1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * fs/eventpoll.c (Efficient event retrieval implementation)
4 * Copyright (C) 2001,...,2009 Davide Libenzi
6 * Davide Libenzi <davidel@xmailserver.org>
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/signal.h>
13 #include <linux/file.h>
14 #include <linux/signal.h>
15 #include <linux/errno.h>
17 #include <linux/slab.h>
18 #include <linux/poll.h>
19 #include <linux/string.h>
20 #include <linux/list.h>
21 #include <linux/hash.h>
22 #include <linux/spinlock.h>
23 #include <linux/syscalls.h>
24 #include <linux/rbtree.h>
25 #include <linux/wait.h>
26 #include <linux/eventpoll.h>
27 #include <linux/mount.h>
28 #include <linux/bitops.h>
29 #include <linux/mutex.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/device.h>
32 #include <linux/uaccess.h>
35 #include <linux/atomic.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/compat.h>
39 #include <linux/rculist.h>
40 #include <net/busy_poll.h>
44 * There are three level of locking required by epoll :
48 * 3) ep->lock (rwlock)
50 * The acquire order is the one listed above, from 1 to 3.
51 * We need a rwlock (ep->lock) because we manipulate objects
52 * from inside the poll callback, that might be triggered from
53 * a wake_up() that in turn might be called from IRQ context.
54 * So we can't sleep inside the poll callback and hence we need
55 * a spinlock. During the event transfer loop (from kernel to
56 * user space) we could end up sleeping due a copy_to_user(), so
57 * we need a lock that will allow us to sleep. This lock is a
58 * mutex (ep->mtx). It is acquired during the event transfer loop,
59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60 * Then we also need a global mutex to serialize eventpoll_release_file()
62 * This mutex is acquired by ep_free() during the epoll file
63 * cleanup path and it is also acquired by eventpoll_release_file()
64 * if a file has been pushed inside an epoll set and it is then
65 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
66 * It is also acquired when inserting an epoll fd onto another epoll
67 * fd. We do this so that we walk the epoll tree and ensure that this
68 * insertion does not create a cycle of epoll file descriptors, which
69 * could lead to deadlock. We need a global mutex to prevent two
70 * simultaneous inserts (A into B and B into A) from racing and
71 * constructing a cycle without either insert observing that it is
73 * It is necessary to acquire multiple "ep->mtx"es at once in the
74 * case when one epoll fd is added to another. In this case, we
75 * always acquire the locks in the order of nesting (i.e. after
76 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
77 * before e2->mtx). Since we disallow cycles of epoll file
78 * descriptors, this ensures that the mutexes are well-ordered. In
79 * order to communicate this nesting to lockdep, when walking a tree
80 * of epoll file descriptors, we use the current recursion depth as
82 * It is possible to drop the "ep->mtx" and to use the global
83 * mutex "epmutex" (together with "ep->lock") to have it working,
84 * but having "ep->mtx" will make the interface more scalable.
85 * Events that require holding "epmutex" are very rare, while for
86 * normal operations the epoll private "ep->mtx" will guarantee
87 * a better scalability.
90 /* Epoll private bits inside the event mask */
91 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
93 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
95 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
96 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
98 /* Maximum number of nesting allowed inside epoll sets */
99 #define EP_MAX_NESTS 4
101 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
103 #define EP_UNACTIVE_PTR ((void *) -1L)
105 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
107 struct epoll_filefd {
112 /* Wait structure used by the poll hooks */
113 struct eppoll_entry {
114 /* List header used to link this structure to the "struct epitem" */
115 struct eppoll_entry *next;
117 /* The "base" pointer is set to the container "struct epitem" */
121 * Wait queue item that will be linked to the target file wait
124 wait_queue_entry_t wait;
126 /* The wait queue head that linked the "wait" wait queue item */
127 wait_queue_head_t *whead;
131 * Each file descriptor added to the eventpoll interface will
132 * have an entry of this type linked to the "rbr" RB tree.
133 * Avoid increasing the size of this struct, there can be many thousands
134 * of these on a server and we do not want this to take another cache line.
138 /* RB tree node links this structure to the eventpoll RB tree */
140 /* Used to free the struct epitem */
144 /* List header used to link this structure to the eventpoll ready list */
145 struct list_head rdllink;
148 * Works together "struct eventpoll"->ovflist in keeping the
149 * single linked chain of items.
153 /* The file descriptor information this item refers to */
154 struct epoll_filefd ffd;
156 /* List containing poll wait queues */
157 struct eppoll_entry *pwqlist;
159 /* The "container" of this item */
160 struct eventpoll *ep;
162 /* List header used to link this item to the "struct file" items list */
163 struct hlist_node fllink;
165 /* wakeup_source used when EPOLLWAKEUP is set */
166 struct wakeup_source __rcu *ws;
168 /* The structure that describe the interested events and the source fd */
169 struct epoll_event event;
173 * This structure is stored inside the "private_data" member of the file
174 * structure and represents the main data structure for the eventpoll
179 * This mutex is used to ensure that files are not removed
180 * while epoll is using them. This is held during the event
181 * collection loop, the file cleanup path, the epoll file exit
182 * code and the ctl operations.
186 /* Wait queue used by sys_epoll_wait() */
187 wait_queue_head_t wq;
189 /* Wait queue used by file->poll() */
190 wait_queue_head_t poll_wait;
192 /* List of ready file descriptors */
193 struct list_head rdllist;
195 /* Lock which protects rdllist and ovflist */
198 /* RB tree root used to store monitored fd structs */
199 struct rb_root_cached rbr;
202 * This is a single linked list that chains all the "struct epitem" that
203 * happened while transferring ready events to userspace w/out
206 struct epitem *ovflist;
208 /* wakeup_source used when ep_scan_ready_list is running */
209 struct wakeup_source *ws;
211 /* The user that created the eventpoll descriptor */
212 struct user_struct *user;
216 /* used to optimize loop detection check */
218 struct hlist_head refs;
220 #ifdef CONFIG_NET_RX_BUSY_POLL
221 /* used to track busy poll napi_id */
222 unsigned int napi_id;
225 #ifdef CONFIG_DEBUG_LOCK_ALLOC
226 /* tracks wakeup nests for lockdep validation */
231 /* Wrapper struct used by poll queueing */
238 * Configuration options available inside /proc/sys/fs/epoll/
240 /* Maximum number of epoll watched descriptors, per user */
241 static long max_user_watches __read_mostly;
244 * This mutex is used to serialize ep_free() and eventpoll_release_file().
246 static DEFINE_MUTEX(epmutex);
248 static u64 loop_check_gen = 0;
250 /* Used to check for epoll file descriptor inclusion loops */
251 static struct eventpoll *inserting_into;
253 /* Slab cache used to allocate "struct epitem" */
254 static struct kmem_cache *epi_cache __read_mostly;
256 /* Slab cache used to allocate "struct eppoll_entry" */
257 static struct kmem_cache *pwq_cache __read_mostly;
260 * List of files with newly added links, where we may need to limit the number
261 * of emanating paths. Protected by the epmutex.
263 struct epitems_head {
264 struct hlist_head epitems;
265 struct epitems_head *next;
267 static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR;
269 static struct kmem_cache *ephead_cache __read_mostly;
271 static inline void free_ephead(struct epitems_head *head)
274 kmem_cache_free(ephead_cache, head);
277 static void list_file(struct file *file)
279 struct epitems_head *head;
281 head = container_of(file->f_ep, struct epitems_head, epitems);
283 head->next = tfile_check_list;
284 tfile_check_list = head;
288 static void unlist_file(struct epitems_head *head)
290 struct epitems_head *to_free = head;
291 struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems));
293 struct epitem *epi= container_of(p, struct epitem, fllink);
294 spin_lock(&epi->ffd.file->f_lock);
295 if (!hlist_empty(&head->epitems))
298 spin_unlock(&epi->ffd.file->f_lock);
300 free_ephead(to_free);
305 #include <linux/sysctl.h>
307 static long long_zero;
308 static long long_max = LONG_MAX;
310 struct ctl_table epoll_table[] = {
312 .procname = "max_user_watches",
313 .data = &max_user_watches,
314 .maxlen = sizeof(max_user_watches),
316 .proc_handler = proc_doulongvec_minmax,
317 .extra1 = &long_zero,
322 #endif /* CONFIG_SYSCTL */
324 static const struct file_operations eventpoll_fops;
326 static inline int is_file_epoll(struct file *f)
328 return f->f_op == &eventpoll_fops;
331 /* Setup the structure that is used as key for the RB tree */
332 static inline void ep_set_ffd(struct epoll_filefd *ffd,
333 struct file *file, int fd)
339 /* Compare RB tree keys */
340 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
341 struct epoll_filefd *p2)
343 return (p1->file > p2->file ? +1:
344 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
347 /* Tells us if the item is currently linked */
348 static inline int ep_is_linked(struct epitem *epi)
350 return !list_empty(&epi->rdllink);
353 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
355 return container_of(p, struct eppoll_entry, wait);
358 /* Get the "struct epitem" from a wait queue pointer */
359 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
361 return container_of(p, struct eppoll_entry, wait)->base;
365 * ep_events_available - Checks if ready events might be available.
367 * @ep: Pointer to the eventpoll context.
369 * Returns: Returns a value different than zero if ready events are available,
372 static inline int ep_events_available(struct eventpoll *ep)
374 return !list_empty_careful(&ep->rdllist) ||
375 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
378 #ifdef CONFIG_NET_RX_BUSY_POLL
379 static bool ep_busy_loop_end(void *p, unsigned long start_time)
381 struct eventpoll *ep = p;
383 return ep_events_available(ep) || busy_loop_timeout(start_time);
387 * Busy poll if globally on and supporting sockets found && no events,
388 * busy loop will return if need_resched or ep_events_available.
390 * we must do our busy polling with irqs enabled
392 static void ep_busy_loop(struct eventpoll *ep, int nonblock)
394 unsigned int napi_id = READ_ONCE(ep->napi_id);
396 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on())
397 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep);
400 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
407 * Set epoll busy poll NAPI ID from sk.
409 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
411 struct eventpoll *ep;
412 unsigned int napi_id;
417 if (!net_busy_loop_on())
420 sock = sock_from_file(epi->ffd.file, &err);
428 napi_id = READ_ONCE(sk->sk_napi_id);
431 /* Non-NAPI IDs can be rejected
433 * Nothing to do if we already have this ID
435 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
438 /* record NAPI ID for use in next busy poll */
439 ep->napi_id = napi_id;
444 static inline void ep_busy_loop(struct eventpoll *ep, int nonblock)
448 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
452 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
456 #endif /* CONFIG_NET_RX_BUSY_POLL */
459 * As described in commit 0ccf831cb lockdep: annotate epoll
460 * the use of wait queues used by epoll is done in a very controlled
461 * manner. Wake ups can nest inside each other, but are never done
462 * with the same locking. For example:
465 * efd1 = epoll_create();
466 * efd2 = epoll_create();
467 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
468 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
470 * When a packet arrives to the device underneath "dfd", the net code will
471 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
472 * callback wakeup entry on that queue, and the wake_up() performed by the
473 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
474 * (efd1) notices that it may have some event ready, so it needs to wake up
475 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
476 * that ends up in another wake_up(), after having checked about the
477 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
478 * avoid stack blasting.
480 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
481 * this special case of epoll.
483 #ifdef CONFIG_DEBUG_LOCK_ALLOC
485 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi)
487 struct eventpoll *ep_src;
492 * To set the subclass or nesting level for spin_lock_irqsave_nested()
493 * it might be natural to create a per-cpu nest count. However, since
494 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
495 * schedule() in the -rt kernel, the per-cpu variable are no longer
496 * protected. Thus, we are introducing a per eventpoll nest field.
497 * If we are not being call from ep_poll_callback(), epi is NULL and
498 * we are at the first level of nesting, 0. Otherwise, we are being
499 * called from ep_poll_callback() and if a previous wakeup source is
500 * not an epoll file itself, we are at depth 1 since the wakeup source
501 * is depth 0. If the wakeup source is a previous epoll file in the
502 * wakeup chain then we use its nests value and record ours as
503 * nests + 1. The previous epoll file nests value is stable since its
504 * already holding its own poll_wait.lock.
507 if ((is_file_epoll(epi->ffd.file))) {
508 ep_src = epi->ffd.file->private_data;
509 nests = ep_src->nests;
514 spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
515 ep->nests = nests + 1;
516 wake_up_locked_poll(&ep->poll_wait, EPOLLIN);
518 spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
523 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi)
525 wake_up_poll(&ep->poll_wait, EPOLLIN);
530 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
532 wait_queue_head_t *whead;
536 * If it is cleared by POLLFREE, it should be rcu-safe.
537 * If we read NULL we need a barrier paired with
538 * smp_store_release() in ep_poll_callback(), otherwise
539 * we rely on whead->lock.
541 whead = smp_load_acquire(&pwq->whead);
543 remove_wait_queue(whead, &pwq->wait);
548 * This function unregisters poll callbacks from the associated file
549 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
552 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
554 struct eppoll_entry **p = &epi->pwqlist;
555 struct eppoll_entry *pwq;
557 while ((pwq = *p) != NULL) {
559 ep_remove_wait_queue(pwq);
560 kmem_cache_free(pwq_cache, pwq);
564 /* call only when ep->mtx is held */
565 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
567 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
570 /* call only when ep->mtx is held */
571 static inline void ep_pm_stay_awake(struct epitem *epi)
573 struct wakeup_source *ws = ep_wakeup_source(epi);
579 static inline bool ep_has_wakeup_source(struct epitem *epi)
581 return rcu_access_pointer(epi->ws) ? true : false;
584 /* call when ep->mtx cannot be held (ep_poll_callback) */
585 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
587 struct wakeup_source *ws;
590 ws = rcu_dereference(epi->ws);
598 * ep->mutex needs to be held because we could be hit by
599 * eventpoll_release_file() and epoll_ctl().
601 static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist)
604 * Steal the ready list, and re-init the original one to the
605 * empty list. Also, set ep->ovflist to NULL so that events
606 * happening while looping w/out locks, are not lost. We cannot
607 * have the poll callback to queue directly on ep->rdllist,
608 * because we want the "sproc" callback to be able to do it
611 lockdep_assert_irqs_enabled();
612 write_lock_irq(&ep->lock);
613 list_splice_init(&ep->rdllist, txlist);
614 WRITE_ONCE(ep->ovflist, NULL);
615 write_unlock_irq(&ep->lock);
618 static void ep_done_scan(struct eventpoll *ep,
619 struct list_head *txlist)
621 struct epitem *epi, *nepi;
623 write_lock_irq(&ep->lock);
625 * During the time we spent inside the "sproc" callback, some
626 * other events might have been queued by the poll callback.
627 * We re-insert them inside the main ready-list here.
629 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
630 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
632 * We need to check if the item is already in the list.
633 * During the "sproc" callback execution time, items are
634 * queued into ->ovflist but the "txlist" might already
635 * contain them, and the list_splice() below takes care of them.
637 if (!ep_is_linked(epi)) {
639 * ->ovflist is LIFO, so we have to reverse it in order
642 list_add(&epi->rdllink, &ep->rdllist);
643 ep_pm_stay_awake(epi);
647 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
648 * releasing the lock, events will be queued in the normal way inside
651 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
654 * Quickly re-inject items left on "txlist".
656 list_splice(txlist, &ep->rdllist);
658 write_unlock_irq(&ep->lock);
661 static void epi_rcu_free(struct rcu_head *head)
663 struct epitem *epi = container_of(head, struct epitem, rcu);
664 kmem_cache_free(epi_cache, epi);
668 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
669 * all the associated resources. Must be called with "mtx" held.
671 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
673 struct file *file = epi->ffd.file;
674 struct epitems_head *to_free;
675 struct hlist_head *head;
677 lockdep_assert_irqs_enabled();
680 * Removes poll wait queue hooks.
682 ep_unregister_pollwait(ep, epi);
684 /* Remove the current item from the list of epoll hooks */
685 spin_lock(&file->f_lock);
688 if (head->first == &epi->fllink && !epi->fllink.next) {
690 if (!is_file_epoll(file)) {
691 struct epitems_head *v;
692 v = container_of(head, struct epitems_head, epitems);
693 if (!smp_load_acquire(&v->next))
697 hlist_del_rcu(&epi->fllink);
698 spin_unlock(&file->f_lock);
699 free_ephead(to_free);
701 rb_erase_cached(&epi->rbn, &ep->rbr);
703 write_lock_irq(&ep->lock);
704 if (ep_is_linked(epi))
705 list_del_init(&epi->rdllink);
706 write_unlock_irq(&ep->lock);
708 wakeup_source_unregister(ep_wakeup_source(epi));
710 * At this point it is safe to free the eventpoll item. Use the union
711 * field epi->rcu, since we are trying to minimize the size of
712 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
713 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
714 * use of the rbn field.
716 call_rcu(&epi->rcu, epi_rcu_free);
718 atomic_long_dec(&ep->user->epoll_watches);
723 static void ep_free(struct eventpoll *ep)
728 /* We need to release all tasks waiting for these file */
729 if (waitqueue_active(&ep->poll_wait))
730 ep_poll_safewake(ep, NULL);
733 * We need to lock this because we could be hit by
734 * eventpoll_release_file() while we're freeing the "struct eventpoll".
735 * We do not need to hold "ep->mtx" here because the epoll file
736 * is on the way to be removed and no one has references to it
737 * anymore. The only hit might come from eventpoll_release_file() but
738 * holding "epmutex" is sufficient here.
740 mutex_lock(&epmutex);
743 * Walks through the whole tree by unregistering poll callbacks.
745 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
746 epi = rb_entry(rbp, struct epitem, rbn);
748 ep_unregister_pollwait(ep, epi);
753 * Walks through the whole tree by freeing each "struct epitem". At this
754 * point we are sure no poll callbacks will be lingering around, and also by
755 * holding "epmutex" we can be sure that no file cleanup code will hit
756 * us during this operation. So we can avoid the lock on "ep->lock".
757 * We do not need to lock ep->mtx, either, we only do it to prevent
760 mutex_lock(&ep->mtx);
761 while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
762 epi = rb_entry(rbp, struct epitem, rbn);
766 mutex_unlock(&ep->mtx);
768 mutex_unlock(&epmutex);
769 mutex_destroy(&ep->mtx);
771 wakeup_source_unregister(ep->ws);
775 static int ep_eventpoll_release(struct inode *inode, struct file *file)
777 struct eventpoll *ep = file->private_data;
785 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth);
787 static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth)
789 struct eventpoll *ep = file->private_data;
791 struct epitem *epi, *tmp;
795 init_poll_funcptr(&pt, NULL);
797 /* Insert inside our poll wait queue */
798 poll_wait(file, &ep->poll_wait, wait);
801 * Proceed to find out if wanted events are really available inside
804 mutex_lock_nested(&ep->mtx, depth);
805 ep_start_scan(ep, &txlist);
806 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
807 if (ep_item_poll(epi, &pt, depth + 1)) {
808 res = EPOLLIN | EPOLLRDNORM;
812 * Item has been dropped into the ready list by the poll
813 * callback, but it's not actually ready, as far as
814 * caller requested events goes. We can remove it here.
816 __pm_relax(ep_wakeup_source(epi));
817 list_del_init(&epi->rdllink);
820 ep_done_scan(ep, &txlist);
821 mutex_unlock(&ep->mtx);
826 * Differs from ep_eventpoll_poll() in that internal callers already have
827 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
828 * is correctly annotated.
830 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
833 struct file *file = epi->ffd.file;
836 pt->_key = epi->event.events;
837 if (!is_file_epoll(file))
838 res = vfs_poll(file, pt);
840 res = __ep_eventpoll_poll(file, pt, depth);
841 return res & epi->event.events;
844 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
846 return __ep_eventpoll_poll(file, wait, 0);
849 #ifdef CONFIG_PROC_FS
850 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
852 struct eventpoll *ep = f->private_data;
855 mutex_lock(&ep->mtx);
856 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
857 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
858 struct inode *inode = file_inode(epi->ffd.file);
860 seq_printf(m, "tfd: %8d events: %8x data: %16llx "
861 " pos:%lli ino:%lx sdev:%x\n",
862 epi->ffd.fd, epi->event.events,
863 (long long)epi->event.data,
864 (long long)epi->ffd.file->f_pos,
865 inode->i_ino, inode->i_sb->s_dev);
866 if (seq_has_overflowed(m))
869 mutex_unlock(&ep->mtx);
873 /* File callbacks that implement the eventpoll file behaviour */
874 static const struct file_operations eventpoll_fops = {
875 #ifdef CONFIG_PROC_FS
876 .show_fdinfo = ep_show_fdinfo,
878 .release = ep_eventpoll_release,
879 .poll = ep_eventpoll_poll,
880 .llseek = noop_llseek,
884 * This is called from eventpoll_release() to unlink files from the eventpoll
885 * interface. We need to have this facility to cleanup correctly files that are
886 * closed without being removed from the eventpoll interface.
888 void eventpoll_release_file(struct file *file)
890 struct eventpoll *ep;
892 struct hlist_node *next;
895 * We don't want to get "file->f_lock" because it is not
896 * necessary. It is not necessary because we're in the "struct file"
897 * cleanup path, and this means that no one is using this file anymore.
898 * So, for example, epoll_ctl() cannot hit here since if we reach this
899 * point, the file counter already went to zero and fget() would fail.
900 * The only hit might come from ep_free() but by holding the mutex
901 * will correctly serialize the operation. We do need to acquire
902 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
903 * from anywhere but ep_free().
905 * Besides, ep_remove() acquires the lock, so we can't hold it here.
907 mutex_lock(&epmutex);
908 if (unlikely(!file->f_ep)) {
909 mutex_unlock(&epmutex);
912 hlist_for_each_entry_safe(epi, next, file->f_ep, fllink) {
914 mutex_lock_nested(&ep->mtx, 0);
916 mutex_unlock(&ep->mtx);
918 mutex_unlock(&epmutex);
921 static int ep_alloc(struct eventpoll **pep)
924 struct user_struct *user;
925 struct eventpoll *ep;
927 user = get_current_user();
929 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
933 mutex_init(&ep->mtx);
934 rwlock_init(&ep->lock);
935 init_waitqueue_head(&ep->wq);
936 init_waitqueue_head(&ep->poll_wait);
937 INIT_LIST_HEAD(&ep->rdllist);
938 ep->rbr = RB_ROOT_CACHED;
939 ep->ovflist = EP_UNACTIVE_PTR;
952 * Search the file inside the eventpoll tree. The RB tree operations
953 * are protected by the "mtx" mutex, and ep_find() must be called with
956 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
960 struct epitem *epi, *epir = NULL;
961 struct epoll_filefd ffd;
963 ep_set_ffd(&ffd, file, fd);
964 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
965 epi = rb_entry(rbp, struct epitem, rbn);
966 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
980 #ifdef CONFIG_CHECKPOINT_RESTORE
981 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
986 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
987 epi = rb_entry(rbp, struct epitem, rbn);
988 if (epi->ffd.fd == tfd) {
1000 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1003 struct file *file_raw;
1004 struct eventpoll *ep;
1007 if (!is_file_epoll(file))
1008 return ERR_PTR(-EINVAL);
1010 ep = file->private_data;
1012 mutex_lock(&ep->mtx);
1013 epi = ep_find_tfd(ep, tfd, toff);
1015 file_raw = epi->ffd.file;
1017 file_raw = ERR_PTR(-ENOENT);
1018 mutex_unlock(&ep->mtx);
1022 #endif /* CONFIG_CHECKPOINT_RESTORE */
1025 * Adds a new entry to the tail of the list in a lockless way, i.e.
1026 * multiple CPUs are allowed to call this function concurrently.
1028 * Beware: it is necessary to prevent any other modifications of the
1029 * existing list until all changes are completed, in other words
1030 * concurrent list_add_tail_lockless() calls should be protected
1031 * with a read lock, where write lock acts as a barrier which
1032 * makes sure all list_add_tail_lockless() calls are fully
1035 * Also an element can be locklessly added to the list only in one
1036 * direction i.e. either to the tail either to the head, otherwise
1037 * concurrent access will corrupt the list.
1039 * Returns %false if element has been already added to the list, %true
1042 static inline bool list_add_tail_lockless(struct list_head *new,
1043 struct list_head *head)
1045 struct list_head *prev;
1048 * This is simple 'new->next = head' operation, but cmpxchg()
1049 * is used in order to detect that same element has been just
1050 * added to the list from another CPU: the winner observes
1053 if (cmpxchg(&new->next, new, head) != new)
1057 * Initially ->next of a new element must be updated with the head
1058 * (we are inserting to the tail) and only then pointers are atomically
1059 * exchanged. XCHG guarantees memory ordering, thus ->next should be
1060 * updated before pointers are actually swapped and pointers are
1061 * swapped before prev->next is updated.
1064 prev = xchg(&head->prev, new);
1067 * It is safe to modify prev->next and new->prev, because a new element
1068 * is added only to the tail and new->next is updated before XCHG.
1078 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1079 * i.e. multiple CPUs are allowed to call this function concurrently.
1081 * Returns %false if epi element has been already chained, %true otherwise.
1083 static inline bool chain_epi_lockless(struct epitem *epi)
1085 struct eventpoll *ep = epi->ep;
1087 /* Fast preliminary check */
1088 if (epi->next != EP_UNACTIVE_PTR)
1091 /* Check that the same epi has not been just chained from another CPU */
1092 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1095 /* Atomically exchange tail */
1096 epi->next = xchg(&ep->ovflist, epi);
1102 * This is the callback that is passed to the wait queue wakeup
1103 * mechanism. It is called by the stored file descriptors when they
1104 * have events to report.
1106 * This callback takes a read lock in order not to content with concurrent
1107 * events from another file descriptors, thus all modifications to ->rdllist
1108 * or ->ovflist are lockless. Read lock is paired with the write lock from
1109 * ep_scan_ready_list(), which stops all list modifications and guarantees
1110 * that lists state is seen correctly.
1112 * Another thing worth to mention is that ep_poll_callback() can be called
1113 * concurrently for the same @epi from different CPUs if poll table was inited
1114 * with several wait queues entries. Plural wakeup from different CPUs of a
1115 * single wait queue is serialized by wq.lock, but the case when multiple wait
1116 * queues are used should be detected accordingly. This is detected using
1117 * cmpxchg() operation.
1119 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1122 struct epitem *epi = ep_item_from_wait(wait);
1123 struct eventpoll *ep = epi->ep;
1124 __poll_t pollflags = key_to_poll(key);
1125 unsigned long flags;
1128 read_lock_irqsave(&ep->lock, flags);
1130 ep_set_busy_poll_napi_id(epi);
1133 * If the event mask does not contain any poll(2) event, we consider the
1134 * descriptor to be disabled. This condition is likely the effect of the
1135 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1136 * until the next EPOLL_CTL_MOD will be issued.
1138 if (!(epi->event.events & ~EP_PRIVATE_BITS))
1142 * Check the events coming with the callback. At this stage, not
1143 * every device reports the events in the "key" parameter of the
1144 * callback. We need to be able to handle both cases here, hence the
1145 * test for "key" != NULL before the event match test.
1147 if (pollflags && !(pollflags & epi->event.events))
1151 * If we are transferring events to userspace, we can hold no locks
1152 * (because we're accessing user memory, and because of linux f_op->poll()
1153 * semantics). All the events that happen during that period of time are
1154 * chained in ep->ovflist and requeued later on.
1156 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1157 if (chain_epi_lockless(epi))
1158 ep_pm_stay_awake_rcu(epi);
1159 } else if (!ep_is_linked(epi)) {
1160 /* In the usual case, add event to ready list. */
1161 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
1162 ep_pm_stay_awake_rcu(epi);
1166 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1169 if (waitqueue_active(&ep->wq)) {
1170 if ((epi->event.events & EPOLLEXCLUSIVE) &&
1171 !(pollflags & POLLFREE)) {
1172 switch (pollflags & EPOLLINOUT_BITS) {
1174 if (epi->event.events & EPOLLIN)
1178 if (epi->event.events & EPOLLOUT)
1188 if (waitqueue_active(&ep->poll_wait))
1192 read_unlock_irqrestore(&ep->lock, flags);
1194 /* We have to call this outside the lock */
1196 ep_poll_safewake(ep, epi);
1198 if (!(epi->event.events & EPOLLEXCLUSIVE))
1201 if (pollflags & POLLFREE) {
1203 * If we race with ep_remove_wait_queue() it can miss
1204 * ->whead = NULL and do another remove_wait_queue() after
1205 * us, so we can't use __remove_wait_queue().
1207 list_del_init(&wait->entry);
1209 * ->whead != NULL protects us from the race with ep_free()
1210 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1211 * held by the caller. Once we nullify it, nothing protects
1212 * ep/epi or even wait.
1214 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1221 * This is the callback that is used to add our wait queue to the
1222 * target file wakeup lists.
1224 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1227 struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt);
1228 struct epitem *epi = epq->epi;
1229 struct eppoll_entry *pwq;
1231 if (unlikely(!epi)) // an earlier allocation has failed
1234 pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL);
1235 if (unlikely(!pwq)) {
1240 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1243 if (epi->event.events & EPOLLEXCLUSIVE)
1244 add_wait_queue_exclusive(whead, &pwq->wait);
1246 add_wait_queue(whead, &pwq->wait);
1247 pwq->next = epi->pwqlist;
1251 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1254 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1255 struct epitem *epic;
1256 bool leftmost = true;
1260 epic = rb_entry(parent, struct epitem, rbn);
1261 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1263 p = &parent->rb_right;
1266 p = &parent->rb_left;
1268 rb_link_node(&epi->rbn, parent, p);
1269 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1274 #define PATH_ARR_SIZE 5
1276 * These are the number paths of length 1 to 5, that we are allowing to emanate
1277 * from a single file of interest. For example, we allow 1000 paths of length
1278 * 1, to emanate from each file of interest. This essentially represents the
1279 * potential wakeup paths, which need to be limited in order to avoid massive
1280 * uncontrolled wakeup storms. The common use case should be a single ep which
1281 * is connected to n file sources. In this case each file source has 1 path
1282 * of length 1. Thus, the numbers below should be more than sufficient. These
1283 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1284 * and delete can't add additional paths. Protected by the epmutex.
1286 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1287 static int path_count[PATH_ARR_SIZE];
1289 static int path_count_inc(int nests)
1291 /* Allow an arbitrary number of depth 1 paths */
1295 if (++path_count[nests] > path_limits[nests])
1300 static void path_count_init(void)
1304 for (i = 0; i < PATH_ARR_SIZE; i++)
1308 static int reverse_path_check_proc(struct hlist_head *refs, int depth)
1313 if (depth > EP_MAX_NESTS) /* too deep nesting */
1316 /* CTL_DEL can remove links here, but that can't increase our count */
1317 hlist_for_each_entry_rcu(epi, refs, fllink) {
1318 struct hlist_head *refs = &epi->ep->refs;
1319 if (hlist_empty(refs))
1320 error = path_count_inc(depth);
1322 error = reverse_path_check_proc(refs, depth + 1);
1330 * reverse_path_check - The tfile_check_list is list of epitem_head, which have
1331 * links that are proposed to be newly added. We need to
1332 * make sure that those added links don't add too many
1333 * paths such that we will spend all our time waking up
1334 * eventpoll objects.
1336 * Returns: Returns zero if the proposed links don't create too many paths,
1339 static int reverse_path_check(void)
1341 struct epitems_head *p;
1343 for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) {
1347 error = reverse_path_check_proc(&p->epitems, 0);
1355 static int ep_create_wakeup_source(struct epitem *epi)
1357 struct name_snapshot n;
1358 struct wakeup_source *ws;
1361 epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
1366 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1367 ws = wakeup_source_register(NULL, n.name.name);
1368 release_dentry_name_snapshot(&n);
1372 rcu_assign_pointer(epi->ws, ws);
1377 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1378 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1380 struct wakeup_source *ws = ep_wakeup_source(epi);
1382 RCU_INIT_POINTER(epi->ws, NULL);
1385 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1386 * used internally by wakeup_source_remove, too (called by
1387 * wakeup_source_unregister), so we cannot use call_rcu
1390 wakeup_source_unregister(ws);
1393 static int attach_epitem(struct file *file, struct epitem *epi)
1395 struct epitems_head *to_free = NULL;
1396 struct hlist_head *head = NULL;
1397 struct eventpoll *ep = NULL;
1399 if (is_file_epoll(file))
1400 ep = file->private_data;
1404 } else if (!READ_ONCE(file->f_ep)) {
1406 to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL);
1409 head = &to_free->epitems;
1411 spin_lock(&file->f_lock);
1413 if (unlikely(!head)) {
1414 spin_unlock(&file->f_lock);
1420 hlist_add_head_rcu(&epi->fllink, file->f_ep);
1421 spin_unlock(&file->f_lock);
1422 free_ephead(to_free);
1427 * Must be called with "mtx" held.
1429 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1430 struct file *tfile, int fd, int full_check)
1432 int error, pwake = 0;
1436 struct ep_pqueue epq;
1437 struct eventpoll *tep = NULL;
1439 if (is_file_epoll(tfile))
1440 tep = tfile->private_data;
1442 lockdep_assert_irqs_enabled();
1444 user_watches = atomic_long_read(&ep->user->epoll_watches);
1445 if (unlikely(user_watches >= max_user_watches))
1447 if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL)))
1450 /* Item initialization follow here ... */
1451 INIT_LIST_HEAD(&epi->rdllink);
1453 ep_set_ffd(&epi->ffd, tfile, fd);
1454 epi->event = *event;
1455 epi->next = EP_UNACTIVE_PTR;
1458 mutex_lock_nested(&tep->mtx, 1);
1459 /* Add the current item to the list of active epoll hook for this file */
1460 if (unlikely(attach_epitem(tfile, epi) < 0)) {
1461 kmem_cache_free(epi_cache, epi);
1463 mutex_unlock(&tep->mtx);
1467 if (full_check && !tep)
1470 atomic_long_inc(&ep->user->epoll_watches);
1473 * Add the current item to the RB tree. All RB tree operations are
1474 * protected by "mtx", and ep_insert() is called with "mtx" held.
1476 ep_rbtree_insert(ep, epi);
1478 mutex_unlock(&tep->mtx);
1480 /* now check if we've created too many backpaths */
1481 if (unlikely(full_check && reverse_path_check())) {
1486 if (epi->event.events & EPOLLWAKEUP) {
1487 error = ep_create_wakeup_source(epi);
1494 /* Initialize the poll table using the queue callback */
1496 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1499 * Attach the item to the poll hooks and get current event bits.
1500 * We can safely use the file* here because its usage count has
1501 * been increased by the caller of this function. Note that after
1502 * this operation completes, the poll callback can start hitting
1505 revents = ep_item_poll(epi, &epq.pt, 1);
1508 * We have to check if something went wrong during the poll wait queue
1509 * install process. Namely an allocation for a wait queue failed due
1510 * high memory pressure.
1512 if (unlikely(!epq.epi)) {
1517 /* We have to drop the new item inside our item list to keep track of it */
1518 write_lock_irq(&ep->lock);
1520 /* record NAPI ID of new item if present */
1521 ep_set_busy_poll_napi_id(epi);
1523 /* If the file is already "ready" we drop it inside the ready list */
1524 if (revents && !ep_is_linked(epi)) {
1525 list_add_tail(&epi->rdllink, &ep->rdllist);
1526 ep_pm_stay_awake(epi);
1528 /* Notify waiting tasks that events are available */
1529 if (waitqueue_active(&ep->wq))
1531 if (waitqueue_active(&ep->poll_wait))
1535 write_unlock_irq(&ep->lock);
1537 /* We have to call this outside the lock */
1539 ep_poll_safewake(ep, NULL);
1545 * Modify the interest event mask by dropping an event if the new mask
1546 * has a match in the current file status. Must be called with "mtx" held.
1548 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1549 const struct epoll_event *event)
1554 lockdep_assert_irqs_enabled();
1556 init_poll_funcptr(&pt, NULL);
1559 * Set the new event interest mask before calling f_op->poll();
1560 * otherwise we might miss an event that happens between the
1561 * f_op->poll() call and the new event set registering.
1563 epi->event.events = event->events; /* need barrier below */
1564 epi->event.data = event->data; /* protected by mtx */
1565 if (epi->event.events & EPOLLWAKEUP) {
1566 if (!ep_has_wakeup_source(epi))
1567 ep_create_wakeup_source(epi);
1568 } else if (ep_has_wakeup_source(epi)) {
1569 ep_destroy_wakeup_source(epi);
1573 * The following barrier has two effects:
1575 * 1) Flush epi changes above to other CPUs. This ensures
1576 * we do not miss events from ep_poll_callback if an
1577 * event occurs immediately after we call f_op->poll().
1578 * We need this because we did not take ep->lock while
1579 * changing epi above (but ep_poll_callback does take
1582 * 2) We also need to ensure we do not miss _past_ events
1583 * when calling f_op->poll(). This barrier also
1584 * pairs with the barrier in wq_has_sleeper (see
1585 * comments for wq_has_sleeper).
1587 * This barrier will now guarantee ep_poll_callback or f_op->poll
1588 * (or both) will notice the readiness of an item.
1593 * Get current event bits. We can safely use the file* here because
1594 * its usage count has been increased by the caller of this function.
1595 * If the item is "hot" and it is not registered inside the ready
1596 * list, push it inside.
1598 if (ep_item_poll(epi, &pt, 1)) {
1599 write_lock_irq(&ep->lock);
1600 if (!ep_is_linked(epi)) {
1601 list_add_tail(&epi->rdllink, &ep->rdllist);
1602 ep_pm_stay_awake(epi);
1604 /* Notify waiting tasks that events are available */
1605 if (waitqueue_active(&ep->wq))
1607 if (waitqueue_active(&ep->poll_wait))
1610 write_unlock_irq(&ep->lock);
1613 /* We have to call this outside the lock */
1615 ep_poll_safewake(ep, NULL);
1620 static int ep_send_events(struct eventpoll *ep,
1621 struct epoll_event __user *events, int maxevents)
1623 struct epitem *epi, *tmp;
1628 init_poll_funcptr(&pt, NULL);
1630 mutex_lock(&ep->mtx);
1631 ep_start_scan(ep, &txlist);
1634 * We can loop without lock because we are passed a task private list.
1635 * Items cannot vanish during the loop we are holding ep->mtx.
1637 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
1638 struct wakeup_source *ws;
1641 if (res >= maxevents)
1645 * Activate ep->ws before deactivating epi->ws to prevent
1646 * triggering auto-suspend here (in case we reactive epi->ws
1649 * This could be rearranged to delay the deactivation of epi->ws
1650 * instead, but then epi->ws would temporarily be out of sync
1651 * with ep_is_linked().
1653 ws = ep_wakeup_source(epi);
1656 __pm_stay_awake(ep->ws);
1660 list_del_init(&epi->rdllink);
1663 * If the event mask intersect the caller-requested one,
1664 * deliver the event to userspace. Again, we are holding ep->mtx,
1665 * so no operations coming from userspace can change the item.
1667 revents = ep_item_poll(epi, &pt, 1);
1671 if (__put_user(revents, &events->events) ||
1672 __put_user(epi->event.data, &events->data)) {
1673 list_add(&epi->rdllink, &txlist);
1674 ep_pm_stay_awake(epi);
1681 if (epi->event.events & EPOLLONESHOT)
1682 epi->event.events &= EP_PRIVATE_BITS;
1683 else if (!(epi->event.events & EPOLLET)) {
1685 * If this file has been added with Level
1686 * Trigger mode, we need to insert back inside
1687 * the ready list, so that the next call to
1688 * epoll_wait() will check again the events
1689 * availability. At this point, no one can insert
1690 * into ep->rdllist besides us. The epoll_ctl()
1691 * callers are locked out by
1692 * ep_scan_ready_list() holding "mtx" and the
1693 * poll callback will queue them in ep->ovflist.
1695 list_add_tail(&epi->rdllink, &ep->rdllist);
1696 ep_pm_stay_awake(epi);
1699 ep_done_scan(ep, &txlist);
1700 mutex_unlock(&ep->mtx);
1705 static inline struct timespec64 ep_set_mstimeout(long ms)
1707 struct timespec64 now, ts = {
1708 .tv_sec = ms / MSEC_PER_SEC,
1709 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1712 ktime_get_ts64(&now);
1713 return timespec64_add_safe(now, ts);
1717 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1720 * @ep: Pointer to the eventpoll context.
1721 * @events: Pointer to the userspace buffer where the ready events should be
1723 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1724 * @timeout: Maximum timeout for the ready events fetch operation, in
1725 * milliseconds. If the @timeout is zero, the function will not block,
1726 * while if the @timeout is less than zero, the function will block
1727 * until at least one event has been retrieved (or an error
1730 * Returns: Returns the number of ready events which have been fetched, or an
1731 * error code, in case of error.
1733 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1734 int maxevents, long timeout)
1736 int res = 0, eavail, timed_out = 0;
1738 wait_queue_entry_t wait;
1739 ktime_t expires, *to = NULL;
1741 lockdep_assert_irqs_enabled();
1744 struct timespec64 end_time = ep_set_mstimeout(timeout);
1746 slack = select_estimate_accuracy(&end_time);
1748 *to = timespec64_to_ktime(end_time);
1749 } else if (timeout == 0) {
1751 * Avoid the unnecessary trip to the wait queue loop, if the
1752 * caller specified a non blocking operation. We still need
1753 * lock because we could race and not see an epi being added
1754 * to the ready list while in irq callback. Thus incorrectly
1755 * returning 0 back to userspace.
1759 write_lock_irq(&ep->lock);
1760 eavail = ep_events_available(ep);
1761 write_unlock_irq(&ep->lock);
1768 if (!ep_events_available(ep))
1769 ep_busy_loop(ep, timed_out);
1771 eavail = ep_events_available(ep);
1776 * Busy poll timed out. Drop NAPI ID for now, we can add
1777 * it back in when we have moved a socket with a valid NAPI
1778 * ID onto the ready list.
1780 ep_reset_busy_poll_napi_id(ep);
1784 * Internally init_wait() uses autoremove_wake_function(),
1785 * thus wait entry is removed from the wait queue on each
1786 * wakeup. Why it is important? In case of several waiters
1787 * each new wakeup will hit the next waiter, giving it the
1788 * chance to harvest new event. Otherwise wakeup can be
1789 * lost. This is also good performance-wise, because on
1790 * normal wakeup path no need to call __remove_wait_queue()
1791 * explicitly, thus ep->lock is not taken, which halts the
1796 write_lock_irq(&ep->lock);
1798 * Barrierless variant, waitqueue_active() is called under
1799 * the same lock on wakeup ep_poll_callback() side, so it
1800 * is safe to avoid an explicit barrier.
1802 __set_current_state(TASK_INTERRUPTIBLE);
1805 * Do the final check under the lock. ep_scan_ready_list()
1806 * plays with two lists (->rdllist and ->ovflist) and there
1807 * is always a race when both lists are empty for short
1808 * period of time although events are pending, so lock is
1811 eavail = ep_events_available(ep);
1813 if (signal_pending(current))
1816 __add_wait_queue_exclusive(&ep->wq, &wait);
1818 write_unlock_irq(&ep->lock);
1823 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) {
1828 /* We were woken up, thus go and try to harvest some events */
1833 __set_current_state(TASK_RUNNING);
1835 if (!list_empty_careful(&wait.entry)) {
1836 write_lock_irq(&ep->lock);
1837 __remove_wait_queue(&ep->wq, &wait);
1838 write_unlock_irq(&ep->lock);
1842 if (fatal_signal_pending(current)) {
1844 * Always short-circuit for fatal signals to allow
1845 * threads to make a timely exit without the chance of
1846 * finding more events available and fetching
1852 * Try to transfer events to user space. In case we get 0 events and
1853 * there's still timeout left over, we go trying again in search of
1856 if (!res && eavail &&
1857 !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1864 * ep_loop_check_proc - verify that adding an epoll file inside another
1865 * epoll structure, does not violate the constraints, in
1866 * terms of closed loops, or too deep chains (which can
1867 * result in excessive stack usage).
1869 * @priv: Pointer to the epoll file to be currently checked.
1870 * @depth: Current depth of the path being checked.
1872 * Returns: Returns zero if adding the epoll @file inside current epoll
1873 * structure @ep does not violate the constraints, or -1 otherwise.
1875 static int ep_loop_check_proc(struct eventpoll *ep, int depth)
1878 struct rb_node *rbp;
1881 mutex_lock_nested(&ep->mtx, depth + 1);
1882 ep->gen = loop_check_gen;
1883 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1884 epi = rb_entry(rbp, struct epitem, rbn);
1885 if (unlikely(is_file_epoll(epi->ffd.file))) {
1886 struct eventpoll *ep_tovisit;
1887 ep_tovisit = epi->ffd.file->private_data;
1888 if (ep_tovisit->gen == loop_check_gen)
1890 if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS)
1893 error = ep_loop_check_proc(ep_tovisit, depth + 1);
1898 * If we've reached a file that is not associated with
1899 * an ep, then we need to check if the newly added
1900 * links are going to add too many wakeup paths. We do
1901 * this by adding it to the tfile_check_list, if it's
1902 * not already there, and calling reverse_path_check()
1903 * during ep_insert().
1905 list_file(epi->ffd.file);
1908 mutex_unlock(&ep->mtx);
1914 * ep_loop_check - Performs a check to verify that adding an epoll file (@to)
1915 * into another epoll file (represented by @from) does not create
1916 * closed loops or too deep chains.
1918 * @from: Pointer to the epoll we are inserting into.
1919 * @to: Pointer to the epoll to be inserted.
1921 * Returns: Returns zero if adding the epoll @to inside the epoll @from
1922 * does not violate the constraints, or -1 otherwise.
1924 static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to)
1926 inserting_into = ep;
1927 return ep_loop_check_proc(to, 0);
1930 static void clear_tfile_check_list(void)
1933 while (tfile_check_list != EP_UNACTIVE_PTR) {
1934 struct epitems_head *head = tfile_check_list;
1935 tfile_check_list = head->next;
1942 * Open an eventpoll file descriptor.
1944 static int do_epoll_create(int flags)
1947 struct eventpoll *ep = NULL;
1950 /* Check the EPOLL_* constant for consistency. */
1951 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1953 if (flags & ~EPOLL_CLOEXEC)
1956 * Create the internal data structure ("struct eventpoll").
1958 error = ep_alloc(&ep);
1962 * Creates all the items needed to setup an eventpoll file. That is,
1963 * a file structure and a free file descriptor.
1965 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1970 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
1971 O_RDWR | (flags & O_CLOEXEC));
1973 error = PTR_ERR(file);
1977 fd_install(fd, file);
1987 SYSCALL_DEFINE1(epoll_create1, int, flags)
1989 return do_epoll_create(flags);
1992 SYSCALL_DEFINE1(epoll_create, int, size)
1997 return do_epoll_create(0);
2000 static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2004 mutex_lock_nested(mutex, depth);
2007 if (mutex_trylock(mutex))
2012 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2018 struct eventpoll *ep;
2020 struct eventpoll *tep = NULL;
2027 /* Get the "struct file *" for the target file */
2032 /* The target file descriptor must support poll */
2034 if (!file_can_poll(tf.file))
2035 goto error_tgt_fput;
2037 /* Check if EPOLLWAKEUP is allowed */
2038 if (ep_op_has_event(op))
2039 ep_take_care_of_epollwakeup(epds);
2042 * We have to check that the file structure underneath the file descriptor
2043 * the user passed to us _is_ an eventpoll file. And also we do not permit
2044 * adding an epoll file descriptor inside itself.
2047 if (f.file == tf.file || !is_file_epoll(f.file))
2048 goto error_tgt_fput;
2051 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2052 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2053 * Also, we do not currently supported nested exclusive wakeups.
2055 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
2056 if (op == EPOLL_CTL_MOD)
2057 goto error_tgt_fput;
2058 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2059 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
2060 goto error_tgt_fput;
2064 * At this point it is safe to assume that the "private_data" contains
2065 * our own data structure.
2067 ep = f.file->private_data;
2070 * When we insert an epoll file descriptor, inside another epoll file
2071 * descriptor, there is the change of creating closed loops, which are
2072 * better be handled here, than in more critical paths. While we are
2073 * checking for loops we also determine the list of files reachable
2074 * and hang them on the tfile_check_list, so we can check that we
2075 * haven't created too many possible wakeup paths.
2077 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2078 * the epoll file descriptor is attaching directly to a wakeup source,
2079 * unless the epoll file descriptor is nested. The purpose of taking the
2080 * 'epmutex' on add is to prevent complex toplogies such as loops and
2081 * deep wakeup paths from forming in parallel through multiple
2082 * EPOLL_CTL_ADD operations.
2084 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2086 goto error_tgt_fput;
2087 if (op == EPOLL_CTL_ADD) {
2088 if (READ_ONCE(f.file->f_ep) || ep->gen == loop_check_gen ||
2089 is_file_epoll(tf.file)) {
2090 mutex_unlock(&ep->mtx);
2091 error = epoll_mutex_lock(&epmutex, 0, nonblock);
2093 goto error_tgt_fput;
2096 if (is_file_epoll(tf.file)) {
2097 tep = tf.file->private_data;
2099 if (ep_loop_check(ep, tep) != 0)
2100 goto error_tgt_fput;
2102 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2104 goto error_tgt_fput;
2109 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2110 * above, we can be sure to be able to use the item looked up by
2111 * ep_find() till we release the mutex.
2113 epi = ep_find(ep, tf.file, fd);
2119 epds->events |= EPOLLERR | EPOLLHUP;
2120 error = ep_insert(ep, epds, tf.file, fd, full_check);
2126 error = ep_remove(ep, epi);
2132 if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2133 epds->events |= EPOLLERR | EPOLLHUP;
2134 error = ep_modify(ep, epi, epds);
2140 mutex_unlock(&ep->mtx);
2144 clear_tfile_check_list();
2146 mutex_unlock(&epmutex);
2158 * The following function implements the controller interface for
2159 * the eventpoll file that enables the insertion/removal/change of
2160 * file descriptors inside the interest set.
2162 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2163 struct epoll_event __user *, event)
2165 struct epoll_event epds;
2167 if (ep_op_has_event(op) &&
2168 copy_from_user(&epds, event, sizeof(struct epoll_event)))
2171 return do_epoll_ctl(epfd, op, fd, &epds, false);
2175 * Implement the event wait interface for the eventpoll file. It is the kernel
2176 * part of the user space epoll_wait(2).
2178 static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2179 int maxevents, int timeout)
2183 struct eventpoll *ep;
2185 /* The maximum number of event must be greater than zero */
2186 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2189 /* Verify that the area passed by the user is writeable */
2190 if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2193 /* Get the "struct file *" for the eventpoll file */
2199 * We have to check that the file structure underneath the fd
2200 * the user passed to us _is_ an eventpoll file.
2203 if (!is_file_epoll(f.file))
2207 * At this point it is safe to assume that the "private_data" contains
2208 * our own data structure.
2210 ep = f.file->private_data;
2212 /* Time to fish for events ... */
2213 error = ep_poll(ep, events, maxevents, timeout);
2220 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2221 int, maxevents, int, timeout)
2223 return do_epoll_wait(epfd, events, maxevents, timeout);
2227 * Implement the event wait interface for the eventpoll file. It is the kernel
2228 * part of the user space epoll_pwait(2).
2230 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2231 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2237 * If the caller wants a certain signal mask to be set during the wait,
2240 error = set_user_sigmask(sigmask, sigsetsize);
2244 error = do_epoll_wait(epfd, events, maxevents, timeout);
2245 restore_saved_sigmask_unless(error == -EINTR);
2250 #ifdef CONFIG_COMPAT
2251 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2252 struct epoll_event __user *, events,
2253 int, maxevents, int, timeout,
2254 const compat_sigset_t __user *, sigmask,
2255 compat_size_t, sigsetsize)
2260 * If the caller wants a certain signal mask to be set during the wait,
2263 err = set_compat_user_sigmask(sigmask, sigsetsize);
2267 err = do_epoll_wait(epfd, events, maxevents, timeout);
2268 restore_saved_sigmask_unless(err == -EINTR);
2274 static int __init eventpoll_init(void)
2280 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2282 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2284 BUG_ON(max_user_watches < 0);
2287 * We can have many thousands of epitems, so prevent this from
2288 * using an extra cache line on 64-bit (and smaller) CPUs
2290 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2292 /* Allocates slab cache used to allocate "struct epitem" items */
2293 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2294 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2296 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2297 pwq_cache = kmem_cache_create("eventpoll_pwq",
2298 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2300 ephead_cache = kmem_cache_create("ep_head",
2301 sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2305 fs_initcall(eventpoll_init);