2 * eCryptfs: Linux filesystem encryption layer
4 * Copyright (C) 1997-2004 Erez Zadok
5 * Copyright (C) 2001-2004 Stony Brook University
6 * Copyright (C) 2004-2007 International Business Machines Corp.
7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8 * Michael C. Thompson <mcthomps@us.ibm.com>
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of the
13 * License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include <linux/slab.h>
37 #include <asm/unaligned.h>
38 #include "ecryptfs_kernel.h"
41 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
42 struct page *dst_page, int dst_offset,
43 struct page *src_page, int src_offset, int size,
46 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
47 struct page *dst_page, int dst_offset,
48 struct page *src_page, int src_offset, int size,
53 * @dst: Buffer to take hex character representation of contents of
54 * src; must be at least of size (src_size * 2)
55 * @src: Buffer to be converted to a hex string respresentation
56 * @src_size: number of bytes to convert
58 void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
62 for (x = 0; x < src_size; x++)
63 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
68 * @dst: Buffer to take the bytes from src hex; must be at least of
70 * @src: Buffer to be converted from a hex string respresentation to raw value
71 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
73 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
78 for (x = 0; x < dst_size; x++) {
80 tmp[1] = src[x * 2 + 1];
81 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
86 * ecryptfs_calculate_md5 - calculates the md5 of @src
87 * @dst: Pointer to 16 bytes of allocated memory
88 * @crypt_stat: Pointer to crypt_stat struct for the current inode
89 * @src: Data to be md5'd
90 * @len: Length of @src
92 * Uses the allocated crypto context that crypt_stat references to
93 * generate the MD5 sum of the contents of src.
95 static int ecryptfs_calculate_md5(char *dst,
96 struct ecryptfs_crypt_stat *crypt_stat,
99 struct scatterlist sg;
100 struct hash_desc desc = {
101 .tfm = crypt_stat->hash_tfm,
102 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
106 mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
107 sg_init_one(&sg, (u8 *)src, len);
109 desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
111 if (IS_ERR(desc.tfm)) {
112 rc = PTR_ERR(desc.tfm);
113 ecryptfs_printk(KERN_ERR, "Error attempting to "
114 "allocate crypto context; rc = [%d]\n",
118 crypt_stat->hash_tfm = desc.tfm;
120 rc = crypto_hash_init(&desc);
123 "%s: Error initializing crypto hash; rc = [%d]\n",
127 rc = crypto_hash_update(&desc, &sg, len);
130 "%s: Error updating crypto hash; rc = [%d]\n",
134 rc = crypto_hash_final(&desc, dst);
137 "%s: Error finalizing crypto hash; rc = [%d]\n",
142 mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
146 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
148 char *chaining_modifier)
150 int cipher_name_len = strlen(cipher_name);
151 int chaining_modifier_len = strlen(chaining_modifier);
152 int algified_name_len;
155 algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
156 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
157 if (!(*algified_name)) {
161 snprintf((*algified_name), algified_name_len, "%s(%s)",
162 chaining_modifier, cipher_name);
170 * @iv: destination for the derived iv vale
171 * @crypt_stat: Pointer to crypt_stat struct for the current inode
172 * @offset: Offset of the extent whose IV we are to derive
174 * Generate the initialization vector from the given root IV and page
177 * Returns zero on success; non-zero on error.
179 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
183 char dst[MD5_DIGEST_SIZE];
184 char src[ECRYPTFS_MAX_IV_BYTES + 16];
186 if (unlikely(ecryptfs_verbosity > 0)) {
187 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
188 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
190 /* TODO: It is probably secure to just cast the least
191 * significant bits of the root IV into an unsigned long and
192 * add the offset to that rather than go through all this
193 * hashing business. -Halcrow */
194 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
195 memset((src + crypt_stat->iv_bytes), 0, 16);
196 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
197 if (unlikely(ecryptfs_verbosity > 0)) {
198 ecryptfs_printk(KERN_DEBUG, "source:\n");
199 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
201 rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
202 (crypt_stat->iv_bytes + 16));
204 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
205 "MD5 while generating IV for a page\n");
208 memcpy(iv, dst, crypt_stat->iv_bytes);
209 if (unlikely(ecryptfs_verbosity > 0)) {
210 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
211 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
218 * ecryptfs_init_crypt_stat
219 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
221 * Initialize the crypt_stat structure.
224 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
226 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
227 INIT_LIST_HEAD(&crypt_stat->keysig_list);
228 mutex_init(&crypt_stat->keysig_list_mutex);
229 mutex_init(&crypt_stat->cs_mutex);
230 mutex_init(&crypt_stat->cs_tfm_mutex);
231 mutex_init(&crypt_stat->cs_hash_tfm_mutex);
232 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
236 * ecryptfs_destroy_crypt_stat
237 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
239 * Releases all memory associated with a crypt_stat struct.
241 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
243 struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
246 crypto_free_blkcipher(crypt_stat->tfm);
247 if (crypt_stat->hash_tfm)
248 crypto_free_hash(crypt_stat->hash_tfm);
249 list_for_each_entry_safe(key_sig, key_sig_tmp,
250 &crypt_stat->keysig_list, crypt_stat_list) {
251 list_del(&key_sig->crypt_stat_list);
252 kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
254 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
257 void ecryptfs_destroy_mount_crypt_stat(
258 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
260 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
262 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
264 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
265 list_for_each_entry_safe(auth_tok, auth_tok_tmp,
266 &mount_crypt_stat->global_auth_tok_list,
267 mount_crypt_stat_list) {
268 list_del(&auth_tok->mount_crypt_stat_list);
269 if (auth_tok->global_auth_tok_key
270 && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
271 key_put(auth_tok->global_auth_tok_key);
272 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
274 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
275 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
279 * virt_to_scatterlist
280 * @addr: Virtual address
281 * @size: Size of data; should be an even multiple of the block size
282 * @sg: Pointer to scatterlist array; set to NULL to obtain only
283 * the number of scatterlist structs required in array
284 * @sg_size: Max array size
286 * Fills in a scatterlist array with page references for a passed
289 * Returns the number of scatterlist structs in array used
291 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
297 int remainder_of_page;
299 sg_init_table(sg, sg_size);
301 while (size > 0 && i < sg_size) {
302 pg = virt_to_page(addr);
303 offset = offset_in_page(addr);
304 sg_set_page(&sg[i], pg, 0, offset);
305 remainder_of_page = PAGE_CACHE_SIZE - offset;
306 if (size >= remainder_of_page) {
307 sg[i].length = remainder_of_page;
308 addr += remainder_of_page;
309 size -= remainder_of_page;
323 * encrypt_scatterlist
324 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
325 * @dest_sg: Destination of encrypted data
326 * @src_sg: Data to be encrypted
327 * @size: Length of data to be encrypted
328 * @iv: iv to use during encryption
330 * Returns the number of bytes encrypted; negative value on error
332 static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
333 struct scatterlist *dest_sg,
334 struct scatterlist *src_sg, int size,
337 struct blkcipher_desc desc = {
338 .tfm = crypt_stat->tfm,
340 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
344 BUG_ON(!crypt_stat || !crypt_stat->tfm
345 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
346 if (unlikely(ecryptfs_verbosity > 0)) {
347 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
348 crypt_stat->key_size);
349 ecryptfs_dump_hex(crypt_stat->key,
350 crypt_stat->key_size);
352 /* Consider doing this once, when the file is opened */
353 mutex_lock(&crypt_stat->cs_tfm_mutex);
354 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
355 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
356 crypt_stat->key_size);
357 crypt_stat->flags |= ECRYPTFS_KEY_SET;
360 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
362 mutex_unlock(&crypt_stat->cs_tfm_mutex);
366 ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
367 crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
368 mutex_unlock(&crypt_stat->cs_tfm_mutex);
374 * ecryptfs_lower_offset_for_extent
376 * Convert an eCryptfs page index into a lower byte offset
378 static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
379 struct ecryptfs_crypt_stat *crypt_stat)
381 (*offset) = ecryptfs_lower_header_size(crypt_stat)
382 + (crypt_stat->extent_size * extent_num);
386 * ecryptfs_encrypt_extent
387 * @enc_extent_page: Allocated page into which to encrypt the data in
389 * @crypt_stat: crypt_stat containing cryptographic context for the
390 * encryption operation
391 * @page: Page containing plaintext data extent to encrypt
392 * @extent_offset: Page extent offset for use in generating IV
394 * Encrypts one extent of data.
396 * Return zero on success; non-zero otherwise
398 static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
399 struct ecryptfs_crypt_stat *crypt_stat,
401 unsigned long extent_offset)
404 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
407 extent_base = (((loff_t)page->index)
408 * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
409 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
410 (extent_base + extent_offset));
412 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
413 "extent [0x%.16llx]; rc = [%d]\n",
414 (unsigned long long)(extent_base + extent_offset), rc);
417 rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0,
419 * crypt_stat->extent_size),
420 crypt_stat->extent_size, extent_iv);
422 printk(KERN_ERR "%s: Error attempting to encrypt page with "
423 "page->index = [%ld], extent_offset = [%ld]; "
424 "rc = [%d]\n", __func__, page->index, extent_offset,
434 * ecryptfs_encrypt_page
435 * @page: Page mapped from the eCryptfs inode for the file; contains
436 * decrypted content that needs to be encrypted (to a temporary
437 * page; not in place) and written out to the lower file
439 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
440 * that eCryptfs pages may straddle the lower pages -- for instance,
441 * if the file was created on a machine with an 8K page size
442 * (resulting in an 8K header), and then the file is copied onto a
443 * host with a 32K page size, then when reading page 0 of the eCryptfs
444 * file, 24K of page 0 of the lower file will be read and decrypted,
445 * and then 8K of page 1 of the lower file will be read and decrypted.
447 * Returns zero on success; negative on error
449 int ecryptfs_encrypt_page(struct page *page)
451 struct inode *ecryptfs_inode;
452 struct ecryptfs_crypt_stat *crypt_stat;
453 char *enc_extent_virt;
454 struct page *enc_extent_page = NULL;
455 loff_t extent_offset;
458 ecryptfs_inode = page->mapping->host;
460 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
461 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
462 enc_extent_page = alloc_page(GFP_USER);
463 if (!enc_extent_page) {
465 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
466 "encrypted extent\n");
469 enc_extent_virt = kmap(enc_extent_page);
470 for (extent_offset = 0;
471 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
475 rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
478 printk(KERN_ERR "%s: Error encrypting extent; "
479 "rc = [%d]\n", __func__, rc);
482 ecryptfs_lower_offset_for_extent(
483 &offset, ((((loff_t)page->index)
485 / crypt_stat->extent_size))
486 + extent_offset), crypt_stat);
487 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt,
488 offset, crypt_stat->extent_size);
490 ecryptfs_printk(KERN_ERR, "Error attempting "
491 "to write lower page; rc = [%d]"
498 if (enc_extent_page) {
499 kunmap(enc_extent_page);
500 __free_page(enc_extent_page);
505 static int ecryptfs_decrypt_extent(struct page *page,
506 struct ecryptfs_crypt_stat *crypt_stat,
507 struct page *enc_extent_page,
508 unsigned long extent_offset)
511 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
514 extent_base = (((loff_t)page->index)
515 * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
516 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
517 (extent_base + extent_offset));
519 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
520 "extent [0x%.16llx]; rc = [%d]\n",
521 (unsigned long long)(extent_base + extent_offset), rc);
524 rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
526 * crypt_stat->extent_size),
528 crypt_stat->extent_size, extent_iv);
530 printk(KERN_ERR "%s: Error attempting to decrypt to page with "
531 "page->index = [%ld], extent_offset = [%ld]; "
532 "rc = [%d]\n", __func__, page->index, extent_offset,
542 * ecryptfs_decrypt_page
543 * @page: Page mapped from the eCryptfs inode for the file; data read
544 * and decrypted from the lower file will be written into this
547 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
548 * that eCryptfs pages may straddle the lower pages -- for instance,
549 * if the file was created on a machine with an 8K page size
550 * (resulting in an 8K header), and then the file is copied onto a
551 * host with a 32K page size, then when reading page 0 of the eCryptfs
552 * file, 24K of page 0 of the lower file will be read and decrypted,
553 * and then 8K of page 1 of the lower file will be read and decrypted.
555 * Returns zero on success; negative on error
557 int ecryptfs_decrypt_page(struct page *page)
559 struct inode *ecryptfs_inode;
560 struct ecryptfs_crypt_stat *crypt_stat;
561 char *enc_extent_virt;
562 struct page *enc_extent_page = NULL;
563 unsigned long extent_offset;
566 ecryptfs_inode = page->mapping->host;
568 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
569 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
570 enc_extent_page = alloc_page(GFP_USER);
571 if (!enc_extent_page) {
573 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
574 "encrypted extent\n");
577 enc_extent_virt = kmap(enc_extent_page);
578 for (extent_offset = 0;
579 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
583 ecryptfs_lower_offset_for_extent(
584 &offset, ((page->index * (PAGE_CACHE_SIZE
585 / crypt_stat->extent_size))
586 + extent_offset), crypt_stat);
587 rc = ecryptfs_read_lower(enc_extent_virt, offset,
588 crypt_stat->extent_size,
591 ecryptfs_printk(KERN_ERR, "Error attempting "
592 "to read lower page; rc = [%d]"
596 rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
599 printk(KERN_ERR "%s: Error encrypting extent; "
600 "rc = [%d]\n", __func__, rc);
605 if (enc_extent_page) {
606 kunmap(enc_extent_page);
607 __free_page(enc_extent_page);
613 * decrypt_scatterlist
614 * @crypt_stat: Cryptographic context
615 * @dest_sg: The destination scatterlist to decrypt into
616 * @src_sg: The source scatterlist to decrypt from
617 * @size: The number of bytes to decrypt
618 * @iv: The initialization vector to use for the decryption
620 * Returns the number of bytes decrypted; negative value on error
622 static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
623 struct scatterlist *dest_sg,
624 struct scatterlist *src_sg, int size,
627 struct blkcipher_desc desc = {
628 .tfm = crypt_stat->tfm,
630 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
634 /* Consider doing this once, when the file is opened */
635 mutex_lock(&crypt_stat->cs_tfm_mutex);
636 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
637 crypt_stat->key_size);
639 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
641 mutex_unlock(&crypt_stat->cs_tfm_mutex);
645 ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
646 rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
647 mutex_unlock(&crypt_stat->cs_tfm_mutex);
649 ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
659 * ecryptfs_encrypt_page_offset
660 * @crypt_stat: The cryptographic context
661 * @dst_page: The page to encrypt into
662 * @dst_offset: The offset in the page to encrypt into
663 * @src_page: The page to encrypt from
664 * @src_offset: The offset in the page to encrypt from
665 * @size: The number of bytes to encrypt
666 * @iv: The initialization vector to use for the encryption
668 * Returns the number of bytes encrypted
671 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
672 struct page *dst_page, int dst_offset,
673 struct page *src_page, int src_offset, int size,
676 struct scatterlist src_sg, dst_sg;
678 sg_init_table(&src_sg, 1);
679 sg_init_table(&dst_sg, 1);
681 sg_set_page(&src_sg, src_page, size, src_offset);
682 sg_set_page(&dst_sg, dst_page, size, dst_offset);
683 return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
687 * ecryptfs_decrypt_page_offset
688 * @crypt_stat: The cryptographic context
689 * @dst_page: The page to decrypt into
690 * @dst_offset: The offset in the page to decrypt into
691 * @src_page: The page to decrypt from
692 * @src_offset: The offset in the page to decrypt from
693 * @size: The number of bytes to decrypt
694 * @iv: The initialization vector to use for the decryption
696 * Returns the number of bytes decrypted
699 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
700 struct page *dst_page, int dst_offset,
701 struct page *src_page, int src_offset, int size,
704 struct scatterlist src_sg, dst_sg;
706 sg_init_table(&src_sg, 1);
707 sg_set_page(&src_sg, src_page, size, src_offset);
709 sg_init_table(&dst_sg, 1);
710 sg_set_page(&dst_sg, dst_page, size, dst_offset);
712 return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
715 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
718 * ecryptfs_init_crypt_ctx
719 * @crypt_stat: Uninitialized crypt stats structure
721 * Initialize the crypto context.
723 * TODO: Performance: Keep a cache of initialized cipher contexts;
724 * only init if needed
726 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
731 if (!crypt_stat->cipher) {
732 ecryptfs_printk(KERN_ERR, "No cipher specified\n");
735 ecryptfs_printk(KERN_DEBUG,
736 "Initializing cipher [%s]; strlen = [%d]; "
737 "key_size_bits = [%zd]\n",
738 crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
739 crypt_stat->key_size << 3);
740 if (crypt_stat->tfm) {
744 mutex_lock(&crypt_stat->cs_tfm_mutex);
745 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
746 crypt_stat->cipher, "cbc");
749 crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
751 kfree(full_alg_name);
752 if (IS_ERR(crypt_stat->tfm)) {
753 rc = PTR_ERR(crypt_stat->tfm);
754 crypt_stat->tfm = NULL;
755 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
756 "Error initializing cipher [%s]\n",
760 crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
763 mutex_unlock(&crypt_stat->cs_tfm_mutex);
768 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
772 crypt_stat->extent_mask = 0xFFFFFFFF;
773 crypt_stat->extent_shift = 0;
774 if (crypt_stat->extent_size == 0)
776 extent_size_tmp = crypt_stat->extent_size;
777 while ((extent_size_tmp & 0x01) == 0) {
778 extent_size_tmp >>= 1;
779 crypt_stat->extent_mask <<= 1;
780 crypt_stat->extent_shift++;
784 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
786 /* Default values; may be overwritten as we are parsing the
788 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
789 set_extent_mask_and_shift(crypt_stat);
790 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
791 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
792 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
794 if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
795 crypt_stat->metadata_size =
796 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
798 crypt_stat->metadata_size = PAGE_CACHE_SIZE;
803 * ecryptfs_compute_root_iv
806 * On error, sets the root IV to all 0's.
808 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
811 char dst[MD5_DIGEST_SIZE];
813 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
814 BUG_ON(crypt_stat->iv_bytes <= 0);
815 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
817 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
818 "cannot generate root IV\n");
821 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
822 crypt_stat->key_size);
824 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
825 "MD5 while generating root IV\n");
828 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
831 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
832 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
837 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
839 get_random_bytes(crypt_stat->key, crypt_stat->key_size);
840 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
841 ecryptfs_compute_root_iv(crypt_stat);
842 if (unlikely(ecryptfs_verbosity > 0)) {
843 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
844 ecryptfs_dump_hex(crypt_stat->key,
845 crypt_stat->key_size);
850 * ecryptfs_copy_mount_wide_flags_to_inode_flags
851 * @crypt_stat: The inode's cryptographic context
852 * @mount_crypt_stat: The mount point's cryptographic context
854 * This function propagates the mount-wide flags to individual inode
857 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
858 struct ecryptfs_crypt_stat *crypt_stat,
859 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
861 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
862 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
863 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
864 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
865 if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
866 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
867 if (mount_crypt_stat->flags
868 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
869 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
870 else if (mount_crypt_stat->flags
871 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
872 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
876 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
877 struct ecryptfs_crypt_stat *crypt_stat,
878 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
880 struct ecryptfs_global_auth_tok *global_auth_tok;
883 mutex_lock(&crypt_stat->keysig_list_mutex);
884 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
886 list_for_each_entry(global_auth_tok,
887 &mount_crypt_stat->global_auth_tok_list,
888 mount_crypt_stat_list) {
889 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
891 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
893 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
899 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
900 mutex_unlock(&crypt_stat->keysig_list_mutex);
905 * ecryptfs_set_default_crypt_stat_vals
906 * @crypt_stat: The inode's cryptographic context
907 * @mount_crypt_stat: The mount point's cryptographic context
909 * Default values in the event that policy does not override them.
911 static void ecryptfs_set_default_crypt_stat_vals(
912 struct ecryptfs_crypt_stat *crypt_stat,
913 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
915 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
917 ecryptfs_set_default_sizes(crypt_stat);
918 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
919 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
920 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
921 crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
922 crypt_stat->mount_crypt_stat = mount_crypt_stat;
926 * ecryptfs_new_file_context
927 * @ecryptfs_inode: The eCryptfs inode
929 * If the crypto context for the file has not yet been established,
930 * this is where we do that. Establishing a new crypto context
931 * involves the following decisions:
932 * - What cipher to use?
933 * - What set of authentication tokens to use?
934 * Here we just worry about getting enough information into the
935 * authentication tokens so that we know that they are available.
936 * We associate the available authentication tokens with the new file
937 * via the set of signatures in the crypt_stat struct. Later, when
938 * the headers are actually written out, we may again defer to
939 * userspace to perform the encryption of the session key; for the
940 * foreseeable future, this will be the case with public key packets.
942 * Returns zero on success; non-zero otherwise
944 int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
946 struct ecryptfs_crypt_stat *crypt_stat =
947 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
948 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
949 &ecryptfs_superblock_to_private(
950 ecryptfs_inode->i_sb)->mount_crypt_stat;
954 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
955 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
956 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
958 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
961 printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
962 "to the inode key sigs; rc = [%d]\n", rc);
966 strlen(mount_crypt_stat->global_default_cipher_name);
967 memcpy(crypt_stat->cipher,
968 mount_crypt_stat->global_default_cipher_name,
970 crypt_stat->cipher[cipher_name_len] = '\0';
971 crypt_stat->key_size =
972 mount_crypt_stat->global_default_cipher_key_size;
973 ecryptfs_generate_new_key(crypt_stat);
974 rc = ecryptfs_init_crypt_ctx(crypt_stat);
976 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
977 "context for cipher [%s]: rc = [%d]\n",
978 crypt_stat->cipher, rc);
984 * ecryptfs_validate_marker - check for the ecryptfs marker
985 * @data: The data block in which to check
987 * Returns zero if marker found; -EINVAL if not found
989 static int ecryptfs_validate_marker(char *data)
993 m_1 = get_unaligned_be32(data);
994 m_2 = get_unaligned_be32(data + 4);
995 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
997 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
998 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
999 MAGIC_ECRYPTFS_MARKER);
1000 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1001 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
1005 struct ecryptfs_flag_map_elem {
1010 /* Add support for additional flags by adding elements here. */
1011 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
1012 {0x00000001, ECRYPTFS_ENABLE_HMAC},
1013 {0x00000002, ECRYPTFS_ENCRYPTED},
1014 {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
1015 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
1019 * ecryptfs_process_flags
1020 * @crypt_stat: The cryptographic context
1021 * @page_virt: Source data to be parsed
1022 * @bytes_read: Updated with the number of bytes read
1024 * Returns zero on success; non-zero if the flag set is invalid
1026 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
1027 char *page_virt, int *bytes_read)
1033 flags = get_unaligned_be32(page_virt);
1034 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1035 / sizeof(struct ecryptfs_flag_map_elem))); i++)
1036 if (flags & ecryptfs_flag_map[i].file_flag) {
1037 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
1039 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
1040 /* Version is in top 8 bits of the 32-bit flag vector */
1041 crypt_stat->file_version = ((flags >> 24) & 0xFF);
1047 * write_ecryptfs_marker
1048 * @page_virt: The pointer to in a page to begin writing the marker
1049 * @written: Number of bytes written
1051 * Marker = 0x3c81b7f5
1053 static void write_ecryptfs_marker(char *page_virt, size_t *written)
1057 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1058 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
1059 put_unaligned_be32(m_1, page_virt);
1060 page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
1061 put_unaligned_be32(m_2, page_virt);
1062 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1065 void ecryptfs_write_crypt_stat_flags(char *page_virt,
1066 struct ecryptfs_crypt_stat *crypt_stat,
1072 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1073 / sizeof(struct ecryptfs_flag_map_elem))); i++)
1074 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
1075 flags |= ecryptfs_flag_map[i].file_flag;
1076 /* Version is in top 8 bits of the 32-bit flag vector */
1077 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
1078 put_unaligned_be32(flags, page_virt);
1082 struct ecryptfs_cipher_code_str_map_elem {
1083 char cipher_str[16];
1087 /* Add support for additional ciphers by adding elements here. The
1088 * cipher_code is whatever OpenPGP applicatoins use to identify the
1089 * ciphers. List in order of probability. */
1090 static struct ecryptfs_cipher_code_str_map_elem
1091 ecryptfs_cipher_code_str_map[] = {
1092 {"aes",RFC2440_CIPHER_AES_128 },
1093 {"blowfish", RFC2440_CIPHER_BLOWFISH},
1094 {"des3_ede", RFC2440_CIPHER_DES3_EDE},
1095 {"cast5", RFC2440_CIPHER_CAST_5},
1096 {"twofish", RFC2440_CIPHER_TWOFISH},
1097 {"cast6", RFC2440_CIPHER_CAST_6},
1098 {"aes", RFC2440_CIPHER_AES_192},
1099 {"aes", RFC2440_CIPHER_AES_256}
1103 * ecryptfs_code_for_cipher_string
1104 * @cipher_name: The string alias for the cipher
1105 * @key_bytes: Length of key in bytes; used for AES code selection
1107 * Returns zero on no match, or the cipher code on match
1109 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
1113 struct ecryptfs_cipher_code_str_map_elem *map =
1114 ecryptfs_cipher_code_str_map;
1116 if (strcmp(cipher_name, "aes") == 0) {
1117 switch (key_bytes) {
1119 code = RFC2440_CIPHER_AES_128;
1122 code = RFC2440_CIPHER_AES_192;
1125 code = RFC2440_CIPHER_AES_256;
1128 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1129 if (strcmp(cipher_name, map[i].cipher_str) == 0) {
1130 code = map[i].cipher_code;
1138 * ecryptfs_cipher_code_to_string
1139 * @str: Destination to write out the cipher name
1140 * @cipher_code: The code to convert to cipher name string
1142 * Returns zero on success
1144 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1150 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1151 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1152 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1153 if (str[0] == '\0') {
1154 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1155 "[%d]\n", cipher_code);
1161 int ecryptfs_read_and_validate_header_region(struct inode *inode)
1163 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1164 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1167 rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
1169 if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1170 return rc >= 0 ? -EINVAL : rc;
1171 rc = ecryptfs_validate_marker(marker);
1173 ecryptfs_i_size_init(file_size, inode);
1178 ecryptfs_write_header_metadata(char *virt,
1179 struct ecryptfs_crypt_stat *crypt_stat,
1182 u32 header_extent_size;
1183 u16 num_header_extents_at_front;
1185 header_extent_size = (u32)crypt_stat->extent_size;
1186 num_header_extents_at_front =
1187 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1188 put_unaligned_be32(header_extent_size, virt);
1190 put_unaligned_be16(num_header_extents_at_front, virt);
1194 struct kmem_cache *ecryptfs_header_cache;
1197 * ecryptfs_write_headers_virt
1198 * @page_virt: The virtual address to write the headers to
1199 * @max: The size of memory allocated at page_virt
1200 * @size: Set to the number of bytes written by this function
1201 * @crypt_stat: The cryptographic context
1202 * @ecryptfs_dentry: The eCryptfs dentry
1207 * Octets 0-7: Unencrypted file size (big-endian)
1208 * Octets 8-15: eCryptfs special marker
1209 * Octets 16-19: Flags
1210 * Octet 16: File format version number (between 0 and 255)
1211 * Octets 17-18: Reserved
1212 * Octet 19: Bit 1 (lsb): Reserved
1214 * Bits 3-8: Reserved
1215 * Octets 20-23: Header extent size (big-endian)
1216 * Octets 24-25: Number of header extents at front of file
1218 * Octet 26: Begin RFC 2440 authentication token packet set
1220 * Lower data (CBC encrypted)
1222 * Lower data (CBC encrypted)
1225 * Returns zero on success
1227 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1229 struct ecryptfs_crypt_stat *crypt_stat,
1230 struct dentry *ecryptfs_dentry)
1236 offset = ECRYPTFS_FILE_SIZE_BYTES;
1237 write_ecryptfs_marker((page_virt + offset), &written);
1239 ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1242 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1245 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1246 ecryptfs_dentry, &written,
1249 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1250 "set; rc = [%d]\n", rc);
1259 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1260 char *virt, size_t virt_len)
1264 rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1267 printk(KERN_ERR "%s: Error attempting to write header "
1268 "information to lower file; rc = [%d]\n", __func__, rc);
1275 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1276 char *page_virt, size_t size)
1280 rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1285 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1290 page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1292 return (unsigned long) page_address(page);
1297 * ecryptfs_write_metadata
1298 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1299 * @ecryptfs_inode: The newly created eCryptfs inode
1301 * Write the file headers out. This will likely involve a userspace
1302 * callout, in which the session key is encrypted with one or more
1303 * public keys and/or the passphrase necessary to do the encryption is
1304 * retrieved via a prompt. Exactly what happens at this point should
1305 * be policy-dependent.
1307 * Returns zero on success; non-zero on error
1309 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1310 struct inode *ecryptfs_inode)
1312 struct ecryptfs_crypt_stat *crypt_stat =
1313 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1320 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1321 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1322 printk(KERN_ERR "Key is invalid; bailing out\n");
1327 printk(KERN_WARNING "%s: Encrypted flag not set\n",
1332 virt_len = crypt_stat->metadata_size;
1333 order = get_order(virt_len);
1334 /* Released in this function */
1335 virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1337 printk(KERN_ERR "%s: Out of memory\n", __func__);
1341 /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1342 rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1345 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1349 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1350 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
1353 rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1356 printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1357 "rc = [%d]\n", __func__, rc);
1361 free_pages((unsigned long)virt, order);
1366 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1367 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1368 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1369 char *virt, int *bytes_read,
1370 int validate_header_size)
1373 u32 header_extent_size;
1374 u16 num_header_extents_at_front;
1376 header_extent_size = get_unaligned_be32(virt);
1377 virt += sizeof(__be32);
1378 num_header_extents_at_front = get_unaligned_be16(virt);
1379 crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1380 * (size_t)header_extent_size));
1381 (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1382 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1383 && (crypt_stat->metadata_size
1384 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1386 printk(KERN_WARNING "Invalid header size: [%zd]\n",
1387 crypt_stat->metadata_size);
1393 * set_default_header_data
1394 * @crypt_stat: The cryptographic context
1396 * For version 0 file format; this function is only for backwards
1397 * compatibility for files created with the prior versions of
1400 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1402 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1405 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1407 struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1408 struct ecryptfs_crypt_stat *crypt_stat;
1411 crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1413 &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1414 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1415 file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1416 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1417 file_size += crypt_stat->metadata_size;
1419 file_size = get_unaligned_be64(page_virt);
1420 i_size_write(inode, (loff_t)file_size);
1421 crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1425 * ecryptfs_read_headers_virt
1426 * @page_virt: The virtual address into which to read the headers
1427 * @crypt_stat: The cryptographic context
1428 * @ecryptfs_dentry: The eCryptfs dentry
1429 * @validate_header_size: Whether to validate the header size while reading
1431 * Read/parse the header data. The header format is detailed in the
1432 * comment block for the ecryptfs_write_headers_virt() function.
1434 * Returns zero on success
1436 static int ecryptfs_read_headers_virt(char *page_virt,
1437 struct ecryptfs_crypt_stat *crypt_stat,
1438 struct dentry *ecryptfs_dentry,
1439 int validate_header_size)
1445 ecryptfs_set_default_sizes(crypt_stat);
1446 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1447 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1448 offset = ECRYPTFS_FILE_SIZE_BYTES;
1449 rc = ecryptfs_validate_marker(page_virt + offset);
1452 if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1453 ecryptfs_i_size_init(page_virt, ecryptfs_dentry->d_inode);
1454 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1455 rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1458 ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1461 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1462 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1463 "file version [%d] is supported by this "
1464 "version of eCryptfs\n",
1465 crypt_stat->file_version,
1466 ECRYPTFS_SUPPORTED_FILE_VERSION);
1470 offset += bytes_read;
1471 if (crypt_stat->file_version >= 1) {
1472 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1473 &bytes_read, validate_header_size);
1475 ecryptfs_printk(KERN_WARNING, "Error reading header "
1476 "metadata; rc = [%d]\n", rc);
1478 offset += bytes_read;
1480 set_default_header_data(crypt_stat);
1481 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1488 * ecryptfs_read_xattr_region
1489 * @page_virt: The vitual address into which to read the xattr data
1490 * @ecryptfs_inode: The eCryptfs inode
1492 * Attempts to read the crypto metadata from the extended attribute
1493 * region of the lower file.
1495 * Returns zero on success; non-zero on error
1497 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1499 struct dentry *lower_dentry =
1500 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
1504 size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1505 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1507 if (unlikely(ecryptfs_verbosity > 0))
1508 printk(KERN_INFO "Error attempting to read the [%s] "
1509 "xattr from the lower file; return value = "
1510 "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1518 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1519 struct inode *inode)
1521 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1522 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1525 rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1526 ECRYPTFS_XATTR_NAME, file_size,
1527 ECRYPTFS_SIZE_AND_MARKER_BYTES);
1528 if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1529 return rc >= 0 ? -EINVAL : rc;
1530 rc = ecryptfs_validate_marker(marker);
1532 ecryptfs_i_size_init(file_size, inode);
1537 * ecryptfs_read_metadata
1539 * Common entry point for reading file metadata. From here, we could
1540 * retrieve the header information from the header region of the file,
1541 * the xattr region of the file, or some other repostory that is
1542 * stored separately from the file itself. The current implementation
1543 * supports retrieving the metadata information from the file contents
1544 * and from the xattr region.
1546 * Returns zero if valid headers found and parsed; non-zero otherwise
1548 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1552 struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
1553 struct ecryptfs_crypt_stat *crypt_stat =
1554 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1555 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1556 &ecryptfs_superblock_to_private(
1557 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1559 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1561 /* Read the first page from the underlying file */
1562 page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1565 printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1569 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1572 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1574 ECRYPTFS_VALIDATE_HEADER_SIZE);
1576 /* metadata is not in the file header, so try xattrs */
1577 memset(page_virt, 0, PAGE_CACHE_SIZE);
1578 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1580 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1581 "file header region or xattr region, inode %lu\n",
1582 ecryptfs_inode->i_ino);
1586 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1588 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1590 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1591 "file xattr region either, inode %lu\n",
1592 ecryptfs_inode->i_ino);
1595 if (crypt_stat->mount_crypt_stat->flags
1596 & ECRYPTFS_XATTR_METADATA_ENABLED) {
1597 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1599 printk(KERN_WARNING "Attempt to access file with "
1600 "crypto metadata only in the extended attribute "
1601 "region, but eCryptfs was mounted without "
1602 "xattr support enabled. eCryptfs will not treat "
1603 "this like an encrypted file, inode %lu\n",
1604 ecryptfs_inode->i_ino);
1610 memset(page_virt, 0, PAGE_CACHE_SIZE);
1611 kmem_cache_free(ecryptfs_header_cache, page_virt);
1617 * ecryptfs_encrypt_filename - encrypt filename
1619 * CBC-encrypts the filename. We do not want to encrypt the same
1620 * filename with the same key and IV, which may happen with hard
1621 * links, so we prepend random bits to each filename.
1623 * Returns zero on success; non-zero otherwise
1626 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1627 struct ecryptfs_crypt_stat *crypt_stat,
1628 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1632 filename->encrypted_filename = NULL;
1633 filename->encrypted_filename_size = 0;
1634 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1635 || (mount_crypt_stat && (mount_crypt_stat->flags
1636 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
1638 size_t remaining_bytes;
1640 rc = ecryptfs_write_tag_70_packet(
1642 &filename->encrypted_filename_size,
1643 mount_crypt_stat, NULL,
1644 filename->filename_size);
1646 printk(KERN_ERR "%s: Error attempting to get packet "
1647 "size for tag 72; rc = [%d]\n", __func__,
1649 filename->encrypted_filename_size = 0;
1652 filename->encrypted_filename =
1653 kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1654 if (!filename->encrypted_filename) {
1655 printk(KERN_ERR "%s: Out of memory whilst attempting "
1656 "to kmalloc [%zd] bytes\n", __func__,
1657 filename->encrypted_filename_size);
1661 remaining_bytes = filename->encrypted_filename_size;
1662 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1667 filename->filename_size);
1669 printk(KERN_ERR "%s: Error attempting to generate "
1670 "tag 70 packet; rc = [%d]\n", __func__,
1672 kfree(filename->encrypted_filename);
1673 filename->encrypted_filename = NULL;
1674 filename->encrypted_filename_size = 0;
1677 filename->encrypted_filename_size = packet_size;
1679 printk(KERN_ERR "%s: No support for requested filename "
1680 "encryption method in this release\n", __func__);
1688 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1689 const char *name, size_t name_size)
1693 (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1694 if (!(*copied_name)) {
1698 memcpy((void *)(*copied_name), (void *)name, name_size);
1699 (*copied_name)[(name_size)] = '\0'; /* Only for convenience
1700 * in printing out the
1703 (*copied_name_size) = name_size;
1709 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1710 * @key_tfm: Crypto context for key material, set by this function
1711 * @cipher_name: Name of the cipher
1712 * @key_size: Size of the key in bytes
1714 * Returns zero on success. Any crypto_tfm structs allocated here
1715 * should be released by other functions, such as on a superblock put
1716 * event, regardless of whether this function succeeds for fails.
1719 ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1720 char *cipher_name, size_t *key_size)
1722 char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1723 char *full_alg_name = NULL;
1727 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1729 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1730 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1733 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1737 *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1738 if (IS_ERR(*key_tfm)) {
1739 rc = PTR_ERR(*key_tfm);
1740 printk(KERN_ERR "Unable to allocate crypto cipher with name "
1741 "[%s]; rc = [%d]\n", full_alg_name, rc);
1744 crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1745 if (*key_size == 0) {
1746 struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1748 *key_size = alg->max_keysize;
1750 get_random_bytes(dummy_key, *key_size);
1751 rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1753 printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1754 "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1760 kfree(full_alg_name);
1764 struct kmem_cache *ecryptfs_key_tfm_cache;
1765 static struct list_head key_tfm_list;
1766 struct mutex key_tfm_list_mutex;
1768 int __init ecryptfs_init_crypto(void)
1770 mutex_init(&key_tfm_list_mutex);
1771 INIT_LIST_HEAD(&key_tfm_list);
1776 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1778 * Called only at module unload time
1780 int ecryptfs_destroy_crypto(void)
1782 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1784 mutex_lock(&key_tfm_list_mutex);
1785 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1787 list_del(&key_tfm->key_tfm_list);
1788 if (key_tfm->key_tfm)
1789 crypto_free_blkcipher(key_tfm->key_tfm);
1790 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1792 mutex_unlock(&key_tfm_list_mutex);
1797 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1800 struct ecryptfs_key_tfm *tmp_tfm;
1803 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1805 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1806 if (key_tfm != NULL)
1807 (*key_tfm) = tmp_tfm;
1810 printk(KERN_ERR "Error attempting to allocate from "
1811 "ecryptfs_key_tfm_cache\n");
1814 mutex_init(&tmp_tfm->key_tfm_mutex);
1815 strncpy(tmp_tfm->cipher_name, cipher_name,
1816 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1817 tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1818 tmp_tfm->key_size = key_size;
1819 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1820 tmp_tfm->cipher_name,
1821 &tmp_tfm->key_size);
1823 printk(KERN_ERR "Error attempting to initialize key TFM "
1824 "cipher with name = [%s]; rc = [%d]\n",
1825 tmp_tfm->cipher_name, rc);
1826 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1827 if (key_tfm != NULL)
1831 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1837 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1838 * @cipher_name: the name of the cipher to search for
1839 * @key_tfm: set to corresponding tfm if found
1841 * Searches for cached key_tfm matching @cipher_name
1842 * Must be called with &key_tfm_list_mutex held
1843 * Returns 1 if found, with @key_tfm set
1844 * Returns 0 if not found, with @key_tfm set to NULL
1846 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1848 struct ecryptfs_key_tfm *tmp_key_tfm;
1850 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1852 list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1853 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1855 (*key_tfm) = tmp_key_tfm;
1865 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1867 * @tfm: set to cached tfm found, or new tfm created
1868 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1869 * @cipher_name: the name of the cipher to search for and/or add
1871 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1872 * Searches for cached item first, and creates new if not found.
1873 * Returns 0 on success, non-zero if adding new cipher failed
1875 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1876 struct mutex **tfm_mutex,
1879 struct ecryptfs_key_tfm *key_tfm;
1883 (*tfm_mutex) = NULL;
1885 mutex_lock(&key_tfm_list_mutex);
1886 if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1887 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1889 printk(KERN_ERR "Error adding new key_tfm to list; "
1894 (*tfm) = key_tfm->key_tfm;
1895 (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1897 mutex_unlock(&key_tfm_list_mutex);
1901 /* 64 characters forming a 6-bit target field */
1902 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1905 "klmnopqrstuvwxyz");
1907 /* We could either offset on every reverse map or just pad some 0x00's
1908 * at the front here */
1909 static const unsigned char filename_rev_map[256] = {
1910 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1911 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1912 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1913 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1914 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1915 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1916 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1917 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1918 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1919 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1920 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1921 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1922 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1923 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1924 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1925 0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1929 * ecryptfs_encode_for_filename
1930 * @dst: Destination location for encoded filename
1931 * @dst_size: Size of the encoded filename in bytes
1932 * @src: Source location for the filename to encode
1933 * @src_size: Size of the source in bytes
1935 static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1936 unsigned char *src, size_t src_size)
1939 size_t block_num = 0;
1940 size_t dst_offset = 0;
1941 unsigned char last_block[3];
1943 if (src_size == 0) {
1947 num_blocks = (src_size / 3);
1948 if ((src_size % 3) == 0) {
1949 memcpy(last_block, (&src[src_size - 3]), 3);
1952 last_block[2] = 0x00;
1953 switch (src_size % 3) {
1955 last_block[0] = src[src_size - 1];
1956 last_block[1] = 0x00;
1959 last_block[0] = src[src_size - 2];
1960 last_block[1] = src[src_size - 1];
1963 (*dst_size) = (num_blocks * 4);
1966 while (block_num < num_blocks) {
1967 unsigned char *src_block;
1968 unsigned char dst_block[4];
1970 if (block_num == (num_blocks - 1))
1971 src_block = last_block;
1973 src_block = &src[block_num * 3];
1974 dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1975 dst_block[1] = (((src_block[0] << 4) & 0x30)
1976 | ((src_block[1] >> 4) & 0x0F));
1977 dst_block[2] = (((src_block[1] << 2) & 0x3C)
1978 | ((src_block[2] >> 6) & 0x03));
1979 dst_block[3] = (src_block[2] & 0x3F);
1980 dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1981 dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1982 dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1983 dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1990 static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1992 /* Not exact; conservatively long. Every block of 4
1993 * encoded characters decodes into a block of 3
1994 * decoded characters. This segment of code provides
1995 * the caller with the maximum amount of allocated
1996 * space that @dst will need to point to in a
1997 * subsequent call. */
1998 return ((encoded_size + 1) * 3) / 4;
2002 * ecryptfs_decode_from_filename
2003 * @dst: If NULL, this function only sets @dst_size and returns. If
2004 * non-NULL, this function decodes the encoded octets in @src
2005 * into the memory that @dst points to.
2006 * @dst_size: Set to the size of the decoded string.
2007 * @src: The encoded set of octets to decode.
2008 * @src_size: The size of the encoded set of octets to decode.
2011 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
2012 const unsigned char *src, size_t src_size)
2014 u8 current_bit_offset = 0;
2015 size_t src_byte_offset = 0;
2016 size_t dst_byte_offset = 0;
2019 (*dst_size) = ecryptfs_max_decoded_size(src_size);
2022 while (src_byte_offset < src_size) {
2023 unsigned char src_byte =
2024 filename_rev_map[(int)src[src_byte_offset]];
2026 switch (current_bit_offset) {
2028 dst[dst_byte_offset] = (src_byte << 2);
2029 current_bit_offset = 6;
2032 dst[dst_byte_offset++] |= (src_byte >> 4);
2033 dst[dst_byte_offset] = ((src_byte & 0xF)
2035 current_bit_offset = 4;
2038 dst[dst_byte_offset++] |= (src_byte >> 2);
2039 dst[dst_byte_offset] = (src_byte << 6);
2040 current_bit_offset = 2;
2043 dst[dst_byte_offset++] |= (src_byte);
2044 dst[dst_byte_offset] = 0;
2045 current_bit_offset = 0;
2050 (*dst_size) = dst_byte_offset;
2056 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
2057 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
2058 * @name: The plaintext name
2059 * @length: The length of the plaintext
2060 * @encoded_name: The encypted name
2062 * Encrypts and encodes a filename into something that constitutes a
2063 * valid filename for a filesystem, with printable characters.
2065 * We assume that we have a properly initialized crypto context,
2066 * pointed to by crypt_stat->tfm.
2068 * Returns zero on success; non-zero on otherwise
2070 int ecryptfs_encrypt_and_encode_filename(
2071 char **encoded_name,
2072 size_t *encoded_name_size,
2073 struct ecryptfs_crypt_stat *crypt_stat,
2074 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2075 const char *name, size_t name_size)
2077 size_t encoded_name_no_prefix_size;
2080 (*encoded_name) = NULL;
2081 (*encoded_name_size) = 0;
2082 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
2083 || (mount_crypt_stat && (mount_crypt_stat->flags
2084 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
2085 struct ecryptfs_filename *filename;
2087 filename = kzalloc(sizeof(*filename), GFP_KERNEL);
2089 printk(KERN_ERR "%s: Out of memory whilst attempting "
2090 "to kzalloc [%zd] bytes\n", __func__,
2095 filename->filename = (char *)name;
2096 filename->filename_size = name_size;
2097 rc = ecryptfs_encrypt_filename(filename, crypt_stat,
2100 printk(KERN_ERR "%s: Error attempting to encrypt "
2101 "filename; rc = [%d]\n", __func__, rc);
2105 ecryptfs_encode_for_filename(
2106 NULL, &encoded_name_no_prefix_size,
2107 filename->encrypted_filename,
2108 filename->encrypted_filename_size);
2109 if ((crypt_stat && (crypt_stat->flags
2110 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2111 || (mount_crypt_stat
2112 && (mount_crypt_stat->flags
2113 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
2114 (*encoded_name_size) =
2115 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2116 + encoded_name_no_prefix_size);
2118 (*encoded_name_size) =
2119 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2120 + encoded_name_no_prefix_size);
2121 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
2122 if (!(*encoded_name)) {
2123 printk(KERN_ERR "%s: Out of memory whilst attempting "
2124 "to kzalloc [%zd] bytes\n", __func__,
2125 (*encoded_name_size));
2127 kfree(filename->encrypted_filename);
2131 if ((crypt_stat && (crypt_stat->flags
2132 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2133 || (mount_crypt_stat
2134 && (mount_crypt_stat->flags
2135 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
2136 memcpy((*encoded_name),
2137 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2138 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
2139 ecryptfs_encode_for_filename(
2141 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
2142 &encoded_name_no_prefix_size,
2143 filename->encrypted_filename,
2144 filename->encrypted_filename_size);
2145 (*encoded_name_size) =
2146 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2147 + encoded_name_no_prefix_size);
2148 (*encoded_name)[(*encoded_name_size)] = '\0';
2153 printk(KERN_ERR "%s: Error attempting to encode "
2154 "encrypted filename; rc = [%d]\n", __func__,
2156 kfree((*encoded_name));
2157 (*encoded_name) = NULL;
2158 (*encoded_name_size) = 0;
2160 kfree(filename->encrypted_filename);
2163 rc = ecryptfs_copy_filename(encoded_name,
2172 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2173 * @plaintext_name: The plaintext name
2174 * @plaintext_name_size: The plaintext name size
2175 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2176 * @name: The filename in cipher text
2177 * @name_size: The cipher text name size
2179 * Decrypts and decodes the filename.
2181 * Returns zero on error; non-zero otherwise
2183 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2184 size_t *plaintext_name_size,
2185 struct dentry *ecryptfs_dir_dentry,
2186 const char *name, size_t name_size)
2188 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2189 &ecryptfs_superblock_to_private(
2190 ecryptfs_dir_dentry->d_sb)->mount_crypt_stat;
2192 size_t decoded_name_size;
2196 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
2197 && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
2198 && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
2199 && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2200 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
2201 const char *orig_name = name;
2202 size_t orig_name_size = name_size;
2204 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2205 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2206 ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2208 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2209 if (!decoded_name) {
2210 printk(KERN_ERR "%s: Out of memory whilst attempting "
2211 "to kmalloc [%zd] bytes\n", __func__,
2216 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2218 rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2219 plaintext_name_size,
2225 printk(KERN_INFO "%s: Could not parse tag 70 packet "
2226 "from filename; copying through filename "
2227 "as-is\n", __func__);
2228 rc = ecryptfs_copy_filename(plaintext_name,
2229 plaintext_name_size,
2230 orig_name, orig_name_size);
2234 rc = ecryptfs_copy_filename(plaintext_name,
2235 plaintext_name_size,
2240 kfree(decoded_name);
2245 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16 143
2247 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2248 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2250 struct blkcipher_desc desc;
2251 struct mutex *tfm_mutex;
2252 size_t cipher_blocksize;
2255 if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2256 (*namelen) = lower_namelen;
2260 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
2261 mount_crypt_stat->global_default_fn_cipher_name);
2267 mutex_lock(tfm_mutex);
2268 cipher_blocksize = crypto_blkcipher_blocksize(desc.tfm);
2269 mutex_unlock(tfm_mutex);
2271 /* Return an exact amount for the common cases */
2272 if (lower_namelen == NAME_MAX
2273 && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2274 (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2278 /* Return a safe estimate for the uncommon cases */
2279 (*namelen) = lower_namelen;
2280 (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2281 /* Since this is the max decoded size, subtract 1 "decoded block" len */
2282 (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2283 (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2284 (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2285 /* Worst case is that the filename is padded nearly a full block size */
2286 (*namelen) -= cipher_blocksize - 1;