Merge tag 'linux-kselftest-next-6.6-rc2' of git://git.kernel.org/pub/scm/linux/kernel...
[platform/kernel/linux-starfive.git] / fs / dlm / lowcomms.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3 *******************************************************************************
4 **
5 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
6 **  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
7 **
8 **
9 *******************************************************************************
10 ******************************************************************************/
11
12 /*
13  * lowcomms.c
14  *
15  * This is the "low-level" comms layer.
16  *
17  * It is responsible for sending/receiving messages
18  * from other nodes in the cluster.
19  *
20  * Cluster nodes are referred to by their nodeids. nodeids are
21  * simply 32 bit numbers to the locking module - if they need to
22  * be expanded for the cluster infrastructure then that is its
23  * responsibility. It is this layer's
24  * responsibility to resolve these into IP address or
25  * whatever it needs for inter-node communication.
26  *
27  * The comms level is two kernel threads that deal mainly with
28  * the receiving of messages from other nodes and passing them
29  * up to the mid-level comms layer (which understands the
30  * message format) for execution by the locking core, and
31  * a send thread which does all the setting up of connections
32  * to remote nodes and the sending of data. Threads are not allowed
33  * to send their own data because it may cause them to wait in times
34  * of high load. Also, this way, the sending thread can collect together
35  * messages bound for one node and send them in one block.
36  *
37  * lowcomms will choose to use either TCP or SCTP as its transport layer
38  * depending on the configuration variable 'protocol'. This should be set
39  * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
40  * cluster-wide mechanism as it must be the same on all nodes of the cluster
41  * for the DLM to function.
42  *
43  */
44
45 #include <asm/ioctls.h>
46 #include <net/sock.h>
47 #include <net/tcp.h>
48 #include <linux/pagemap.h>
49 #include <linux/file.h>
50 #include <linux/mutex.h>
51 #include <linux/sctp.h>
52 #include <linux/slab.h>
53 #include <net/sctp/sctp.h>
54 #include <net/ipv6.h>
55
56 #include <trace/events/dlm.h>
57 #include <trace/events/sock.h>
58
59 #include "dlm_internal.h"
60 #include "lowcomms.h"
61 #include "midcomms.h"
62 #include "memory.h"
63 #include "config.h"
64
65 #define DLM_SHUTDOWN_WAIT_TIMEOUT msecs_to_jiffies(5000)
66 #define NEEDED_RMEM (4*1024*1024)
67
68 struct connection {
69         struct socket *sock;    /* NULL if not connected */
70         uint32_t nodeid;        /* So we know who we are in the list */
71         /* this semaphore is used to allow parallel recv/send in read
72          * lock mode. When we release a sock we need to held the write lock.
73          *
74          * However this is locking code and not nice. When we remove the
75          * othercon handling we can look into other mechanism to synchronize
76          * io handling to call sock_release() at the right time.
77          */
78         struct rw_semaphore sock_lock;
79         unsigned long flags;
80 #define CF_APP_LIMITED 0
81 #define CF_RECV_PENDING 1
82 #define CF_SEND_PENDING 2
83 #define CF_RECV_INTR 3
84 #define CF_IO_STOP 4
85 #define CF_IS_OTHERCON 5
86         struct list_head writequeue;  /* List of outgoing writequeue_entries */
87         spinlock_t writequeue_lock;
88         int retries;
89         struct hlist_node list;
90         /* due some connect()/accept() races we currently have this cross over
91          * connection attempt second connection for one node.
92          *
93          * There is a solution to avoid the race by introducing a connect
94          * rule as e.g. our_nodeid > nodeid_to_connect who is allowed to
95          * connect. Otherside can connect but will only be considered that
96          * the other side wants to have a reconnect.
97          *
98          * However changing to this behaviour will break backwards compatible.
99          * In a DLM protocol major version upgrade we should remove this!
100          */
101         struct connection *othercon;
102         struct work_struct rwork; /* receive worker */
103         struct work_struct swork; /* send worker */
104         wait_queue_head_t shutdown_wait;
105         unsigned char rx_leftover_buf[DLM_MAX_SOCKET_BUFSIZE];
106         int rx_leftover;
107         int mark;
108         int addr_count;
109         int curr_addr_index;
110         struct sockaddr_storage addr[DLM_MAX_ADDR_COUNT];
111         spinlock_t addrs_lock;
112         struct rcu_head rcu;
113 };
114 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
115
116 struct listen_connection {
117         struct socket *sock;
118         struct work_struct rwork;
119 };
120
121 #define DLM_WQ_REMAIN_BYTES(e) (PAGE_SIZE - e->end)
122 #define DLM_WQ_LENGTH_BYTES(e) (e->end - e->offset)
123
124 /* An entry waiting to be sent */
125 struct writequeue_entry {
126         struct list_head list;
127         struct page *page;
128         int offset;
129         int len;
130         int end;
131         int users;
132         bool dirty;
133         struct connection *con;
134         struct list_head msgs;
135         struct kref ref;
136 };
137
138 struct dlm_msg {
139         struct writequeue_entry *entry;
140         struct dlm_msg *orig_msg;
141         bool retransmit;
142         void *ppc;
143         int len;
144         int idx; /* new()/commit() idx exchange */
145
146         struct list_head list;
147         struct kref ref;
148 };
149
150 struct processqueue_entry {
151         unsigned char *buf;
152         int nodeid;
153         int buflen;
154
155         struct list_head list;
156 };
157
158 struct dlm_proto_ops {
159         bool try_new_addr;
160         const char *name;
161         int proto;
162
163         int (*connect)(struct connection *con, struct socket *sock,
164                        struct sockaddr *addr, int addr_len);
165         void (*sockopts)(struct socket *sock);
166         int (*bind)(struct socket *sock);
167         int (*listen_validate)(void);
168         void (*listen_sockopts)(struct socket *sock);
169         int (*listen_bind)(struct socket *sock);
170 };
171
172 static struct listen_sock_callbacks {
173         void (*sk_error_report)(struct sock *);
174         void (*sk_data_ready)(struct sock *);
175         void (*sk_state_change)(struct sock *);
176         void (*sk_write_space)(struct sock *);
177 } listen_sock;
178
179 static struct listen_connection listen_con;
180 static struct sockaddr_storage dlm_local_addr[DLM_MAX_ADDR_COUNT];
181 static int dlm_local_count;
182
183 /* Work queues */
184 static struct workqueue_struct *io_workqueue;
185 static struct workqueue_struct *process_workqueue;
186
187 static struct hlist_head connection_hash[CONN_HASH_SIZE];
188 static DEFINE_SPINLOCK(connections_lock);
189 DEFINE_STATIC_SRCU(connections_srcu);
190
191 static const struct dlm_proto_ops *dlm_proto_ops;
192
193 #define DLM_IO_SUCCESS 0
194 #define DLM_IO_END 1
195 #define DLM_IO_EOF 2
196 #define DLM_IO_RESCHED 3
197
198 static void process_recv_sockets(struct work_struct *work);
199 static void process_send_sockets(struct work_struct *work);
200 static void process_dlm_messages(struct work_struct *work);
201
202 static DECLARE_WORK(process_work, process_dlm_messages);
203 static DEFINE_SPINLOCK(processqueue_lock);
204 static bool process_dlm_messages_pending;
205 static LIST_HEAD(processqueue);
206
207 bool dlm_lowcomms_is_running(void)
208 {
209         return !!listen_con.sock;
210 }
211
212 static void lowcomms_queue_swork(struct connection *con)
213 {
214         assert_spin_locked(&con->writequeue_lock);
215
216         if (!test_bit(CF_IO_STOP, &con->flags) &&
217             !test_bit(CF_APP_LIMITED, &con->flags) &&
218             !test_and_set_bit(CF_SEND_PENDING, &con->flags))
219                 queue_work(io_workqueue, &con->swork);
220 }
221
222 static void lowcomms_queue_rwork(struct connection *con)
223 {
224 #ifdef CONFIG_LOCKDEP
225         WARN_ON_ONCE(!lockdep_sock_is_held(con->sock->sk));
226 #endif
227
228         if (!test_bit(CF_IO_STOP, &con->flags) &&
229             !test_and_set_bit(CF_RECV_PENDING, &con->flags))
230                 queue_work(io_workqueue, &con->rwork);
231 }
232
233 static void writequeue_entry_ctor(void *data)
234 {
235         struct writequeue_entry *entry = data;
236
237         INIT_LIST_HEAD(&entry->msgs);
238 }
239
240 struct kmem_cache *dlm_lowcomms_writequeue_cache_create(void)
241 {
242         return kmem_cache_create("dlm_writequeue", sizeof(struct writequeue_entry),
243                                  0, 0, writequeue_entry_ctor);
244 }
245
246 struct kmem_cache *dlm_lowcomms_msg_cache_create(void)
247 {
248         return kmem_cache_create("dlm_msg", sizeof(struct dlm_msg), 0, 0, NULL);
249 }
250
251 /* need to held writequeue_lock */
252 static struct writequeue_entry *con_next_wq(struct connection *con)
253 {
254         struct writequeue_entry *e;
255
256         e = list_first_entry_or_null(&con->writequeue, struct writequeue_entry,
257                                      list);
258         /* if len is zero nothing is to send, if there are users filling
259          * buffers we wait until the users are done so we can send more.
260          */
261         if (!e || e->users || e->len == 0)
262                 return NULL;
263
264         return e;
265 }
266
267 static struct connection *__find_con(int nodeid, int r)
268 {
269         struct connection *con;
270
271         hlist_for_each_entry_rcu(con, &connection_hash[r], list) {
272                 if (con->nodeid == nodeid)
273                         return con;
274         }
275
276         return NULL;
277 }
278
279 static void dlm_con_init(struct connection *con, int nodeid)
280 {
281         con->nodeid = nodeid;
282         init_rwsem(&con->sock_lock);
283         INIT_LIST_HEAD(&con->writequeue);
284         spin_lock_init(&con->writequeue_lock);
285         INIT_WORK(&con->swork, process_send_sockets);
286         INIT_WORK(&con->rwork, process_recv_sockets);
287         spin_lock_init(&con->addrs_lock);
288         init_waitqueue_head(&con->shutdown_wait);
289 }
290
291 /*
292  * If 'allocation' is zero then we don't attempt to create a new
293  * connection structure for this node.
294  */
295 static struct connection *nodeid2con(int nodeid, gfp_t alloc)
296 {
297         struct connection *con, *tmp;
298         int r;
299
300         r = nodeid_hash(nodeid);
301         con = __find_con(nodeid, r);
302         if (con || !alloc)
303                 return con;
304
305         con = kzalloc(sizeof(*con), alloc);
306         if (!con)
307                 return NULL;
308
309         dlm_con_init(con, nodeid);
310
311         spin_lock(&connections_lock);
312         /* Because multiple workqueues/threads calls this function it can
313          * race on multiple cpu's. Instead of locking hot path __find_con()
314          * we just check in rare cases of recently added nodes again
315          * under protection of connections_lock. If this is the case we
316          * abort our connection creation and return the existing connection.
317          */
318         tmp = __find_con(nodeid, r);
319         if (tmp) {
320                 spin_unlock(&connections_lock);
321                 kfree(con);
322                 return tmp;
323         }
324
325         hlist_add_head_rcu(&con->list, &connection_hash[r]);
326         spin_unlock(&connections_lock);
327
328         return con;
329 }
330
331 static int addr_compare(const struct sockaddr_storage *x,
332                         const struct sockaddr_storage *y)
333 {
334         switch (x->ss_family) {
335         case AF_INET: {
336                 struct sockaddr_in *sinx = (struct sockaddr_in *)x;
337                 struct sockaddr_in *siny = (struct sockaddr_in *)y;
338                 if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
339                         return 0;
340                 if (sinx->sin_port != siny->sin_port)
341                         return 0;
342                 break;
343         }
344         case AF_INET6: {
345                 struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
346                 struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
347                 if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
348                         return 0;
349                 if (sinx->sin6_port != siny->sin6_port)
350                         return 0;
351                 break;
352         }
353         default:
354                 return 0;
355         }
356         return 1;
357 }
358
359 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
360                           struct sockaddr *sa_out, bool try_new_addr,
361                           unsigned int *mark)
362 {
363         struct sockaddr_storage sas;
364         struct connection *con;
365         int idx;
366
367         if (!dlm_local_count)
368                 return -1;
369
370         idx = srcu_read_lock(&connections_srcu);
371         con = nodeid2con(nodeid, 0);
372         if (!con) {
373                 srcu_read_unlock(&connections_srcu, idx);
374                 return -ENOENT;
375         }
376
377         spin_lock(&con->addrs_lock);
378         if (!con->addr_count) {
379                 spin_unlock(&con->addrs_lock);
380                 srcu_read_unlock(&connections_srcu, idx);
381                 return -ENOENT;
382         }
383
384         memcpy(&sas, &con->addr[con->curr_addr_index],
385                sizeof(struct sockaddr_storage));
386
387         if (try_new_addr) {
388                 con->curr_addr_index++;
389                 if (con->curr_addr_index == con->addr_count)
390                         con->curr_addr_index = 0;
391         }
392
393         *mark = con->mark;
394         spin_unlock(&con->addrs_lock);
395
396         if (sas_out)
397                 memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
398
399         if (!sa_out) {
400                 srcu_read_unlock(&connections_srcu, idx);
401                 return 0;
402         }
403
404         if (dlm_local_addr[0].ss_family == AF_INET) {
405                 struct sockaddr_in *in4  = (struct sockaddr_in *) &sas;
406                 struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
407                 ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
408         } else {
409                 struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &sas;
410                 struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
411                 ret6->sin6_addr = in6->sin6_addr;
412         }
413
414         srcu_read_unlock(&connections_srcu, idx);
415         return 0;
416 }
417
418 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid,
419                           unsigned int *mark)
420 {
421         struct connection *con;
422         int i, idx, addr_i;
423
424         idx = srcu_read_lock(&connections_srcu);
425         for (i = 0; i < CONN_HASH_SIZE; i++) {
426                 hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
427                         WARN_ON_ONCE(!con->addr_count);
428
429                         spin_lock(&con->addrs_lock);
430                         for (addr_i = 0; addr_i < con->addr_count; addr_i++) {
431                                 if (addr_compare(&con->addr[addr_i], addr)) {
432                                         *nodeid = con->nodeid;
433                                         *mark = con->mark;
434                                         spin_unlock(&con->addrs_lock);
435                                         srcu_read_unlock(&connections_srcu, idx);
436                                         return 0;
437                                 }
438                         }
439                         spin_unlock(&con->addrs_lock);
440                 }
441         }
442         srcu_read_unlock(&connections_srcu, idx);
443
444         return -ENOENT;
445 }
446
447 static bool dlm_lowcomms_con_has_addr(const struct connection *con,
448                                       const struct sockaddr_storage *addr)
449 {
450         int i;
451
452         for (i = 0; i < con->addr_count; i++) {
453                 if (addr_compare(&con->addr[i], addr))
454                         return true;
455         }
456
457         return false;
458 }
459
460 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
461 {
462         struct connection *con;
463         bool ret, idx;
464
465         idx = srcu_read_lock(&connections_srcu);
466         con = nodeid2con(nodeid, GFP_NOFS);
467         if (!con) {
468                 srcu_read_unlock(&connections_srcu, idx);
469                 return -ENOMEM;
470         }
471
472         spin_lock(&con->addrs_lock);
473         if (!con->addr_count) {
474                 memcpy(&con->addr[0], addr, sizeof(*addr));
475                 con->addr_count = 1;
476                 con->mark = dlm_config.ci_mark;
477                 spin_unlock(&con->addrs_lock);
478                 srcu_read_unlock(&connections_srcu, idx);
479                 return 0;
480         }
481
482         ret = dlm_lowcomms_con_has_addr(con, addr);
483         if (ret) {
484                 spin_unlock(&con->addrs_lock);
485                 srcu_read_unlock(&connections_srcu, idx);
486                 return -EEXIST;
487         }
488
489         if (con->addr_count >= DLM_MAX_ADDR_COUNT) {
490                 spin_unlock(&con->addrs_lock);
491                 srcu_read_unlock(&connections_srcu, idx);
492                 return -ENOSPC;
493         }
494
495         memcpy(&con->addr[con->addr_count++], addr, sizeof(*addr));
496         srcu_read_unlock(&connections_srcu, idx);
497         spin_unlock(&con->addrs_lock);
498         return 0;
499 }
500
501 /* Data available on socket or listen socket received a connect */
502 static void lowcomms_data_ready(struct sock *sk)
503 {
504         struct connection *con = sock2con(sk);
505
506         trace_sk_data_ready(sk);
507
508         set_bit(CF_RECV_INTR, &con->flags);
509         lowcomms_queue_rwork(con);
510 }
511
512 static void lowcomms_write_space(struct sock *sk)
513 {
514         struct connection *con = sock2con(sk);
515
516         clear_bit(SOCK_NOSPACE, &con->sock->flags);
517
518         spin_lock_bh(&con->writequeue_lock);
519         if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
520                 con->sock->sk->sk_write_pending--;
521                 clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
522         }
523
524         lowcomms_queue_swork(con);
525         spin_unlock_bh(&con->writequeue_lock);
526 }
527
528 static void lowcomms_state_change(struct sock *sk)
529 {
530         /* SCTP layer is not calling sk_data_ready when the connection
531          * is done, so we catch the signal through here.
532          */
533         if (sk->sk_shutdown == RCV_SHUTDOWN)
534                 lowcomms_data_ready(sk);
535 }
536
537 static void lowcomms_listen_data_ready(struct sock *sk)
538 {
539         trace_sk_data_ready(sk);
540
541         queue_work(io_workqueue, &listen_con.rwork);
542 }
543
544 int dlm_lowcomms_connect_node(int nodeid)
545 {
546         struct connection *con;
547         int idx;
548
549         idx = srcu_read_lock(&connections_srcu);
550         con = nodeid2con(nodeid, 0);
551         if (WARN_ON_ONCE(!con)) {
552                 srcu_read_unlock(&connections_srcu, idx);
553                 return -ENOENT;
554         }
555
556         down_read(&con->sock_lock);
557         if (!con->sock) {
558                 spin_lock_bh(&con->writequeue_lock);
559                 lowcomms_queue_swork(con);
560                 spin_unlock_bh(&con->writequeue_lock);
561         }
562         up_read(&con->sock_lock);
563         srcu_read_unlock(&connections_srcu, idx);
564
565         cond_resched();
566         return 0;
567 }
568
569 int dlm_lowcomms_nodes_set_mark(int nodeid, unsigned int mark)
570 {
571         struct connection *con;
572         int idx;
573
574         idx = srcu_read_lock(&connections_srcu);
575         con = nodeid2con(nodeid, 0);
576         if (!con) {
577                 srcu_read_unlock(&connections_srcu, idx);
578                 return -ENOENT;
579         }
580
581         spin_lock(&con->addrs_lock);
582         con->mark = mark;
583         spin_unlock(&con->addrs_lock);
584         srcu_read_unlock(&connections_srcu, idx);
585         return 0;
586 }
587
588 static void lowcomms_error_report(struct sock *sk)
589 {
590         struct connection *con = sock2con(sk);
591         struct inet_sock *inet;
592
593         inet = inet_sk(sk);
594         switch (sk->sk_family) {
595         case AF_INET:
596                 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
597                                    "sending to node %d at %pI4, dport %d, "
598                                    "sk_err=%d/%d\n", dlm_our_nodeid(),
599                                    con->nodeid, &inet->inet_daddr,
600                                    ntohs(inet->inet_dport), sk->sk_err,
601                                    READ_ONCE(sk->sk_err_soft));
602                 break;
603 #if IS_ENABLED(CONFIG_IPV6)
604         case AF_INET6:
605                 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
606                                    "sending to node %d at %pI6c, "
607                                    "dport %d, sk_err=%d/%d\n", dlm_our_nodeid(),
608                                    con->nodeid, &sk->sk_v6_daddr,
609                                    ntohs(inet->inet_dport), sk->sk_err,
610                                    READ_ONCE(sk->sk_err_soft));
611                 break;
612 #endif
613         default:
614                 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
615                                    "invalid socket family %d set, "
616                                    "sk_err=%d/%d\n", dlm_our_nodeid(),
617                                    sk->sk_family, sk->sk_err,
618                                    READ_ONCE(sk->sk_err_soft));
619                 break;
620         }
621
622         dlm_midcomms_unack_msg_resend(con->nodeid);
623
624         listen_sock.sk_error_report(sk);
625 }
626
627 static void restore_callbacks(struct sock *sk)
628 {
629 #ifdef CONFIG_LOCKDEP
630         WARN_ON_ONCE(!lockdep_sock_is_held(sk));
631 #endif
632
633         sk->sk_user_data = NULL;
634         sk->sk_data_ready = listen_sock.sk_data_ready;
635         sk->sk_state_change = listen_sock.sk_state_change;
636         sk->sk_write_space = listen_sock.sk_write_space;
637         sk->sk_error_report = listen_sock.sk_error_report;
638 }
639
640 /* Make a socket active */
641 static void add_sock(struct socket *sock, struct connection *con)
642 {
643         struct sock *sk = sock->sk;
644
645         lock_sock(sk);
646         con->sock = sock;
647
648         sk->sk_user_data = con;
649         sk->sk_data_ready = lowcomms_data_ready;
650         sk->sk_write_space = lowcomms_write_space;
651         if (dlm_config.ci_protocol == DLM_PROTO_SCTP)
652                 sk->sk_state_change = lowcomms_state_change;
653         sk->sk_allocation = GFP_NOFS;
654         sk->sk_use_task_frag = false;
655         sk->sk_error_report = lowcomms_error_report;
656         release_sock(sk);
657 }
658
659 /* Add the port number to an IPv6 or 4 sockaddr and return the address
660    length */
661 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
662                           int *addr_len)
663 {
664         saddr->ss_family =  dlm_local_addr[0].ss_family;
665         if (saddr->ss_family == AF_INET) {
666                 struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
667                 in4_addr->sin_port = cpu_to_be16(port);
668                 *addr_len = sizeof(struct sockaddr_in);
669                 memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
670         } else {
671                 struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
672                 in6_addr->sin6_port = cpu_to_be16(port);
673                 *addr_len = sizeof(struct sockaddr_in6);
674         }
675         memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
676 }
677
678 static void dlm_page_release(struct kref *kref)
679 {
680         struct writequeue_entry *e = container_of(kref, struct writequeue_entry,
681                                                   ref);
682
683         __free_page(e->page);
684         dlm_free_writequeue(e);
685 }
686
687 static void dlm_msg_release(struct kref *kref)
688 {
689         struct dlm_msg *msg = container_of(kref, struct dlm_msg, ref);
690
691         kref_put(&msg->entry->ref, dlm_page_release);
692         dlm_free_msg(msg);
693 }
694
695 static void free_entry(struct writequeue_entry *e)
696 {
697         struct dlm_msg *msg, *tmp;
698
699         list_for_each_entry_safe(msg, tmp, &e->msgs, list) {
700                 if (msg->orig_msg) {
701                         msg->orig_msg->retransmit = false;
702                         kref_put(&msg->orig_msg->ref, dlm_msg_release);
703                 }
704
705                 list_del(&msg->list);
706                 kref_put(&msg->ref, dlm_msg_release);
707         }
708
709         list_del(&e->list);
710         kref_put(&e->ref, dlm_page_release);
711 }
712
713 static void dlm_close_sock(struct socket **sock)
714 {
715         lock_sock((*sock)->sk);
716         restore_callbacks((*sock)->sk);
717         release_sock((*sock)->sk);
718
719         sock_release(*sock);
720         *sock = NULL;
721 }
722
723 static void allow_connection_io(struct connection *con)
724 {
725         if (con->othercon)
726                 clear_bit(CF_IO_STOP, &con->othercon->flags);
727         clear_bit(CF_IO_STOP, &con->flags);
728 }
729
730 static void stop_connection_io(struct connection *con)
731 {
732         if (con->othercon)
733                 stop_connection_io(con->othercon);
734
735         spin_lock_bh(&con->writequeue_lock);
736         set_bit(CF_IO_STOP, &con->flags);
737         spin_unlock_bh(&con->writequeue_lock);
738
739         down_write(&con->sock_lock);
740         if (con->sock) {
741                 lock_sock(con->sock->sk);
742                 restore_callbacks(con->sock->sk);
743                 release_sock(con->sock->sk);
744         }
745         up_write(&con->sock_lock);
746
747         cancel_work_sync(&con->swork);
748         cancel_work_sync(&con->rwork);
749 }
750
751 /* Close a remote connection and tidy up */
752 static void close_connection(struct connection *con, bool and_other)
753 {
754         struct writequeue_entry *e;
755
756         if (con->othercon && and_other)
757                 close_connection(con->othercon, false);
758
759         down_write(&con->sock_lock);
760         if (!con->sock) {
761                 up_write(&con->sock_lock);
762                 return;
763         }
764
765         dlm_close_sock(&con->sock);
766
767         /* if we send a writequeue entry only a half way, we drop the
768          * whole entry because reconnection and that we not start of the
769          * middle of a msg which will confuse the other end.
770          *
771          * we can always drop messages because retransmits, but what we
772          * cannot allow is to transmit half messages which may be processed
773          * at the other side.
774          *
775          * our policy is to start on a clean state when disconnects, we don't
776          * know what's send/received on transport layer in this case.
777          */
778         spin_lock_bh(&con->writequeue_lock);
779         if (!list_empty(&con->writequeue)) {
780                 e = list_first_entry(&con->writequeue, struct writequeue_entry,
781                                      list);
782                 if (e->dirty)
783                         free_entry(e);
784         }
785         spin_unlock_bh(&con->writequeue_lock);
786
787         con->rx_leftover = 0;
788         con->retries = 0;
789         clear_bit(CF_APP_LIMITED, &con->flags);
790         clear_bit(CF_RECV_PENDING, &con->flags);
791         clear_bit(CF_SEND_PENDING, &con->flags);
792         up_write(&con->sock_lock);
793 }
794
795 static void shutdown_connection(struct connection *con, bool and_other)
796 {
797         int ret;
798
799         if (con->othercon && and_other)
800                 shutdown_connection(con->othercon, false);
801
802         flush_workqueue(io_workqueue);
803         down_read(&con->sock_lock);
804         /* nothing to shutdown */
805         if (!con->sock) {
806                 up_read(&con->sock_lock);
807                 return;
808         }
809
810         ret = kernel_sock_shutdown(con->sock, SHUT_WR);
811         up_read(&con->sock_lock);
812         if (ret) {
813                 log_print("Connection %p failed to shutdown: %d will force close",
814                           con, ret);
815                 goto force_close;
816         } else {
817                 ret = wait_event_timeout(con->shutdown_wait, !con->sock,
818                                          DLM_SHUTDOWN_WAIT_TIMEOUT);
819                 if (ret == 0) {
820                         log_print("Connection %p shutdown timed out, will force close",
821                                   con);
822                         goto force_close;
823                 }
824         }
825
826         return;
827
828 force_close:
829         close_connection(con, false);
830 }
831
832 static struct processqueue_entry *new_processqueue_entry(int nodeid,
833                                                          int buflen)
834 {
835         struct processqueue_entry *pentry;
836
837         pentry = kmalloc(sizeof(*pentry), GFP_NOFS);
838         if (!pentry)
839                 return NULL;
840
841         pentry->buf = kmalloc(buflen, GFP_NOFS);
842         if (!pentry->buf) {
843                 kfree(pentry);
844                 return NULL;
845         }
846
847         pentry->nodeid = nodeid;
848         return pentry;
849 }
850
851 static void free_processqueue_entry(struct processqueue_entry *pentry)
852 {
853         kfree(pentry->buf);
854         kfree(pentry);
855 }
856
857 struct dlm_processed_nodes {
858         int nodeid;
859
860         struct list_head list;
861 };
862
863 static void process_dlm_messages(struct work_struct *work)
864 {
865         struct processqueue_entry *pentry;
866
867         spin_lock(&processqueue_lock);
868         pentry = list_first_entry_or_null(&processqueue,
869                                           struct processqueue_entry, list);
870         if (WARN_ON_ONCE(!pentry)) {
871                 process_dlm_messages_pending = false;
872                 spin_unlock(&processqueue_lock);
873                 return;
874         }
875
876         list_del(&pentry->list);
877         spin_unlock(&processqueue_lock);
878
879         for (;;) {
880                 dlm_process_incoming_buffer(pentry->nodeid, pentry->buf,
881                                             pentry->buflen);
882                 free_processqueue_entry(pentry);
883
884                 spin_lock(&processqueue_lock);
885                 pentry = list_first_entry_or_null(&processqueue,
886                                                   struct processqueue_entry, list);
887                 if (!pentry) {
888                         process_dlm_messages_pending = false;
889                         spin_unlock(&processqueue_lock);
890                         break;
891                 }
892
893                 list_del(&pentry->list);
894                 spin_unlock(&processqueue_lock);
895         }
896 }
897
898 /* Data received from remote end */
899 static int receive_from_sock(struct connection *con, int buflen)
900 {
901         struct processqueue_entry *pentry;
902         int ret, buflen_real;
903         struct msghdr msg;
904         struct kvec iov;
905
906         pentry = new_processqueue_entry(con->nodeid, buflen);
907         if (!pentry)
908                 return DLM_IO_RESCHED;
909
910         memcpy(pentry->buf, con->rx_leftover_buf, con->rx_leftover);
911
912         /* calculate new buffer parameter regarding last receive and
913          * possible leftover bytes
914          */
915         iov.iov_base = pentry->buf + con->rx_leftover;
916         iov.iov_len = buflen - con->rx_leftover;
917
918         memset(&msg, 0, sizeof(msg));
919         msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
920         clear_bit(CF_RECV_INTR, &con->flags);
921 again:
922         ret = kernel_recvmsg(con->sock, &msg, &iov, 1, iov.iov_len,
923                              msg.msg_flags);
924         trace_dlm_recv(con->nodeid, ret);
925         if (ret == -EAGAIN) {
926                 lock_sock(con->sock->sk);
927                 if (test_and_clear_bit(CF_RECV_INTR, &con->flags)) {
928                         release_sock(con->sock->sk);
929                         goto again;
930                 }
931
932                 clear_bit(CF_RECV_PENDING, &con->flags);
933                 release_sock(con->sock->sk);
934                 free_processqueue_entry(pentry);
935                 return DLM_IO_END;
936         } else if (ret == 0) {
937                 /* close will clear CF_RECV_PENDING */
938                 free_processqueue_entry(pentry);
939                 return DLM_IO_EOF;
940         } else if (ret < 0) {
941                 free_processqueue_entry(pentry);
942                 return ret;
943         }
944
945         /* new buflen according readed bytes and leftover from last receive */
946         buflen_real = ret + con->rx_leftover;
947         ret = dlm_validate_incoming_buffer(con->nodeid, pentry->buf,
948                                            buflen_real);
949         if (ret < 0) {
950                 free_processqueue_entry(pentry);
951                 return ret;
952         }
953
954         pentry->buflen = ret;
955
956         /* calculate leftover bytes from process and put it into begin of
957          * the receive buffer, so next receive we have the full message
958          * at the start address of the receive buffer.
959          */
960         con->rx_leftover = buflen_real - ret;
961         memmove(con->rx_leftover_buf, pentry->buf + ret,
962                 con->rx_leftover);
963
964         spin_lock(&processqueue_lock);
965         list_add_tail(&pentry->list, &processqueue);
966         if (!process_dlm_messages_pending) {
967                 process_dlm_messages_pending = true;
968                 queue_work(process_workqueue, &process_work);
969         }
970         spin_unlock(&processqueue_lock);
971
972         return DLM_IO_SUCCESS;
973 }
974
975 /* Listening socket is busy, accept a connection */
976 static int accept_from_sock(void)
977 {
978         struct sockaddr_storage peeraddr;
979         int len, idx, result, nodeid;
980         struct connection *newcon;
981         struct socket *newsock;
982         unsigned int mark;
983
984         result = kernel_accept(listen_con.sock, &newsock, O_NONBLOCK);
985         if (result == -EAGAIN)
986                 return DLM_IO_END;
987         else if (result < 0)
988                 goto accept_err;
989
990         /* Get the connected socket's peer */
991         memset(&peeraddr, 0, sizeof(peeraddr));
992         len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2);
993         if (len < 0) {
994                 result = -ECONNABORTED;
995                 goto accept_err;
996         }
997
998         /* Get the new node's NODEID */
999         make_sockaddr(&peeraddr, 0, &len);
1000         if (addr_to_nodeid(&peeraddr, &nodeid, &mark)) {
1001                 switch (peeraddr.ss_family) {
1002                 case AF_INET: {
1003                         struct sockaddr_in *sin = (struct sockaddr_in *)&peeraddr;
1004
1005                         log_print("connect from non cluster IPv4 node %pI4",
1006                                   &sin->sin_addr);
1007                         break;
1008                 }
1009 #if IS_ENABLED(CONFIG_IPV6)
1010                 case AF_INET6: {
1011                         struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&peeraddr;
1012
1013                         log_print("connect from non cluster IPv6 node %pI6c",
1014                                   &sin6->sin6_addr);
1015                         break;
1016                 }
1017 #endif
1018                 default:
1019                         log_print("invalid family from non cluster node");
1020                         break;
1021                 }
1022
1023                 sock_release(newsock);
1024                 return -1;
1025         }
1026
1027         log_print("got connection from %d", nodeid);
1028
1029         /*  Check to see if we already have a connection to this node. This
1030          *  could happen if the two nodes initiate a connection at roughly
1031          *  the same time and the connections cross on the wire.
1032          *  In this case we store the incoming one in "othercon"
1033          */
1034         idx = srcu_read_lock(&connections_srcu);
1035         newcon = nodeid2con(nodeid, 0);
1036         if (WARN_ON_ONCE(!newcon)) {
1037                 srcu_read_unlock(&connections_srcu, idx);
1038                 result = -ENOENT;
1039                 goto accept_err;
1040         }
1041
1042         sock_set_mark(newsock->sk, mark);
1043
1044         down_write(&newcon->sock_lock);
1045         if (newcon->sock) {
1046                 struct connection *othercon = newcon->othercon;
1047
1048                 if (!othercon) {
1049                         othercon = kzalloc(sizeof(*othercon), GFP_NOFS);
1050                         if (!othercon) {
1051                                 log_print("failed to allocate incoming socket");
1052                                 up_write(&newcon->sock_lock);
1053                                 srcu_read_unlock(&connections_srcu, idx);
1054                                 result = -ENOMEM;
1055                                 goto accept_err;
1056                         }
1057
1058                         dlm_con_init(othercon, nodeid);
1059                         lockdep_set_subclass(&othercon->sock_lock, 1);
1060                         newcon->othercon = othercon;
1061                         set_bit(CF_IS_OTHERCON, &othercon->flags);
1062                 } else {
1063                         /* close other sock con if we have something new */
1064                         close_connection(othercon, false);
1065                 }
1066
1067                 down_write(&othercon->sock_lock);
1068                 add_sock(newsock, othercon);
1069
1070                 /* check if we receved something while adding */
1071                 lock_sock(othercon->sock->sk);
1072                 lowcomms_queue_rwork(othercon);
1073                 release_sock(othercon->sock->sk);
1074                 up_write(&othercon->sock_lock);
1075         }
1076         else {
1077                 /* accept copies the sk after we've saved the callbacks, so we
1078                    don't want to save them a second time or comm errors will
1079                    result in calling sk_error_report recursively. */
1080                 add_sock(newsock, newcon);
1081
1082                 /* check if we receved something while adding */
1083                 lock_sock(newcon->sock->sk);
1084                 lowcomms_queue_rwork(newcon);
1085                 release_sock(newcon->sock->sk);
1086         }
1087         up_write(&newcon->sock_lock);
1088         srcu_read_unlock(&connections_srcu, idx);
1089
1090         return DLM_IO_SUCCESS;
1091
1092 accept_err:
1093         if (newsock)
1094                 sock_release(newsock);
1095
1096         return result;
1097 }
1098
1099 /*
1100  * writequeue_entry_complete - try to delete and free write queue entry
1101  * @e: write queue entry to try to delete
1102  * @completed: bytes completed
1103  *
1104  * writequeue_lock must be held.
1105  */
1106 static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
1107 {
1108         e->offset += completed;
1109         e->len -= completed;
1110         /* signal that page was half way transmitted */
1111         e->dirty = true;
1112
1113         if (e->len == 0 && e->users == 0)
1114                 free_entry(e);
1115 }
1116
1117 /*
1118  * sctp_bind_addrs - bind a SCTP socket to all our addresses
1119  */
1120 static int sctp_bind_addrs(struct socket *sock, uint16_t port)
1121 {
1122         struct sockaddr_storage localaddr;
1123         struct sockaddr *addr = (struct sockaddr *)&localaddr;
1124         int i, addr_len, result = 0;
1125
1126         for (i = 0; i < dlm_local_count; i++) {
1127                 memcpy(&localaddr, &dlm_local_addr[i], sizeof(localaddr));
1128                 make_sockaddr(&localaddr, port, &addr_len);
1129
1130                 if (!i)
1131                         result = kernel_bind(sock, addr, addr_len);
1132                 else
1133                         result = sock_bind_add(sock->sk, addr, addr_len);
1134
1135                 if (result < 0) {
1136                         log_print("Can't bind to %d addr number %d, %d.\n",
1137                                   port, i + 1, result);
1138                         break;
1139                 }
1140         }
1141         return result;
1142 }
1143
1144 /* Get local addresses */
1145 static void init_local(void)
1146 {
1147         struct sockaddr_storage sas;
1148         int i;
1149
1150         dlm_local_count = 0;
1151         for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1152                 if (dlm_our_addr(&sas, i))
1153                         break;
1154
1155                 memcpy(&dlm_local_addr[dlm_local_count++], &sas, sizeof(sas));
1156         }
1157 }
1158
1159 static struct writequeue_entry *new_writequeue_entry(struct connection *con)
1160 {
1161         struct writequeue_entry *entry;
1162
1163         entry = dlm_allocate_writequeue();
1164         if (!entry)
1165                 return NULL;
1166
1167         entry->page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
1168         if (!entry->page) {
1169                 dlm_free_writequeue(entry);
1170                 return NULL;
1171         }
1172
1173         entry->offset = 0;
1174         entry->len = 0;
1175         entry->end = 0;
1176         entry->dirty = false;
1177         entry->con = con;
1178         entry->users = 1;
1179         kref_init(&entry->ref);
1180         return entry;
1181 }
1182
1183 static struct writequeue_entry *new_wq_entry(struct connection *con, int len,
1184                                              char **ppc, void (*cb)(void *data),
1185                                              void *data)
1186 {
1187         struct writequeue_entry *e;
1188
1189         spin_lock_bh(&con->writequeue_lock);
1190         if (!list_empty(&con->writequeue)) {
1191                 e = list_last_entry(&con->writequeue, struct writequeue_entry, list);
1192                 if (DLM_WQ_REMAIN_BYTES(e) >= len) {
1193                         kref_get(&e->ref);
1194
1195                         *ppc = page_address(e->page) + e->end;
1196                         if (cb)
1197                                 cb(data);
1198
1199                         e->end += len;
1200                         e->users++;
1201                         goto out;
1202                 }
1203         }
1204
1205         e = new_writequeue_entry(con);
1206         if (!e)
1207                 goto out;
1208
1209         kref_get(&e->ref);
1210         *ppc = page_address(e->page);
1211         e->end += len;
1212         if (cb)
1213                 cb(data);
1214
1215         list_add_tail(&e->list, &con->writequeue);
1216
1217 out:
1218         spin_unlock_bh(&con->writequeue_lock);
1219         return e;
1220 };
1221
1222 static struct dlm_msg *dlm_lowcomms_new_msg_con(struct connection *con, int len,
1223                                                 gfp_t allocation, char **ppc,
1224                                                 void (*cb)(void *data),
1225                                                 void *data)
1226 {
1227         struct writequeue_entry *e;
1228         struct dlm_msg *msg;
1229
1230         msg = dlm_allocate_msg(allocation);
1231         if (!msg)
1232                 return NULL;
1233
1234         kref_init(&msg->ref);
1235
1236         e = new_wq_entry(con, len, ppc, cb, data);
1237         if (!e) {
1238                 dlm_free_msg(msg);
1239                 return NULL;
1240         }
1241
1242         msg->retransmit = false;
1243         msg->orig_msg = NULL;
1244         msg->ppc = *ppc;
1245         msg->len = len;
1246         msg->entry = e;
1247
1248         return msg;
1249 }
1250
1251 /* avoid false positive for nodes_srcu, unlock happens in
1252  * dlm_lowcomms_commit_msg which is a must call if success
1253  */
1254 #ifndef __CHECKER__
1255 struct dlm_msg *dlm_lowcomms_new_msg(int nodeid, int len, gfp_t allocation,
1256                                      char **ppc, void (*cb)(void *data),
1257                                      void *data)
1258 {
1259         struct connection *con;
1260         struct dlm_msg *msg;
1261         int idx;
1262
1263         if (len > DLM_MAX_SOCKET_BUFSIZE ||
1264             len < sizeof(struct dlm_header)) {
1265                 BUILD_BUG_ON(PAGE_SIZE < DLM_MAX_SOCKET_BUFSIZE);
1266                 log_print("failed to allocate a buffer of size %d", len);
1267                 WARN_ON_ONCE(1);
1268                 return NULL;
1269         }
1270
1271         idx = srcu_read_lock(&connections_srcu);
1272         con = nodeid2con(nodeid, 0);
1273         if (WARN_ON_ONCE(!con)) {
1274                 srcu_read_unlock(&connections_srcu, idx);
1275                 return NULL;
1276         }
1277
1278         msg = dlm_lowcomms_new_msg_con(con, len, allocation, ppc, cb, data);
1279         if (!msg) {
1280                 srcu_read_unlock(&connections_srcu, idx);
1281                 return NULL;
1282         }
1283
1284         /* for dlm_lowcomms_commit_msg() */
1285         kref_get(&msg->ref);
1286         /* we assume if successful commit must called */
1287         msg->idx = idx;
1288         return msg;
1289 }
1290 #endif
1291
1292 static void _dlm_lowcomms_commit_msg(struct dlm_msg *msg)
1293 {
1294         struct writequeue_entry *e = msg->entry;
1295         struct connection *con = e->con;
1296         int users;
1297
1298         spin_lock_bh(&con->writequeue_lock);
1299         kref_get(&msg->ref);
1300         list_add(&msg->list, &e->msgs);
1301
1302         users = --e->users;
1303         if (users)
1304                 goto out;
1305
1306         e->len = DLM_WQ_LENGTH_BYTES(e);
1307
1308         lowcomms_queue_swork(con);
1309
1310 out:
1311         spin_unlock_bh(&con->writequeue_lock);
1312         return;
1313 }
1314
1315 /* avoid false positive for nodes_srcu, lock was happen in
1316  * dlm_lowcomms_new_msg
1317  */
1318 #ifndef __CHECKER__
1319 void dlm_lowcomms_commit_msg(struct dlm_msg *msg)
1320 {
1321         _dlm_lowcomms_commit_msg(msg);
1322         srcu_read_unlock(&connections_srcu, msg->idx);
1323         /* because dlm_lowcomms_new_msg() */
1324         kref_put(&msg->ref, dlm_msg_release);
1325 }
1326 #endif
1327
1328 void dlm_lowcomms_put_msg(struct dlm_msg *msg)
1329 {
1330         kref_put(&msg->ref, dlm_msg_release);
1331 }
1332
1333 /* does not held connections_srcu, usage lowcomms_error_report only */
1334 int dlm_lowcomms_resend_msg(struct dlm_msg *msg)
1335 {
1336         struct dlm_msg *msg_resend;
1337         char *ppc;
1338
1339         if (msg->retransmit)
1340                 return 1;
1341
1342         msg_resend = dlm_lowcomms_new_msg_con(msg->entry->con, msg->len,
1343                                               GFP_ATOMIC, &ppc, NULL, NULL);
1344         if (!msg_resend)
1345                 return -ENOMEM;
1346
1347         msg->retransmit = true;
1348         kref_get(&msg->ref);
1349         msg_resend->orig_msg = msg;
1350
1351         memcpy(ppc, msg->ppc, msg->len);
1352         _dlm_lowcomms_commit_msg(msg_resend);
1353         dlm_lowcomms_put_msg(msg_resend);
1354
1355         return 0;
1356 }
1357
1358 /* Send a message */
1359 static int send_to_sock(struct connection *con)
1360 {
1361         struct writequeue_entry *e;
1362         struct bio_vec bvec;
1363         struct msghdr msg = {
1364                 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT | MSG_NOSIGNAL,
1365         };
1366         int len, offset, ret;
1367
1368         spin_lock_bh(&con->writequeue_lock);
1369         e = con_next_wq(con);
1370         if (!e) {
1371                 clear_bit(CF_SEND_PENDING, &con->flags);
1372                 spin_unlock_bh(&con->writequeue_lock);
1373                 return DLM_IO_END;
1374         }
1375
1376         len = e->len;
1377         offset = e->offset;
1378         WARN_ON_ONCE(len == 0 && e->users == 0);
1379         spin_unlock_bh(&con->writequeue_lock);
1380
1381         bvec_set_page(&bvec, e->page, len, offset);
1382         iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1383         ret = sock_sendmsg(con->sock, &msg);
1384         trace_dlm_send(con->nodeid, ret);
1385         if (ret == -EAGAIN || ret == 0) {
1386                 lock_sock(con->sock->sk);
1387                 spin_lock_bh(&con->writequeue_lock);
1388                 if (test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
1389                     !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1390                         /* Notify TCP that we're limited by the
1391                          * application window size.
1392                          */
1393                         set_bit(SOCK_NOSPACE, &con->sock->sk->sk_socket->flags);
1394                         con->sock->sk->sk_write_pending++;
1395
1396                         clear_bit(CF_SEND_PENDING, &con->flags);
1397                         spin_unlock_bh(&con->writequeue_lock);
1398                         release_sock(con->sock->sk);
1399
1400                         /* wait for write_space() event */
1401                         return DLM_IO_END;
1402                 }
1403                 spin_unlock_bh(&con->writequeue_lock);
1404                 release_sock(con->sock->sk);
1405
1406                 return DLM_IO_RESCHED;
1407         } else if (ret < 0) {
1408                 return ret;
1409         }
1410
1411         spin_lock_bh(&con->writequeue_lock);
1412         writequeue_entry_complete(e, ret);
1413         spin_unlock_bh(&con->writequeue_lock);
1414
1415         return DLM_IO_SUCCESS;
1416 }
1417
1418 static void clean_one_writequeue(struct connection *con)
1419 {
1420         struct writequeue_entry *e, *safe;
1421
1422         spin_lock_bh(&con->writequeue_lock);
1423         list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1424                 free_entry(e);
1425         }
1426         spin_unlock_bh(&con->writequeue_lock);
1427 }
1428
1429 static void connection_release(struct rcu_head *rcu)
1430 {
1431         struct connection *con = container_of(rcu, struct connection, rcu);
1432
1433         WARN_ON_ONCE(!list_empty(&con->writequeue));
1434         WARN_ON_ONCE(con->sock);
1435         kfree(con);
1436 }
1437
1438 /* Called from recovery when it knows that a node has
1439    left the cluster */
1440 int dlm_lowcomms_close(int nodeid)
1441 {
1442         struct connection *con;
1443         int idx;
1444
1445         log_print("closing connection to node %d", nodeid);
1446
1447         idx = srcu_read_lock(&connections_srcu);
1448         con = nodeid2con(nodeid, 0);
1449         if (WARN_ON_ONCE(!con)) {
1450                 srcu_read_unlock(&connections_srcu, idx);
1451                 return -ENOENT;
1452         }
1453
1454         stop_connection_io(con);
1455         log_print("io handling for node: %d stopped", nodeid);
1456         close_connection(con, true);
1457
1458         spin_lock(&connections_lock);
1459         hlist_del_rcu(&con->list);
1460         spin_unlock(&connections_lock);
1461
1462         clean_one_writequeue(con);
1463         call_srcu(&connections_srcu, &con->rcu, connection_release);
1464         if (con->othercon) {
1465                 clean_one_writequeue(con->othercon);
1466                 call_srcu(&connections_srcu, &con->othercon->rcu, connection_release);
1467         }
1468         srcu_read_unlock(&connections_srcu, idx);
1469
1470         /* for debugging we print when we are done to compare with other
1471          * messages in between. This function need to be correctly synchronized
1472          * with io handling
1473          */
1474         log_print("closing connection to node %d done", nodeid);
1475
1476         return 0;
1477 }
1478
1479 /* Receive worker function */
1480 static void process_recv_sockets(struct work_struct *work)
1481 {
1482         struct connection *con = container_of(work, struct connection, rwork);
1483         int ret, buflen;
1484
1485         down_read(&con->sock_lock);
1486         if (!con->sock) {
1487                 up_read(&con->sock_lock);
1488                 return;
1489         }
1490
1491         buflen = READ_ONCE(dlm_config.ci_buffer_size);
1492         do {
1493                 ret = receive_from_sock(con, buflen);
1494         } while (ret == DLM_IO_SUCCESS);
1495         up_read(&con->sock_lock);
1496
1497         switch (ret) {
1498         case DLM_IO_END:
1499                 /* CF_RECV_PENDING cleared */
1500                 break;
1501         case DLM_IO_EOF:
1502                 close_connection(con, false);
1503                 wake_up(&con->shutdown_wait);
1504                 /* CF_RECV_PENDING cleared */
1505                 break;
1506         case DLM_IO_RESCHED:
1507                 cond_resched();
1508                 queue_work(io_workqueue, &con->rwork);
1509                 /* CF_RECV_PENDING not cleared */
1510                 break;
1511         default:
1512                 if (ret < 0) {
1513                         if (test_bit(CF_IS_OTHERCON, &con->flags)) {
1514                                 close_connection(con, false);
1515                         } else {
1516                                 spin_lock_bh(&con->writequeue_lock);
1517                                 lowcomms_queue_swork(con);
1518                                 spin_unlock_bh(&con->writequeue_lock);
1519                         }
1520
1521                         /* CF_RECV_PENDING cleared for othercon
1522                          * we trigger send queue if not already done
1523                          * and process_send_sockets will handle it
1524                          */
1525                         break;
1526                 }
1527
1528                 WARN_ON_ONCE(1);
1529                 break;
1530         }
1531 }
1532
1533 static void process_listen_recv_socket(struct work_struct *work)
1534 {
1535         int ret;
1536
1537         if (WARN_ON_ONCE(!listen_con.sock))
1538                 return;
1539
1540         do {
1541                 ret = accept_from_sock();
1542         } while (ret == DLM_IO_SUCCESS);
1543
1544         if (ret < 0)
1545                 log_print("critical error accepting connection: %d", ret);
1546 }
1547
1548 static int dlm_connect(struct connection *con)
1549 {
1550         struct sockaddr_storage addr;
1551         int result, addr_len;
1552         struct socket *sock;
1553         unsigned int mark;
1554
1555         memset(&addr, 0, sizeof(addr));
1556         result = nodeid_to_addr(con->nodeid, &addr, NULL,
1557                                 dlm_proto_ops->try_new_addr, &mark);
1558         if (result < 0) {
1559                 log_print("no address for nodeid %d", con->nodeid);
1560                 return result;
1561         }
1562
1563         /* Create a socket to communicate with */
1564         result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family,
1565                                   SOCK_STREAM, dlm_proto_ops->proto, &sock);
1566         if (result < 0)
1567                 return result;
1568
1569         sock_set_mark(sock->sk, mark);
1570         dlm_proto_ops->sockopts(sock);
1571
1572         result = dlm_proto_ops->bind(sock);
1573         if (result < 0) {
1574                 sock_release(sock);
1575                 return result;
1576         }
1577
1578         add_sock(sock, con);
1579
1580         log_print_ratelimited("connecting to %d", con->nodeid);
1581         make_sockaddr(&addr, dlm_config.ci_tcp_port, &addr_len);
1582         result = dlm_proto_ops->connect(con, sock, (struct sockaddr *)&addr,
1583                                         addr_len);
1584         switch (result) {
1585         case -EINPROGRESS:
1586                 /* not an error */
1587                 fallthrough;
1588         case 0:
1589                 break;
1590         default:
1591                 if (result < 0)
1592                         dlm_close_sock(&con->sock);
1593
1594                 break;
1595         }
1596
1597         return result;
1598 }
1599
1600 /* Send worker function */
1601 static void process_send_sockets(struct work_struct *work)
1602 {
1603         struct connection *con = container_of(work, struct connection, swork);
1604         int ret;
1605
1606         WARN_ON_ONCE(test_bit(CF_IS_OTHERCON, &con->flags));
1607
1608         down_read(&con->sock_lock);
1609         if (!con->sock) {
1610                 up_read(&con->sock_lock);
1611                 down_write(&con->sock_lock);
1612                 if (!con->sock) {
1613                         ret = dlm_connect(con);
1614                         switch (ret) {
1615                         case 0:
1616                                 break;
1617                         case -EINPROGRESS:
1618                                 /* avoid spamming resched on connection
1619                                  * we might can switch to a state_change
1620                                  * event based mechanism if established
1621                                  */
1622                                 msleep(100);
1623                                 break;
1624                         default:
1625                                 /* CF_SEND_PENDING not cleared */
1626                                 up_write(&con->sock_lock);
1627                                 log_print("connect to node %d try %d error %d",
1628                                           con->nodeid, con->retries++, ret);
1629                                 msleep(1000);
1630                                 /* For now we try forever to reconnect. In
1631                                  * future we should send a event to cluster
1632                                  * manager to fence itself after certain amount
1633                                  * of retries.
1634                                  */
1635                                 queue_work(io_workqueue, &con->swork);
1636                                 return;
1637                         }
1638                 }
1639                 downgrade_write(&con->sock_lock);
1640         }
1641
1642         do {
1643                 ret = send_to_sock(con);
1644         } while (ret == DLM_IO_SUCCESS);
1645         up_read(&con->sock_lock);
1646
1647         switch (ret) {
1648         case DLM_IO_END:
1649                 /* CF_SEND_PENDING cleared */
1650                 break;
1651         case DLM_IO_RESCHED:
1652                 /* CF_SEND_PENDING not cleared */
1653                 cond_resched();
1654                 queue_work(io_workqueue, &con->swork);
1655                 break;
1656         default:
1657                 if (ret < 0) {
1658                         close_connection(con, false);
1659
1660                         /* CF_SEND_PENDING cleared */
1661                         spin_lock_bh(&con->writequeue_lock);
1662                         lowcomms_queue_swork(con);
1663                         spin_unlock_bh(&con->writequeue_lock);
1664                         break;
1665                 }
1666
1667                 WARN_ON_ONCE(1);
1668                 break;
1669         }
1670 }
1671
1672 static void work_stop(void)
1673 {
1674         if (io_workqueue) {
1675                 destroy_workqueue(io_workqueue);
1676                 io_workqueue = NULL;
1677         }
1678
1679         if (process_workqueue) {
1680                 destroy_workqueue(process_workqueue);
1681                 process_workqueue = NULL;
1682         }
1683 }
1684
1685 static int work_start(void)
1686 {
1687         io_workqueue = alloc_workqueue("dlm_io", WQ_HIGHPRI | WQ_MEM_RECLAIM |
1688                                        WQ_UNBOUND, 0);
1689         if (!io_workqueue) {
1690                 log_print("can't start dlm_io");
1691                 return -ENOMEM;
1692         }
1693
1694         /* ordered dlm message process queue,
1695          * should be converted to a tasklet
1696          */
1697         process_workqueue = alloc_ordered_workqueue("dlm_process",
1698                                                     WQ_HIGHPRI | WQ_MEM_RECLAIM);
1699         if (!process_workqueue) {
1700                 log_print("can't start dlm_process");
1701                 destroy_workqueue(io_workqueue);
1702                 io_workqueue = NULL;
1703                 return -ENOMEM;
1704         }
1705
1706         return 0;
1707 }
1708
1709 void dlm_lowcomms_shutdown(void)
1710 {
1711         struct connection *con;
1712         int i, idx;
1713
1714         /* stop lowcomms_listen_data_ready calls */
1715         lock_sock(listen_con.sock->sk);
1716         listen_con.sock->sk->sk_data_ready = listen_sock.sk_data_ready;
1717         release_sock(listen_con.sock->sk);
1718
1719         cancel_work_sync(&listen_con.rwork);
1720         dlm_close_sock(&listen_con.sock);
1721
1722         idx = srcu_read_lock(&connections_srcu);
1723         for (i = 0; i < CONN_HASH_SIZE; i++) {
1724                 hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
1725                         shutdown_connection(con, true);
1726                         stop_connection_io(con);
1727                         flush_workqueue(process_workqueue);
1728                         close_connection(con, true);
1729
1730                         clean_one_writequeue(con);
1731                         if (con->othercon)
1732                                 clean_one_writequeue(con->othercon);
1733                         allow_connection_io(con);
1734                 }
1735         }
1736         srcu_read_unlock(&connections_srcu, idx);
1737 }
1738
1739 void dlm_lowcomms_stop(void)
1740 {
1741         work_stop();
1742         dlm_proto_ops = NULL;
1743 }
1744
1745 static int dlm_listen_for_all(void)
1746 {
1747         struct socket *sock;
1748         int result;
1749
1750         log_print("Using %s for communications",
1751                   dlm_proto_ops->name);
1752
1753         result = dlm_proto_ops->listen_validate();
1754         if (result < 0)
1755                 return result;
1756
1757         result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family,
1758                                   SOCK_STREAM, dlm_proto_ops->proto, &sock);
1759         if (result < 0) {
1760                 log_print("Can't create comms socket: %d", result);
1761                 return result;
1762         }
1763
1764         sock_set_mark(sock->sk, dlm_config.ci_mark);
1765         dlm_proto_ops->listen_sockopts(sock);
1766
1767         result = dlm_proto_ops->listen_bind(sock);
1768         if (result < 0)
1769                 goto out;
1770
1771         lock_sock(sock->sk);
1772         listen_sock.sk_data_ready = sock->sk->sk_data_ready;
1773         listen_sock.sk_write_space = sock->sk->sk_write_space;
1774         listen_sock.sk_error_report = sock->sk->sk_error_report;
1775         listen_sock.sk_state_change = sock->sk->sk_state_change;
1776
1777         listen_con.sock = sock;
1778
1779         sock->sk->sk_allocation = GFP_NOFS;
1780         sock->sk->sk_use_task_frag = false;
1781         sock->sk->sk_data_ready = lowcomms_listen_data_ready;
1782         release_sock(sock->sk);
1783
1784         result = sock->ops->listen(sock, 128);
1785         if (result < 0) {
1786                 dlm_close_sock(&listen_con.sock);
1787                 return result;
1788         }
1789
1790         return 0;
1791
1792 out:
1793         sock_release(sock);
1794         return result;
1795 }
1796
1797 static int dlm_tcp_bind(struct socket *sock)
1798 {
1799         struct sockaddr_storage src_addr;
1800         int result, addr_len;
1801
1802         /* Bind to our cluster-known address connecting to avoid
1803          * routing problems.
1804          */
1805         memcpy(&src_addr, &dlm_local_addr[0], sizeof(src_addr));
1806         make_sockaddr(&src_addr, 0, &addr_len);
1807
1808         result = sock->ops->bind(sock, (struct sockaddr *)&src_addr,
1809                                  addr_len);
1810         if (result < 0) {
1811                 /* This *may* not indicate a critical error */
1812                 log_print("could not bind for connect: %d", result);
1813         }
1814
1815         return 0;
1816 }
1817
1818 static int dlm_tcp_connect(struct connection *con, struct socket *sock,
1819                            struct sockaddr *addr, int addr_len)
1820 {
1821         return sock->ops->connect(sock, addr, addr_len, O_NONBLOCK);
1822 }
1823
1824 static int dlm_tcp_listen_validate(void)
1825 {
1826         /* We don't support multi-homed hosts */
1827         if (dlm_local_count > 1) {
1828                 log_print("TCP protocol can't handle multi-homed hosts, try SCTP");
1829                 return -EINVAL;
1830         }
1831
1832         return 0;
1833 }
1834
1835 static void dlm_tcp_sockopts(struct socket *sock)
1836 {
1837         /* Turn off Nagle's algorithm */
1838         tcp_sock_set_nodelay(sock->sk);
1839 }
1840
1841 static void dlm_tcp_listen_sockopts(struct socket *sock)
1842 {
1843         dlm_tcp_sockopts(sock);
1844         sock_set_reuseaddr(sock->sk);
1845 }
1846
1847 static int dlm_tcp_listen_bind(struct socket *sock)
1848 {
1849         int addr_len;
1850
1851         /* Bind to our port */
1852         make_sockaddr(&dlm_local_addr[0], dlm_config.ci_tcp_port, &addr_len);
1853         return sock->ops->bind(sock, (struct sockaddr *)&dlm_local_addr[0],
1854                                addr_len);
1855 }
1856
1857 static const struct dlm_proto_ops dlm_tcp_ops = {
1858         .name = "TCP",
1859         .proto = IPPROTO_TCP,
1860         .connect = dlm_tcp_connect,
1861         .sockopts = dlm_tcp_sockopts,
1862         .bind = dlm_tcp_bind,
1863         .listen_validate = dlm_tcp_listen_validate,
1864         .listen_sockopts = dlm_tcp_listen_sockopts,
1865         .listen_bind = dlm_tcp_listen_bind,
1866 };
1867
1868 static int dlm_sctp_bind(struct socket *sock)
1869 {
1870         return sctp_bind_addrs(sock, 0);
1871 }
1872
1873 static int dlm_sctp_connect(struct connection *con, struct socket *sock,
1874                             struct sockaddr *addr, int addr_len)
1875 {
1876         int ret;
1877
1878         /*
1879          * Make sock->ops->connect() function return in specified time,
1880          * since O_NONBLOCK argument in connect() function does not work here,
1881          * then, we should restore the default value of this attribute.
1882          */
1883         sock_set_sndtimeo(sock->sk, 5);
1884         ret = sock->ops->connect(sock, addr, addr_len, 0);
1885         sock_set_sndtimeo(sock->sk, 0);
1886         return ret;
1887 }
1888
1889 static int dlm_sctp_listen_validate(void)
1890 {
1891         if (!IS_ENABLED(CONFIG_IP_SCTP)) {
1892                 log_print("SCTP is not enabled by this kernel");
1893                 return -EOPNOTSUPP;
1894         }
1895
1896         request_module("sctp");
1897         return 0;
1898 }
1899
1900 static int dlm_sctp_bind_listen(struct socket *sock)
1901 {
1902         return sctp_bind_addrs(sock, dlm_config.ci_tcp_port);
1903 }
1904
1905 static void dlm_sctp_sockopts(struct socket *sock)
1906 {
1907         /* Turn off Nagle's algorithm */
1908         sctp_sock_set_nodelay(sock->sk);
1909         sock_set_rcvbuf(sock->sk, NEEDED_RMEM);
1910 }
1911
1912 static const struct dlm_proto_ops dlm_sctp_ops = {
1913         .name = "SCTP",
1914         .proto = IPPROTO_SCTP,
1915         .try_new_addr = true,
1916         .connect = dlm_sctp_connect,
1917         .sockopts = dlm_sctp_sockopts,
1918         .bind = dlm_sctp_bind,
1919         .listen_validate = dlm_sctp_listen_validate,
1920         .listen_sockopts = dlm_sctp_sockopts,
1921         .listen_bind = dlm_sctp_bind_listen,
1922 };
1923
1924 int dlm_lowcomms_start(void)
1925 {
1926         int error;
1927
1928         init_local();
1929         if (!dlm_local_count) {
1930                 error = -ENOTCONN;
1931                 log_print("no local IP address has been set");
1932                 goto fail;
1933         }
1934
1935         error = work_start();
1936         if (error)
1937                 goto fail;
1938
1939         /* Start listening */
1940         switch (dlm_config.ci_protocol) {
1941         case DLM_PROTO_TCP:
1942                 dlm_proto_ops = &dlm_tcp_ops;
1943                 break;
1944         case DLM_PROTO_SCTP:
1945                 dlm_proto_ops = &dlm_sctp_ops;
1946                 break;
1947         default:
1948                 log_print("Invalid protocol identifier %d set",
1949                           dlm_config.ci_protocol);
1950                 error = -EINVAL;
1951                 goto fail_proto_ops;
1952         }
1953
1954         error = dlm_listen_for_all();
1955         if (error)
1956                 goto fail_listen;
1957
1958         return 0;
1959
1960 fail_listen:
1961         dlm_proto_ops = NULL;
1962 fail_proto_ops:
1963         work_stop();
1964 fail:
1965         return error;
1966 }
1967
1968 void dlm_lowcomms_init(void)
1969 {
1970         int i;
1971
1972         for (i = 0; i < CONN_HASH_SIZE; i++)
1973                 INIT_HLIST_HEAD(&connection_hash[i]);
1974
1975         INIT_WORK(&listen_con.rwork, process_listen_recv_socket);
1976 }
1977
1978 void dlm_lowcomms_exit(void)
1979 {
1980         struct connection *con;
1981         int i, idx;
1982
1983         idx = srcu_read_lock(&connections_srcu);
1984         for (i = 0; i < CONN_HASH_SIZE; i++) {
1985                 hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
1986                         spin_lock(&connections_lock);
1987                         hlist_del_rcu(&con->list);
1988                         spin_unlock(&connections_lock);
1989
1990                         if (con->othercon)
1991                                 call_srcu(&connections_srcu, &con->othercon->rcu,
1992                                           connection_release);
1993                         call_srcu(&connections_srcu, &con->rcu, connection_release);
1994                 }
1995         }
1996         srcu_read_unlock(&connections_srcu, idx);
1997 }