1138                 transfer_pid(leader, tsk, PIDTYPE_SID);
1139
1140                 list_replace_rcu(&leader->tasks, &tsk->tasks);
1141                 list_replace_init(&leader->sibling, &tsk->sibling);
1142
1143                 tsk->group_leader = tsk;
1144                 leader->group_leader = tsk;
1145
1146                 tsk->exit_signal = SIGCHLD;
1147                 leader->exit_signal = -1;
1148
1149                 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1150                 leader->exit_state = EXIT_DEAD;
1151
1152                 /*
1153                  * We are going to release_task()->ptrace_unlink() silently,
1154                  * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1155                  * the tracer won't block again waiting for this thread.
1156                  */
1157                 if (unlikely(leader->ptrace))
1158                         __wake_up_parent(leader, leader->parent);
1159                 write_unlock_irq(&tasklist_lock);
1160                 cgroup_threadgroup_change_end(tsk);
1161
1162                 release_task(leader);
1163         }
1164
1165         sig->group_exec_task = NULL;
1166         sig->notify_count = 0;
1167
1168 no_thread_group:
1169         /* we have changed execution domain */
1170         tsk->exit_signal = SIGCHLD;
1171
1172         BUG_ON(!thread_group_leader(tsk));
1173         return 0;
1174
1175 killed:
1176         /* protects against exit_notify() and __exit_signal() */
1177         read_lock(&tasklist_lock);
1178         sig->group_exec_task = NULL;
1179         sig->notify_count = 0;
1180         read_unlock(&tasklist_lock);
1181         return -EAGAIN;
1182 }
1183
1184
1185 /*
1186  * This function makes sure the current process has its own signal table,
1187  * so that flush_signal_handlers can later reset the handlers without
1188  * disturbing other processes.  (Other processes might share the signal
1189  * table via the CLONE_SIGHAND option to clone().)
1190  */
1191 static int unshare_sighand(struct task_struct *me)
1192 {
1193         struct sighand_struct *oldsighand = me->sighand;
1194
1195         if (refcount_read(&oldsighand->count) != 1) {
1196                 struct sighand_struct *newsighand;
1197                 /*
1198                  * This ->sighand is shared with the CLONE_SIGHAND
1199                  * but not CLONE_THREAD task, switch to the new one.
1200                  */
1201                 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1202                 if (!newsighand)
1203                         return -ENOMEM;
1204
1205                 refcount_set(&newsighand->count, 1);
1206
1207                 write_lock_irq(&tasklist_lock);
1208                 spin_lock(&oldsighand->siglock);
1209                 memcpy(newsighand->action, oldsighand->action,
1210                        sizeof(newsighand->action));
1211                 rcu_assign_pointer(me->sighand, newsighand);
1212                 spin_unlock(&oldsighand->siglock);
1213                 write_unlock_irq(&tasklist_lock);
1214
1215                 __cleanup_sighand(oldsighand);
1216         }
1217         return 0;
1218 }
1219
1220 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1221 {
1222         task_lock(tsk);
1223         /* Always NUL terminated and zero-padded */
1224         strscpy_pad(buf, tsk->comm, buf_size);
1225         task_unlock(tsk);
1226         return buf;
1227 }
1228 EXPORT_SYMBOL_GPL(__get_task_comm);
1229
1230 /*
1231  * These functions flushes out all traces of the currently running executable
1232  * so that a new one can be started
1233  */
1234
1235 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1236 {
1237         task_lock(tsk);
1238         trace_task_rename(tsk, buf);
1239         strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1240         task_unlock(tsk);
1241         perf_event_comm(tsk, exec);
1242 }
1243
1244 /*
1245  * Calling this is the point of no return. None of the failures will be
1246  * seen by userspace since either the process is already taking a fatal
1247  * signal (via de_thread() or coredump), or will have SEGV raised
1248  * (after exec_mmap()) by search_binary_handler (see below).
1249  */
1250 int begin_new_exec(struct linux_binprm * bprm)
1251 {
1252         struct task_struct *me = current;
1253         int retval;
1254
1255         /* Once we are committed compute the creds */
1256         retval = bprm_creds_from_file(bprm);
1257         if (retval)
1258                 return retval;
1259
1260         /*
1261          * Ensure all future errors are fatal.
1262          */
1263         bprm->point_of_no_return = true;
1264
1265         /*
1266          * Make this the only thread in the thread group.
1267          */
1268         retval = de_thread(me);
1269         if (retval)
1270                 goto out;
1271
1272         /*
1273          * Cancel any io_uring activity across execve
1274          */
1275         io_uring_task_cancel();
1276
1277         /* Ensure the files table is not shared. */
1278         retval = unshare_files();
1279         if (retval)
1280                 goto out;
1281
1282         /*
1283          * Must be called _before_ exec_mmap() as bprm->mm is
1284          * not visible until then. This also enables the update
1285          * to be lockless.
1286          */
1287         retval = set_mm_exe_file(bprm->mm, bprm->file);
1288         if (retval)
1289                 goto out;
1290
1291         /* If the binary is not readable then enforce mm->dumpable=0 */
1292         would_dump(bprm, bprm->file);
1293         if (bprm->have_execfd)
1294                 would_dump(bprm, bprm->executable);
1295
1296         /*
1297          * Release all of the old mmap stuff
1298          */
1299         acct_arg_size(bprm, 0);
1300         retval = exec_mmap(bprm->mm);
1301         if (retval)
1302                 goto out;
1303
1304         bprm->mm = NULL;
1305
1306 #ifdef CONFIG_POSIX_TIMERS
1307         spin_lock_irq(&me->sighand->siglock);
1308         posix_cpu_timers_exit(me);
1309         spin_unlock_irq(&me->sighand->siglock);
1310         exit_itimers(me);
1311         flush_itimer_signals();
1312 #endif
1313
1314         /*
1315          * Make the signal table private.
1316          */
1317         retval = unshare_sighand(me);
1318         if (retval)
1319                 goto out_unlock;
1320
1321         me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1322                                         PF_NOFREEZE | PF_NO_SETAFFINITY);
1323         flush_thread();
1324         me->personality &= ~bprm->per_clear;
1325
1326         clear_syscall_work_syscall_user_dispatch(me);
1327
1328         /*
1329          * We have to apply CLOEXEC before we change whether the process is
1330          * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1331          * trying to access the should-be-closed file descriptors of a process
1332          * undergoing exec(2).
1333          */
1334         do_close_on_exec(me->files);
1335
1336         if (bprm->secureexec) {
1337                 /* Make sure parent cannot signal privileged process. */
1338                 me->pdeath_signal = 0;
1339
1340                 /*
1341                  * For secureexec, reset the stack limit to sane default to
1342                  * avoid bad behavior from the prior rlimits. This has to
1343                  * happen before arch_pick_mmap_layout(), which examines
1344                  * RLIMIT_STACK, but after the point of no return to avoid
1345                  * needing to clean up the change on failure.
1346                  */
1347                 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1348                         bprm->rlim_stack.rlim_cur = _STK_LIM;
1349         }
1350
1351         me->sas_ss_sp = me->sas_ss_size = 0;
1352
1353         /*
1354          * Figure out dumpability. Note that this checking only of current
1355          * is wrong, but userspace depends on it. This should be testing
1356          * bprm->secureexec instead.
1357          */
1358         if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1359             !(uid_eq(current_euid(), current_uid()) &&
1360               gid_eq(current_egid(), current_gid())))
1361                 set_dumpable(current->mm, suid_dumpable);
1362         else
1363                 set_dumpable(current->mm, SUID_DUMP_USER);
1364
1365         perf_event_exec();
1366         __set_task_comm(me, kbasename(bprm->filename), true);
1367
1368         /* An exec changes our domain. We are no longer part of the thread
1369            group */
1370         WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1371         flush_signal_handlers(me, 0);
1372
1373         retval = set_cred_ucounts(bprm->cred);
1374         if (retval < 0)
1375                 goto out_unlock;
1376
1377         /*
1378          * install the new credentials for this executable
1379          */
1380         security_bprm_committing_creds(bprm);
1381
1382         commit_creds(bprm->cred);
1383         bprm->cred = NULL;
1384
1385         /*
1386          * Disable monitoring for regular users
1387          * when executing setuid binaries. Must
1388          * wait until new credentials are committed
1389          * by commit_creds() above
1390          */
1391         if (get_dumpable(me->mm) != SUID_DUMP_USER)
1392                 perf_event_exit_task(me);
1393         /*
1394          * cred_guard_mutex must be held at least to this point to prevent
1395          * ptrace_attach() from altering our determination of the task's
1396          * credentials; any time after this it may be unlocked.
1397          */
1398         security_bprm_committed_creds(bprm);
1399
1400         /* Pass the opened binary to the interpreter. */
1401         if (bprm->have_execfd) {
1402                 retval = get_unused_fd_flags(0);
1403                 if (retval < 0)
1404                         goto out_unlock;
1405                 fd_install(retval, bprm->executable);
1406                 bprm->executable = NULL;
1407                 bprm->execfd = retval;
1408         }
1409         return 0;
1410
1411 out_unlock:
1412         up_write(&me->signal->exec_update_lock);
1413 out:
1414         return retval;
1415 }
1416 EXPORT_SYMBOL(begin_new_exec);
1417
1418 void would_dump(struct linux_binprm *bprm, struct file *file)
1419 {
1420         struct inode *inode = file_inode(file);
1421         struct user_namespace *mnt_userns = file_mnt_user_ns(file);
1422         if (inode_permission(mnt_userns, inode, MAY_READ) < 0) {
1423                 struct user_namespace *old, *user_ns;
1424                 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1425
1426                 /* Ensure mm->user_ns contains the executable */
1427                 user_ns = old = bprm->mm->user_ns;
1428                 while ((user_ns != &init_user_ns) &&
1429                        !privileged_wrt_inode_uidgid(user_ns, mnt_userns, inode))
1430                         user_ns = user_ns->parent;
1431
1432                 if (old != user_ns) {
1433                         bprm->mm->user_ns = get_user_ns(user_ns);
1434                         put_user_ns(old);
1435                 }
1436         }
1437 }
1438 EXPORT_SYMBOL(would_dump);
1439
1440 void setup_new_exec(struct linux_binprm * bprm)
1441 {
1442         /* Setup things that can depend upon the personality */
1443         struct task_struct *me = current;
1444
1445         arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1446
1447         arch_setup_new_exec();
1448
1449         /* Set the new mm task size. We have to do that late because it may
1450          * depend on TIF_32BIT which is only updated in flush_thread() on
1451          * some architectures like powerpc
1452          */
1453         me->mm->task_size = TASK_SIZE;
1454         up_write(&me->signal->exec_update_lock);
1455         mutex_unlock(&me->signal->cred_guard_mutex);
1456 }
1457 EXPORT_SYMBOL(setup_new_exec);
1458
1459 /* Runs immediately before start_thread() takes over. */
1460 void finalize_exec(struct linux_binprm *bprm)
1461 {
1462         /* Store any stack rlimit changes before starting thread. */
1463         task_lock(current->group_leader);
1464         current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1465         task_unlock(current->group_leader);
1466 }
1467 EXPORT_SYMBOL(finalize_exec);
1468
1469 /*
1470  * Prepare credentials and lock ->cred_guard_mutex.
1471  * setup_new_exec() commits the new creds and drops the lock.
1472  * Or, if exec fails before, free_bprm() should release ->cred
1473  * and unlock.
1474  */
1475 static int prepare_bprm_creds(struct linux_binprm *bprm)
1476 {
1477         if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1478                 return -ERESTARTNOINTR;
1479
1480         bprm->cred = prepare_exec_creds();
1481         if (likely(bprm->cred))
1482                 return 0;
1483
1484         mutex_unlock(&current->signal->cred_guard_mutex);
1485         return -ENOMEM;
1486 }
1487
1488 static void free_bprm(struct linux_binprm *bprm)
1489 {
1490         if (bprm->mm) {
1491                 acct_arg_size(bprm, 0);
1492                 mmput(bprm->mm);
1493         }
1494         free_arg_pages(bprm);
1495         if (bprm->cred) {
1496                 mutex_unlock(&current->signal->cred_guard_mutex);
1497                 abort_creds(bprm->cred);
1498         }
1499         if (bprm->file) {
1500                 allow_write_access(bprm->file);
1501                 fput(bprm->file);
1502         }
1503         if (bprm->executable)
1504                 fput(bprm->executable);
1505         /* If a binfmt changed the interp, free it. */
1506         if (bprm->interp != bprm->filename)
1507                 kfree(bprm->interp);
1508         kfree(bprm->fdpath);
1509         kfree(bprm);
1510 }
1511
1512 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1513 {
1514         struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1515         int retval = -ENOMEM;
1516         if (!bprm)
1517                 goto out;
1518
1519         if (fd == AT_FDCWD || filename->name[0] == '/') {
1520                 bprm->filename = filename->name;
1521         } else {
1522                 if (filename->name[0] == '\0')
1523                         bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1524                 else
1525                         bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1526                                                   fd, filename->name);
1527                 if (!bprm->fdpath)
1528                         goto out_free;
1529
1530                 bprm->filename = bprm->fdpath;
1531         }
1532         bprm->interp = bprm->filename;
1533
1534         retval = bprm_mm_init(bprm);
1535         if (retval)
1536                 goto out_free;
1537         return bprm;
1538
1539 out_free:
1540         free_bprm(bprm);
1541 out:
1542         return ERR_PTR(retval);
1543 }
1544
1545 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1546 {
1547         /* If a binfmt changed the interp, free it first. */
1548         if (bprm->interp != bprm->filename)
1549                 kfree(bprm->interp);
1550         bprm->interp = kstrdup(interp, GFP_KERNEL);
1551         if (!bprm->interp)
1552                 return -ENOMEM;
1553         return 0;
1554 }
1555 EXPORT_SYMBOL(bprm_change_interp);
1556
1557 /*
1558  * determine how safe it is to execute the proposed program
1559  * - the caller must hold ->cred_guard_mutex to protect against
1560  *   PTRACE_ATTACH or seccomp thread-sync
1561  */
1562 static void check_unsafe_exec(struct linux_binprm *bprm)
1563 {
1564         struct task_struct *p = current, *t;
1565         unsigned n_fs;
1566
1567         if (p->ptrace)
1568                 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1569
1570         /*
1571          * This isn't strictly necessary, but it makes it harder for LSMs to
1572          * mess up.
1573          */
1574         if (task_no_new_privs(current))
1575                 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1576
1577         t = p;
1578         n_fs = 1;
1579         spin_lock(&p->fs->lock);
1580         rcu_read_lock();
1581         while_each_thread(p, t) {
1582                 if (t->fs == p->fs)
1583                         n_fs++;
1584         }
1585         rcu_read_unlock();
1586
1587         if (p->fs->users > n_fs)
1588                 bprm->unsafe |= LSM_UNSAFE_SHARE;
1589         else
1590                 p->fs->in_exec = 1;
1591         spin_unlock(&p->fs->lock);
1592 }
1593
1594 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1595 {
1596         /* Handle suid and sgid on files */
1597         struct user_namespace *mnt_userns;
1598         struct inode *inode = file_inode(file);
1599         unsigned int mode;
1600         kuid_t uid;
1601         kgid_t gid;
1602
1603         if (!mnt_may_suid(file->f_path.mnt))
1604                 return;
1605
1606         if (task_no_new_privs(current))
1607                 return;
1608
1609         mode = READ_ONCE(inode->i_mode);
1610         if (!(mode & (S_ISUID|S_ISGID)))
1611                 return;
1612
1613         mnt_userns = file_mnt_user_ns(file);
1614
1615         /* Be careful if suid/sgid is set */
1616         inode_lock(inode);
1617
1618         /* reload atomically mode/uid/gid now that lock held */
1619         mode = inode->i_mode;
1620         uid = i_uid_into_mnt(mnt_userns, inode);
1621         gid = i_gid_into_mnt(mnt_userns, inode);
1622         inode_unlock(inode);
1623
1624         /* We ignore suid/sgid if there are no mappings for them in the ns */
1625         if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1626                  !kgid_has_mapping(bprm->cred->user_ns, gid))
1627                 return;
1628
1629         if (mode & S_ISUID) {
1630                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1631                 bprm->cred->euid = uid;
1632         }
1633
1634         if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1635                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1636                 bprm->cred->egid = gid;
1637         }
1638 }
1639
1640 /*
1641  * Compute brpm->cred based upon the final binary.
1642  */
1643 static int bprm_creds_from_file(struct linux_binprm *bprm)
1644 {
1645         /* Compute creds based on which file? */
1646         struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1647
1648         bprm_fill_uid(bprm, file);
1649         return security_bprm_creds_from_file(bprm, file);
1650 }
1651
1652 /*
1653  * Fill the binprm structure from the inode.
1654  * Read the first BINPRM_BUF_SIZE bytes
1655  *
1656  * This may be called multiple times for binary chains (scripts for example).
1657  */
1658 static int prepare_binprm(struct linux_binprm *bprm)
1659 {
1660         loff_t pos = 0;
1661
1662         memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1663         return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1664 }
1665
1666 /*
1667  * Arguments are '\0' separated strings found at the location bprm->p
1668  * points to; chop off the first by relocating brpm->p to right after
1669  * the first '\0' encountered.
1670  */
1671 int remove_arg_zero(struct linux_binprm *bprm)
1672 {
1673         int ret = 0;
1674         unsigned long offset;
1675         char *kaddr;
1676         struct page *page;
1677
1678         if (!bprm->argc)
1679                 return 0;
1680
1681         do {
1682                 offset = bprm->p & ~PAGE_MASK;
1683                 page = get_arg_page(bprm, bprm->p, 0);
1684                 if (!page) {
1685                         ret = -EFAULT;
1686                         goto out;
1687                 }
1688                 kaddr = kmap_local_page(page);
1689
1690                 for (; offset < PAGE_SIZE && kaddr[offset];
1691                                 offset++, bprm->p++)
1692                         ;
1693
1694                 kunmap_local(kaddr);
1695                 put_arg_page(page);
1696         } while (offset == PAGE_SIZE);
1697
1698         bprm->p++;
1699         bprm->argc--;
1700         ret = 0;
1701
1702 out:
1703         return ret;
1704 }
1705 EXPORT_SYMBOL(remove_arg_zero);
1706
1707 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1708 /*
1709  * cycle the list of binary formats handler, until one recognizes the image
1710  */
1711 static int search_binary_handler(struct linux_binprm *bprm)
1712 {
1713         bool need_retry = IS_ENABLED(CONFIG_MODULES);
1714         struct linux_binfmt *fmt;
1715         int retval;
1716
1717         retval = prepare_binprm(bprm);
1718         if (retval < 0)
1719                 return retval;
1720
1721         retval = security_bprm_check(bprm);
1722         if (retval)
1723                 return retval;
1724
1725         retval = -ENOENT;
1726  retry:
1727         read_lock(&binfmt_lock);
1728         list_for_each_entry(fmt, &formats, lh) {
1729                 if (!try_module_get(fmt->module))
1730                         continue;
1731                 read_unlock(&binfmt_lock);
1732
1733                 retval = fmt->load_binary(bprm);
1734
1735                 read_lock(&binfmt_lock);
1736                 put_binfmt(fmt);
1737                 if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1738                         read_unlock(&binfmt_lock);
1739                         return retval;
1740                 }
1741         }
1742         read_unlock(&binfmt_lock);
1743
1744         if (need_retry) {
1745                 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1746                     printable(bprm->buf[2]) && printable(bprm->buf[3]))
1747                         return retval;
1748                 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1749                         return retval;
1750                 need_retry = false;
1751                 goto retry;
1752         }
1753
1754         return retval;
1755 }
1756
1757 static int exec_binprm(struct linux_binprm *bprm)
1758 {
1759         pid_t old_pid, old_vpid;
1760         int ret, depth;
1761
1762         /* Need to fetch pid before load_binary changes it */
1763         old_pid = current->pid;
1764         rcu_read_lock();
1765         old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1766         rcu_read_unlock();
1767
1768         /* This allows 4 levels of binfmt rewrites before failing hard. */
1769         for (depth = 0;; depth++) {
1770                 struct file *exec;
1771                 if (depth > 5)
1772                         return -ELOOP;
1773
1774                 ret = search_binary_handler(bprm);
1775                 if (ret < 0)
1776                         return ret;
1777                 if (!bprm->interpreter)
1778                         break;
1779
1780                 exec = bprm->file;
1781                 bprm->file = bprm->interpreter;
1782                 bprm->interpreter = NULL;
1783
1784                 allow_write_access(exec);
1785                 if (unlikely(bprm->have_execfd)) {
1786                         if (bprm->executable) {
1787                                 fput(exec);
1788                                 return -ENOEXEC;
1789                         }
1790                         bprm->executable = exec;
1791                 } else
1792                         fput(exec);
1793         }
1794
1795         audit_bprm(bprm);
1796         trace_sched_process_exec(current, old_pid, bprm);
1797         ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1798         proc_exec_connector(current);
1799         return 0;
1800 }
1801
1802 /*
1803  * sys_execve() executes a new program.
1804  */
1805 static int bprm_execve(struct linux_binprm *bprm,
1806                        int fd, struct filename *filename, int flags)
1807 {
1808         struct file *file;
1809         int retval;
1810
1811         retval = prepare_bprm_creds(bprm);
1812         if (retval)
1813                 return retval;
1814
1815         check_unsafe_exec(bprm);
1816         current->in_execve = 1;
1817
1818         file = do_open_execat(fd, filename, flags);
1819         retval = PTR_ERR(file);
1820         if (IS_ERR(file))
1821                 goto out_unmark;
1822
1823         sched_exec();
1824
1825         bprm->file = file;
1826         /*
1827          * Record that a name derived from an O_CLOEXEC fd will be
1828          * inaccessible after exec.  This allows the code in exec to
1829          * choose to fail when the executable is not mmaped into the
1830          * interpreter and an open file descriptor is not passed to
1831          * the interpreter.  This makes for a better user experience
1832          * than having the interpreter start and then immediately fail
1833          * when it finds the executable is inaccessible.
1834          */
1835         if (bprm->fdpath && get_close_on_exec(fd))
1836                 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1837
1838         /* Set the unchanging part of bprm->cred */
1839         retval = security_bprm_creds_for_exec(bprm);
1840         if (retval)
1841                 goto out;
1842
1843         retval = exec_binprm(bprm);
1844         if (retval < 0)
1845                 goto out;
1846
1847         /* execve succeeded */
1848         current->fs->in_exec = 0;
1849         current->in_execve = 0;
1850         rseq_execve(current);
1851         acct_update_integrals(current);
1852         task_numa_free(current, false);
1853         return retval;
1854
1855 out:
1856         /*
1857          * If past the point of no return ensure the code never
1858          * returns to the userspace process.  Use an existing fatal
1859          * signal if present otherwise terminate the process with
1860          * SIGSEGV.
1861          */
1862         if (bprm->point_of_no_return && !fatal_signal_pending(current))
1863                 force_fatal_sig(SIGSEGV);
1864
1865 out_unmark:
1866         current->fs->in_exec = 0;
1867         current->in_execve = 0;
1868
1869         return retval;
1870 }
1871
1872 static int do_execveat_common(int fd, struct filename *filename,
1873                               struct user_arg_ptr argv,
1874                               struct user_arg_ptr envp,
1875                               int flags)
1876 {
1877         struct linux_binprm *bprm;
1878         int retval;
1879
1880         if (IS_ERR(filename))
1881                 return PTR_ERR(filename);
1882
1883         /*
1884          * We move the actual failure in case of RLIMIT_NPROC excess from
1885          * set*uid() to execve() because too many poorly written programs
1886          * don't check setuid() return code.  Here we additionally recheck
1887          * whether NPROC limit is still exceeded.
1888          */
1889         if ((current->flags & PF_NPROC_EXCEEDED) &&
1890             is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1891                 retval = -EAGAIN;
1892                 goto out_ret;
1893         }
1894
1895         /* We're below the limit (still or again), so we don't want to make
1896          * further execve() calls fail. */
1897         current->flags &= ~PF_NPROC_EXCEEDED;
1898
1899         bprm = alloc_bprm(fd, filename);
1900         if (IS_ERR(bprm)) {
1901                 retval = PTR_ERR(bprm);
1902                 goto out_ret;
1903         }
1904
1905         retval = count(argv, MAX_ARG_STRINGS);
1906         if (retval == 0)
1907                 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1908                              current->comm, bprm->filename);
1909         if (retval < 0)
1910                 goto out_free;
1911         bprm->argc = retval;
1912
1913         retval = count(envp, MAX_ARG_STRINGS);
1914         if (retval < 0)
1915                 goto out_free;
1916         bprm->envc = retval;
1917
1918         retval = bprm_stack_limits(bprm);
1919         if (retval < 0)
1920                 goto out_free;
1921
1922         retval = copy_string_kernel(bprm->filename, bprm);
1923         if (retval < 0)
1924                 goto out_free;
1925         bprm->exec = bprm->p;
1926
1927         retval = copy_strings(bprm->envc, envp, bprm);
1928         if (retval < 0)
1929                 goto out_free;
1930
1931         retval = copy_strings(bprm->argc, argv, bprm);
1932         if (retval < 0)
1933                 goto out_free;
1934
1935         /*
1936          * When argv is empty, add an empty string ("") as argv[0] to
1937          * ensure confused userspace programs that start processing
1938          * from argv[1] won't end up walking envp. See also
1939          * bprm_stack_limits().
1940          */
1941         if (bprm->argc == 0) {
1942                 retval = copy_string_kernel("", bprm);
1943                 if (retval < 0)
1944                         goto out_free;
1945                 bprm->argc = 1;
1946         }
1947
1948         retval = bprm_execve(bprm, fd, filename, flags);
1949 out_free:
1950         free_bprm(bprm);
1951
1952 out_ret:
1953         putname(filename);
1954         return retval;
1955 }
1956
1957 int kernel_execve(const char *kernel_filename,
1958                   const char *const *argv, const char *const *envp)
1959 {
1960         struct filename *filename;
1961         struct linux_binprm *bprm;
1962         int fd = AT_FDCWD;
1963         int retval;
1964
1965         /* It is non-sense for kernel threads to call execve */
1966         if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
1967                 return -EINVAL;
1968
1969         filename = getname_kernel(kernel_filename);
1970         if (IS_ERR(filename))
1971                 return PTR_ERR(filename);
1972
1973         bprm = alloc_bprm(fd, filename);
1974         if (IS_ERR(bprm)) {
1975                 retval = PTR_ERR(bprm);
1976                 goto out_ret;
1977         }
1978
1979         retval = count_strings_kernel(argv);
1980         if (WARN_ON_ONCE(retval == 0))
1981                 retval = -EINVAL;
1982         if (retval < 0)
1983                 goto out_free;
1984         bprm->argc = retval;
1985
1986         retval = count_strings_kernel(envp);
1987         if (retval < 0)
1988                 goto out_free;
1989         bprm->envc = retval;
1990
1991         retval = bprm_stack_limits(bprm);
1992         if (retval < 0)
1993                 goto out_free;
1994
1995         retval = copy_string_kernel(bprm->filename, bprm);
1996         if (retval < 0)
1997                 goto out_free;
1998         bprm->exec = bprm->p;
1999
2000         retval = copy_strings_kernel(bprm->envc, envp, bprm);
2001         if (retval < 0)
2002                 goto out_free;
2003
2004         retval = copy_strings_kernel(bprm->argc, argv, bprm);
2005         if (retval < 0)
2006                 goto out_free;
2007
2008         retval = bprm_execve(bprm, fd, filename, 0);
2009 out_free:
2010         free_bprm(bprm);
2011 out_ret:
2012         putname(filename);
2013         return retval;
2014 }
2015
2016 static int do_execve(struct filename *filename,
2017         const char __user *const __user *__argv,
2018         const char __user *const __user *__envp)
2019 {
2020         struct user_arg_ptr argv = { .ptr.native = __argv };
2021         struct user_arg_ptr envp = { .ptr.native = __envp };
2022         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2023 }
2024
2025 static int do_execveat(int fd, struct filename *filename,
2026                 const char __user *const __user *__argv,
2027                 const char __user *const __user *__envp,
2028                 int flags)
2029 {
2030         struct user_arg_ptr argv = { .ptr.native = __argv };
2031         struct user_arg_ptr envp = { .ptr.native = __envp };
2032
2033         return do_execveat_common(fd, filename, argv, envp, flags);
2034 }
2035
2036 #ifdef CONFIG_COMPAT
2037 static int compat_do_execve(struct filename *filename,
2038         const compat_uptr_t __user *__argv,
2039         const compat_uptr_t __user *__envp)
2040 {
2041         struct user_arg_ptr argv = {
2042                 .is_compat = true,
2043                 .ptr.compat = __argv,
2044         };
2045         struct user_arg_ptr envp = {
2046                 .is_compat = true,
2047                 .ptr.compat = __envp,
2048         };
2049         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2050 }
2051
2052 static int compat_do_execveat(int fd, struct filename *filename,
2053                               const compat_uptr_t __user *__argv,
2054                               const compat_uptr_t __user *__envp,
2055                               int flags)
2056 {
2057         struct user_arg_ptr argv = {
2058                 .is_compat = true,
2059                 .ptr.compat = __argv,
2060         };
2061         struct user_arg_ptr envp = {
2062                 .is_compat = true,
2063                 .ptr.compat = __envp,
2064         };
2065         return do_execveat_common(fd, filename, argv, envp, flags);
2066 }
2067 #endif
2068
2069 void set_binfmt(struct linux_binfmt *new)
2070 {
2071         struct mm_struct *mm = current->mm;
2072
2073         if (mm->binfmt)
2074                 module_put(mm->binfmt->module);
2075
2076         mm->binfmt = new;
2077         if (new)
2078                 __module_get(new->module);
2079 }
2080 EXPORT_SYMBOL(set_binfmt);
2081
2082 /*
2083  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2084  */
2085 void set_dumpable(struct mm_struct *mm, int value)
2086 {
2087         if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2088                 return;
2089
2090         set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2091 }
2092
2093 SYSCALL_DEFINE3(execve,
2094                 const char __user *, filename,
2095                 const char __user *const __user *, argv,
2096                 const char __user *const __user *, envp)
2097 {
2098         return do_execve(getname(filename), argv, envp);
2099 }
2100
2101 SYSCALL_DEFINE5(execveat,
2102                 int, fd, const char __user *, filename,
2103                 const char __user *const __user *, argv,
2104                 const char __user *const __user *, envp,
2105                 int, flags)
2106 {
2107         return do_execveat(fd,
2108                            getname_uflags(filename, flags),
2109                            argv, envp, flags);
2110 }
2111
2112 #ifdef CONFIG_COMPAT
2113 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2114         const compat_uptr_t __user *, argv,
2115         const compat_uptr_t __user *, envp)
2116 {
2117         return compat_do_execve(getname(filename), argv, envp);
2118 }
2119
2120 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2121                        const char __user *, filename,
2122                        const compat_uptr_t __user *, argv,
2123                        const compat_uptr_t __user *, envp,
2124                        int,  flags)
2125 {
2126         return compat_do_execveat(fd,
2127                                   getname_uflags(filename, flags),
2128                                   argv, envp, flags);
2129 }
2130 #endif
2131
2132 #ifdef CONFIG_SYSCTL
2133
2134 static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write,
2135                 void *buffer, size_t *lenp, loff_t *ppos)
2136 {
2137         int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2138
2139         if (!error)
2140                 validate_coredump_safety();
2141         return error;
2142 }
2143
2144 static struct ctl_table fs_exec_sysctls[] = {
2145         {
2146                 .procname       = "suid_dumpable",
2147                 .data           = &suid_dumpable,
2148                 .maxlen         = sizeof(int),
2149                 .mode           = 0644,
2150                 .proc_handler   = proc_dointvec_minmax_coredump,
2151                 .extra1         = SYSCTL_ZERO,
2152                 .extra2         = SYSCTL_TWO,
2153         },
2154         { }
2155 };
2156
2157 static int __init init_fs_exec_sysctls(void)
2158 {
2159         register_sysctl_init("fs", fs_exec_sysctls);
2160         return 0;
2161 }
2162
2163 fs_initcall(init_fs_exec_sysctls);
2164 #endif /* CONFIG_SYSCTL */