1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992 Linus Torvalds
9 * #!-checking implemented by tytso.
12 * Demand-loading implemented 01.12.91 - no need to read anything but
13 * the header into memory. The inode of the executable is put into
14 * "current->executable", and page faults do the actual loading. Clean.
16 * Once more I can proudly say that linux stood up to being changed: it
17 * was less than 2 hours work to get demand-loading completely implemented.
19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
20 * current->executable is only used by the procfs. This allows a dispatch
21 * table to check for several different types of binary formats. We keep
22 * trying until we recognize the file or we run out of supported binary
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/oom.h>
62 #include <linux/compat.h>
63 #include <linux/vmalloc.h>
64 #include <linux/io_uring.h>
65 #include <linux/syscall_user_dispatch.h>
66 #include <linux/coredump.h>
68 #include <linux/uaccess.h>
69 #include <asm/mmu_context.h>
72 #include <trace/events/task.h>
75 #include <trace/events/sched.h>
77 static int bprm_creds_from_file(struct linux_binprm *bprm);
79 int suid_dumpable = 0;
81 static LIST_HEAD(formats);
82 static DEFINE_RWLOCK(binfmt_lock);
84 void __register_binfmt(struct linux_binfmt * fmt, int insert)
86 write_lock(&binfmt_lock);
87 insert ? list_add(&fmt->lh, &formats) :
88 list_add_tail(&fmt->lh, &formats);
89 write_unlock(&binfmt_lock);
92 EXPORT_SYMBOL(__register_binfmt);
94 void unregister_binfmt(struct linux_binfmt * fmt)
96 write_lock(&binfmt_lock);
98 write_unlock(&binfmt_lock);
101 EXPORT_SYMBOL(unregister_binfmt);
103 static inline void put_binfmt(struct linux_binfmt * fmt)
105 module_put(fmt->module);
108 bool path_noexec(const struct path *path)
110 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
111 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
116 * Note that a shared library must be both readable and executable due to
119 * Also note that we take the address to load from the file itself.
121 SYSCALL_DEFINE1(uselib, const char __user *, library)
123 struct linux_binfmt *fmt;
125 struct filename *tmp = getname(library);
126 int error = PTR_ERR(tmp);
127 static const struct open_flags uselib_flags = {
128 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
129 .acc_mode = MAY_READ | MAY_EXEC,
130 .intent = LOOKUP_OPEN,
131 .lookup_flags = LOOKUP_FOLLOW,
137 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
139 error = PTR_ERR(file);
144 * may_open() has already checked for this, so it should be
145 * impossible to trip now. But we need to be extra cautious
146 * and check again at the very end too.
149 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
150 path_noexec(&file->f_path)))
157 read_lock(&binfmt_lock);
158 list_for_each_entry(fmt, &formats, lh) {
159 if (!fmt->load_shlib)
161 if (!try_module_get(fmt->module))
163 read_unlock(&binfmt_lock);
164 error = fmt->load_shlib(file);
165 read_lock(&binfmt_lock);
167 if (error != -ENOEXEC)
170 read_unlock(&binfmt_lock);
176 #endif /* #ifdef CONFIG_USELIB */
180 * The nascent bprm->mm is not visible until exec_mmap() but it can
181 * use a lot of memory, account these pages in current->mm temporary
182 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
183 * change the counter back via acct_arg_size(0).
185 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
187 struct mm_struct *mm = current->mm;
188 long diff = (long)(pages - bprm->vma_pages);
193 bprm->vma_pages = pages;
194 add_mm_counter(mm, MM_ANONPAGES, diff);
197 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
201 struct vm_area_struct *vma = bprm->vma;
202 struct mm_struct *mm = bprm->mm;
206 * Avoid relying on expanding the stack down in GUP (which
207 * does not work for STACK_GROWSUP anyway), and just do it
208 * by hand ahead of time.
210 if (write && pos < vma->vm_start) {
212 ret = expand_downwards(vma, pos);
213 if (unlikely(ret < 0)) {
214 mmap_write_unlock(mm);
217 mmap_write_downgrade(mm);
222 * We are doing an exec(). 'current' is the process
223 * doing the exec and 'mm' is the new process's mm.
225 ret = get_user_pages_remote(mm, pos, 1,
226 write ? FOLL_WRITE : 0,
228 mmap_read_unlock(mm);
233 acct_arg_size(bprm, vma_pages(vma));
238 static void put_arg_page(struct page *page)
243 static void free_arg_pages(struct linux_binprm *bprm)
247 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
250 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
253 static int __bprm_mm_init(struct linux_binprm *bprm)
256 struct vm_area_struct *vma = NULL;
257 struct mm_struct *mm = bprm->mm;
259 bprm->vma = vma = vm_area_alloc(mm);
262 vma_set_anonymous(vma);
264 if (mmap_write_lock_killable(mm)) {
270 * Place the stack at the largest stack address the architecture
271 * supports. Later, we'll move this to an appropriate place. We don't
272 * use STACK_TOP because that can depend on attributes which aren't
275 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
276 vma->vm_end = STACK_TOP_MAX;
277 vma->vm_start = vma->vm_end - PAGE_SIZE;
278 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
279 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
281 err = insert_vm_struct(mm, vma);
285 mm->stack_vm = mm->total_vm = 1;
286 mmap_write_unlock(mm);
287 bprm->p = vma->vm_end - sizeof(void *);
290 mmap_write_unlock(mm);
297 static bool valid_arg_len(struct linux_binprm *bprm, long len)
299 return len <= MAX_ARG_STRLEN;
304 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
308 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
313 page = bprm->page[pos / PAGE_SIZE];
314 if (!page && write) {
315 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
318 bprm->page[pos / PAGE_SIZE] = page;
324 static void put_arg_page(struct page *page)
328 static void free_arg_page(struct linux_binprm *bprm, int i)
331 __free_page(bprm->page[i]);
332 bprm->page[i] = NULL;
336 static void free_arg_pages(struct linux_binprm *bprm)
340 for (i = 0; i < MAX_ARG_PAGES; i++)
341 free_arg_page(bprm, i);
344 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
349 static int __bprm_mm_init(struct linux_binprm *bprm)
351 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
355 static bool valid_arg_len(struct linux_binprm *bprm, long len)
357 return len <= bprm->p;
360 #endif /* CONFIG_MMU */
363 * Create a new mm_struct and populate it with a temporary stack
364 * vm_area_struct. We don't have enough context at this point to set the stack
365 * flags, permissions, and offset, so we use temporary values. We'll update
366 * them later in setup_arg_pages().
368 static int bprm_mm_init(struct linux_binprm *bprm)
371 struct mm_struct *mm = NULL;
373 bprm->mm = mm = mm_alloc();
378 /* Save current stack limit for all calculations made during exec. */
379 task_lock(current->group_leader);
380 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
381 task_unlock(current->group_leader);
383 err = __bprm_mm_init(bprm);
398 struct user_arg_ptr {
403 const char __user *const __user *native;
405 const compat_uptr_t __user *compat;
410 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
412 const char __user *native;
415 if (unlikely(argv.is_compat)) {
416 compat_uptr_t compat;
418 if (get_user(compat, argv.ptr.compat + nr))
419 return ERR_PTR(-EFAULT);
421 return compat_ptr(compat);
425 if (get_user(native, argv.ptr.native + nr))
426 return ERR_PTR(-EFAULT);
432 * count() counts the number of strings in array ARGV.
434 static int count(struct user_arg_ptr argv, int max)
438 if (argv.ptr.native != NULL) {
440 const char __user *p = get_user_arg_ptr(argv, i);
452 if (fatal_signal_pending(current))
453 return -ERESTARTNOHAND;
460 static int count_strings_kernel(const char *const *argv)
467 for (i = 0; argv[i]; ++i) {
468 if (i >= MAX_ARG_STRINGS)
470 if (fatal_signal_pending(current))
471 return -ERESTARTNOHAND;
477 static int bprm_stack_limits(struct linux_binprm *bprm)
479 unsigned long limit, ptr_size;
482 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
483 * (whichever is smaller) for the argv+env strings.
485 * - the remaining binfmt code will not run out of stack space,
486 * - the program will have a reasonable amount of stack left
489 limit = _STK_LIM / 4 * 3;
490 limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
492 * We've historically supported up to 32 pages (ARG_MAX)
493 * of argument strings even with small stacks
495 limit = max_t(unsigned long, limit, ARG_MAX);
497 * We must account for the size of all the argv and envp pointers to
498 * the argv and envp strings, since they will also take up space in
499 * the stack. They aren't stored until much later when we can't
500 * signal to the parent that the child has run out of stack space.
501 * Instead, calculate it here so it's possible to fail gracefully.
503 * In the case of argc = 0, make sure there is space for adding a
504 * empty string (which will bump argc to 1), to ensure confused
505 * userspace programs don't start processing from argv[1], thinking
506 * argc can never be 0, to keep them from walking envp by accident.
507 * See do_execveat_common().
509 ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
510 if (limit <= ptr_size)
514 bprm->argmin = bprm->p - limit;
519 * 'copy_strings()' copies argument/environment strings from the old
520 * processes's memory to the new process's stack. The call to get_user_pages()
521 * ensures the destination page is created and not swapped out.
523 static int copy_strings(int argc, struct user_arg_ptr argv,
524 struct linux_binprm *bprm)
526 struct page *kmapped_page = NULL;
528 unsigned long kpos = 0;
532 const char __user *str;
537 str = get_user_arg_ptr(argv, argc);
541 len = strnlen_user(str, MAX_ARG_STRLEN);
546 if (!valid_arg_len(bprm, len))
549 /* We're going to work our way backwards. */
554 if (bprm->p < bprm->argmin)
559 int offset, bytes_to_copy;
561 if (fatal_signal_pending(current)) {
562 ret = -ERESTARTNOHAND;
567 offset = pos % PAGE_SIZE;
571 bytes_to_copy = offset;
572 if (bytes_to_copy > len)
575 offset -= bytes_to_copy;
576 pos -= bytes_to_copy;
577 str -= bytes_to_copy;
578 len -= bytes_to_copy;
580 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
583 page = get_arg_page(bprm, pos, 1);
590 flush_dcache_page(kmapped_page);
592 put_arg_page(kmapped_page);
595 kaddr = kmap_local_page(kmapped_page);
596 kpos = pos & PAGE_MASK;
597 flush_arg_page(bprm, kpos, kmapped_page);
599 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
608 flush_dcache_page(kmapped_page);
610 put_arg_page(kmapped_page);
616 * Copy and argument/environment string from the kernel to the processes stack.
618 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
620 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
621 unsigned long pos = bprm->p;
625 if (!valid_arg_len(bprm, len))
628 /* We're going to work our way backwards. */
631 if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
635 unsigned int bytes_to_copy = min_t(unsigned int, len,
636 min_not_zero(offset_in_page(pos), PAGE_SIZE));
639 pos -= bytes_to_copy;
640 arg -= bytes_to_copy;
641 len -= bytes_to_copy;
643 page = get_arg_page(bprm, pos, 1);
646 flush_arg_page(bprm, pos & PAGE_MASK, page);
647 memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
653 EXPORT_SYMBOL(copy_string_kernel);
655 static int copy_strings_kernel(int argc, const char *const *argv,
656 struct linux_binprm *bprm)
659 int ret = copy_string_kernel(argv[argc], bprm);
662 if (fatal_signal_pending(current))
663 return -ERESTARTNOHAND;
672 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
673 * the binfmt code determines where the new stack should reside, we shift it to
674 * its final location. The process proceeds as follows:
676 * 1) Use shift to calculate the new vma endpoints.
677 * 2) Extend vma to cover both the old and new ranges. This ensures the
678 * arguments passed to subsequent functions are consistent.
679 * 3) Move vma's page tables to the new range.
680 * 4) Free up any cleared pgd range.
681 * 5) Shrink the vma to cover only the new range.
683 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
685 struct mm_struct *mm = vma->vm_mm;
686 unsigned long old_start = vma->vm_start;
687 unsigned long old_end = vma->vm_end;
688 unsigned long length = old_end - old_start;
689 unsigned long new_start = old_start - shift;
690 unsigned long new_end = old_end - shift;
691 VMA_ITERATOR(vmi, mm, new_start);
692 struct vm_area_struct *next;
693 struct mmu_gather tlb;
695 BUG_ON(new_start > new_end);
698 * ensure there are no vmas between where we want to go
701 if (vma != vma_next(&vmi))
705 * cover the whole range: [new_start, old_end)
707 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
711 * move the page tables downwards, on failure we rely on
712 * process cleanup to remove whatever mess we made.
714 if (length != move_page_tables(vma, old_start,
715 vma, new_start, length, false))
719 tlb_gather_mmu(&tlb, mm);
720 next = vma_next(&vmi);
721 if (new_end > old_start) {
723 * when the old and new regions overlap clear from new_end.
725 free_pgd_range(&tlb, new_end, old_end, new_end,
726 next ? next->vm_start : USER_PGTABLES_CEILING);
729 * otherwise, clean from old_start; this is done to not touch
730 * the address space in [new_end, old_start) some architectures
731 * have constraints on va-space that make this illegal (IA64) -
732 * for the others its just a little faster.
734 free_pgd_range(&tlb, old_start, old_end, new_end,
735 next ? next->vm_start : USER_PGTABLES_CEILING);
737 tlb_finish_mmu(&tlb);
740 * Shrink the vma to just the new range. Always succeeds.
742 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
748 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
749 * the stack is optionally relocated, and some extra space is added.
751 int setup_arg_pages(struct linux_binprm *bprm,
752 unsigned long stack_top,
753 int executable_stack)
756 unsigned long stack_shift;
757 struct mm_struct *mm = current->mm;
758 struct vm_area_struct *vma = bprm->vma;
759 struct vm_area_struct *prev = NULL;
760 unsigned long vm_flags;
761 unsigned long stack_base;
762 unsigned long stack_size;
763 unsigned long stack_expand;
764 unsigned long rlim_stack;
765 struct mmu_gather tlb;
767 #ifdef CONFIG_STACK_GROWSUP
768 /* Limit stack size */
769 stack_base = bprm->rlim_stack.rlim_max;
771 stack_base = calc_max_stack_size(stack_base);
773 /* Add space for stack randomization. */
774 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
776 /* Make sure we didn't let the argument array grow too large. */
777 if (vma->vm_end - vma->vm_start > stack_base)
780 stack_base = PAGE_ALIGN(stack_top - stack_base);
782 stack_shift = vma->vm_start - stack_base;
783 mm->arg_start = bprm->p - stack_shift;
784 bprm->p = vma->vm_end - stack_shift;
786 stack_top = arch_align_stack(stack_top);
787 stack_top = PAGE_ALIGN(stack_top);
789 if (unlikely(stack_top < mmap_min_addr) ||
790 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
793 stack_shift = vma->vm_end - stack_top;
795 bprm->p -= stack_shift;
796 mm->arg_start = bprm->p;
800 bprm->loader -= stack_shift;
801 bprm->exec -= stack_shift;
803 if (mmap_write_lock_killable(mm))
806 vm_flags = VM_STACK_FLAGS;
809 * Adjust stack execute permissions; explicitly enable for
810 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
811 * (arch default) otherwise.
813 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
815 else if (executable_stack == EXSTACK_DISABLE_X)
816 vm_flags &= ~VM_EXEC;
817 vm_flags |= mm->def_flags;
818 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
820 tlb_gather_mmu(&tlb, mm);
821 ret = mprotect_fixup(&tlb, vma, &prev, vma->vm_start, vma->vm_end,
823 tlb_finish_mmu(&tlb);
829 if (unlikely(vm_flags & VM_EXEC)) {
830 pr_warn_once("process '%pD4' started with executable stack\n",
834 /* Move stack pages down in memory. */
836 ret = shift_arg_pages(vma, stack_shift);
841 /* mprotect_fixup is overkill to remove the temporary stack flags */
842 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
844 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
845 stack_size = vma->vm_end - vma->vm_start;
847 * Align this down to a page boundary as expand_stack
850 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
851 #ifdef CONFIG_STACK_GROWSUP
852 if (stack_size + stack_expand > rlim_stack)
853 stack_base = vma->vm_start + rlim_stack;
855 stack_base = vma->vm_end + stack_expand;
857 if (stack_size + stack_expand > rlim_stack)
858 stack_base = vma->vm_end - rlim_stack;
860 stack_base = vma->vm_start - stack_expand;
862 current->mm->start_stack = bprm->p;
863 ret = expand_stack_locked(vma, stack_base);
868 mmap_write_unlock(mm);
871 EXPORT_SYMBOL(setup_arg_pages);
876 * Transfer the program arguments and environment from the holding pages
877 * onto the stack. The provided stack pointer is adjusted accordingly.
879 int transfer_args_to_stack(struct linux_binprm *bprm,
880 unsigned long *sp_location)
882 unsigned long index, stop, sp;
885 stop = bprm->p >> PAGE_SHIFT;
888 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
889 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
890 char *src = kmap_local_page(bprm->page[index]) + offset;
891 sp -= PAGE_SIZE - offset;
892 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
904 EXPORT_SYMBOL(transfer_args_to_stack);
906 #endif /* CONFIG_MMU */
908 static struct file *do_open_execat(int fd, struct filename *name, int flags)
912 struct open_flags open_exec_flags = {
913 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
914 .acc_mode = MAY_EXEC,
915 .intent = LOOKUP_OPEN,
916 .lookup_flags = LOOKUP_FOLLOW,
919 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
920 return ERR_PTR(-EINVAL);
921 if (flags & AT_SYMLINK_NOFOLLOW)
922 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
923 if (flags & AT_EMPTY_PATH)
924 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
926 file = do_filp_open(fd, name, &open_exec_flags);
931 * may_open() has already checked for this, so it should be
932 * impossible to trip now. But we need to be extra cautious
933 * and check again at the very end too.
936 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
937 path_noexec(&file->f_path)))
940 err = deny_write_access(file);
944 if (name->name[0] != '\0')
955 struct file *open_exec(const char *name)
957 struct filename *filename = getname_kernel(name);
958 struct file *f = ERR_CAST(filename);
960 if (!IS_ERR(filename)) {
961 f = do_open_execat(AT_FDCWD, filename, 0);
966 EXPORT_SYMBOL(open_exec);
968 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC)
969 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
971 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
973 flush_icache_user_range(addr, addr + len);
976 EXPORT_SYMBOL(read_code);
980 * Maps the mm_struct mm into the current task struct.
981 * On success, this function returns with exec_update_lock
984 static int exec_mmap(struct mm_struct *mm)
986 struct task_struct *tsk;
987 struct mm_struct *old_mm, *active_mm;
990 /* Notify parent that we're no longer interested in the old VM */
992 old_mm = current->mm;
993 exec_mm_release(tsk, old_mm);
997 ret = down_write_killable(&tsk->signal->exec_update_lock);
1003 * If there is a pending fatal signal perhaps a signal
1004 * whose default action is to create a coredump get
1005 * out and die instead of going through with the exec.
1007 ret = mmap_read_lock_killable(old_mm);
1009 up_write(&tsk->signal->exec_update_lock);
1015 membarrier_exec_mmap(mm);
1017 local_irq_disable();
1018 active_mm = tsk->active_mm;
1019 tsk->active_mm = mm;
1022 * This prevents preemption while active_mm is being loaded and
1023 * it and mm are being updated, which could cause problems for
1024 * lazy tlb mm refcounting when these are updated by context
1025 * switches. Not all architectures can handle irqs off over
1028 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1030 activate_mm(active_mm, mm);
1031 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1037 mmap_read_unlock(old_mm);
1038 BUG_ON(active_mm != old_mm);
1039 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1040 mm_update_next_owner(old_mm);
1048 static int de_thread(struct task_struct *tsk)
1050 struct signal_struct *sig = tsk->signal;
1051 struct sighand_struct *oldsighand = tsk->sighand;
1052 spinlock_t *lock = &oldsighand->siglock;
1054 if (thread_group_empty(tsk))
1055 goto no_thread_group;
1058 * Kill all other threads in the thread group.
1060 spin_lock_irq(lock);
1061 if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1063 * Another group action in progress, just
1064 * return so that the signal is processed.
1066 spin_unlock_irq(lock);
1070 sig->group_exec_task = tsk;
1071 sig->notify_count = zap_other_threads(tsk);
1072 if (!thread_group_leader(tsk))
1073 sig->notify_count--;
1075 while (sig->notify_count) {
1076 __set_current_state(TASK_KILLABLE);
1077 spin_unlock_irq(lock);
1079 if (__fatal_signal_pending(tsk))
1081 spin_lock_irq(lock);
1083 spin_unlock_irq(lock);
1086 * At this point all other threads have exited, all we have to
1087 * do is to wait for the thread group leader to become inactive,
1088 * and to assume its PID:
1090 if (!thread_group_leader(tsk)) {
1091 struct task_struct *leader = tsk->group_leader;
1094 cgroup_threadgroup_change_begin(tsk);
1095 write_lock_irq(&tasklist_lock);
1097 * Do this under tasklist_lock to ensure that
1098 * exit_notify() can't miss ->group_exec_task
1100 sig->notify_count = -1;
1101 if (likely(leader->exit_state))
1103 __set_current_state(TASK_KILLABLE);
1104 write_unlock_irq(&tasklist_lock);
1105 cgroup_threadgroup_change_end(tsk);
1107 if (__fatal_signal_pending(tsk))
1112 * The only record we have of the real-time age of a
1113 * process, regardless of execs it's done, is start_time.
1114 * All the past CPU time is accumulated in signal_struct
1115 * from sister threads now dead. But in this non-leader
1116 * exec, nothing survives from the original leader thread,
1117 * whose birth marks the true age of this process now.
1118 * When we take on its identity by switching to its PID, we
1119 * also take its birthdate (always earlier than our own).
1121 tsk->start_time = leader->start_time;
1122 tsk->start_boottime = leader->start_boottime;
1124 BUG_ON(!same_thread_group(leader, tsk));
1126 * An exec() starts a new thread group with the
1127 * TGID of the previous thread group. Rehash the
1128 * two threads with a switched PID, and release
1129 * the former thread group leader:
1132 /* Become a process group leader with the old leader's pid.
1133 * The old leader becomes a thread of the this thread group.
1135 exchange_tids(tsk, leader);
1136 transfer_pid(leader, tsk, PIDTYPE_TGID);
1137 transfer_pid(leader, tsk, PIDTYPE_PGID);
1138 transfer_pid(leader, tsk, PIDTYPE_SID);
1140 list_replace_rcu(&leader->tasks, &tsk->tasks);
1141 list_replace_init(&leader->sibling, &tsk->sibling);
1143 tsk->group_leader = tsk;
1144 leader->group_leader = tsk;
1146 tsk->exit_signal = SIGCHLD;
1147 leader->exit_signal = -1;
1149 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1150 leader->exit_state = EXIT_DEAD;
1153 * We are going to release_task()->ptrace_unlink() silently,
1154 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1155 * the tracer won't block again waiting for this thread.
1157 if (unlikely(leader->ptrace))
1158 __wake_up_parent(leader, leader->parent);
1159 write_unlock_irq(&tasklist_lock);
1160 cgroup_threadgroup_change_end(tsk);
1162 release_task(leader);
1165 sig->group_exec_task = NULL;
1166 sig->notify_count = 0;
1169 /* we have changed execution domain */
1170 tsk->exit_signal = SIGCHLD;
1172 BUG_ON(!thread_group_leader(tsk));
1176 /* protects against exit_notify() and __exit_signal() */
1177 read_lock(&tasklist_lock);
1178 sig->group_exec_task = NULL;
1179 sig->notify_count = 0;
1180 read_unlock(&tasklist_lock);
1186 * This function makes sure the current process has its own signal table,
1187 * so that flush_signal_handlers can later reset the handlers without
1188 * disturbing other processes. (Other processes might share the signal
1189 * table via the CLONE_SIGHAND option to clone().)
1191 static int unshare_sighand(struct task_struct *me)
1193 struct sighand_struct *oldsighand = me->sighand;
1195 if (refcount_read(&oldsighand->count) != 1) {
1196 struct sighand_struct *newsighand;
1198 * This ->sighand is shared with the CLONE_SIGHAND
1199 * but not CLONE_THREAD task, switch to the new one.
1201 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1205 refcount_set(&newsighand->count, 1);
1207 write_lock_irq(&tasklist_lock);
1208 spin_lock(&oldsighand->siglock);
1209 memcpy(newsighand->action, oldsighand->action,
1210 sizeof(newsighand->action));
1211 rcu_assign_pointer(me->sighand, newsighand);
1212 spin_unlock(&oldsighand->siglock);
1213 write_unlock_irq(&tasklist_lock);
1215 __cleanup_sighand(oldsighand);
1220 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1223 /* Always NUL terminated and zero-padded */
1224 strscpy_pad(buf, tsk->comm, buf_size);
1228 EXPORT_SYMBOL_GPL(__get_task_comm);
1231 * These functions flushes out all traces of the currently running executable
1232 * so that a new one can be started
1235 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1238 trace_task_rename(tsk, buf);
1239 strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1241 perf_event_comm(tsk, exec);
1245 * Calling this is the point of no return. None of the failures will be
1246 * seen by userspace since either the process is already taking a fatal
1247 * signal (via de_thread() or coredump), or will have SEGV raised
1248 * (after exec_mmap()) by search_binary_handler (see below).
1250 int begin_new_exec(struct linux_binprm * bprm)
1252 struct task_struct *me = current;
1255 /* Once we are committed compute the creds */
1256 retval = bprm_creds_from_file(bprm);
1261 * Ensure all future errors are fatal.
1263 bprm->point_of_no_return = true;
1266 * Make this the only thread in the thread group.
1268 retval = de_thread(me);
1273 * Cancel any io_uring activity across execve
1275 io_uring_task_cancel();
1277 /* Ensure the files table is not shared. */
1278 retval = unshare_files();
1283 * Must be called _before_ exec_mmap() as bprm->mm is
1284 * not visible until then. This also enables the update
1287 retval = set_mm_exe_file(bprm->mm, bprm->file);
1291 /* If the binary is not readable then enforce mm->dumpable=0 */
1292 would_dump(bprm, bprm->file);
1293 if (bprm->have_execfd)
1294 would_dump(bprm, bprm->executable);
1297 * Release all of the old mmap stuff
1299 acct_arg_size(bprm, 0);
1300 retval = exec_mmap(bprm->mm);
1306 #ifdef CONFIG_POSIX_TIMERS
1307 spin_lock_irq(&me->sighand->siglock);
1308 posix_cpu_timers_exit(me);
1309 spin_unlock_irq(&me->sighand->siglock);
1311 flush_itimer_signals();
1315 * Make the signal table private.
1317 retval = unshare_sighand(me);
1321 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1322 PF_NOFREEZE | PF_NO_SETAFFINITY);
1324 me->personality &= ~bprm->per_clear;
1326 clear_syscall_work_syscall_user_dispatch(me);
1329 * We have to apply CLOEXEC before we change whether the process is
1330 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1331 * trying to access the should-be-closed file descriptors of a process
1332 * undergoing exec(2).
1334 do_close_on_exec(me->files);
1336 if (bprm->secureexec) {
1337 /* Make sure parent cannot signal privileged process. */
1338 me->pdeath_signal = 0;
1341 * For secureexec, reset the stack limit to sane default to
1342 * avoid bad behavior from the prior rlimits. This has to
1343 * happen before arch_pick_mmap_layout(), which examines
1344 * RLIMIT_STACK, but after the point of no return to avoid
1345 * needing to clean up the change on failure.
1347 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1348 bprm->rlim_stack.rlim_cur = _STK_LIM;
1351 me->sas_ss_sp = me->sas_ss_size = 0;
1354 * Figure out dumpability. Note that this checking only of current
1355 * is wrong, but userspace depends on it. This should be testing
1356 * bprm->secureexec instead.
1358 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1359 !(uid_eq(current_euid(), current_uid()) &&
1360 gid_eq(current_egid(), current_gid())))
1361 set_dumpable(current->mm, suid_dumpable);
1363 set_dumpable(current->mm, SUID_DUMP_USER);
1366 __set_task_comm(me, kbasename(bprm->filename), true);
1368 /* An exec changes our domain. We are no longer part of the thread
1370 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1371 flush_signal_handlers(me, 0);
1373 retval = set_cred_ucounts(bprm->cred);
1378 * install the new credentials for this executable
1380 security_bprm_committing_creds(bprm);
1382 commit_creds(bprm->cred);
1386 * Disable monitoring for regular users
1387 * when executing setuid binaries. Must
1388 * wait until new credentials are committed
1389 * by commit_creds() above
1391 if (get_dumpable(me->mm) != SUID_DUMP_USER)
1392 perf_event_exit_task(me);
1394 * cred_guard_mutex must be held at least to this point to prevent
1395 * ptrace_attach() from altering our determination of the task's
1396 * credentials; any time after this it may be unlocked.
1398 security_bprm_committed_creds(bprm);
1400 /* Pass the opened binary to the interpreter. */
1401 if (bprm->have_execfd) {
1402 retval = get_unused_fd_flags(0);
1405 fd_install(retval, bprm->executable);
1406 bprm->executable = NULL;
1407 bprm->execfd = retval;
1412 up_write(&me->signal->exec_update_lock);
1416 EXPORT_SYMBOL(begin_new_exec);
1418 void would_dump(struct linux_binprm *bprm, struct file *file)
1420 struct inode *inode = file_inode(file);
1421 struct user_namespace *mnt_userns = file_mnt_user_ns(file);
1422 if (inode_permission(mnt_userns, inode, MAY_READ) < 0) {
1423 struct user_namespace *old, *user_ns;
1424 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1426 /* Ensure mm->user_ns contains the executable */
1427 user_ns = old = bprm->mm->user_ns;
1428 while ((user_ns != &init_user_ns) &&
1429 !privileged_wrt_inode_uidgid(user_ns, mnt_userns, inode))
1430 user_ns = user_ns->parent;
1432 if (old != user_ns) {
1433 bprm->mm->user_ns = get_user_ns(user_ns);
1438 EXPORT_SYMBOL(would_dump);
1440 void setup_new_exec(struct linux_binprm * bprm)
1442 /* Setup things that can depend upon the personality */
1443 struct task_struct *me = current;
1445 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1447 arch_setup_new_exec();
1449 /* Set the new mm task size. We have to do that late because it may
1450 * depend on TIF_32BIT which is only updated in flush_thread() on
1451 * some architectures like powerpc
1453 me->mm->task_size = TASK_SIZE;
1454 up_write(&me->signal->exec_update_lock);
1455 mutex_unlock(&me->signal->cred_guard_mutex);
1457 EXPORT_SYMBOL(setup_new_exec);
1459 /* Runs immediately before start_thread() takes over. */
1460 void finalize_exec(struct linux_binprm *bprm)
1462 /* Store any stack rlimit changes before starting thread. */
1463 task_lock(current->group_leader);
1464 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1465 task_unlock(current->group_leader);
1467 EXPORT_SYMBOL(finalize_exec);
1470 * Prepare credentials and lock ->cred_guard_mutex.
1471 * setup_new_exec() commits the new creds and drops the lock.
1472 * Or, if exec fails before, free_bprm() should release ->cred
1475 static int prepare_bprm_creds(struct linux_binprm *bprm)
1477 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex))
1478 return -ERESTARTNOINTR;
1480 bprm->cred = prepare_exec_creds();
1481 if (likely(bprm->cred))
1484 mutex_unlock(¤t->signal->cred_guard_mutex);
1488 static void free_bprm(struct linux_binprm *bprm)
1491 acct_arg_size(bprm, 0);
1494 free_arg_pages(bprm);
1496 mutex_unlock(¤t->signal->cred_guard_mutex);
1497 abort_creds(bprm->cred);
1500 allow_write_access(bprm->file);
1503 if (bprm->executable)
1504 fput(bprm->executable);
1505 /* If a binfmt changed the interp, free it. */
1506 if (bprm->interp != bprm->filename)
1507 kfree(bprm->interp);
1508 kfree(bprm->fdpath);
1512 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1514 struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1515 int retval = -ENOMEM;
1519 if (fd == AT_FDCWD || filename->name[0] == '/') {
1520 bprm->filename = filename->name;
1522 if (filename->name[0] == '\0')
1523 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1525 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1526 fd, filename->name);
1530 bprm->filename = bprm->fdpath;
1532 bprm->interp = bprm->filename;
1534 retval = bprm_mm_init(bprm);
1542 return ERR_PTR(retval);
1545 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1547 /* If a binfmt changed the interp, free it first. */
1548 if (bprm->interp != bprm->filename)
1549 kfree(bprm->interp);
1550 bprm->interp = kstrdup(interp, GFP_KERNEL);
1555 EXPORT_SYMBOL(bprm_change_interp);
1558 * determine how safe it is to execute the proposed program
1559 * - the caller must hold ->cred_guard_mutex to protect against
1560 * PTRACE_ATTACH or seccomp thread-sync
1562 static void check_unsafe_exec(struct linux_binprm *bprm)
1564 struct task_struct *p = current, *t;
1568 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1571 * This isn't strictly necessary, but it makes it harder for LSMs to
1574 if (task_no_new_privs(current))
1575 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1579 spin_lock(&p->fs->lock);
1581 while_each_thread(p, t) {
1587 if (p->fs->users > n_fs)
1588 bprm->unsafe |= LSM_UNSAFE_SHARE;
1591 spin_unlock(&p->fs->lock);
1594 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1596 /* Handle suid and sgid on files */
1597 struct user_namespace *mnt_userns;
1598 struct inode *inode = file_inode(file);
1603 if (!mnt_may_suid(file->f_path.mnt))
1606 if (task_no_new_privs(current))
1609 mode = READ_ONCE(inode->i_mode);
1610 if (!(mode & (S_ISUID|S_ISGID)))
1613 mnt_userns = file_mnt_user_ns(file);
1615 /* Be careful if suid/sgid is set */
1618 /* reload atomically mode/uid/gid now that lock held */
1619 mode = inode->i_mode;
1620 uid = i_uid_into_mnt(mnt_userns, inode);
1621 gid = i_gid_into_mnt(mnt_userns, inode);
1622 inode_unlock(inode);
1624 /* We ignore suid/sgid if there are no mappings for them in the ns */
1625 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1626 !kgid_has_mapping(bprm->cred->user_ns, gid))
1629 if (mode & S_ISUID) {
1630 bprm->per_clear |= PER_CLEAR_ON_SETID;
1631 bprm->cred->euid = uid;
1634 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1635 bprm->per_clear |= PER_CLEAR_ON_SETID;
1636 bprm->cred->egid = gid;
1641 * Compute brpm->cred based upon the final binary.
1643 static int bprm_creds_from_file(struct linux_binprm *bprm)
1645 /* Compute creds based on which file? */
1646 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1648 bprm_fill_uid(bprm, file);
1649 return security_bprm_creds_from_file(bprm, file);
1653 * Fill the binprm structure from the inode.
1654 * Read the first BINPRM_BUF_SIZE bytes
1656 * This may be called multiple times for binary chains (scripts for example).
1658 static int prepare_binprm(struct linux_binprm *bprm)
1662 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1663 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1667 * Arguments are '\0' separated strings found at the location bprm->p
1668 * points to; chop off the first by relocating brpm->p to right after
1669 * the first '\0' encountered.
1671 int remove_arg_zero(struct linux_binprm *bprm)
1674 unsigned long offset;
1682 offset = bprm->p & ~PAGE_MASK;
1683 page = get_arg_page(bprm, bprm->p, 0);
1688 kaddr = kmap_local_page(page);
1690 for (; offset < PAGE_SIZE && kaddr[offset];
1691 offset++, bprm->p++)
1694 kunmap_local(kaddr);
1696 } while (offset == PAGE_SIZE);
1705 EXPORT_SYMBOL(remove_arg_zero);
1707 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1709 * cycle the list of binary formats handler, until one recognizes the image
1711 static int search_binary_handler(struct linux_binprm *bprm)
1713 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1714 struct linux_binfmt *fmt;
1717 retval = prepare_binprm(bprm);
1721 retval = security_bprm_check(bprm);
1727 read_lock(&binfmt_lock);
1728 list_for_each_entry(fmt, &formats, lh) {
1729 if (!try_module_get(fmt->module))
1731 read_unlock(&binfmt_lock);
1733 retval = fmt->load_binary(bprm);
1735 read_lock(&binfmt_lock);
1737 if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1738 read_unlock(&binfmt_lock);
1742 read_unlock(&binfmt_lock);
1745 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1746 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1748 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1757 static int exec_binprm(struct linux_binprm *bprm)
1759 pid_t old_pid, old_vpid;
1762 /* Need to fetch pid before load_binary changes it */
1763 old_pid = current->pid;
1765 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1768 /* This allows 4 levels of binfmt rewrites before failing hard. */
1769 for (depth = 0;; depth++) {
1774 ret = search_binary_handler(bprm);
1777 if (!bprm->interpreter)
1781 bprm->file = bprm->interpreter;
1782 bprm->interpreter = NULL;
1784 allow_write_access(exec);
1785 if (unlikely(bprm->have_execfd)) {
1786 if (bprm->executable) {
1790 bprm->executable = exec;
1796 trace_sched_process_exec(current, old_pid, bprm);
1797 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1798 proc_exec_connector(current);
1803 * sys_execve() executes a new program.
1805 static int bprm_execve(struct linux_binprm *bprm,
1806 int fd, struct filename *filename, int flags)
1811 retval = prepare_bprm_creds(bprm);
1815 check_unsafe_exec(bprm);
1816 current->in_execve = 1;
1818 file = do_open_execat(fd, filename, flags);
1819 retval = PTR_ERR(file);
1827 * Record that a name derived from an O_CLOEXEC fd will be
1828 * inaccessible after exec. This allows the code in exec to
1829 * choose to fail when the executable is not mmaped into the
1830 * interpreter and an open file descriptor is not passed to
1831 * the interpreter. This makes for a better user experience
1832 * than having the interpreter start and then immediately fail
1833 * when it finds the executable is inaccessible.
1835 if (bprm->fdpath && get_close_on_exec(fd))
1836 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1838 /* Set the unchanging part of bprm->cred */
1839 retval = security_bprm_creds_for_exec(bprm);
1843 retval = exec_binprm(bprm);
1847 /* execve succeeded */
1848 current->fs->in_exec = 0;
1849 current->in_execve = 0;
1850 rseq_execve(current);
1851 acct_update_integrals(current);
1852 task_numa_free(current, false);
1857 * If past the point of no return ensure the code never
1858 * returns to the userspace process. Use an existing fatal
1859 * signal if present otherwise terminate the process with
1862 if (bprm->point_of_no_return && !fatal_signal_pending(current))
1863 force_fatal_sig(SIGSEGV);
1866 current->fs->in_exec = 0;
1867 current->in_execve = 0;
1872 static int do_execveat_common(int fd, struct filename *filename,
1873 struct user_arg_ptr argv,
1874 struct user_arg_ptr envp,
1877 struct linux_binprm *bprm;
1880 if (IS_ERR(filename))
1881 return PTR_ERR(filename);
1884 * We move the actual failure in case of RLIMIT_NPROC excess from
1885 * set*uid() to execve() because too many poorly written programs
1886 * don't check setuid() return code. Here we additionally recheck
1887 * whether NPROC limit is still exceeded.
1889 if ((current->flags & PF_NPROC_EXCEEDED) &&
1890 is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1895 /* We're below the limit (still or again), so we don't want to make
1896 * further execve() calls fail. */
1897 current->flags &= ~PF_NPROC_EXCEEDED;
1899 bprm = alloc_bprm(fd, filename);
1901 retval = PTR_ERR(bprm);
1905 retval = count(argv, MAX_ARG_STRINGS);
1907 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1908 current->comm, bprm->filename);
1911 bprm->argc = retval;
1913 retval = count(envp, MAX_ARG_STRINGS);
1916 bprm->envc = retval;
1918 retval = bprm_stack_limits(bprm);
1922 retval = copy_string_kernel(bprm->filename, bprm);
1925 bprm->exec = bprm->p;
1927 retval = copy_strings(bprm->envc, envp, bprm);
1931 retval = copy_strings(bprm->argc, argv, bprm);
1936 * When argv is empty, add an empty string ("") as argv[0] to
1937 * ensure confused userspace programs that start processing
1938 * from argv[1] won't end up walking envp. See also
1939 * bprm_stack_limits().
1941 if (bprm->argc == 0) {
1942 retval = copy_string_kernel("", bprm);
1948 retval = bprm_execve(bprm, fd, filename, flags);
1957 int kernel_execve(const char *kernel_filename,
1958 const char *const *argv, const char *const *envp)
1960 struct filename *filename;
1961 struct linux_binprm *bprm;
1965 /* It is non-sense for kernel threads to call execve */
1966 if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
1969 filename = getname_kernel(kernel_filename);
1970 if (IS_ERR(filename))
1971 return PTR_ERR(filename);
1973 bprm = alloc_bprm(fd, filename);
1975 retval = PTR_ERR(bprm);
1979 retval = count_strings_kernel(argv);
1980 if (WARN_ON_ONCE(retval == 0))
1984 bprm->argc = retval;
1986 retval = count_strings_kernel(envp);
1989 bprm->envc = retval;
1991 retval = bprm_stack_limits(bprm);
1995 retval = copy_string_kernel(bprm->filename, bprm);
1998 bprm->exec = bprm->p;
2000 retval = copy_strings_kernel(bprm->envc, envp, bprm);
2004 retval = copy_strings_kernel(bprm->argc, argv, bprm);
2008 retval = bprm_execve(bprm, fd, filename, 0);
2016 static int do_execve(struct filename *filename,
2017 const char __user *const __user *__argv,
2018 const char __user *const __user *__envp)
2020 struct user_arg_ptr argv = { .ptr.native = __argv };
2021 struct user_arg_ptr envp = { .ptr.native = __envp };
2022 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2025 static int do_execveat(int fd, struct filename *filename,
2026 const char __user *const __user *__argv,
2027 const char __user *const __user *__envp,
2030 struct user_arg_ptr argv = { .ptr.native = __argv };
2031 struct user_arg_ptr envp = { .ptr.native = __envp };
2033 return do_execveat_common(fd, filename, argv, envp, flags);
2036 #ifdef CONFIG_COMPAT
2037 static int compat_do_execve(struct filename *filename,
2038 const compat_uptr_t __user *__argv,
2039 const compat_uptr_t __user *__envp)
2041 struct user_arg_ptr argv = {
2043 .ptr.compat = __argv,
2045 struct user_arg_ptr envp = {
2047 .ptr.compat = __envp,
2049 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2052 static int compat_do_execveat(int fd, struct filename *filename,
2053 const compat_uptr_t __user *__argv,
2054 const compat_uptr_t __user *__envp,
2057 struct user_arg_ptr argv = {
2059 .ptr.compat = __argv,
2061 struct user_arg_ptr envp = {
2063 .ptr.compat = __envp,
2065 return do_execveat_common(fd, filename, argv, envp, flags);
2069 void set_binfmt(struct linux_binfmt *new)
2071 struct mm_struct *mm = current->mm;
2074 module_put(mm->binfmt->module);
2078 __module_get(new->module);
2080 EXPORT_SYMBOL(set_binfmt);
2083 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2085 void set_dumpable(struct mm_struct *mm, int value)
2087 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2090 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2093 SYSCALL_DEFINE3(execve,
2094 const char __user *, filename,
2095 const char __user *const __user *, argv,
2096 const char __user *const __user *, envp)
2098 return do_execve(getname(filename), argv, envp);
2101 SYSCALL_DEFINE5(execveat,
2102 int, fd, const char __user *, filename,
2103 const char __user *const __user *, argv,
2104 const char __user *const __user *, envp,
2107 return do_execveat(fd,
2108 getname_uflags(filename, flags),
2112 #ifdef CONFIG_COMPAT
2113 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2114 const compat_uptr_t __user *, argv,
2115 const compat_uptr_t __user *, envp)
2117 return compat_do_execve(getname(filename), argv, envp);
2120 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2121 const char __user *, filename,
2122 const compat_uptr_t __user *, argv,
2123 const compat_uptr_t __user *, envp,
2126 return compat_do_execveat(fd,
2127 getname_uflags(filename, flags),
2132 #ifdef CONFIG_SYSCTL
2134 static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write,
2135 void *buffer, size_t *lenp, loff_t *ppos)
2137 int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2140 validate_coredump_safety();
2144 static struct ctl_table fs_exec_sysctls[] = {
2146 .procname = "suid_dumpable",
2147 .data = &suid_dumpable,
2148 .maxlen = sizeof(int),
2150 .proc_handler = proc_dointvec_minmax_coredump,
2151 .extra1 = SYSCTL_ZERO,
2152 .extra2 = SYSCTL_TWO,
2157 static int __init init_fs_exec_sysctls(void)
2159 register_sysctl_init("fs", fs_exec_sysctls);
2163 fs_initcall(init_fs_exec_sysctls);
2164 #endif /* CONFIG_SYSCTL */