4 * Copyright (c) 1999 Al Smith
6 * Portions derived from work (c) 1995,1996 Christian Vogelgsang.
9 #include <linux/init.h>
10 #include <linux/module.h>
11 #include <linux/exportfs.h>
12 #include <linux/slab.h>
13 #include <linux/buffer_head.h>
14 #include <linux/vfs.h>
17 #include <linux/efs_vh.h>
18 #include <linux/efs_fs_sb.h>
20 static int efs_statfs(struct dentry *dentry, struct kstatfs *buf);
21 static int efs_fill_super(struct super_block *s, void *d, int silent);
23 static struct dentry *efs_mount(struct file_system_type *fs_type,
24 int flags, const char *dev_name, void *data)
26 return mount_bdev(fs_type, flags, dev_name, data, efs_fill_super);
29 static void efs_kill_sb(struct super_block *s)
31 struct efs_sb_info *sbi = SUPER_INFO(s);
36 static struct file_system_type efs_fs_type = {
40 .kill_sb = efs_kill_sb,
41 .fs_flags = FS_REQUIRES_DEV,
43 MODULE_ALIAS_FS("efs");
45 static struct pt_types sgi_pt_types[] = {
47 {0x01, "SGI trkrepl"},
48 {0x02, "SGI secrepl"},
51 {SGI_SYSV, "SGI sysv"},
60 {0x83, "Linux native"},
65 static struct kmem_cache * efs_inode_cachep;
67 static struct inode *efs_alloc_inode(struct super_block *sb)
69 struct efs_inode_info *ei;
70 ei = (struct efs_inode_info *)kmem_cache_alloc(efs_inode_cachep, GFP_KERNEL);
73 return &ei->vfs_inode;
76 static void efs_i_callback(struct rcu_head *head)
78 struct inode *inode = container_of(head, struct inode, i_rcu);
79 kmem_cache_free(efs_inode_cachep, INODE_INFO(inode));
82 static void efs_destroy_inode(struct inode *inode)
84 call_rcu(&inode->i_rcu, efs_i_callback);
87 static void init_once(void *foo)
89 struct efs_inode_info *ei = (struct efs_inode_info *) foo;
91 inode_init_once(&ei->vfs_inode);
94 static int init_inodecache(void)
96 efs_inode_cachep = kmem_cache_create("efs_inode_cache",
97 sizeof(struct efs_inode_info),
98 0, SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD,
100 if (efs_inode_cachep == NULL)
105 static void destroy_inodecache(void)
108 * Make sure all delayed rcu free inodes are flushed before we
112 kmem_cache_destroy(efs_inode_cachep);
115 static int efs_remount(struct super_block *sb, int *flags, char *data)
121 static const struct super_operations efs_superblock_operations = {
122 .alloc_inode = efs_alloc_inode,
123 .destroy_inode = efs_destroy_inode,
124 .statfs = efs_statfs,
125 .remount_fs = efs_remount,
128 static const struct export_operations efs_export_ops = {
129 .fh_to_dentry = efs_fh_to_dentry,
130 .fh_to_parent = efs_fh_to_parent,
131 .get_parent = efs_get_parent,
134 static int __init init_efs_fs(void) {
136 printk("EFS: "EFS_VERSION" - http://aeschi.ch.eu.org/efs/\n");
137 err = init_inodecache();
140 err = register_filesystem(&efs_fs_type);
145 destroy_inodecache();
150 static void __exit exit_efs_fs(void) {
151 unregister_filesystem(&efs_fs_type);
152 destroy_inodecache();
155 module_init(init_efs_fs)
156 module_exit(exit_efs_fs)
158 static efs_block_t efs_validate_vh(struct volume_header *vh) {
162 efs_block_t sblock = 0; /* shuts up gcc */
163 struct pt_types *pt_entry;
164 int pt_type, slice = -1;
166 if (be32_to_cpu(vh->vh_magic) != VHMAGIC) {
168 * assume that we're dealing with a partition and allow
169 * read_super() to try and detect a valid superblock
175 ui = ((__be32 *) (vh + 1)) - 1;
176 for(csum = 0; ui >= ((__be32 *) vh);) {
178 csum += be32_to_cpu(cs);
181 printk(KERN_INFO "EFS: SGI disklabel: checksum bad, label corrupted\n");
186 printk(KERN_DEBUG "EFS: bf: \"%16s\"\n", vh->vh_bootfile);
188 for(i = 0; i < NVDIR; i++) {
190 char name[VDNAMESIZE+1];
192 for(j = 0; j < VDNAMESIZE; j++) {
193 name[j] = vh->vh_vd[i].vd_name[j];
198 printk(KERN_DEBUG "EFS: vh: %8s block: 0x%08x size: 0x%08x\n",
200 (int) be32_to_cpu(vh->vh_vd[i].vd_lbn),
201 (int) be32_to_cpu(vh->vh_vd[i].vd_nbytes));
206 for(i = 0; i < NPARTAB; i++) {
207 pt_type = (int) be32_to_cpu(vh->vh_pt[i].pt_type);
208 for(pt_entry = sgi_pt_types; pt_entry->pt_name; pt_entry++) {
209 if (pt_type == pt_entry->pt_type) break;
212 if (be32_to_cpu(vh->vh_pt[i].pt_nblks)) {
213 printk(KERN_DEBUG "EFS: pt %2d: start: %08d size: %08d type: 0x%02x (%s)\n",
215 (int) be32_to_cpu(vh->vh_pt[i].pt_firstlbn),
216 (int) be32_to_cpu(vh->vh_pt[i].pt_nblks),
218 (pt_entry->pt_name) ? pt_entry->pt_name : "unknown");
221 if (IS_EFS(pt_type)) {
222 sblock = be32_to_cpu(vh->vh_pt[i].pt_firstlbn);
228 printk(KERN_NOTICE "EFS: partition table contained no EFS partitions\n");
231 printk(KERN_INFO "EFS: using slice %d (type %s, offset 0x%x)\n",
233 (pt_entry->pt_name) ? pt_entry->pt_name : "unknown",
240 static int efs_validate_super(struct efs_sb_info *sb, struct efs_super *super) {
242 if (!IS_EFS_MAGIC(be32_to_cpu(super->fs_magic)))
245 sb->fs_magic = be32_to_cpu(super->fs_magic);
246 sb->total_blocks = be32_to_cpu(super->fs_size);
247 sb->first_block = be32_to_cpu(super->fs_firstcg);
248 sb->group_size = be32_to_cpu(super->fs_cgfsize);
249 sb->data_free = be32_to_cpu(super->fs_tfree);
250 sb->inode_free = be32_to_cpu(super->fs_tinode);
251 sb->inode_blocks = be16_to_cpu(super->fs_cgisize);
252 sb->total_groups = be16_to_cpu(super->fs_ncg);
257 static int efs_fill_super(struct super_block *s, void *d, int silent)
259 struct efs_sb_info *sb;
260 struct buffer_head *bh;
263 sb = kzalloc(sizeof(struct efs_sb_info), GFP_KERNEL);
268 s->s_magic = EFS_SUPER_MAGIC;
269 if (!sb_set_blocksize(s, EFS_BLOCKSIZE)) {
270 printk(KERN_ERR "EFS: device does not support %d byte blocks\n",
275 /* read the vh (volume header) block */
279 printk(KERN_ERR "EFS: cannot read volume header\n");
284 * if this returns zero then we didn't find any partition table.
285 * this isn't (yet) an error - just assume for the moment that
286 * the device is valid and go on to search for a superblock.
288 sb->fs_start = efs_validate_vh((struct volume_header *) bh->b_data);
291 if (sb->fs_start == -1) {
295 bh = sb_bread(s, sb->fs_start + EFS_SUPER);
297 printk(KERN_ERR "EFS: cannot read superblock\n");
301 if (efs_validate_super(sb, (struct efs_super *) bh->b_data)) {
303 printk(KERN_WARNING "EFS: invalid superblock at block %u\n", sb->fs_start + EFS_SUPER);
310 if (!(s->s_flags & MS_RDONLY)) {
312 printk(KERN_INFO "EFS: forcing read-only mode\n");
314 s->s_flags |= MS_RDONLY;
316 s->s_op = &efs_superblock_operations;
317 s->s_export_op = &efs_export_ops;
318 root = efs_iget(s, EFS_ROOTINODE);
320 printk(KERN_ERR "EFS: get root inode failed\n");
321 return PTR_ERR(root);
324 s->s_root = d_make_root(root);
326 printk(KERN_ERR "EFS: get root dentry failed\n");
333 static int efs_statfs(struct dentry *dentry, struct kstatfs *buf) {
334 struct super_block *sb = dentry->d_sb;
335 struct efs_sb_info *sbi = SUPER_INFO(sb);
336 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
338 buf->f_type = EFS_SUPER_MAGIC; /* efs magic number */
339 buf->f_bsize = EFS_BLOCKSIZE; /* blocksize */
340 buf->f_blocks = sbi->total_groups * /* total data blocks */
341 (sbi->group_size - sbi->inode_blocks);
342 buf->f_bfree = sbi->data_free; /* free data blocks */
343 buf->f_bavail = sbi->data_free; /* free blocks for non-root */
344 buf->f_files = sbi->total_groups * /* total inodes */
346 (EFS_BLOCKSIZE / sizeof(struct efs_dinode));
347 buf->f_ffree = sbi->inode_free; /* free inodes */
348 buf->f_fsid.val[0] = (u32)id;
349 buf->f_fsid.val[1] = (u32)(id >> 32);
350 buf->f_namelen = EFS_MAXNAMELEN; /* max filename length */